powerpc: Get 64-bit configs to compile with ARCH=powerpc
[linux-2.6-block.git] / arch / powerpc / kernel / prom.c
CommitLineData
9b6b563c
PM
1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16#undef DEBUG
17
18#include <stdarg.h>
19#include <linux/config.h>
20#include <linux/kernel.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/threads.h>
24#include <linux/spinlock.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/stringify.h>
28#include <linux/delay.h>
29#include <linux/initrd.h>
30#include <linux/bitops.h>
31#include <linux/module.h>
32
33#include <asm/prom.h>
34#include <asm/rtas.h>
35#include <asm/lmb.h>
36#include <asm/page.h>
37#include <asm/processor.h>
38#include <asm/irq.h>
39#include <asm/io.h>
40#include <asm/smp.h>
41#include <asm/system.h>
42#include <asm/mmu.h>
43#include <asm/pgtable.h>
44#include <asm/pci.h>
45#include <asm/iommu.h>
46#include <asm/btext.h>
47#include <asm/sections.h>
48#include <asm/machdep.h>
49#include <asm/pSeries_reconfig.h>
40ef8cbc
PM
50#include <asm/pci-bridge.h>
51#ifdef CONFIG_PPC64
52#include <asm/systemcfg.h>
53#endif
9b6b563c
PM
54
55#ifdef DEBUG
56#define DBG(fmt...) printk(KERN_ERR fmt)
57#else
58#define DBG(fmt...)
59#endif
60
61struct pci_reg_property {
62 struct pci_address addr;
63 u32 size_hi;
64 u32 size_lo;
65};
66
67struct isa_reg_property {
68 u32 space;
69 u32 address;
70 u32 size;
71};
72
73
74typedef int interpret_func(struct device_node *, unsigned long *,
75 int, int, int);
76
77extern struct rtas_t rtas;
78extern struct lmb lmb;
79extern unsigned long klimit;
80
81static unsigned long memory_limit;
82
83static int __initdata dt_root_addr_cells;
84static int __initdata dt_root_size_cells;
85
86#ifdef CONFIG_PPC64
87static int __initdata iommu_is_off;
88int __initdata iommu_force_on;
89extern unsigned long tce_alloc_start, tce_alloc_end;
90#endif
91
92typedef u32 cell_t;
93
94#if 0
95static struct boot_param_header *initial_boot_params __initdata;
96#else
97struct boot_param_header *initial_boot_params;
98#endif
99
100static struct device_node *allnodes = NULL;
101
102/* use when traversing tree through the allnext, child, sibling,
103 * or parent members of struct device_node.
104 */
105static DEFINE_RWLOCK(devtree_lock);
106
107/* export that to outside world */
108struct device_node *of_chosen;
109
110struct device_node *dflt_interrupt_controller;
111int num_interrupt_controllers;
112
113u32 rtas_data;
114u32 rtas_entry;
115
116/*
117 * Wrapper for allocating memory for various data that needs to be
118 * attached to device nodes as they are processed at boot or when
119 * added to the device tree later (e.g. DLPAR). At boot there is
120 * already a region reserved so we just increment *mem_start by size;
121 * otherwise we call kmalloc.
122 */
123static void * prom_alloc(unsigned long size, unsigned long *mem_start)
124{
125 unsigned long tmp;
126
127 if (!mem_start)
128 return kmalloc(size, GFP_KERNEL);
129
130 tmp = *mem_start;
131 *mem_start += size;
132 return (void *)tmp;
133}
134
135/*
136 * Find the device_node with a given phandle.
137 */
138static struct device_node * find_phandle(phandle ph)
139{
140 struct device_node *np;
141
142 for (np = allnodes; np != 0; np = np->allnext)
143 if (np->linux_phandle == ph)
144 return np;
145 return NULL;
146}
147
148/*
149 * Find the interrupt parent of a node.
150 */
151static struct device_node * __devinit intr_parent(struct device_node *p)
152{
153 phandle *parp;
154
155 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
156 if (parp == NULL)
157 return p->parent;
158 p = find_phandle(*parp);
159 if (p != NULL)
160 return p;
161 /*
162 * On a powermac booted with BootX, we don't get to know the
163 * phandles for any nodes, so find_phandle will return NULL.
164 * Fortunately these machines only have one interrupt controller
165 * so there isn't in fact any ambiguity. -- paulus
166 */
167 if (num_interrupt_controllers == 1)
168 p = dflt_interrupt_controller;
169 return p;
170}
171
172/*
173 * Find out the size of each entry of the interrupts property
174 * for a node.
175 */
176int __devinit prom_n_intr_cells(struct device_node *np)
177{
178 struct device_node *p;
179 unsigned int *icp;
180
181 for (p = np; (p = intr_parent(p)) != NULL; ) {
182 icp = (unsigned int *)
183 get_property(p, "#interrupt-cells", NULL);
184 if (icp != NULL)
185 return *icp;
186 if (get_property(p, "interrupt-controller", NULL) != NULL
187 || get_property(p, "interrupt-map", NULL) != NULL) {
188 printk("oops, node %s doesn't have #interrupt-cells\n",
189 p->full_name);
190 return 1;
191 }
192 }
193#ifdef DEBUG_IRQ
194 printk("prom_n_intr_cells failed for %s\n", np->full_name);
195#endif
196 return 1;
197}
198
199/*
200 * Map an interrupt from a device up to the platform interrupt
201 * descriptor.
202 */
203static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
204 struct device_node *np, unsigned int *ints,
205 int nintrc)
206{
207 struct device_node *p, *ipar;
208 unsigned int *imap, *imask, *ip;
209 int i, imaplen, match;
210 int newintrc = 0, newaddrc = 0;
211 unsigned int *reg;
212 int naddrc;
213
214 reg = (unsigned int *) get_property(np, "reg", NULL);
215 naddrc = prom_n_addr_cells(np);
216 p = intr_parent(np);
217 while (p != NULL) {
218 if (get_property(p, "interrupt-controller", NULL) != NULL)
219 /* this node is an interrupt controller, stop here */
220 break;
221 imap = (unsigned int *)
222 get_property(p, "interrupt-map", &imaplen);
223 if (imap == NULL) {
224 p = intr_parent(p);
225 continue;
226 }
227 imask = (unsigned int *)
228 get_property(p, "interrupt-map-mask", NULL);
229 if (imask == NULL) {
230 printk("oops, %s has interrupt-map but no mask\n",
231 p->full_name);
232 return 0;
233 }
234 imaplen /= sizeof(unsigned int);
235 match = 0;
236 ipar = NULL;
237 while (imaplen > 0 && !match) {
238 /* check the child-interrupt field */
239 match = 1;
240 for (i = 0; i < naddrc && match; ++i)
241 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
242 for (; i < naddrc + nintrc && match; ++i)
243 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
244 imap += naddrc + nintrc;
245 imaplen -= naddrc + nintrc;
246 /* grab the interrupt parent */
247 ipar = find_phandle((phandle) *imap++);
248 --imaplen;
249 if (ipar == NULL && num_interrupt_controllers == 1)
250 /* cope with BootX not giving us phandles */
251 ipar = dflt_interrupt_controller;
252 if (ipar == NULL) {
253 printk("oops, no int parent %x in map of %s\n",
254 imap[-1], p->full_name);
255 return 0;
256 }
257 /* find the parent's # addr and intr cells */
258 ip = (unsigned int *)
259 get_property(ipar, "#interrupt-cells", NULL);
260 if (ip == NULL) {
261 printk("oops, no #interrupt-cells on %s\n",
262 ipar->full_name);
263 return 0;
264 }
265 newintrc = *ip;
266 ip = (unsigned int *)
267 get_property(ipar, "#address-cells", NULL);
268 newaddrc = (ip == NULL)? 0: *ip;
269 imap += newaddrc + newintrc;
270 imaplen -= newaddrc + newintrc;
271 }
272 if (imaplen < 0) {
273 printk("oops, error decoding int-map on %s, len=%d\n",
274 p->full_name, imaplen);
275 return 0;
276 }
277 if (!match) {
278#ifdef DEBUG_IRQ
279 printk("oops, no match in %s int-map for %s\n",
280 p->full_name, np->full_name);
281#endif
282 return 0;
283 }
284 p = ipar;
285 naddrc = newaddrc;
286 nintrc = newintrc;
287 ints = imap - nintrc;
288 reg = ints - naddrc;
289 }
290 if (p == NULL) {
291#ifdef DEBUG_IRQ
292 printk("hmmm, int tree for %s doesn't have ctrler\n",
293 np->full_name);
294#endif
295 return 0;
296 }
297 *irq = ints;
298 *ictrler = p;
299 return nintrc;
300}
301
302static int __devinit finish_node_interrupts(struct device_node *np,
303 unsigned long *mem_start,
304 int measure_only)
305{
306 unsigned int *ints;
307 int intlen, intrcells, intrcount;
308 int i, j, n;
309 unsigned int *irq, virq;
310 struct device_node *ic;
311
312 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
313 if (ints == NULL)
314 return 0;
315 intrcells = prom_n_intr_cells(np);
316 intlen /= intrcells * sizeof(unsigned int);
317
318 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
319 if (!np->intrs)
320 return -ENOMEM;
321
322 if (measure_only)
323 return 0;
324
325 intrcount = 0;
326 for (i = 0; i < intlen; ++i, ints += intrcells) {
327 n = map_interrupt(&irq, &ic, np, ints, intrcells);
328 if (n <= 0)
329 continue;
330
331 /* don't map IRQ numbers under a cascaded 8259 controller */
332 if (ic && device_is_compatible(ic, "chrp,iic")) {
333 np->intrs[intrcount].line = irq[0];
334 } else {
335#ifdef CONFIG_PPC64
336 virq = virt_irq_create_mapping(irq[0]);
337 if (virq == NO_IRQ) {
338 printk(KERN_CRIT "Could not allocate interrupt"
339 " number for %s\n", np->full_name);
340 continue;
341 }
342 virq = irq_offset_up(virq);
343#else
344 virq = irq[0];
345#endif
346 np->intrs[intrcount].line = virq;
347 }
348
349#ifdef CONFIG_PPC64
350 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
351 if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
352 char *name = get_property(ic->parent, "name", NULL);
353 if (name && !strcmp(name, "u3"))
354 np->intrs[intrcount].line += 128;
355 else if (!(name && !strcmp(name, "mac-io")))
356 /* ignore other cascaded controllers, such as
357 the k2-sata-root */
358 break;
359 }
360#endif
361 np->intrs[intrcount].sense = 1;
362 if (n > 1)
363 np->intrs[intrcount].sense = irq[1];
364 if (n > 2) {
365 printk("hmmm, got %d intr cells for %s:", n,
366 np->full_name);
367 for (j = 0; j < n; ++j)
368 printk(" %d", irq[j]);
369 printk("\n");
370 }
371 ++intrcount;
372 }
373 np->n_intrs = intrcount;
374
375 return 0;
376}
377
378static int __devinit interpret_pci_props(struct device_node *np,
379 unsigned long *mem_start,
380 int naddrc, int nsizec,
381 int measure_only)
382{
383 struct address_range *adr;
384 struct pci_reg_property *pci_addrs;
385 int i, l, n_addrs;
386
387 pci_addrs = (struct pci_reg_property *)
388 get_property(np, "assigned-addresses", &l);
389 if (!pci_addrs)
390 return 0;
391
392 n_addrs = l / sizeof(*pci_addrs);
393
394 adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
395 if (!adr)
396 return -ENOMEM;
397
398 if (measure_only)
399 return 0;
400
401 np->addrs = adr;
402 np->n_addrs = n_addrs;
403
404 for (i = 0; i < n_addrs; i++) {
405 adr[i].space = pci_addrs[i].addr.a_hi;
406 adr[i].address = pci_addrs[i].addr.a_lo |
407 ((u64)pci_addrs[i].addr.a_mid << 32);
408 adr[i].size = pci_addrs[i].size_lo;
409 }
410
411 return 0;
412}
413
414static int __init interpret_dbdma_props(struct device_node *np,
415 unsigned long *mem_start,
416 int naddrc, int nsizec,
417 int measure_only)
418{
419 struct reg_property32 *rp;
420 struct address_range *adr;
421 unsigned long base_address;
422 int i, l;
423 struct device_node *db;
424
425 base_address = 0;
426 if (!measure_only) {
427 for (db = np->parent; db != NULL; db = db->parent) {
428 if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
429 base_address = db->addrs[0].address;
430 break;
431 }
432 }
433 }
434
435 rp = (struct reg_property32 *) get_property(np, "reg", &l);
436 if (rp != 0 && l >= sizeof(struct reg_property32)) {
437 i = 0;
438 adr = (struct address_range *) (*mem_start);
439 while ((l -= sizeof(struct reg_property32)) >= 0) {
440 if (!measure_only) {
441 adr[i].space = 2;
442 adr[i].address = rp[i].address + base_address;
443 adr[i].size = rp[i].size;
444 }
445 ++i;
446 }
447 np->addrs = adr;
448 np->n_addrs = i;
449 (*mem_start) += i * sizeof(struct address_range);
450 }
451
452 return 0;
453}
454
455static int __init interpret_macio_props(struct device_node *np,
456 unsigned long *mem_start,
457 int naddrc, int nsizec,
458 int measure_only)
459{
460 struct reg_property32 *rp;
461 struct address_range *adr;
462 unsigned long base_address;
463 int i, l;
464 struct device_node *db;
465
466 base_address = 0;
467 if (!measure_only) {
468 for (db = np->parent; db != NULL; db = db->parent) {
469 if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
470 base_address = db->addrs[0].address;
471 break;
472 }
473 }
474 }
475
476 rp = (struct reg_property32 *) get_property(np, "reg", &l);
477 if (rp != 0 && l >= sizeof(struct reg_property32)) {
478 i = 0;
479 adr = (struct address_range *) (*mem_start);
480 while ((l -= sizeof(struct reg_property32)) >= 0) {
481 if (!measure_only) {
482 adr[i].space = 2;
483 adr[i].address = rp[i].address + base_address;
484 adr[i].size = rp[i].size;
485 }
486 ++i;
487 }
488 np->addrs = adr;
489 np->n_addrs = i;
490 (*mem_start) += i * sizeof(struct address_range);
491 }
492
493 return 0;
494}
495
496static int __init interpret_isa_props(struct device_node *np,
497 unsigned long *mem_start,
498 int naddrc, int nsizec,
499 int measure_only)
500{
501 struct isa_reg_property *rp;
502 struct address_range *adr;
503 int i, l;
504
505 rp = (struct isa_reg_property *) get_property(np, "reg", &l);
506 if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
507 i = 0;
508 adr = (struct address_range *) (*mem_start);
509 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
510 if (!measure_only) {
511 adr[i].space = rp[i].space;
512 adr[i].address = rp[i].address;
513 adr[i].size = rp[i].size;
514 }
515 ++i;
516 }
517 np->addrs = adr;
518 np->n_addrs = i;
519 (*mem_start) += i * sizeof(struct address_range);
520 }
521
522 return 0;
523}
524
525static int __init interpret_root_props(struct device_node *np,
526 unsigned long *mem_start,
527 int naddrc, int nsizec,
528 int measure_only)
529{
530 struct address_range *adr;
531 int i, l;
532 unsigned int *rp;
533 int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
534
535 rp = (unsigned int *) get_property(np, "reg", &l);
536 if (rp != 0 && l >= rpsize) {
537 i = 0;
538 adr = (struct address_range *) (*mem_start);
539 while ((l -= rpsize) >= 0) {
540 if (!measure_only) {
541 adr[i].space = 0;
542 adr[i].address = rp[naddrc - 1];
543 adr[i].size = rp[naddrc + nsizec - 1];
544 }
545 ++i;
546 rp += naddrc + nsizec;
547 }
548 np->addrs = adr;
549 np->n_addrs = i;
550 (*mem_start) += i * sizeof(struct address_range);
551 }
552
553 return 0;
554}
555
556static int __devinit finish_node(struct device_node *np,
557 unsigned long *mem_start,
558 interpret_func *ifunc,
559 int naddrc, int nsizec,
560 int measure_only)
561{
562 struct device_node *child;
563 int *ip, rc = 0;
564
565 /* get the device addresses and interrupts */
566 if (ifunc != NULL)
567 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
568 if (rc)
569 goto out;
570
571 rc = finish_node_interrupts(np, mem_start, measure_only);
572 if (rc)
573 goto out;
574
575 /* Look for #address-cells and #size-cells properties. */
576 ip = (int *) get_property(np, "#address-cells", NULL);
577 if (ip != NULL)
578 naddrc = *ip;
579 ip = (int *) get_property(np, "#size-cells", NULL);
580 if (ip != NULL)
581 nsizec = *ip;
582
583 if (!strcmp(np->name, "device-tree") || np->parent == NULL)
584 ifunc = interpret_root_props;
585 else if (np->type == 0)
586 ifunc = NULL;
587 else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
588 ifunc = interpret_pci_props;
589 else if (!strcmp(np->type, "dbdma"))
590 ifunc = interpret_dbdma_props;
591 else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
592 ifunc = interpret_macio_props;
593 else if (!strcmp(np->type, "isa"))
594 ifunc = interpret_isa_props;
595 else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
596 ifunc = interpret_root_props;
597 else if (!((ifunc == interpret_dbdma_props
598 || ifunc == interpret_macio_props)
599 && (!strcmp(np->type, "escc")
600 || !strcmp(np->type, "media-bay"))))
601 ifunc = NULL;
602
603 for (child = np->child; child != NULL; child = child->sibling) {
604 rc = finish_node(child, mem_start, ifunc,
605 naddrc, nsizec, measure_only);
606 if (rc)
607 goto out;
608 }
609out:
610 return rc;
611}
612
613static void __init scan_interrupt_controllers(void)
614{
615 struct device_node *np;
616 int n = 0;
617 char *name, *ic;
618 int iclen;
619
620 for (np = allnodes; np != NULL; np = np->allnext) {
621 ic = get_property(np, "interrupt-controller", &iclen);
622 name = get_property(np, "name", NULL);
623 /* checking iclen makes sure we don't get a false
624 match on /chosen.interrupt_controller */
625 if ((name != NULL
626 && strcmp(name, "interrupt-controller") == 0)
627 || (ic != NULL && iclen == 0
628 && strcmp(name, "AppleKiwi"))) {
629 if (n == 0)
630 dflt_interrupt_controller = np;
631 ++n;
632 }
633 }
634 num_interrupt_controllers = n;
635}
636
637/**
638 * finish_device_tree is called once things are running normally
639 * (i.e. with text and data mapped to the address they were linked at).
640 * It traverses the device tree and fills in some of the additional,
641 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
642 * mapping is also initialized at this point.
643 */
644void __init finish_device_tree(void)
645{
646 unsigned long start, end, size = 0;
647
648 DBG(" -> finish_device_tree\n");
649
650#ifdef CONFIG_PPC64
651 /* Initialize virtual IRQ map */
652 virt_irq_init();
653#endif
654 scan_interrupt_controllers();
655
656 /*
657 * Finish device-tree (pre-parsing some properties etc...)
658 * We do this in 2 passes. One with "measure_only" set, which
659 * will only measure the amount of memory needed, then we can
660 * allocate that memory, and call finish_node again. However,
661 * we must be careful as most routines will fail nowadays when
662 * prom_alloc() returns 0, so we must make sure our first pass
663 * doesn't start at 0. We pre-initialize size to 16 for that
664 * reason and then remove those additional 16 bytes
665 */
666 size = 16;
667 finish_node(allnodes, &size, NULL, 0, 0, 1);
668 size -= 16;
669 end = start = (unsigned long) __va(lmb_alloc(size, 128));
670 finish_node(allnodes, &end, NULL, 0, 0, 0);
671 BUG_ON(end != start + size);
672
673 DBG(" <- finish_device_tree\n");
674}
675
676static inline char *find_flat_dt_string(u32 offset)
677{
678 return ((char *)initial_boot_params) +
679 initial_boot_params->off_dt_strings + offset;
680}
681
682/**
683 * This function is used to scan the flattened device-tree, it is
684 * used to extract the memory informations at boot before we can
685 * unflatten the tree
686 */
687static int __init scan_flat_dt(int (*it)(unsigned long node,
688 const char *uname, int depth,
689 void *data),
690 void *data)
691{
692 unsigned long p = ((unsigned long)initial_boot_params) +
693 initial_boot_params->off_dt_struct;
694 int rc = 0;
695 int depth = -1;
696
697 do {
698 u32 tag = *((u32 *)p);
699 char *pathp;
700
701 p += 4;
702 if (tag == OF_DT_END_NODE) {
703 depth --;
704 continue;
705 }
706 if (tag == OF_DT_NOP)
707 continue;
708 if (tag == OF_DT_END)
709 break;
710 if (tag == OF_DT_PROP) {
711 u32 sz = *((u32 *)p);
712 p += 8;
713 if (initial_boot_params->version < 0x10)
714 p = _ALIGN(p, sz >= 8 ? 8 : 4);
715 p += sz;
716 p = _ALIGN(p, 4);
717 continue;
718 }
719 if (tag != OF_DT_BEGIN_NODE) {
720 printk(KERN_WARNING "Invalid tag %x scanning flattened"
721 " device tree !\n", tag);
722 return -EINVAL;
723 }
724 depth++;
725 pathp = (char *)p;
726 p = _ALIGN(p + strlen(pathp) + 1, 4);
727 if ((*pathp) == '/') {
728 char *lp, *np;
729 for (lp = NULL, np = pathp; *np; np++)
730 if ((*np) == '/')
731 lp = np+1;
732 if (lp != NULL)
733 pathp = lp;
734 }
735 rc = it(p, pathp, depth, data);
736 if (rc != 0)
737 break;
738 } while(1);
739
740 return rc;
741}
742
743/**
744 * This function can be used within scan_flattened_dt callback to get
745 * access to properties
746 */
747static void* __init get_flat_dt_prop(unsigned long node, const char *name,
748 unsigned long *size)
749{
750 unsigned long p = node;
751
752 do {
753 u32 tag = *((u32 *)p);
754 u32 sz, noff;
755 const char *nstr;
756
757 p += 4;
758 if (tag == OF_DT_NOP)
759 continue;
760 if (tag != OF_DT_PROP)
761 return NULL;
762
763 sz = *((u32 *)p);
764 noff = *((u32 *)(p + 4));
765 p += 8;
766 if (initial_boot_params->version < 0x10)
767 p = _ALIGN(p, sz >= 8 ? 8 : 4);
768
769 nstr = find_flat_dt_string(noff);
770 if (nstr == NULL) {
771 printk(KERN_WARNING "Can't find property index"
772 " name !\n");
773 return NULL;
774 }
775 if (strcmp(name, nstr) == 0) {
776 if (size)
777 *size = sz;
778 return (void *)p;
779 }
780 p += sz;
781 p = _ALIGN(p, 4);
782 } while(1);
783}
784
785static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
786 unsigned long align)
787{
788 void *res;
789
790 *mem = _ALIGN(*mem, align);
791 res = (void *)*mem;
792 *mem += size;
793
794 return res;
795}
796
797static unsigned long __init unflatten_dt_node(unsigned long mem,
798 unsigned long *p,
799 struct device_node *dad,
800 struct device_node ***allnextpp,
801 unsigned long fpsize)
802{
803 struct device_node *np;
804 struct property *pp, **prev_pp = NULL;
805 char *pathp;
806 u32 tag;
807 unsigned int l, allocl;
808 int has_name = 0;
809 int new_format = 0;
810
811 tag = *((u32 *)(*p));
812 if (tag != OF_DT_BEGIN_NODE) {
813 printk("Weird tag at start of node: %x\n", tag);
814 return mem;
815 }
816 *p += 4;
817 pathp = (char *)*p;
818 l = allocl = strlen(pathp) + 1;
819 *p = _ALIGN(*p + l, 4);
820
821 /* version 0x10 has a more compact unit name here instead of the full
822 * path. we accumulate the full path size using "fpsize", we'll rebuild
823 * it later. We detect this because the first character of the name is
824 * not '/'.
825 */
826 if ((*pathp) != '/') {
827 new_format = 1;
828 if (fpsize == 0) {
829 /* root node: special case. fpsize accounts for path
830 * plus terminating zero. root node only has '/', so
831 * fpsize should be 2, but we want to avoid the first
832 * level nodes to have two '/' so we use fpsize 1 here
833 */
834 fpsize = 1;
835 allocl = 2;
836 } else {
837 /* account for '/' and path size minus terminal 0
838 * already in 'l'
839 */
840 fpsize += l;
841 allocl = fpsize;
842 }
843 }
844
845
846 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
847 __alignof__(struct device_node));
848 if (allnextpp) {
849 memset(np, 0, sizeof(*np));
850 np->full_name = ((char*)np) + sizeof(struct device_node);
851 if (new_format) {
852 char *p = np->full_name;
853 /* rebuild full path for new format */
854 if (dad && dad->parent) {
855 strcpy(p, dad->full_name);
856#ifdef DEBUG
857 if ((strlen(p) + l + 1) != allocl) {
858 DBG("%s: p: %d, l: %d, a: %d\n",
859 pathp, strlen(p), l, allocl);
860 }
861#endif
862 p += strlen(p);
863 }
864 *(p++) = '/';
865 memcpy(p, pathp, l);
866 } else
867 memcpy(np->full_name, pathp, l);
868 prev_pp = &np->properties;
869 **allnextpp = np;
870 *allnextpp = &np->allnext;
871 if (dad != NULL) {
872 np->parent = dad;
873 /* we temporarily use the next field as `last_child'*/
874 if (dad->next == 0)
875 dad->child = np;
876 else
877 dad->next->sibling = np;
878 dad->next = np;
879 }
880 kref_init(&np->kref);
881 }
882 while(1) {
883 u32 sz, noff;
884 char *pname;
885
886 tag = *((u32 *)(*p));
887 if (tag == OF_DT_NOP) {
888 *p += 4;
889 continue;
890 }
891 if (tag != OF_DT_PROP)
892 break;
893 *p += 4;
894 sz = *((u32 *)(*p));
895 noff = *((u32 *)((*p) + 4));
896 *p += 8;
897 if (initial_boot_params->version < 0x10)
898 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
899
900 pname = find_flat_dt_string(noff);
901 if (pname == NULL) {
902 printk("Can't find property name in list !\n");
903 break;
904 }
905 if (strcmp(pname, "name") == 0)
906 has_name = 1;
907 l = strlen(pname) + 1;
908 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
909 __alignof__(struct property));
910 if (allnextpp) {
911 if (strcmp(pname, "linux,phandle") == 0) {
912 np->node = *((u32 *)*p);
913 if (np->linux_phandle == 0)
914 np->linux_phandle = np->node;
915 }
916 if (strcmp(pname, "ibm,phandle") == 0)
917 np->linux_phandle = *((u32 *)*p);
918 pp->name = pname;
919 pp->length = sz;
920 pp->value = (void *)*p;
921 *prev_pp = pp;
922 prev_pp = &pp->next;
923 }
924 *p = _ALIGN((*p) + sz, 4);
925 }
926 /* with version 0x10 we may not have the name property, recreate
927 * it here from the unit name if absent
928 */
929 if (!has_name) {
930 char *p = pathp, *ps = pathp, *pa = NULL;
931 int sz;
932
933 while (*p) {
934 if ((*p) == '@')
935 pa = p;
936 if ((*p) == '/')
937 ps = p + 1;
938 p++;
939 }
940 if (pa < ps)
941 pa = p;
942 sz = (pa - ps) + 1;
943 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
944 __alignof__(struct property));
945 if (allnextpp) {
946 pp->name = "name";
947 pp->length = sz;
948 pp->value = (unsigned char *)(pp + 1);
949 *prev_pp = pp;
950 prev_pp = &pp->next;
951 memcpy(pp->value, ps, sz - 1);
952 ((char *)pp->value)[sz - 1] = 0;
953 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
954 }
955 }
956 if (allnextpp) {
957 *prev_pp = NULL;
958 np->name = get_property(np, "name", NULL);
959 np->type = get_property(np, "device_type", NULL);
960
961 if (!np->name)
962 np->name = "<NULL>";
963 if (!np->type)
964 np->type = "<NULL>";
965 }
966 while (tag == OF_DT_BEGIN_NODE) {
967 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
968 tag = *((u32 *)(*p));
969 }
970 if (tag != OF_DT_END_NODE) {
971 printk("Weird tag at end of node: %x\n", tag);
972 return mem;
973 }
974 *p += 4;
975 return mem;
976}
977
978
979/**
980 * unflattens the device-tree passed by the firmware, creating the
981 * tree of struct device_node. It also fills the "name" and "type"
982 * pointers of the nodes so the normal device-tree walking functions
983 * can be used (this used to be done by finish_device_tree)
984 */
985void __init unflatten_device_tree(void)
986{
987 unsigned long start, mem, size;
988 struct device_node **allnextp = &allnodes;
989 char *p = NULL;
990 int l = 0;
991
992 DBG(" -> unflatten_device_tree()\n");
993
994 /* First pass, scan for size */
995 start = ((unsigned long)initial_boot_params) +
996 initial_boot_params->off_dt_struct;
997 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
998 size = (size | 3) + 1;
999
1000 DBG(" size is %lx, allocating...\n", size);
1001
1002 /* Allocate memory for the expanded device tree */
1003 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
1004 if (!mem) {
1005 DBG("Couldn't allocate memory with lmb_alloc()!\n");
1006 panic("Couldn't allocate memory with lmb_alloc()!\n");
1007 }
1008 mem = (unsigned long) __va(mem);
1009
1010 ((u32 *)mem)[size / 4] = 0xdeadbeef;
1011
1012 DBG(" unflattening %lx...\n", mem);
1013
1014 /* Second pass, do actual unflattening */
1015 start = ((unsigned long)initial_boot_params) +
1016 initial_boot_params->off_dt_struct;
1017 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
1018 if (*((u32 *)start) != OF_DT_END)
1019 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
1020 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
1021 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
1022 ((u32 *)mem)[size / 4] );
1023 *allnextp = NULL;
1024
1025 /* Get pointer to OF "/chosen" node for use everywhere */
1026 of_chosen = of_find_node_by_path("/chosen");
1027
1028 /* Retreive command line */
1029 if (of_chosen != NULL) {
1030 p = (char *)get_property(of_chosen, "bootargs", &l);
1031 if (p != NULL && l > 0)
1032 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
1033 }
1034#ifdef CONFIG_CMDLINE
1035 if (l == 0 || (l == 1 && (*p) == 0))
1036 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1037#endif /* CONFIG_CMDLINE */
1038
1039 DBG("Command line is: %s\n", cmd_line);
1040
1041 DBG(" <- unflatten_device_tree()\n");
1042}
1043
1044
1045static int __init early_init_dt_scan_cpus(unsigned long node,
1046 const char *uname, int depth, void *data)
1047{
1048 char *type = get_flat_dt_prop(node, "device_type", NULL);
1049 u32 *prop;
1050 unsigned long size = 0;
1051
1052 /* We are scanning "cpu" nodes only */
1053 if (type == NULL || strcmp(type, "cpu") != 0)
1054 return 0;
1055
1056#ifdef CONFIG_PPC_PSERIES
1057 /* On LPAR, look for the first ibm,pft-size property for the hash table size
1058 */
1059 if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) {
1060 u32 *pft_size;
1061 pft_size = get_flat_dt_prop(node, "ibm,pft-size", NULL);
1062 if (pft_size != NULL) {
1063 /* pft_size[0] is the NUMA CEC cookie */
1064 ppc64_pft_size = pft_size[1];
1065 }
1066 }
1067#endif
1068
1069#ifdef CONFIG_PPC64
1070 if (initial_boot_params && initial_boot_params->version >= 2) {
1071 /* version 2 of the kexec param format adds the phys cpuid
1072 * of booted proc.
1073 */
1074 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1075 boot_cpuid = 0;
1076 } else {
1077 /* Check if it's the boot-cpu, set it's hw index in paca now */
1078 if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) {
40ef8cbc 1079 prop = get_flat_dt_prop(node, "reg", NULL);
9b6b563c
PM
1080 set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop);
1081 boot_cpuid_phys = get_hard_smp_processor_id(0);
1082 }
1083 }
1084#endif
1085
1086#ifdef CONFIG_ALTIVEC
1087 /* Check if we have a VMX and eventually update CPU features */
1088 prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", &size);
1089 if (prop && (*prop) > 0) {
1090 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1091 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1092 }
1093
1094 /* Same goes for Apple's "altivec" property */
1095 prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL);
1096 if (prop) {
1097 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1098 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1099 }
1100#endif /* CONFIG_ALTIVEC */
1101
1102#ifdef CONFIG_PPC_PSERIES
1103 /*
1104 * Check for an SMT capable CPU and set the CPU feature. We do
1105 * this by looking at the size of the ibm,ppc-interrupt-server#s
1106 * property
1107 */
1108 prop = (u32 *)get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1109 &size);
1110 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1111 if (prop && ((size / sizeof(u32)) > 1))
1112 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1113#endif
1114
1115 return 0;
1116}
1117
1118static int __init early_init_dt_scan_chosen(unsigned long node,
1119 const char *uname, int depth, void *data)
1120{
1121 u32 *prop;
1122 unsigned long *lprop;
1123
1124 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1125
1126 if (depth != 1 || strcmp(uname, "chosen") != 0)
1127 return 0;
1128
1129 /* get platform type */
1130 prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL);
1131 if (prop == NULL)
1132 return 0;
1133#ifdef CONFIG_PPC64
1134 systemcfg->platform = *prop;
1135#else
1136 _machine = *prop;
1137#endif
1138
1139#ifdef CONFIG_PPC64
1140 /* check if iommu is forced on or off */
1141 if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1142 iommu_is_off = 1;
1143 if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1144 iommu_force_on = 1;
1145#endif
1146
1147 lprop = get_flat_dt_prop(node, "linux,memory-limit", NULL);
1148 if (lprop)
1149 memory_limit = *lprop;
1150
1151#ifdef CONFIG_PPC64
1152 lprop = get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1153 if (lprop)
1154 tce_alloc_start = *lprop;
1155 lprop = get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1156 if (lprop)
1157 tce_alloc_end = *lprop;
1158#endif
1159
1160#ifdef CONFIG_PPC_RTAS
1161 /* To help early debugging via the front panel, we retreive a minimal
1162 * set of RTAS infos now if available
1163 */
1164 {
1165 u64 *basep, *entryp;
1166
1167 basep = get_flat_dt_prop(node, "linux,rtas-base", NULL);
1168 entryp = get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1169 prop = get_flat_dt_prop(node, "linux,rtas-size", NULL);
1170 if (basep && entryp && prop) {
1171 rtas.base = *basep;
1172 rtas.entry = *entryp;
1173 rtas.size = *prop;
1174 }
1175 }
1176#endif /* CONFIG_PPC_RTAS */
1177
1178 /* break now */
1179 return 1;
1180}
1181
1182static int __init early_init_dt_scan_root(unsigned long node,
1183 const char *uname, int depth, void *data)
1184{
1185 u32 *prop;
1186
1187 if (depth != 0)
1188 return 0;
1189
1190 prop = get_flat_dt_prop(node, "#size-cells", NULL);
1191 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1192 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1193
1194 prop = get_flat_dt_prop(node, "#address-cells", NULL);
1195 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1196 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1197
1198 /* break now */
1199 return 1;
1200}
1201
1202static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1203{
1204 cell_t *p = *cellp;
1205 unsigned long r;
1206
1207 /* Ignore more than 2 cells */
1208 while (s > sizeof(unsigned long) / 4) {
1209 p++;
1210 s--;
1211 }
1212 r = *p++;
1213#ifdef CONFIG_PPC64
1214 if (s > 1) {
1215 r <<= 32;
1216 r |= *(p++);
1217 s--;
1218 }
1219#endif
1220
1221 *cellp = p;
1222 return r;
1223}
1224
1225
1226static int __init early_init_dt_scan_memory(unsigned long node,
1227 const char *uname, int depth, void *data)
1228{
1229 char *type = get_flat_dt_prop(node, "device_type", NULL);
1230 cell_t *reg, *endp;
1231 unsigned long l;
1232
1233 /* We are scanning "memory" nodes only */
1234 if (type == NULL || strcmp(type, "memory") != 0)
1235 return 0;
1236
1237 reg = (cell_t *)get_flat_dt_prop(node, "reg", &l);
1238 if (reg == NULL)
1239 return 0;
1240
1241 endp = reg + (l / sizeof(cell_t));
1242
1243 DBG("memory scan node %s ..., reg size %ld, data: %x %x %x %x, ...\n",
1244 uname, l, reg[0], reg[1], reg[2], reg[3]);
1245
1246 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1247 unsigned long base, size;
1248
1249 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1250 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1251
1252 if (size == 0)
1253 continue;
1254 DBG(" - %lx , %lx\n", base, size);
1255#ifdef CONFIG_PPC64
1256 if (iommu_is_off) {
1257 if (base >= 0x80000000ul)
1258 continue;
1259 if ((base + size) > 0x80000000ul)
1260 size = 0x80000000ul - base;
1261 }
1262#endif
1263 lmb_add(base, size);
1264 }
1265 return 0;
1266}
1267
1268static void __init early_reserve_mem(void)
1269{
1270 unsigned long base, size;
1271 unsigned long *reserve_map;
1272
1273 reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1274 initial_boot_params->off_mem_rsvmap);
1275 while (1) {
1276 base = *(reserve_map++);
1277 size = *(reserve_map++);
1278 if (size == 0)
1279 break;
1280 DBG("reserving: %lx -> %lx\n", base, size);
1281 lmb_reserve(base, size);
1282 }
1283
1284#if 0
1285 DBG("memory reserved, lmbs :\n");
1286 lmb_dump_all();
1287#endif
1288}
1289
1290void __init early_init_devtree(void *params)
1291{
1292 DBG(" -> early_init_devtree()\n");
1293
1294 /* Setup flat device-tree pointer */
1295 initial_boot_params = params;
1296
1297 /* Retrieve various informations from the /chosen node of the
1298 * device-tree, including the platform type, initrd location and
1299 * size, TCE reserve, and more ...
1300 */
1301 scan_flat_dt(early_init_dt_scan_chosen, NULL);
1302
1303 /* Scan memory nodes and rebuild LMBs */
1304 lmb_init();
1305 scan_flat_dt(early_init_dt_scan_root, NULL);
1306 scan_flat_dt(early_init_dt_scan_memory, NULL);
1307 lmb_enforce_memory_limit(memory_limit);
1308 lmb_analyze();
1309#ifdef CONFIG_PPC64
1310 systemcfg->physicalMemorySize = lmb_phys_mem_size();
1311#endif
1312 lmb_reserve(0, __pa(klimit));
1313
1314 DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1315
1316 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1317 early_reserve_mem();
1318
1319 DBG("Scanning CPUs ...\n");
1320
1321 /* Retreive hash table size from flattened tree plus other
1322 * CPU related informations (altivec support, boot CPU ID, ...)
1323 */
1324 scan_flat_dt(early_init_dt_scan_cpus, NULL);
1325
1326#ifdef CONFIG_PPC_PSERIES
1327 /* If hash size wasn't obtained above, we calculate it now based on
1328 * the total RAM size
1329 */
1330 if (ppc64_pft_size == 0) {
1331 unsigned long rnd_mem_size, pteg_count;
1332
1333 /* round mem_size up to next power of 2 */
1334 rnd_mem_size = 1UL << __ilog2(systemcfg->physicalMemorySize);
1335 if (rnd_mem_size < systemcfg->physicalMemorySize)
1336 rnd_mem_size <<= 1;
1337
1338 /* # pages / 2 */
1339 pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11);
1340
1341 ppc64_pft_size = __ilog2(pteg_count << 7);
1342 }
1343
1344 DBG("Hash pftSize: %x\n", (int)ppc64_pft_size);
1345#endif
1346 DBG(" <- early_init_devtree()\n");
1347}
1348
1349#undef printk
1350
1351int
1352prom_n_addr_cells(struct device_node* np)
1353{
1354 int* ip;
1355 do {
1356 if (np->parent)
1357 np = np->parent;
1358 ip = (int *) get_property(np, "#address-cells", NULL);
1359 if (ip != NULL)
1360 return *ip;
1361 } while (np->parent);
1362 /* No #address-cells property for the root node, default to 1 */
1363 return 1;
1364}
1365
1366int
1367prom_n_size_cells(struct device_node* np)
1368{
1369 int* ip;
1370 do {
1371 if (np->parent)
1372 np = np->parent;
1373 ip = (int *) get_property(np, "#size-cells", NULL);
1374 if (ip != NULL)
1375 return *ip;
1376 } while (np->parent);
1377 /* No #size-cells property for the root node, default to 1 */
1378 return 1;
1379}
1380
1381/**
1382 * Work out the sense (active-low level / active-high edge)
1383 * of each interrupt from the device tree.
1384 */
1385void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1386{
1387 struct device_node *np;
1388 int i, j;
1389
1390 /* default to level-triggered */
1391 memset(senses, 1, max - off);
1392
1393 for (np = allnodes; np != 0; np = np->allnext) {
1394 for (j = 0; j < np->n_intrs; j++) {
1395 i = np->intrs[j].line;
1396 if (i >= off && i < max)
1397 senses[i-off] = np->intrs[j].sense ?
1398 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE :
1399 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE;
1400 }
1401 }
1402}
1403
1404/**
1405 * Construct and return a list of the device_nodes with a given name.
1406 */
1407struct device_node *find_devices(const char *name)
1408{
1409 struct device_node *head, **prevp, *np;
1410
1411 prevp = &head;
1412 for (np = allnodes; np != 0; np = np->allnext) {
1413 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1414 *prevp = np;
1415 prevp = &np->next;
1416 }
1417 }
1418 *prevp = NULL;
1419 return head;
1420}
1421EXPORT_SYMBOL(find_devices);
1422
1423/**
1424 * Construct and return a list of the device_nodes with a given type.
1425 */
1426struct device_node *find_type_devices(const char *type)
1427{
1428 struct device_node *head, **prevp, *np;
1429
1430 prevp = &head;
1431 for (np = allnodes; np != 0; np = np->allnext) {
1432 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1433 *prevp = np;
1434 prevp = &np->next;
1435 }
1436 }
1437 *prevp = NULL;
1438 return head;
1439}
1440EXPORT_SYMBOL(find_type_devices);
1441
1442/**
1443 * Returns all nodes linked together
1444 */
1445struct device_node *find_all_nodes(void)
1446{
1447 struct device_node *head, **prevp, *np;
1448
1449 prevp = &head;
1450 for (np = allnodes; np != 0; np = np->allnext) {
1451 *prevp = np;
1452 prevp = &np->next;
1453 }
1454 *prevp = NULL;
1455 return head;
1456}
1457EXPORT_SYMBOL(find_all_nodes);
1458
1459/** Checks if the given "compat" string matches one of the strings in
1460 * the device's "compatible" property
1461 */
1462int device_is_compatible(struct device_node *device, const char *compat)
1463{
1464 const char* cp;
1465 int cplen, l;
1466
1467 cp = (char *) get_property(device, "compatible", &cplen);
1468 if (cp == NULL)
1469 return 0;
1470 while (cplen > 0) {
1471 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1472 return 1;
1473 l = strlen(cp) + 1;
1474 cp += l;
1475 cplen -= l;
1476 }
1477
1478 return 0;
1479}
1480EXPORT_SYMBOL(device_is_compatible);
1481
1482
1483/**
1484 * Indicates whether the root node has a given value in its
1485 * compatible property.
1486 */
1487int machine_is_compatible(const char *compat)
1488{
1489 struct device_node *root;
1490 int rc = 0;
1491
1492 root = of_find_node_by_path("/");
1493 if (root) {
1494 rc = device_is_compatible(root, compat);
1495 of_node_put(root);
1496 }
1497 return rc;
1498}
1499EXPORT_SYMBOL(machine_is_compatible);
1500
1501/**
1502 * Construct and return a list of the device_nodes with a given type
1503 * and compatible property.
1504 */
1505struct device_node *find_compatible_devices(const char *type,
1506 const char *compat)
1507{
1508 struct device_node *head, **prevp, *np;
1509
1510 prevp = &head;
1511 for (np = allnodes; np != 0; np = np->allnext) {
1512 if (type != NULL
1513 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1514 continue;
1515 if (device_is_compatible(np, compat)) {
1516 *prevp = np;
1517 prevp = &np->next;
1518 }
1519 }
1520 *prevp = NULL;
1521 return head;
1522}
1523EXPORT_SYMBOL(find_compatible_devices);
1524
1525/**
1526 * Find the device_node with a given full_name.
1527 */
1528struct device_node *find_path_device(const char *path)
1529{
1530 struct device_node *np;
1531
1532 for (np = allnodes; np != 0; np = np->allnext)
1533 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1534 return np;
1535 return NULL;
1536}
1537EXPORT_SYMBOL(find_path_device);
1538
1539/*******
1540 *
1541 * New implementation of the OF "find" APIs, return a refcounted
1542 * object, call of_node_put() when done. The device tree and list
1543 * are protected by a rw_lock.
1544 *
1545 * Note that property management will need some locking as well,
1546 * this isn't dealt with yet.
1547 *
1548 *******/
1549
1550/**
1551 * of_find_node_by_name - Find a node by its "name" property
1552 * @from: The node to start searching from or NULL, the node
1553 * you pass will not be searched, only the next one
1554 * will; typically, you pass what the previous call
1555 * returned. of_node_put() will be called on it
1556 * @name: The name string to match against
1557 *
1558 * Returns a node pointer with refcount incremented, use
1559 * of_node_put() on it when done.
1560 */
1561struct device_node *of_find_node_by_name(struct device_node *from,
1562 const char *name)
1563{
1564 struct device_node *np;
1565
1566 read_lock(&devtree_lock);
1567 np = from ? from->allnext : allnodes;
1568 for (; np != 0; np = np->allnext)
1569 if (np->name != 0 && strcasecmp(np->name, name) == 0
1570 && of_node_get(np))
1571 break;
1572 if (from)
1573 of_node_put(from);
1574 read_unlock(&devtree_lock);
1575 return np;
1576}
1577EXPORT_SYMBOL(of_find_node_by_name);
1578
1579/**
1580 * of_find_node_by_type - Find a node by its "device_type" property
1581 * @from: The node to start searching from or NULL, the node
1582 * you pass will not be searched, only the next one
1583 * will; typically, you pass what the previous call
1584 * returned. of_node_put() will be called on it
1585 * @name: The type string to match against
1586 *
1587 * Returns a node pointer with refcount incremented, use
1588 * of_node_put() on it when done.
1589 */
1590struct device_node *of_find_node_by_type(struct device_node *from,
1591 const char *type)
1592{
1593 struct device_node *np;
1594
1595 read_lock(&devtree_lock);
1596 np = from ? from->allnext : allnodes;
1597 for (; np != 0; np = np->allnext)
1598 if (np->type != 0 && strcasecmp(np->type, type) == 0
1599 && of_node_get(np))
1600 break;
1601 if (from)
1602 of_node_put(from);
1603 read_unlock(&devtree_lock);
1604 return np;
1605}
1606EXPORT_SYMBOL(of_find_node_by_type);
1607
1608/**
1609 * of_find_compatible_node - Find a node based on type and one of the
1610 * tokens in its "compatible" property
1611 * @from: The node to start searching from or NULL, the node
1612 * you pass will not be searched, only the next one
1613 * will; typically, you pass what the previous call
1614 * returned. of_node_put() will be called on it
1615 * @type: The type string to match "device_type" or NULL to ignore
1616 * @compatible: The string to match to one of the tokens in the device
1617 * "compatible" list.
1618 *
1619 * Returns a node pointer with refcount incremented, use
1620 * of_node_put() on it when done.
1621 */
1622struct device_node *of_find_compatible_node(struct device_node *from,
1623 const char *type, const char *compatible)
1624{
1625 struct device_node *np;
1626
1627 read_lock(&devtree_lock);
1628 np = from ? from->allnext : allnodes;
1629 for (; np != 0; np = np->allnext) {
1630 if (type != NULL
1631 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1632 continue;
1633 if (device_is_compatible(np, compatible) && of_node_get(np))
1634 break;
1635 }
1636 if (from)
1637 of_node_put(from);
1638 read_unlock(&devtree_lock);
1639 return np;
1640}
1641EXPORT_SYMBOL(of_find_compatible_node);
1642
1643/**
1644 * of_find_node_by_path - Find a node matching a full OF path
1645 * @path: The full path to match
1646 *
1647 * Returns a node pointer with refcount incremented, use
1648 * of_node_put() on it when done.
1649 */
1650struct device_node *of_find_node_by_path(const char *path)
1651{
1652 struct device_node *np = allnodes;
1653
1654 read_lock(&devtree_lock);
1655 for (; np != 0; np = np->allnext) {
1656 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1657 && of_node_get(np))
1658 break;
1659 }
1660 read_unlock(&devtree_lock);
1661 return np;
1662}
1663EXPORT_SYMBOL(of_find_node_by_path);
1664
1665/**
1666 * of_find_node_by_phandle - Find a node given a phandle
1667 * @handle: phandle of the node to find
1668 *
1669 * Returns a node pointer with refcount incremented, use
1670 * of_node_put() on it when done.
1671 */
1672struct device_node *of_find_node_by_phandle(phandle handle)
1673{
1674 struct device_node *np;
1675
1676 read_lock(&devtree_lock);
1677 for (np = allnodes; np != 0; np = np->allnext)
1678 if (np->linux_phandle == handle)
1679 break;
1680 if (np)
1681 of_node_get(np);
1682 read_unlock(&devtree_lock);
1683 return np;
1684}
1685EXPORT_SYMBOL(of_find_node_by_phandle);
1686
1687/**
1688 * of_find_all_nodes - Get next node in global list
1689 * @prev: Previous node or NULL to start iteration
1690 * of_node_put() will be called on it
1691 *
1692 * Returns a node pointer with refcount incremented, use
1693 * of_node_put() on it when done.
1694 */
1695struct device_node *of_find_all_nodes(struct device_node *prev)
1696{
1697 struct device_node *np;
1698
1699 read_lock(&devtree_lock);
1700 np = prev ? prev->allnext : allnodes;
1701 for (; np != 0; np = np->allnext)
1702 if (of_node_get(np))
1703 break;
1704 if (prev)
1705 of_node_put(prev);
1706 read_unlock(&devtree_lock);
1707 return np;
1708}
1709EXPORT_SYMBOL(of_find_all_nodes);
1710
1711/**
1712 * of_get_parent - Get a node's parent if any
1713 * @node: Node to get parent
1714 *
1715 * Returns a node pointer with refcount incremented, use
1716 * of_node_put() on it when done.
1717 */
1718struct device_node *of_get_parent(const struct device_node *node)
1719{
1720 struct device_node *np;
1721
1722 if (!node)
1723 return NULL;
1724
1725 read_lock(&devtree_lock);
1726 np = of_node_get(node->parent);
1727 read_unlock(&devtree_lock);
1728 return np;
1729}
1730EXPORT_SYMBOL(of_get_parent);
1731
1732/**
1733 * of_get_next_child - Iterate a node childs
1734 * @node: parent node
1735 * @prev: previous child of the parent node, or NULL to get first
1736 *
1737 * Returns a node pointer with refcount incremented, use
1738 * of_node_put() on it when done.
1739 */
1740struct device_node *of_get_next_child(const struct device_node *node,
1741 struct device_node *prev)
1742{
1743 struct device_node *next;
1744
1745 read_lock(&devtree_lock);
1746 next = prev ? prev->sibling : node->child;
1747 for (; next != 0; next = next->sibling)
1748 if (of_node_get(next))
1749 break;
1750 if (prev)
1751 of_node_put(prev);
1752 read_unlock(&devtree_lock);
1753 return next;
1754}
1755EXPORT_SYMBOL(of_get_next_child);
1756
1757/**
1758 * of_node_get - Increment refcount of a node
1759 * @node: Node to inc refcount, NULL is supported to
1760 * simplify writing of callers
1761 *
1762 * Returns node.
1763 */
1764struct device_node *of_node_get(struct device_node *node)
1765{
1766 if (node)
1767 kref_get(&node->kref);
1768 return node;
1769}
1770EXPORT_SYMBOL(of_node_get);
1771
1772static inline struct device_node * kref_to_device_node(struct kref *kref)
1773{
1774 return container_of(kref, struct device_node, kref);
1775}
1776
1777/**
1778 * of_node_release - release a dynamically allocated node
1779 * @kref: kref element of the node to be released
1780 *
1781 * In of_node_put() this function is passed to kref_put()
1782 * as the destructor.
1783 */
1784static void of_node_release(struct kref *kref)
1785{
1786 struct device_node *node = kref_to_device_node(kref);
1787 struct property *prop = node->properties;
1788
1789 if (!OF_IS_DYNAMIC(node))
1790 return;
1791 while (prop) {
1792 struct property *next = prop->next;
1793 kfree(prop->name);
1794 kfree(prop->value);
1795 kfree(prop);
1796 prop = next;
1797 }
1798 kfree(node->intrs);
1799 kfree(node->addrs);
1800 kfree(node->full_name);
1801 kfree(node->data);
1802 kfree(node);
1803}
1804
1805/**
1806 * of_node_put - Decrement refcount of a node
1807 * @node: Node to dec refcount, NULL is supported to
1808 * simplify writing of callers
1809 *
1810 */
1811void of_node_put(struct device_node *node)
1812{
1813 if (node)
1814 kref_put(&node->kref, of_node_release);
1815}
1816EXPORT_SYMBOL(of_node_put);
1817
1818/*
1819 * Plug a device node into the tree and global list.
1820 */
1821void of_attach_node(struct device_node *np)
1822{
1823 write_lock(&devtree_lock);
1824 np->sibling = np->parent->child;
1825 np->allnext = allnodes;
1826 np->parent->child = np;
1827 allnodes = np;
1828 write_unlock(&devtree_lock);
1829}
1830
1831/*
1832 * "Unplug" a node from the device tree. The caller must hold
1833 * a reference to the node. The memory associated with the node
1834 * is not freed until its refcount goes to zero.
1835 */
1836void of_detach_node(const struct device_node *np)
1837{
1838 struct device_node *parent;
1839
1840 write_lock(&devtree_lock);
1841
1842 parent = np->parent;
1843
1844 if (allnodes == np)
1845 allnodes = np->allnext;
1846 else {
1847 struct device_node *prev;
1848 for (prev = allnodes;
1849 prev->allnext != np;
1850 prev = prev->allnext)
1851 ;
1852 prev->allnext = np->allnext;
1853 }
1854
1855 if (parent->child == np)
1856 parent->child = np->sibling;
1857 else {
1858 struct device_node *prevsib;
1859 for (prevsib = np->parent->child;
1860 prevsib->sibling != np;
1861 prevsib = prevsib->sibling)
1862 ;
1863 prevsib->sibling = np->sibling;
1864 }
1865
1866 write_unlock(&devtree_lock);
1867}
1868
1869#ifdef CONFIG_PPC_PSERIES
1870/*
1871 * Fix up the uninitialized fields in a new device node:
1872 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1873 *
1874 * A lot of boot-time code is duplicated here, because functions such
1875 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1876 * slab allocator.
1877 *
1878 * This should probably be split up into smaller chunks.
1879 */
1880
1881static int of_finish_dynamic_node(struct device_node *node,
1882 unsigned long *unused1, int unused2,
1883 int unused3, int unused4)
1884{
1885 struct device_node *parent = of_get_parent(node);
1886 int err = 0;
1887 phandle *ibm_phandle;
1888
1889 node->name = get_property(node, "name", NULL);
1890 node->type = get_property(node, "device_type", NULL);
1891
1892 if (!parent) {
1893 err = -ENODEV;
1894 goto out;
1895 }
1896
1897 /* We don't support that function on PowerMac, at least
1898 * not yet
1899 */
1900 if (systemcfg->platform == PLATFORM_POWERMAC)
1901 return -ENODEV;
1902
1903 /* fix up new node's linux_phandle field */
1904 if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1905 node->linux_phandle = *ibm_phandle;
1906
1907out:
1908 of_node_put(parent);
1909 return err;
1910}
1911
1912static int prom_reconfig_notifier(struct notifier_block *nb,
1913 unsigned long action, void *node)
1914{
1915 int err;
1916
1917 switch (action) {
1918 case PSERIES_RECONFIG_ADD:
1919 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1920 if (err < 0) {
1921 printk(KERN_ERR "finish_node returned %d\n", err);
1922 err = NOTIFY_BAD;
1923 }
1924 break;
1925 default:
1926 err = NOTIFY_DONE;
1927 break;
1928 }
1929 return err;
1930}
1931
1932static struct notifier_block prom_reconfig_nb = {
1933 .notifier_call = prom_reconfig_notifier,
1934 .priority = 10, /* This one needs to run first */
1935};
1936
1937static int __init prom_reconfig_setup(void)
1938{
1939 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1940}
1941__initcall(prom_reconfig_setup);
1942#endif
1943
1944/*
1945 * Find a property with a given name for a given node
1946 * and return the value.
1947 */
1948unsigned char *get_property(struct device_node *np, const char *name,
1949 int *lenp)
1950{
1951 struct property *pp;
1952
1953 for (pp = np->properties; pp != 0; pp = pp->next)
1954 if (strcmp(pp->name, name) == 0) {
1955 if (lenp != 0)
1956 *lenp = pp->length;
1957 return pp->value;
1958 }
1959 return NULL;
1960}
1961EXPORT_SYMBOL(get_property);
1962
1963/*
1964 * Add a property to a node
1965 */
1966void prom_add_property(struct device_node* np, struct property* prop)
1967{
1968 struct property **next = &np->properties;
1969
1970 prop->next = NULL;
1971 while (*next)
1972 next = &(*next)->next;
1973 *next = prop;
1974}
1975
1976/* I quickly hacked that one, check against spec ! */
1977static inline unsigned long
1978bus_space_to_resource_flags(unsigned int bus_space)
1979{
1980 u8 space = (bus_space >> 24) & 0xf;
1981 if (space == 0)
1982 space = 0x02;
1983 if (space == 0x02)
1984 return IORESOURCE_MEM;
1985 else if (space == 0x01)
1986 return IORESOURCE_IO;
1987 else {
1988 printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
1989 bus_space);
1990 return 0;
1991 }
1992}
1993
1994static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
1995 struct address_range *range)
1996{
1997 unsigned long mask;
1998 int i;
1999
2000 /* Check this one */
2001 mask = bus_space_to_resource_flags(range->space);
2002 for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2003 if ((pdev->resource[i].flags & mask) == mask &&
2004 pdev->resource[i].start <= range->address &&
2005 pdev->resource[i].end > range->address) {
2006 if ((range->address + range->size - 1) > pdev->resource[i].end) {
2007 /* Add better message */
2008 printk(KERN_WARNING "PCI/OF resource overlap !\n");
2009 return NULL;
2010 }
2011 break;
2012 }
2013 }
2014 if (i == DEVICE_COUNT_RESOURCE)
2015 return NULL;
2016 return &pdev->resource[i];
2017}
2018
2019/*
2020 * Request an OF device resource. Currently handles child of PCI devices,
2021 * or other nodes attached to the root node. Ultimately, put some
2022 * link to resources in the OF node.
2023 */
2024struct resource *request_OF_resource(struct device_node* node, int index,
2025 const char* name_postfix)
2026{
2027 struct pci_dev* pcidev;
2028 u8 pci_bus, pci_devfn;
2029 unsigned long iomask;
2030 struct device_node* nd;
2031 struct resource* parent;
2032 struct resource *res = NULL;
2033 int nlen, plen;
2034
2035 if (index >= node->n_addrs)
2036 goto fail;
2037
2038 /* Sanity check on bus space */
2039 iomask = bus_space_to_resource_flags(node->addrs[index].space);
2040 if (iomask & IORESOURCE_MEM)
2041 parent = &iomem_resource;
2042 else if (iomask & IORESOURCE_IO)
2043 parent = &ioport_resource;
2044 else
2045 goto fail;
2046
2047 /* Find a PCI parent if any */
2048 nd = node;
2049 pcidev = NULL;
2050 while (nd) {
2051 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2052 pcidev = pci_find_slot(pci_bus, pci_devfn);
2053 if (pcidev) break;
2054 nd = nd->parent;
2055 }
2056 if (pcidev)
2057 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2058 if (!parent) {
2059 printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
2060 node->name);
2061 goto fail;
2062 }
2063
2064 res = __request_region(parent, node->addrs[index].address,
2065 node->addrs[index].size, NULL);
2066 if (!res)
2067 goto fail;
2068 nlen = strlen(node->name);
2069 plen = name_postfix ? strlen(name_postfix) : 0;
2070 res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
2071 if (res->name) {
2072 strcpy((char *)res->name, node->name);
2073 if (plen)
2074 strcpy((char *)res->name+nlen, name_postfix);
2075 }
2076 return res;
2077fail:
2078 return NULL;
2079}
2080EXPORT_SYMBOL(request_OF_resource);
2081
2082int release_OF_resource(struct device_node *node, int index)
2083{
2084 struct pci_dev* pcidev;
2085 u8 pci_bus, pci_devfn;
2086 unsigned long iomask, start, end;
2087 struct device_node* nd;
2088 struct resource* parent;
2089 struct resource *res = NULL;
2090
2091 if (index >= node->n_addrs)
2092 return -EINVAL;
2093
2094 /* Sanity check on bus space */
2095 iomask = bus_space_to_resource_flags(node->addrs[index].space);
2096 if (iomask & IORESOURCE_MEM)
2097 parent = &iomem_resource;
2098 else if (iomask & IORESOURCE_IO)
2099 parent = &ioport_resource;
2100 else
2101 return -EINVAL;
2102
2103 /* Find a PCI parent if any */
2104 nd = node;
2105 pcidev = NULL;
2106 while(nd) {
2107 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2108 pcidev = pci_find_slot(pci_bus, pci_devfn);
2109 if (pcidev) break;
2110 nd = nd->parent;
2111 }
2112 if (pcidev)
2113 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2114 if (!parent) {
2115 printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
2116 node->name);
2117 return -ENODEV;
2118 }
2119
2120 /* Find us in the parent and its childs */
2121 res = parent->child;
2122 start = node->addrs[index].address;
2123 end = start + node->addrs[index].size - 1;
2124 while (res) {
2125 if (res->start == start && res->end == end &&
2126 (res->flags & IORESOURCE_BUSY))
2127 break;
2128 if (res->start <= start && res->end >= end)
2129 res = res->child;
2130 else
2131 res = res->sibling;
2132 }
2133 if (!res)
2134 return -ENODEV;
2135
2136 if (res->name) {
2137 kfree(res->name);
2138 res->name = NULL;
2139 }
2140 release_resource(res);
2141 kfree(res);
2142
2143 return 0;
2144}
2145EXPORT_SYMBOL(release_OF_resource);