Merge tag 'probes-fixes-v6.16-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / arch / powerpc / kernel / process.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
14cf11af 2/*
14cf11af
PM
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
8 *
9 * PowerPC version
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
14cf11af
PM
11 */
12
14cf11af
PM
13#include <linux/errno.h>
14#include <linux/sched.h>
b17b0153 15#include <linux/sched/debug.h>
29930025 16#include <linux/sched/task.h>
68db0cf1 17#include <linux/sched/task_stack.h>
14cf11af
PM
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/smp.h>
14cf11af
PM
21#include <linux/stddef.h>
22#include <linux/unistd.h>
23#include <linux/ptrace.h>
24#include <linux/slab.h>
25#include <linux/user.h>
26#include <linux/elf.h>
14cf11af
PM
27#include <linux/prctl.h>
28#include <linux/init_task.h>
4b16f8e2 29#include <linux/export.h>
14cf11af
PM
30#include <linux/kallsyms.h>
31#include <linux/mqueue.h>
32#include <linux/hardirq.h>
06d67d54 33#include <linux/utsname.h>
6794c782 34#include <linux/ftrace.h>
79741dd3 35#include <linux/kernel_stat.h>
d839088c 36#include <linux/personality.h>
5aae8a53 37#include <linux/hw_breakpoint.h>
7b051f66 38#include <linux/uaccess.h>
06bb53b3 39#include <linux/pkeys.h>
fb2d9505 40#include <linux/seq_buf.h>
14cf11af 41
3a96570f 42#include <asm/interrupt.h>
14cf11af
PM
43#include <asm/io.h>
44#include <asm/processor.h>
45#include <asm/mmu.h>
76032de8 46#include <asm/machdep.h>
c6622f63 47#include <asm/time.h>
ae3a197e 48#include <asm/runlatch.h>
a7f31841 49#include <asm/syscalls.h>
ae3a197e 50#include <asm/switch_to.h>
fb09692e 51#include <asm/tm.h>
ae3a197e 52#include <asm/debug.h>
06d67d54
PM
53#ifdef CONFIG_PPC64
54#include <asm/firmware.h>
c2e480ba 55#include <asm/hw_irq.h>
06d67d54 56#endif
0c3beacf 57#include <asm/text-patching.h>
7f92bc56 58#include <asm/exec.h>
5d31a96e 59#include <asm/livepatch.h>
b92a226e 60#include <asm/cpu_has_feature.h>
0545d543 61#include <asm/asm-prototypes.h>
c9386bfd 62#include <asm/stacktrace.h>
c1fe190c 63#include <asm/hw_breakpoint.h>
5d31a96e 64
d6a61bfc
LM
65#include <linux/kprobes.h>
66#include <linux/kdebug.h>
14cf11af 67
8b3c34cf
MN
68/* Transactional Memory debug */
69#ifdef TM_DEBUG_SW
70#define TM_DEBUG(x...) printk(KERN_INFO x)
71#else
72#define TM_DEBUG(x...) do { } while(0)
73#endif
74
d31626f7 75#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
54820530
ME
76/*
77 * Are we running in "Suspend disabled" mode? If so we have to block any
78 * sigreturn that would get us into suspended state, and we also warn in some
79 * other paths that we should never reach with suspend disabled.
80 */
81bool tm_suspend_disabled __ro_after_init = false;
82
b86fd2bd 83static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
84{
85 /*
86 * If we are saving the current thread's registers, and the
87 * thread is in a transactional state, set the TIF_RESTORE_TM
88 * bit so that we know to restore the registers before
89 * returning to userspace.
90 */
91 if (tsk == current && tsk->thread.regs &&
92 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
93 !test_thread_flag(TIF_RESTORE_TM)) {
59dc5bfc
NP
94 regs_set_return_msr(&tsk->thread.ckpt_regs,
95 tsk->thread.regs->msr);
d31626f7
PM
96 set_thread_flag(TIF_RESTORE_TM);
97 }
d31626f7 98}
dc16b553 99
d31626f7 100#else
b86fd2bd 101static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
d31626f7
PM
102#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
103
3eb5d588
AB
104bool strict_msr_control;
105EXPORT_SYMBOL(strict_msr_control);
106
107static int __init enable_strict_msr_control(char *str)
108{
109 strict_msr_control = true;
110 pr_info("Enabling strict facility control\n");
111
112 return 0;
113}
114early_param("ppc_strict_facility_enable", enable_strict_msr_control);
115
e2b36d59
NP
116/* notrace because it's called by restore_math */
117unsigned long notrace msr_check_and_set(unsigned long bits)
98da581e 118{
a0e72cf1
AB
119 unsigned long oldmsr = mfmsr();
120 unsigned long newmsr;
98da581e 121
a0e72cf1 122 newmsr = oldmsr | bits;
98da581e 123
a0e72cf1 124 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e 125 newmsr |= MSR_VSX;
a0e72cf1 126
98da581e 127 if (oldmsr != newmsr)
0fa68318 128 newmsr = mtmsr_isync_irqsafe(newmsr);
3cee070a
CB
129
130 return newmsr;
a0e72cf1 131}
d1c72112 132EXPORT_SYMBOL_GPL(msr_check_and_set);
98da581e 133
e2b36d59
NP
134/* notrace because it's called by restore_math */
135void notrace __msr_check_and_clear(unsigned long bits)
a0e72cf1
AB
136{
137 unsigned long oldmsr = mfmsr();
138 unsigned long newmsr;
139
140 newmsr = oldmsr & ~bits;
141
a0e72cf1
AB
142 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
143 newmsr &= ~MSR_VSX;
a0e72cf1
AB
144
145 if (oldmsr != newmsr)
0fa68318 146 mtmsr_isync_irqsafe(newmsr);
a0e72cf1 147}
3eb5d588 148EXPORT_SYMBOL(__msr_check_and_clear);
a0e72cf1
AB
149
150#ifdef CONFIG_PPC_FPU
1cdf039b 151static void __giveup_fpu(struct task_struct *tsk)
8792468d 152{
8eb98037
AB
153 unsigned long msr;
154
8792468d 155 save_fpu(tsk);
8eb98037 156 msr = tsk->thread.regs->msr;
fe1ef6bc 157 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
8792468d 158 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 159 msr &= ~MSR_VSX;
59dc5bfc 160 regs_set_return_msr(tsk->thread.regs, msr);
8792468d
CB
161}
162
a0e72cf1
AB
163void giveup_fpu(struct task_struct *tsk)
164{
165 check_if_tm_restore_required(tsk);
166
167 msr_check_and_set(MSR_FP);
98da581e 168 __giveup_fpu(tsk);
a0e72cf1 169 msr_check_and_clear(MSR_FP);
98da581e
AB
170}
171EXPORT_SYMBOL(giveup_fpu);
172
14cf11af
PM
173/*
174 * Make sure the floating-point register state in the
175 * the thread_struct is up to date for task tsk.
176 */
177void flush_fp_to_thread(struct task_struct *tsk)
178{
179 if (tsk->thread.regs) {
180 /*
181 * We need to disable preemption here because if we didn't,
182 * another process could get scheduled after the regs->msr
183 * test but before we have finished saving the FP registers
184 * to the thread_struct. That process could take over the
185 * FPU, and then when we get scheduled again we would store
186 * bogus values for the remaining FP registers.
187 */
188 preempt_disable();
189 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
190 /*
191 * This should only ever be called for current or
192 * for a stopped child process. Since we save away
af1bbc3d 193 * the FP register state on context switch,
14cf11af
PM
194 * there is something wrong if a stopped child appears
195 * to still have its FP state in the CPU registers.
196 */
197 BUG_ON(tsk != current);
b86fd2bd 198 giveup_fpu(tsk);
14cf11af
PM
199 }
200 preempt_enable();
201 }
202}
de56a948 203EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
204
205void enable_kernel_fp(void)
206{
e909fb83
CB
207 unsigned long cpumsr;
208
14cf11af
PM
209 WARN_ON(preemptible());
210
e909fb83 211 cpumsr = msr_check_and_set(MSR_FP);
611b0e5c 212
d64d02ce
AB
213 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
214 check_if_tm_restore_required(current);
e909fb83
CB
215 /*
216 * If a thread has already been reclaimed then the
217 * checkpointed registers are on the CPU but have definitely
218 * been saved by the reclaim code. Don't need to and *cannot*
219 * giveup as this would save to the 'live' structure not the
220 * checkpointed structure.
221 */
5c784c84
BL
222 if (!MSR_TM_ACTIVE(cpumsr) &&
223 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 224 return;
a0e72cf1 225 __giveup_fpu(current);
d64d02ce 226 }
14cf11af
PM
227}
228EXPORT_SYMBOL(enable_kernel_fp);
c83c192a
CL
229#else
230static inline void __giveup_fpu(struct task_struct *tsk) { }
d1e1cf2e 231#endif /* CONFIG_PPC_FPU */
14cf11af 232
14cf11af 233#ifdef CONFIG_ALTIVEC
6f515d84
CB
234static void __giveup_altivec(struct task_struct *tsk)
235{
8eb98037
AB
236 unsigned long msr;
237
6f515d84 238 save_altivec(tsk);
8eb98037
AB
239 msr = tsk->thread.regs->msr;
240 msr &= ~MSR_VEC;
6f515d84 241 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 242 msr &= ~MSR_VSX;
59dc5bfc 243 regs_set_return_msr(tsk->thread.regs, msr);
6f515d84
CB
244}
245
98da581e
AB
246void giveup_altivec(struct task_struct *tsk)
247{
98da581e
AB
248 check_if_tm_restore_required(tsk);
249
a0e72cf1 250 msr_check_and_set(MSR_VEC);
98da581e 251 __giveup_altivec(tsk);
a0e72cf1 252 msr_check_and_clear(MSR_VEC);
98da581e
AB
253}
254EXPORT_SYMBOL(giveup_altivec);
255
14cf11af
PM
256void enable_kernel_altivec(void)
257{
e909fb83
CB
258 unsigned long cpumsr;
259
14cf11af
PM
260 WARN_ON(preemptible());
261
e909fb83 262 cpumsr = msr_check_and_set(MSR_VEC);
611b0e5c 263
d64d02ce
AB
264 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
265 check_if_tm_restore_required(current);
e909fb83
CB
266 /*
267 * If a thread has already been reclaimed then the
268 * checkpointed registers are on the CPU but have definitely
269 * been saved by the reclaim code. Don't need to and *cannot*
270 * giveup as this would save to the 'live' structure not the
271 * checkpointed structure.
272 */
5c784c84
BL
273 if (!MSR_TM_ACTIVE(cpumsr) &&
274 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 275 return;
a0e72cf1 276 __giveup_altivec(current);
d64d02ce 277 }
14cf11af
PM
278}
279EXPORT_SYMBOL(enable_kernel_altivec);
280
281/*
282 * Make sure the VMX/Altivec register state in the
283 * the thread_struct is up to date for task tsk.
284 */
285void flush_altivec_to_thread(struct task_struct *tsk)
286{
287 if (tsk->thread.regs) {
288 preempt_disable();
289 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 290 BUG_ON(tsk != current);
b86fd2bd 291 giveup_altivec(tsk);
14cf11af
PM
292 }
293 preempt_enable();
294 }
295}
de56a948 296EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
14cf11af
PM
297#endif /* CONFIG_ALTIVEC */
298
ce48b210 299#ifdef CONFIG_VSX
bf6a4d5b 300static void __giveup_vsx(struct task_struct *tsk)
a7d623d4 301{
dc801081
BH
302 unsigned long msr = tsk->thread.regs->msr;
303
304 /*
1fd02f66 305 * We should never be setting MSR_VSX without also setting
dc801081
BH
306 * MSR_FP and MSR_VEC
307 */
308 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
309
310 /* __giveup_fpu will clear MSR_VSX */
311 if (msr & MSR_FP)
a7d623d4 312 __giveup_fpu(tsk);
dc801081 313 if (msr & MSR_VEC)
a7d623d4 314 __giveup_altivec(tsk);
bf6a4d5b
CB
315}
316
317static void giveup_vsx(struct task_struct *tsk)
318{
319 check_if_tm_restore_required(tsk);
320
321 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 322 __giveup_vsx(tsk);
a0e72cf1 323 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 324}
bf6a4d5b 325
ce48b210
MN
326void enable_kernel_vsx(void)
327{
e909fb83
CB
328 unsigned long cpumsr;
329
ce48b210
MN
330 WARN_ON(preemptible());
331
e909fb83 332 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 333
5a69aec9
BH
334 if (current->thread.regs &&
335 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
d64d02ce 336 check_if_tm_restore_required(current);
e909fb83
CB
337 /*
338 * If a thread has already been reclaimed then the
339 * checkpointed registers are on the CPU but have definitely
340 * been saved by the reclaim code. Don't need to and *cannot*
341 * giveup as this would save to the 'live' structure not the
342 * checkpointed structure.
343 */
5c784c84
BL
344 if (!MSR_TM_ACTIVE(cpumsr) &&
345 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 346 return;
a0e72cf1 347 __giveup_vsx(current);
611b0e5c 348 }
ce48b210
MN
349}
350EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
351
352void flush_vsx_to_thread(struct task_struct *tsk)
353{
354 if (tsk->thread.regs) {
355 preempt_disable();
5a69aec9 356 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
ce48b210 357 BUG_ON(tsk != current);
ce48b210
MN
358 giveup_vsx(tsk);
359 }
360 preempt_enable();
361 }
362}
de56a948 363EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
ce48b210
MN
364#endif /* CONFIG_VSX */
365
14cf11af 366#ifdef CONFIG_SPE
98da581e
AB
367void giveup_spe(struct task_struct *tsk)
368{
98da581e
AB
369 check_if_tm_restore_required(tsk);
370
a0e72cf1 371 msr_check_and_set(MSR_SPE);
98da581e 372 __giveup_spe(tsk);
a0e72cf1 373 msr_check_and_clear(MSR_SPE);
98da581e
AB
374}
375EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
376
377void enable_kernel_spe(void)
378{
379 WARN_ON(preemptible());
380
a0e72cf1 381 msr_check_and_set(MSR_SPE);
611b0e5c 382
d64d02ce
AB
383 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
384 check_if_tm_restore_required(current);
a0e72cf1 385 __giveup_spe(current);
d64d02ce 386 }
14cf11af
PM
387}
388EXPORT_SYMBOL(enable_kernel_spe);
389
390void flush_spe_to_thread(struct task_struct *tsk)
391{
392 if (tsk->thread.regs) {
393 preempt_disable();
394 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 395 BUG_ON(tsk != current);
685659ee 396 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 397 giveup_spe(tsk);
14cf11af
PM
398 }
399 preempt_enable();
400 }
401}
14cf11af
PM
402#endif /* CONFIG_SPE */
403
c2085059
AB
404static unsigned long msr_all_available;
405
406static int __init init_msr_all_available(void)
407{
c83c192a
CL
408 if (IS_ENABLED(CONFIG_PPC_FPU))
409 msr_all_available |= MSR_FP;
c2085059
AB
410 if (cpu_has_feature(CPU_FTR_ALTIVEC))
411 msr_all_available |= MSR_VEC;
c2085059
AB
412 if (cpu_has_feature(CPU_FTR_VSX))
413 msr_all_available |= MSR_VSX;
c2085059
AB
414 if (cpu_has_feature(CPU_FTR_SPE))
415 msr_all_available |= MSR_SPE;
c2085059
AB
416
417 return 0;
418}
419early_initcall(init_msr_all_available);
420
421void giveup_all(struct task_struct *tsk)
422{
423 unsigned long usermsr;
424
425 if (!tsk->thread.regs)
426 return;
427
8205d5d9
GR
428 check_if_tm_restore_required(tsk);
429
c2085059
AB
430 usermsr = tsk->thread.regs->msr;
431
432 if ((usermsr & msr_all_available) == 0)
433 return;
434
435 msr_check_and_set(msr_all_available);
436
96c79b6b
BH
437 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
438
c2085059
AB
439 if (usermsr & MSR_FP)
440 __giveup_fpu(tsk);
c2085059
AB
441 if (usermsr & MSR_VEC)
442 __giveup_altivec(tsk);
c2085059
AB
443 if (usermsr & MSR_SPE)
444 __giveup_spe(tsk);
c2085059
AB
445
446 msr_check_and_clear(msr_all_available);
447}
448EXPORT_SYMBOL(giveup_all);
449
6cc0c16d
NP
450#ifdef CONFIG_PPC_BOOK3S_64
451#ifdef CONFIG_PPC_FPU
01eb0187 452static bool should_restore_fp(void)
6cc0c16d 453{
01eb0187 454 if (current->thread.load_fp) {
6cc0c16d 455 current->thread.load_fp++;
01eb0187 456 return true;
6cc0c16d 457 }
01eb0187
NP
458 return false;
459}
460
461static void do_restore_fp(void)
462{
463 load_fp_state(&current->thread.fp_state);
6cc0c16d
NP
464}
465#else
01eb0187
NP
466static bool should_restore_fp(void) { return false; }
467static void do_restore_fp(void) { }
6cc0c16d
NP
468#endif /* CONFIG_PPC_FPU */
469
470#ifdef CONFIG_ALTIVEC
01eb0187 471static bool should_restore_altivec(void)
6cc0c16d 472{
01eb0187
NP
473 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
474 current->thread.load_vec++;
475 return true;
6cc0c16d 476 }
01eb0187
NP
477 return false;
478}
479
480static void do_restore_altivec(void)
481{
482 load_vr_state(&current->thread.vr_state);
483 current->thread.used_vr = 1;
6cc0c16d
NP
484}
485#else
01eb0187
NP
486static bool should_restore_altivec(void) { return false; }
487static void do_restore_altivec(void) { }
6cc0c16d
NP
488#endif /* CONFIG_ALTIVEC */
489
01eb0187 490static bool should_restore_vsx(void)
6cc0c16d 491{
01eb0187
NP
492 if (cpu_has_feature(CPU_FTR_VSX))
493 return true;
494 return false;
495}
80739c2b 496#ifdef CONFIG_VSX
01eb0187
NP
497static void do_restore_vsx(void)
498{
499 current->thread.used_vsr = 1;
6cc0c16d
NP
500}
501#else
01eb0187 502static void do_restore_vsx(void) { }
6cc0c16d
NP
503#endif /* CONFIG_VSX */
504
e2b36d59
NP
505/*
506 * The exception exit path calls restore_math() with interrupts hard disabled
507 * but the soft irq state not "reconciled". ftrace code that calls
508 * local_irq_save/restore causes warnings.
509 *
510 * Rather than complicate the exit path, just don't trace restore_math. This
511 * could be done by having ftrace entry code check for this un-reconciled
512 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
513 * temporarily fix it up for the duration of the ftrace call.
514 */
515void notrace restore_math(struct pt_regs *regs)
70fe3d98
CB
516{
517 unsigned long msr;
01eb0187 518 unsigned long new_msr = 0;
70fe3d98
CB
519
520 msr = regs->msr;
70fe3d98
CB
521
522 /*
01eb0187
NP
523 * new_msr tracks the facilities that are to be restored. Only reload
524 * if the bit is not set in the user MSR (if it is set, the registers
525 * are live for the user thread).
70fe3d98 526 */
01eb0187 527 if ((!(msr & MSR_FP)) && should_restore_fp())
b91eb518 528 new_msr |= MSR_FP;
70fe3d98 529
01eb0187
NP
530 if ((!(msr & MSR_VEC)) && should_restore_altivec())
531 new_msr |= MSR_VEC;
70fe3d98 532
01eb0187
NP
533 if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
534 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
535 new_msr |= MSR_VSX;
70fe3d98
CB
536 }
537
01eb0187 538 if (new_msr) {
b91eb518
ME
539 unsigned long fpexc_mode = 0;
540
01eb0187
NP
541 msr_check_and_set(new_msr);
542
b91eb518 543 if (new_msr & MSR_FP) {
01eb0187
NP
544 do_restore_fp();
545
b91eb518
ME
546 // This also covers VSX, because VSX implies FP
547 fpexc_mode = current->thread.fpexc_mode;
548 }
549
01eb0187
NP
550 if (new_msr & MSR_VEC)
551 do_restore_altivec();
70fe3d98 552
01eb0187
NP
553 if (new_msr & MSR_VSX)
554 do_restore_vsx();
555
556 msr_check_and_clear(new_msr);
557
59dc5bfc 558 regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
01eb0187 559 }
70fe3d98 560}
60d62bfd 561#endif /* CONFIG_PPC_BOOK3S_64 */
70fe3d98 562
1cdf039b 563static void save_all(struct task_struct *tsk)
de2a20aa
CB
564{
565 unsigned long usermsr;
566
567 if (!tsk->thread.regs)
568 return;
569
570 usermsr = tsk->thread.regs->msr;
571
572 if ((usermsr & msr_all_available) == 0)
573 return;
574
575 msr_check_and_set(msr_all_available);
576
96c79b6b
BH
577 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
578
579 if (usermsr & MSR_FP)
580 save_fpu(tsk);
581
582 if (usermsr & MSR_VEC)
583 save_altivec(tsk);
de2a20aa
CB
584
585 if (usermsr & MSR_SPE)
586 __giveup_spe(tsk);
587
588 msr_check_and_clear(msr_all_available);
589}
590
579e633e
AB
591void flush_all_to_thread(struct task_struct *tsk)
592{
593 if (tsk->thread.regs) {
594 preempt_disable();
595 BUG_ON(tsk != current);
579e633e
AB
596#ifdef CONFIG_SPE
597 if (tsk->thread.regs->msr & MSR_SPE)
598 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
599#endif
e9013785 600 save_all(tsk);
579e633e
AB
601
602 preempt_enable();
603 }
604}
605EXPORT_SYMBOL(flush_all_to_thread);
606
3bffb652
DK
607#ifdef CONFIG_PPC_ADV_DEBUG_REGS
608void do_send_trap(struct pt_regs *regs, unsigned long address,
47355040 609 unsigned long error_code, int breakpt)
3bffb652 610{
47355040 611 current->thread.trap_nr = TRAP_HWBKPT;
3bffb652
DK
612 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
613 11, SIGSEGV) == NOTIFY_STOP)
614 return;
615
616 /* Deliver the signal to userspace */
f71dd7dc
EB
617 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
618 (void __user *)address);
3bffb652
DK
619}
620#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
5b905d77
RB
621
622static void do_break_handler(struct pt_regs *regs)
623{
624 struct arch_hw_breakpoint null_brk = {0};
625 struct arch_hw_breakpoint *info;
c545b9f0 626 ppc_inst_t instr = ppc_inst(0);
5b905d77
RB
627 int type = 0;
628 int size = 0;
629 unsigned long ea;
630 int i;
631
632 /*
633 * If underneath hw supports only one watchpoint, we know it
634 * caused exception. 8xx also falls into this category.
635 */
636 if (nr_wp_slots() == 1) {
637 __set_breakpoint(0, &null_brk);
638 current->thread.hw_brk[0] = null_brk;
639 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
640 return;
641 }
642
1fd02f66 643 /* Otherwise find out which DAWR caused exception and disable it. */
5b905d77
RB
644 wp_get_instr_detail(regs, &instr, &type, &size, &ea);
645
646 for (i = 0; i < nr_wp_slots(); i++) {
647 info = &current->thread.hw_brk[i];
648 if (!info->address)
649 continue;
650
651 if (wp_check_constraints(regs, instr, ea, type, size, info)) {
652 __set_breakpoint(i, &null_brk);
653 current->thread.hw_brk[i] = null_brk;
654 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
655 }
656 }
657}
658
3a96570f 659DEFINE_INTERRUPT_HANDLER(do_break)
d6a61bfc 660{
41ab5266 661 current->thread.trap_nr = TRAP_HWBKPT;
18722ecf 662 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
d6a61bfc
LM
663 11, SIGSEGV) == NOTIFY_STOP)
664 return;
665
9422de3e 666 if (debugger_break_match(regs))
d6a61bfc
LM
667 return;
668
5b905d77
RB
669 /*
670 * We reach here only when watchpoint exception is generated by ptrace
671 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
672 * watchpoint is already handled by hw_breakpoint_handler() so we don't
673 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
674 * we need to manually handle the watchpoint here.
675 */
676 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
677 do_break_handler(regs);
678
d6a61bfc 679 /* Deliver the signal to userspace */
18722ecf 680 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
d6a61bfc 681}
3bffb652 682#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 683
4a8a9379 684static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
a2ceff5e 685
3bffb652
DK
686#ifdef CONFIG_PPC_ADV_DEBUG_REGS
687/*
688 * Set the debug registers back to their default "safe" values.
689 */
690static void set_debug_reg_defaults(struct thread_struct *thread)
691{
51ae8d4a 692 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 693#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 694 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 695#endif
51ae8d4a 696 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 697#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 698 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 699#endif
51ae8d4a 700 thread->debug.dbcr0 = 0;
3bffb652
DK
701#ifdef CONFIG_BOOKE
702 /*
703 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
704 */
51ae8d4a 705 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
706 DBCR1_IAC3US | DBCR1_IAC4US;
707 /*
708 * Force Data Address Compare User/Supervisor bits to be User-only
709 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
710 */
51ae8d4a 711 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 712#else
51ae8d4a 713 thread->debug.dbcr1 = 0;
3bffb652
DK
714#endif
715}
716
f5f97210 717static void prime_debug_regs(struct debug_reg *debug)
3bffb652 718{
6cecf76b
SW
719 /*
720 * We could have inherited MSR_DE from userspace, since
721 * it doesn't get cleared on exception entry. Make sure
722 * MSR_DE is clear before we enable any debug events.
723 */
724 mtmsr(mfmsr() & ~MSR_DE);
725
f5f97210
SW
726 mtspr(SPRN_IAC1, debug->iac1);
727 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 728#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
729 mtspr(SPRN_IAC3, debug->iac3);
730 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 731#endif
f5f97210
SW
732 mtspr(SPRN_DAC1, debug->dac1);
733 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 734#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
735 mtspr(SPRN_DVC1, debug->dvc1);
736 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 737#endif
f5f97210
SW
738 mtspr(SPRN_DBCR0, debug->dbcr0);
739 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 740#ifdef CONFIG_BOOKE
f5f97210 741 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
742#endif
743}
744/*
745 * Unless neither the old or new thread are making use of the
746 * debug registers, set the debug registers from the values
747 * stored in the new thread.
748 */
f5f97210 749void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 750{
51ae8d4a 751 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
752 || (new_debug->dbcr0 & DBCR0_IDM))
753 prime_debug_regs(new_debug);
3bffb652 754}
3743c9b8 755EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 756#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 757#ifndef CONFIG_HAVE_HW_BREAKPOINT
303e6a9d 758static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
b5ac51d7
CL
759{
760 preempt_disable();
303e6a9d 761 __set_breakpoint(i, brk);
b5ac51d7
CL
762 preempt_enable();
763}
764
3bffb652
DK
765static void set_debug_reg_defaults(struct thread_struct *thread)
766{
303e6a9d
RB
767 int i;
768 struct arch_hw_breakpoint null_brk = {0};
769
770 for (i = 0; i < nr_wp_slots(); i++) {
771 thread->hw_brk[i] = null_brk;
772 if (ppc_breakpoint_available())
773 set_breakpoint(i, &thread->hw_brk[i]);
774 }
775}
776
777static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
778 struct arch_hw_breakpoint *b)
779{
780 if (a->address != b->address)
781 return false;
782 if (a->type != b->type)
783 return false;
784 if (a->len != b->len)
785 return false;
786 /* no need to check hw_len. it's calculated from address and len */
787 return true;
788}
789
790static void switch_hw_breakpoint(struct task_struct *new)
791{
792 int i;
793
794 for (i = 0; i < nr_wp_slots(); i++) {
795 if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
796 &new->thread.hw_brk[i])))
797 continue;
798
799 __set_breakpoint(i, &new->thread.hw_brk[i]);
800 }
3bffb652 801}
e0780b72 802#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
803#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
804
9422de3e
MN
805static inline int set_dabr(struct arch_hw_breakpoint *brk)
806{
807 unsigned long dabr, dabrx;
808
809 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
810 dabrx = ((brk->type >> 3) & 0x7);
811
812 if (ppc_md.set_dabr)
813 return ppc_md.set_dabr(dabr, dabrx);
814
ad3ed15c
CL
815 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
816 mtspr(SPRN_DAC1, dabr);
817 if (IS_ENABLED(CONFIG_PPC_47x))
818 isync();
819 return 0;
820 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
821 mtspr(SPRN_DABR, dabr);
822 if (cpu_has_feature(CPU_FTR_DABRX))
823 mtspr(SPRN_DABRX, dabrx);
824 return 0;
825 } else {
826 return -EINVAL;
827 }
9422de3e
MN
828}
829
39413ae0
CL
830static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
831{
832 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
833 LCTRL1_CRWF_RW;
834 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
e68ef121
RB
835 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
836 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
39413ae0
CL
837
838 if (start_addr == 0)
839 lctrl2 |= LCTRL2_LW0LA_F;
e68ef121 840 else if (end_addr == 0)
39413ae0
CL
841 lctrl2 |= LCTRL2_LW0LA_E;
842 else
843 lctrl2 |= LCTRL2_LW0LA_EandF;
844
845 mtspr(SPRN_LCTRL2, 0);
846
847 if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
848 return 0;
849
850 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
851 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
852 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
853 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
854
855 mtspr(SPRN_CMPE, start_addr - 1);
e68ef121 856 mtspr(SPRN_CMPF, end_addr);
39413ae0
CL
857 mtspr(SPRN_LCTRL1, lctrl1);
858 mtspr(SPRN_LCTRL2, lctrl2);
859
860 return 0;
861}
862
3671f4eb 863static void set_hw_breakpoint(int nr, struct arch_hw_breakpoint *brk)
9422de3e 864{
c1fe190c 865 if (dawr_enabled())
252988cb 866 // Power8 or later
4a8a9379 867 set_dawr(nr, brk);
39413ae0
CL
868 else if (IS_ENABLED(CONFIG_PPC_8xx))
869 set_breakpoint_8xx(brk);
252988cb
NP
870 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
871 // Power7 or earlier
04c32a51 872 set_dabr(brk);
252988cb
NP
873 else
874 // Shouldn't happen due to higher level checks
875 WARN_ON_ONCE(1);
9422de3e 876}
14cf11af 877
3671f4eb
JN
878void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
879{
880 memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
881 set_hw_breakpoint(nr, brk);
882}
883
404b27d6
MN
884/* Check if we have DAWR or DABR hardware */
885bool ppc_breakpoint_available(void)
886{
c1fe190c
MN
887 if (dawr_enabled())
888 return true; /* POWER8 DAWR or POWER9 forced DAWR */
404b27d6
MN
889 if (cpu_has_feature(CPU_FTR_ARCH_207S))
890 return false; /* POWER9 with DAWR disabled */
891 /* DABR: Everything but POWER8 and POWER9 */
892 return true;
893}
894EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
895
3671f4eb
JN
896/* Disable the breakpoint in hardware without touching current_brk[] */
897void suspend_breakpoints(void)
898{
899 struct arch_hw_breakpoint brk = {0};
900 int i;
901
902 if (!ppc_breakpoint_available())
903 return;
904
905 for (i = 0; i < nr_wp_slots(); i++)
906 set_hw_breakpoint(i, &brk);
907}
908
909/*
910 * Re-enable breakpoints suspended by suspend_breakpoints() in hardware
911 * from current_brk[]
912 */
913void restore_breakpoints(void)
914{
915 int i;
916
917 if (!ppc_breakpoint_available())
918 return;
919
920 for (i = 0; i < nr_wp_slots(); i++)
921 set_hw_breakpoint(i, this_cpu_ptr(&current_brk[i]));
922}
923
fb09692e 924#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
5d176f75
CB
925
926static inline bool tm_enabled(struct task_struct *tsk)
927{
928 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
929}
930
edd00b83 931static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
d31626f7 932{
7f821fc9
MN
933 /*
934 * Use the current MSR TM suspended bit to track if we have
935 * checkpointed state outstanding.
936 * On signal delivery, we'd normally reclaim the checkpointed
937 * state to obtain stack pointer (see:get_tm_stackpointer()).
938 * This will then directly return to userspace without going
939 * through __switch_to(). However, if the stack frame is bad,
940 * we need to exit this thread which calls __switch_to() which
941 * will again attempt to reclaim the already saved tm state.
942 * Hence we need to check that we've not already reclaimed
943 * this state.
944 * We do this using the current MSR, rather tracking it in
945 * some specific thread_struct bit, as it has the additional
027dfac6 946 * benefit of checking for a potential TM bad thing exception.
7f821fc9
MN
947 */
948 if (!MSR_TM_SUSPENDED(mfmsr()))
949 return;
950
91381b9c
CB
951 giveup_all(container_of(thr, struct task_struct, thread));
952
eb5c3f1c
CB
953 tm_reclaim(thr, cause);
954
f48e91e8
MN
955 /*
956 * If we are in a transaction and FP is off then we can't have
957 * used FP inside that transaction. Hence the checkpointed
958 * state is the same as the live state. We need to copy the
959 * live state to the checkpointed state so that when the
960 * transaction is restored, the checkpointed state is correct
961 * and the aborted transaction sees the correct state. We use
962 * ckpt_regs.msr here as that's what tm_reclaim will use to
963 * determine if it's going to write the checkpointed state or
964 * not. So either this will write the checkpointed registers,
965 * or reclaim will. Similarly for VMX.
966 */
967 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
968 memcpy(&thr->ckfp_state, &thr->fp_state,
969 sizeof(struct thread_fp_state));
970 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
971 memcpy(&thr->ckvr_state, &thr->vr_state,
972 sizeof(struct thread_vr_state));
d31626f7
PM
973}
974
975void tm_reclaim_current(uint8_t cause)
976{
977 tm_enable();
edd00b83 978 tm_reclaim_thread(&current->thread, cause);
d31626f7
PM
979}
980
fb09692e
MN
981static inline void tm_reclaim_task(struct task_struct *tsk)
982{
983 /* We have to work out if we're switching from/to a task that's in the
984 * middle of a transaction.
985 *
986 * In switching we need to maintain a 2nd register state as
987 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
000ec280
CB
988 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
989 * ckvr_state
fb09692e
MN
990 *
991 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
992 */
993 struct thread_struct *thr = &tsk->thread;
994
995 if (!thr->regs)
996 return;
997
998 if (!MSR_TM_ACTIVE(thr->regs->msr))
999 goto out_and_saveregs;
1000
92fb8690
MN
1001 WARN_ON(tm_suspend_disabled);
1002
b2f64cf1 1003 TM_DEBUG("---- tm_reclaim on pid %d (NIP=%lx, "
fb09692e
MN
1004 "ccr=%lx, msr=%lx, trap=%lx)\n",
1005 tsk->pid, thr->regs->nip,
1006 thr->regs->ccr, thr->regs->msr,
1007 thr->regs->trap);
1008
edd00b83 1009 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
fb09692e 1010
b2f64cf1 1011 TM_DEBUG("---- tm_reclaim on pid %d complete\n",
fb09692e
MN
1012 tsk->pid);
1013
1014out_and_saveregs:
1015 /* Always save the regs here, even if a transaction's not active.
1016 * This context-switches a thread's TM info SPRs. We do it here to
1017 * be consistent with the restore path (in recheckpoint) which
1018 * cannot happen later in _switch().
1019 */
1020 tm_save_sprs(thr);
1021}
1022
eb5c3f1c 1023extern void __tm_recheckpoint(struct thread_struct *thread);
e6b8fd02 1024
eb5c3f1c 1025void tm_recheckpoint(struct thread_struct *thread)
e6b8fd02
MN
1026{
1027 unsigned long flags;
1028
5d176f75
CB
1029 if (!(thread->regs->msr & MSR_TM))
1030 return;
1031
e6b8fd02
MN
1032 /* We really can't be interrupted here as the TEXASR registers can't
1033 * change and later in the trecheckpoint code, we have a userspace R1.
1034 * So let's hard disable over this region.
1035 */
1036 local_irq_save(flags);
1037 hard_irq_disable();
1038
1039 /* The TM SPRs are restored here, so that TEXASR.FS can be set
1040 * before the trecheckpoint and no explosion occurs.
1041 */
1042 tm_restore_sprs(thread);
1043
eb5c3f1c 1044 __tm_recheckpoint(thread);
e6b8fd02
MN
1045
1046 local_irq_restore(flags);
1047}
1048
bc2a9408 1049static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e 1050{
fb09692e
MN
1051 if (!cpu_has_feature(CPU_FTR_TM))
1052 return;
1053
1054 /* Recheckpoint the registers of the thread we're about to switch to.
1055 *
1056 * If the task was using FP, we non-lazily reload both the original and
1057 * the speculative FP register states. This is because the kernel
1058 * doesn't see if/when a TM rollback occurs, so if we take an FP
dc310669 1059 * unavailable later, we are unable to determine which set of FP regs
fb09692e
MN
1060 * need to be restored.
1061 */
5d176f75 1062 if (!tm_enabled(new))
fb09692e
MN
1063 return;
1064
e6b8fd02
MN
1065 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1066 tm_restore_sprs(&new->thread);
fb09692e 1067 return;
e6b8fd02 1068 }
fb09692e 1069 /* Recheckpoint to restore original checkpointed register state. */
eb5c3f1c
CB
1070 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1071 new->pid, new->thread.regs->msr);
fb09692e 1072
eb5c3f1c 1073 tm_recheckpoint(&new->thread);
fb09692e 1074
dc310669
CB
1075 /*
1076 * The checkpointed state has been restored but the live state has
1077 * not, ensure all the math functionality is turned off to trigger
1078 * restore_math() to reload.
1079 */
1080 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
fb09692e
MN
1081
1082 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1083 "(kernel msr 0x%lx)\n",
1084 new->pid, mfmsr());
1085}
1086
dc310669
CB
1087static inline void __switch_to_tm(struct task_struct *prev,
1088 struct task_struct *new)
fb09692e
MN
1089{
1090 if (cpu_has_feature(CPU_FTR_TM)) {
5d176f75
CB
1091 if (tm_enabled(prev) || tm_enabled(new))
1092 tm_enable();
1093
1094 if (tm_enabled(prev)) {
1095 prev->thread.load_tm++;
1096 tm_reclaim_task(prev);
1097 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1098 prev->thread.regs->msr &= ~MSR_TM;
1099 }
1100
dc310669 1101 tm_recheckpoint_new_task(new);
fb09692e
MN
1102 }
1103}
d31626f7
PM
1104
1105/*
1106 * This is called if we are on the way out to userspace and the
1107 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1108 * FP and/or vector state and does so if necessary.
1109 * If userspace is inside a transaction (whether active or
1110 * suspended) and FP/VMX/VSX instructions have ever been enabled
1111 * inside that transaction, then we have to keep them enabled
1112 * and keep the FP/VMX/VSX state loaded while ever the transaction
1113 * continues. The reason is that if we didn't, and subsequently
1114 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1115 * we don't know whether it's the same transaction, and thus we
1116 * don't know which of the checkpointed state and the transactional
1117 * state to use.
1118 */
1119void restore_tm_state(struct pt_regs *regs)
1120{
1121 unsigned long msr_diff;
1122
dc310669
CB
1123 /*
1124 * This is the only moment we should clear TIF_RESTORE_TM as
1125 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1126 * again, anything else could lead to an incorrect ckpt_msr being
1127 * saved and therefore incorrect signal contexts.
1128 */
d31626f7
PM
1129 clear_thread_flag(TIF_RESTORE_TM);
1130 if (!MSR_TM_ACTIVE(regs->msr))
1131 return;
1132
829023df 1133 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7 1134 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
70fe3d98 1135
dc16b553
CB
1136 /* Ensure that restore_math() will restore */
1137 if (msr_diff & MSR_FP)
1138 current->thread.load_fp = 1;
39715bf9 1139#ifdef CONFIG_ALTIVEC
dc16b553
CB
1140 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1141 current->thread.load_vec = 1;
1142#endif
70fe3d98
CB
1143 restore_math(regs);
1144
59dc5bfc 1145 regs_set_return_msr(regs, regs->msr | msr_diff);
d31626f7
PM
1146}
1147
2d19630e 1148#else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
fb09692e 1149#define tm_recheckpoint_new_task(new)
dc310669 1150#define __switch_to_tm(prev, new)
2d19630e 1151void tm_reclaim_current(uint8_t cause) {}
fb09692e 1152#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 1153
152d523e
AB
1154static inline void save_sprs(struct thread_struct *t)
1155{
1156#ifdef CONFIG_ALTIVEC
01d7c2a2 1157 if (cpu_has_feature(CPU_FTR_ALTIVEC))
152d523e
AB
1158 t->vrsave = mfspr(SPRN_VRSAVE);
1159#endif
359c2ca7
CL
1160#ifdef CONFIG_SPE
1161 if (cpu_has_feature(CPU_FTR_SPE))
1162 t->spefscr = mfspr(SPRN_SPEFSCR);
1163#endif
152d523e
AB
1164#ifdef CONFIG_PPC_BOOK3S_64
1165 if (cpu_has_feature(CPU_FTR_DSCR))
1166 t->dscr = mfspr(SPRN_DSCR);
1167
1168 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1169 t->bescr = mfspr(SPRN_BESCR);
1170 t->ebbhr = mfspr(SPRN_EBBHR);
1171 t->ebbrr = mfspr(SPRN_EBBRR);
1172
1173 t->fscr = mfspr(SPRN_FSCR);
1174
1175 /*
1176 * Note that the TAR is not available for use in the kernel.
1177 * (To provide this, the TAR should be backed up/restored on
1178 * exception entry/exit instead, and be in pt_regs. FIXME,
1179 * this should be in pt_regs anyway (for debug).)
1180 */
1181 t->tar = mfspr(SPRN_TAR);
1182 }
be98fcf7
BG
1183
1184 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
1185 t->hashkeyr = mfspr(SPRN_HASHKEYR);
75171f06
BG
1186
1187 if (cpu_has_feature(CPU_FTR_ARCH_31))
1188 t->dexcr = mfspr(SPRN_DEXCR);
152d523e
AB
1189#endif
1190}
1191
34e119c9
NP
1192#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1193void kvmppc_save_user_regs(void)
1194{
1195 unsigned long usermsr;
1196
1197 if (!current->thread.regs)
1198 return;
1199
1200 usermsr = current->thread.regs->msr;
1201
dc158d23 1202 /* Caller has enabled FP/VEC/VSX/TM in MSR */
34e119c9 1203 if (usermsr & MSR_FP)
dc158d23 1204 __giveup_fpu(current);
34e119c9 1205 if (usermsr & MSR_VEC)
dc158d23 1206 __giveup_altivec(current);
34e119c9
NP
1207
1208#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1209 if (usermsr & MSR_TM) {
1210 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
1211 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
1212 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
1213 current->thread.regs->msr &= ~MSR_TM;
1214 }
1215#endif
1216}
1217EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);
5236756d
NP
1218
1219void kvmppc_save_current_sprs(void)
1220{
1221 save_sprs(&current->thread);
1222}
1223EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
34e119c9
NP
1224#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1225
152d523e
AB
1226static inline void restore_sprs(struct thread_struct *old_thread,
1227 struct thread_struct *new_thread)
1228{
1229#ifdef CONFIG_ALTIVEC
1230 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1231 old_thread->vrsave != new_thread->vrsave)
1232 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1233#endif
359c2ca7
CL
1234#ifdef CONFIG_SPE
1235 if (cpu_has_feature(CPU_FTR_SPE) &&
1236 old_thread->spefscr != new_thread->spefscr)
1237 mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1238#endif
152d523e
AB
1239#ifdef CONFIG_PPC_BOOK3S_64
1240 if (cpu_has_feature(CPU_FTR_DSCR)) {
1241 u64 dscr = get_paca()->dscr_default;
b57bd2de 1242 if (new_thread->dscr_inherit)
152d523e 1243 dscr = new_thread->dscr;
152d523e
AB
1244
1245 if (old_thread->dscr != dscr)
1246 mtspr(SPRN_DSCR, dscr);
152d523e
AB
1247 }
1248
1249 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1250 if (old_thread->bescr != new_thread->bescr)
1251 mtspr(SPRN_BESCR, new_thread->bescr);
1252 if (old_thread->ebbhr != new_thread->ebbhr)
1253 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1254 if (old_thread->ebbrr != new_thread->ebbrr)
1255 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1256
b57bd2de
MN
1257 if (old_thread->fscr != new_thread->fscr)
1258 mtspr(SPRN_FSCR, new_thread->fscr);
1259
152d523e
AB
1260 if (old_thread->tar != new_thread->tar)
1261 mtspr(SPRN_TAR, new_thread->tar);
1262 }
ec233ede 1263
3449f191 1264 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
ec233ede
SB
1265 old_thread->tidr != new_thread->tidr)
1266 mtspr(SPRN_TIDR, new_thread->tidr);
be98fcf7
BG
1267
1268 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE) &&
1269 old_thread->hashkeyr != new_thread->hashkeyr)
1270 mtspr(SPRN_HASHKEYR, new_thread->hashkeyr);
75171f06
BG
1271
1272 if (cpu_has_feature(CPU_FTR_ARCH_31) &&
1273 old_thread->dexcr != new_thread->dexcr)
1274 mtspr(SPRN_DEXCR, new_thread->dexcr);
152d523e 1275#endif
06bb53b3 1276
152d523e
AB
1277}
1278
14cf11af
PM
1279struct task_struct *__switch_to(struct task_struct *prev,
1280 struct task_struct *new)
1281{
1282 struct thread_struct *new_thread, *old_thread;
14cf11af 1283 struct task_struct *last;
387e220a 1284#ifdef CONFIG_PPC_64S_HASH_MMU
d6bf29b4
PZ
1285 struct ppc64_tlb_batch *batch;
1286#endif
14cf11af 1287
152d523e
AB
1288 new_thread = &new->thread;
1289 old_thread = &current->thread;
1290
7ba5fef7
MN
1291 WARN_ON(!irqs_disabled());
1292
387e220a 1293#ifdef CONFIG_PPC_64S_HASH_MMU
69111bac 1294 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1295 if (batch->active) {
1296 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1297 if (batch->index)
1298 __flush_tlb_pending(batch);
1299 batch->active = 0;
1300 }
f35d2f24
NP
1301
1302 /*
1303 * On POWER9 the copy-paste buffer can only paste into
1304 * foreign real addresses, so unprivileged processes can not
1305 * see the data or use it in any way unless they have
1306 * foreign real mappings. If the new process has the foreign
1307 * real address mappings, we must issue a cp_abort to clear
1308 * any state and prevent snooping, corruption or a covert
1309 * channel. ISA v3.1 supports paste into local memory.
1310 */
1311 if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1312 atomic_read(&new->mm->context.vas_windows)))
1313 asm volatile(PPC_CP_ABORT);
4e003747 1314#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 1315
f3d885cc
AB
1316#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1317 switch_booke_debug_regs(&new->thread.debug);
1318#else
1319/*
1320 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1321 * schedule DABR
1322 */
1323#ifndef CONFIG_HAVE_HW_BREAKPOINT
303e6a9d 1324 switch_hw_breakpoint(new);
f3d885cc
AB
1325#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1326#endif
1327
1328 /*
1329 * We need to save SPRs before treclaim/trecheckpoint as these will
1330 * change a number of them.
1331 */
1332 save_sprs(&prev->thread);
1333
f3d885cc
AB
1334 /* Save FPU, Altivec, VSX and SPE state */
1335 giveup_all(prev);
1336
dc310669
CB
1337 __switch_to_tm(prev, new);
1338
e4c0fc5f
NP
1339 if (!radix_enabled()) {
1340 /*
1341 * We can't take a PMU exception inside _switch() since there
1342 * is a window where the kernel stack SLB and the kernel stack
1343 * are out of sync. Hard disable here.
1344 */
1345 hard_irq_disable();
1346 }
bc2a9408 1347
20dbe670 1348 /*
59dc5bfc
NP
1349 * Call restore_sprs() and set_return_regs_changed() before calling
1350 * _switch(). If we move it after _switch() then we miss out on calling
1351 * it for new tasks. The reason for this is we manually create a stack
1352 * frame for new tasks that directly returns through ret_from_fork() or
20dbe670
AB
1353 * ret_from_kernel_thread(). See copy_thread() for details.
1354 */
f3d885cc
AB
1355 restore_sprs(old_thread, new_thread);
1356
59dc5bfc
NP
1357 set_return_regs_changed(); /* _switch changes stack (and regs) */
1358
42e03bc5
CL
1359 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1360 kuap_assert_locked();
1361
20dbe670
AB
1362 last = _switch(old_thread, new_thread);
1363
f35d2f24
NP
1364 /*
1365 * Nothing after _switch will be run for newly created tasks,
1366 * because they switch directly to ret_from_fork/ret_from_kernel_thread
1367 * etc. Code added here should have a comment explaining why that is
1368 * okay.
1369 */
1370
4e003747 1371#ifdef CONFIG_PPC_BOOK3S_64
387e220a 1372#ifdef CONFIG_PPC_64S_HASH_MMU
f35d2f24
NP
1373 /*
1374 * This applies to a process that was context switched while inside
1375 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1376 * deactivated above, before _switch(). This will never be the case
1377 * for new tasks.
1378 */
d6bf29b4
PZ
1379 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1380 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 1381 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1382 batch->active = 1;
1383 }
387e220a 1384#endif
70fe3d98 1385
f35d2f24
NP
1386 /*
1387 * Math facilities are masked out of the child MSR in copy_thread.
1388 * A new task does not need to restore_math because it will
1389 * demand fault them.
1390 */
1391 if (current->thread.regs)
05b98791 1392 restore_math(current->thread.regs);
4e003747 1393#endif /* CONFIG_PPC_BOOK3S_64 */
d6bf29b4 1394
14cf11af
PM
1395 return last;
1396}
1397
df13102f 1398#define NR_INSN_TO_PRINT 16
06d67d54 1399
06d67d54
PM
1400static void show_instructions(struct pt_regs *regs)
1401{
1402 int i;
a6e2c226 1403 unsigned long nip = regs->nip;
df13102f 1404 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
06d67d54 1405
d90bb7b4 1406 printk("Code: ");
06d67d54 1407
a6e2c226
AK
1408 /*
1409 * If we were executing with the MMU off for instructions, adjust pc
1410 * rather than printing XXXXXXXX.
1411 */
1412 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1413 pc = (unsigned long)phys_to_virt(pc);
1414 nip = (unsigned long)phys_to_virt(regs->nip);
1415 }
1416
df13102f 1417 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
06d67d54
PM
1418 int instr;
1419
d9ab6da6 1420 if (get_kernel_nofault(instr, (const void *)pc)) {
2ffd04de 1421 pr_cont("XXXXXXXX ");
06d67d54 1422 } else {
a6e2c226 1423 if (nip == pc)
2ffd04de 1424 pr_cont("<%08x> ", instr);
06d67d54 1425 else
2ffd04de 1426 pr_cont("%08x ", instr);
06d67d54
PM
1427 }
1428
1429 pc += sizeof(int);
1430 }
1431
2ffd04de 1432 pr_cont("\n");
06d67d54
PM
1433}
1434
88b0fe17
MOA
1435void show_user_instructions(struct pt_regs *regs)
1436{
1437 unsigned long pc;
df13102f 1438 int n = NR_INSN_TO_PRINT;
fb2d9505
CL
1439 struct seq_buf s;
1440 char buf[96]; /* enough for 8 times 9 + 2 chars */
88b0fe17 1441
df13102f 1442 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
88b0fe17 1443
fb2d9505 1444 seq_buf_init(&s, buf, sizeof(buf));
88b0fe17 1445
fb2d9505
CL
1446 while (n) {
1447 int i;
88b0fe17 1448
fb2d9505 1449 seq_buf_clear(&s);
88b0fe17 1450
fb2d9505
CL
1451 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1452 int instr;
1453
c0ee37e8
CH
1454 if (copy_from_user_nofault(&instr, (void __user *)pc,
1455 sizeof(instr))) {
fb2d9505
CL
1456 seq_buf_printf(&s, "XXXXXXXX ");
1457 continue;
1458 }
1459 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
88b0fe17
MOA
1460 }
1461
fb2d9505
CL
1462 if (!seq_buf_has_overflowed(&s))
1463 pr_info("%s[%d]: code: %s\n", current->comm,
1464 current->pid, s.buffer);
88b0fe17 1465 }
88b0fe17
MOA
1466}
1467
801c0b2c 1468struct regbit {
06d67d54
PM
1469 unsigned long bit;
1470 const char *name;
801c0b2c
MN
1471};
1472
1473static struct regbit msr_bits[] = {
3bfd0c9c
AB
1474#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1475 {MSR_SF, "SF"},
1476 {MSR_HV, "HV"},
1477#endif
1478 {MSR_VEC, "VEC"},
1479 {MSR_VSX, "VSX"},
1480#ifdef CONFIG_BOOKE
1481 {MSR_CE, "CE"},
1482#endif
06d67d54
PM
1483 {MSR_EE, "EE"},
1484 {MSR_PR, "PR"},
1485 {MSR_FP, "FP"},
1486 {MSR_ME, "ME"},
3bfd0c9c 1487#ifdef CONFIG_BOOKE
1b98326b 1488 {MSR_DE, "DE"},
3bfd0c9c
AB
1489#else
1490 {MSR_SE, "SE"},
1491 {MSR_BE, "BE"},
1492#endif
06d67d54
PM
1493 {MSR_IR, "IR"},
1494 {MSR_DR, "DR"},
3bfd0c9c
AB
1495 {MSR_PMM, "PMM"},
1496#ifndef CONFIG_BOOKE
1497 {MSR_RI, "RI"},
1498 {MSR_LE, "LE"},
1499#endif
06d67d54
PM
1500 {0, NULL}
1501};
1502
801c0b2c 1503static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
06d67d54 1504{
801c0b2c 1505 const char *s = "";
06d67d54 1506
06d67d54
PM
1507 for (; bits->bit; ++bits)
1508 if (val & bits->bit) {
db5ba5ae 1509 pr_cont("%s%s", s, bits->name);
801c0b2c 1510 s = sep;
06d67d54 1511 }
801c0b2c
MN
1512}
1513
1514#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1515static struct regbit msr_tm_bits[] = {
1516 {MSR_TS_T, "T"},
1517 {MSR_TS_S, "S"},
1518 {MSR_TM, "E"},
1519 {0, NULL}
1520};
1521
1522static void print_tm_bits(unsigned long val)
1523{
1524/*
1525 * This only prints something if at least one of the TM bit is set.
1526 * Inside the TM[], the output means:
1527 * E: Enabled (bit 32)
1528 * S: Suspended (bit 33)
1529 * T: Transactional (bit 34)
1530 */
1531 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
db5ba5ae 1532 pr_cont(",TM[");
801c0b2c 1533 print_bits(val, msr_tm_bits, "");
db5ba5ae 1534 pr_cont("]");
801c0b2c
MN
1535 }
1536}
1537#else
1538static void print_tm_bits(unsigned long val) {}
1539#endif
1540
1541static void print_msr_bits(unsigned long val)
1542{
db5ba5ae 1543 pr_cont("<");
801c0b2c
MN
1544 print_bits(val, msr_bits, ",");
1545 print_tm_bits(val);
db5ba5ae 1546 pr_cont(">");
06d67d54
PM
1547}
1548
1549#ifdef CONFIG_PPC64
f6f7dde3 1550#define REG "%016lx"
06d67d54 1551#define REGS_PER_LINE 4
06d67d54 1552#else
f6f7dde3 1553#define REG "%08lx"
06d67d54 1554#define REGS_PER_LINE 8
06d67d54
PM
1555#endif
1556
bf13718b 1557static void __show_regs(struct pt_regs *regs)
14cf11af
PM
1558{
1559 int i, trap;
1560
a6036100 1561 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
06d67d54 1562 regs->nip, regs->link, regs->ctr);
182dc9c7 1563 printk("REGS: %px TRAP: %04lx %s (%s)\n",
96b644bd 1564 regs, regs->trap, print_tainted(), init_utsname()->release);
a6036100 1565 printk("MSR: "REG" ", regs->msr);
801c0b2c 1566 print_msr_bits(regs->msr);
f6fc73fb 1567 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1568 trap = TRAP(regs);
912237ea 1569 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
7dae865f 1570 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
7153d4bf
XS
1571 if (trap == INTERRUPT_MACHINE_CHECK ||
1572 trap == INTERRUPT_DATA_STORAGE ||
1573 trap == INTERRUPT_ALIGNMENT) {
7bf5f056 1574 if (IS_ENABLED(CONFIG_BOOKE))
4872cbd0 1575 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
2ec42996
CL
1576 else
1577 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1578 }
1579
9db8bcfd 1580#ifdef CONFIG_PPC64
3130a7bb 1581 pr_cont("IRQMASK: %lx ", regs->softe);
9db8bcfd
AB
1582#endif
1583#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a 1584 if (MSR_TM_ACTIVE(regs->msr))
7dae865f 1585 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1586#endif
14cf11af
PM
1587
1588 for (i = 0; i < 32; i++) {
06d67d54 1589 if ((i % REGS_PER_LINE) == 0)
7dae865f
ME
1590 pr_cont("\nGPR%02d: ", i);
1591 pr_cont(REG " ", regs->gpr[i]);
14cf11af 1592 }
7dae865f 1593 pr_cont("\n");
14cf11af
PM
1594 /*
1595 * Lookup NIP late so we have the best change of getting the
1596 * above info out without failing
1597 */
8f020c7c
CL
1598 if (IS_ENABLED(CONFIG_KALLSYMS)) {
1599 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1600 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1601 }
bf13718b
NP
1602}
1603
1604void show_regs(struct pt_regs *regs)
1605{
1606 show_regs_print_info(KERN_DEFAULT);
1607 __show_regs(regs);
9cb8f069 1608 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
06d67d54
PM
1609 if (!user_mode(regs))
1610 show_instructions(regs);
14cf11af
PM
1611}
1612
14cf11af
PM
1613void flush_thread(void)
1614{
e0780b72 1615#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1616 flush_ptrace_hw_breakpoint(current);
e0780b72 1617#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1618 set_debug_reg_defaults(&current->thread);
e0780b72 1619#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1620}
1621
425d3314
NP
1622void arch_setup_new_exec(void)
1623{
d7df77e8
AK
1624
1625#ifdef CONFIG_PPC_BOOK3S_64
1626 if (!radix_enabled())
1627 hash__setup_new_exec();
425d3314 1628#endif
d7df77e8
AK
1629 /*
1630 * If we exec out of a kernel thread then thread.regs will not be
1631 * set. Do it now.
1632 */
1633 if (!current->thread.regs) {
1634 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1635 current->thread.regs = regs - 1;
1636 }
d5fa30e6
AK
1637
1638#ifdef CONFIG_PPC_MEM_KEYS
1639 current->thread.regs->amr = default_amr;
1640 current->thread.regs->iamr = default_iamr;
1641#endif
bbd99922
BG
1642
1643#ifdef CONFIG_PPC_BOOK3S_64
1644 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1645 current->thread.dexcr = current->thread.dexcr_onexec;
1646 mtspr(SPRN_DEXCR, current->thread.dexcr);
1647 }
1648#endif /* CONFIG_PPC_BOOK3S_64 */
d7df77e8 1649}
425d3314 1650
ec233ede 1651#ifdef CONFIG_PPC64
be994293 1652/*
71cc64a8
AS
1653 * Assign a TIDR (thread ID) for task @t and set it in the thread
1654 * structure. For now, we only support setting TIDR for 'current' task.
ec233ede 1655 *
71cc64a8
AS
1656 * Since the TID value is a truncated form of it PID, it is possible
1657 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1658 * that 2 threads share the same TID and are waiting, one of the following
1659 * cases will happen:
ec233ede 1660 *
71cc64a8 1661 * 1. The correct thread is running, the wrong thread is not
0ddbbb89 1662 * In this situation, the correct thread is woken and proceeds to pass its
71cc64a8 1663 * condition check.
ec233ede 1664 *
71cc64a8
AS
1665 * 2. Neither threads are running
1666 * In this situation, neither thread will be woken. When scheduled, the waiting
1667 * threads will execute either a wait, which will return immediately, followed
1668 * by a condition check, which will pass for the correct thread and fail
1669 * for the wrong thread, or they will execute the condition check immediately.
ec233ede 1670 *
71cc64a8 1671 * 3. The wrong thread is running, the correct thread is not
0ddbbb89 1672 * The wrong thread will be woken, but will fail its condition check and
71cc64a8 1673 * re-execute wait. The correct thread, when scheduled, will execute either
0ddbbb89
BH
1674 * its condition check (which will pass), or wait, which returns immediately
1675 * when called the first time after the thread is scheduled, followed by its
71cc64a8 1676 * condition check (which will pass).
ec233ede 1677 *
71cc64a8 1678 * 4. Both threads are running
0ddbbb89
BH
1679 * Both threads will be woken. The wrong thread will fail its condition check
1680 * and execute another wait, while the correct thread will pass its condition
71cc64a8
AS
1681 * check.
1682 *
1683 * @t: the task to set the thread ID for
ec233ede
SB
1684 */
1685int set_thread_tidr(struct task_struct *t)
1686{
3449f191 1687 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
ec233ede
SB
1688 return -EINVAL;
1689
1690 if (t != current)
1691 return -EINVAL;
1692
7e4d4233
VJ
1693 if (t->thread.tidr)
1694 return 0;
1695
71cc64a8 1696 t->thread.tidr = (u16)task_pid_nr(t);
ec233ede
SB
1697 mtspr(SPRN_TIDR, t->thread.tidr);
1698
1699 return 0;
1700}
b1db5513 1701EXPORT_SYMBOL_GPL(set_thread_tidr);
ec233ede
SB
1702
1703#endif /* CONFIG_PPC64 */
1704
14cf11af 1705/*
55ccf3fe
SS
1706 * this gets called so that we can store coprocessor state into memory and
1707 * copy the current task into the new thread.
14cf11af 1708 */
55ccf3fe 1709int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1710{
579e633e 1711 flush_all_to_thread(src);
621b5060
MN
1712 /*
1713 * Flush TM state out so we can copy it. __switch_to_tm() does this
1714 * flush but it removes the checkpointed state from the current CPU and
1715 * transitions the CPU out of TM mode. Hence we need to call
1716 * tm_recheckpoint_new_task() (on the same task) to restore the
1717 * checkpointed state back and the TM mode.
5d176f75
CB
1718 *
1719 * Can't pass dst because it isn't ready. Doesn't matter, passing
1720 * dst is only important for __switch_to()
621b5060 1721 */
dc310669 1722 __switch_to_tm(src, src);
330a1eb7 1723
55ccf3fe 1724 *dst = *src;
330a1eb7
ME
1725
1726 clear_task_ebb(dst);
1727
55ccf3fe 1728 return 0;
14cf11af
PM
1729}
1730
cec15488
ME
1731static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1732{
387e220a 1733#ifdef CONFIG_PPC_64S_HASH_MMU
cec15488
ME
1734 unsigned long sp_vsid;
1735 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1736
caca285e
AK
1737 if (radix_enabled())
1738 return;
1739
cec15488
ME
1740 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1741 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1742 << SLB_VSID_SHIFT_1T;
1743 else
1744 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1745 << SLB_VSID_SHIFT;
1746 sp_vsid |= SLB_VSID_KERNEL | llp;
1747 p->thread.ksp_vsid = sp_vsid;
1748#endif
1749}
1750
14cf11af
PM
1751/*
1752 * Copy a thread..
1753 */
efcac658 1754
6eca8933
AD
1755/*
1756 * Copy architecture-specific thread state
1757 */
c5febea0 1758int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
14cf11af 1759{
eed7c420 1760 struct pt_regs *kregs; /* Switch frame regs */
14cf11af 1761 extern void ret_from_fork(void);
7fa95f9a 1762 extern void ret_from_fork_scv(void);
b504b6aa
NP
1763 extern void ret_from_kernel_user_thread(void);
1764 extern void start_kernel_thread(void);
58254e10 1765 void (*f)(void);
0cec6fd1 1766 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
6b424efa
RB
1767#ifdef CONFIG_HAVE_HW_BREAKPOINT
1768 int i;
1769#endif
5d31a96e 1770
ed1cd6de 1771 klp_init_thread_info(p);
14cf11af 1772
eed7c420 1773 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1774 /* kernel thread */
eed7c420
NP
1775
1776 /* Create initial minimum stack frame. */
1777 sp -= STACK_FRAME_MIN_SIZE;
6895dfc0 1778 ((unsigned long *)sp)[0] = 0;
eed7c420 1779
b504b6aa 1780 f = start_kernel_thread;
eed7c420
NP
1781 p->thread.regs = NULL; /* no user register state */
1782 clear_tsk_compat_task(p);
14cf11af 1783 } else {
6eca8933 1784 /* user thread */
eed7c420
NP
1785 struct pt_regs *childregs;
1786
1787 /* Create initial user return stack frame. */
1788 sp -= STACK_USER_INT_FRAME_SIZE;
1789 *(unsigned long *)(sp + STACK_INT_FRAME_MARKER) = STACK_FRAME_REGS_MARKER;
1790
1791 childregs = (struct pt_regs *)(sp + STACK_INT_FRAME_REGS);
1792
1793 if (unlikely(args->fn)) {
1794 /*
1795 * A user space thread, but it first runs a kernel
1796 * thread, and then returns as though it had called
1797 * execve rather than fork, so user regs will be
1798 * filled in (e.g., by kernel_execve()).
1799 */
1800 ((unsigned long *)sp)[0] = 0;
1801 memset(childregs, 0, sizeof(struct pt_regs));
1802#ifdef CONFIG_PPC64
1803 childregs->softe = IRQS_ENABLED;
1804#endif
b504b6aa 1805 f = ret_from_kernel_user_thread;
eed7c420
NP
1806 } else {
1807 struct pt_regs *regs = current_pt_regs();
1808 unsigned long clone_flags = args->flags;
1809 unsigned long usp = args->stack;
1810
1811 /* Copy registers */
1812 *childregs = *regs;
1813 if (usp)
1814 childregs->gpr[1] = usp;
1815 ((unsigned long *)sp)[0] = childregs->gpr[1];
1816#ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG
1817 WARN_ON_ONCE(childregs->softe != IRQS_ENABLED);
1818#endif
1819 if (clone_flags & CLONE_SETTLS) {
1820 unsigned long tls = args->tls;
1821
1822 if (!is_32bit_task())
1823 childregs->gpr[13] = tls;
1824 else
1825 childregs->gpr[2] = tls;
1826 }
1827
1828 if (trap_is_scv(regs))
1829 f = ret_from_fork_scv;
06d67d54 1830 else
eed7c420 1831 f = ret_from_fork;
06d67d54 1832 }
58254e10 1833
eed7c420
NP
1834 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1835 p->thread.regs = childregs;
14cf11af 1836 }
14cf11af
PM
1837
1838 /*
1839 * The way this works is that at some point in the future
1840 * some task will call _switch to switch to the new task.
1841 * That will pop off the stack frame created below and start
1842 * the new task running at ret_from_fork. The new task will
1843 * do some house keeping and then return from the fork or clone
1844 * system call, using the stack frame created above.
1845 */
edbd0387 1846 ((unsigned long *)sp)[STACK_FRAME_LR_SAVE] = (unsigned long)f;
6f291a03 1847 sp -= STACK_SWITCH_FRAME_SIZE;
edbd0387 1848 ((unsigned long *)sp)[0] = sp + STACK_SWITCH_FRAME_SIZE;
6f291a03 1849 kregs = (struct pt_regs *)(sp + STACK_SWITCH_FRAME_REGS);
c013e9f2 1850 kregs->nip = ppc_function_entry(f);
af5ca9d5
NP
1851 if (unlikely(args->fn)) {
1852 /*
1853 * Put kthread fn, arg parameters in non-volatile GPRs in the
1854 * switch frame so they are loaded by _switch before it returns
1855 * to ret_from_kernel_thread.
1856 */
1857 kregs->gpr[14] = ppc_function_entry((void *)args->fn);
1858 kregs->gpr[15] = (unsigned long)args->fn_arg;
1859 }
14cf11af 1860 p->thread.ksp = sp;
6f291a03 1861
28d170ab 1862#ifdef CONFIG_HAVE_HW_BREAKPOINT
6b424efa
RB
1863 for (i = 0; i < nr_wp_slots(); i++)
1864 p->thread.ptrace_bps[i] = NULL;
28d170ab
ON
1865#endif
1866
b6254ced 1867#ifdef CONFIG_PPC_FPU_REGS
18461960 1868 p->thread.fp_save_area = NULL;
b6254ced 1869#endif
18461960
PM
1870#ifdef CONFIG_ALTIVEC
1871 p->thread.vr_save_area = NULL;
1872#endif
16132529
CL
1873#if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1874 p->thread.kuap = KUAP_NONE;
1875#endif
002b27a5 1876#if defined(CONFIG_BOOKE) && defined(CONFIG_PPC_KUAP)
43afcf8f
CL
1877 p->thread.pid = MMU_NO_CONTEXT;
1878#endif
18461960 1879
cec15488
ME
1880 setup_ksp_vsid(p, sp);
1881
efcac658
AK
1882#ifdef CONFIG_PPC64
1883 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26 1884 p->thread.dscr_inherit = current->thread.dscr_inherit;
db1231dc 1885 p->thread.dscr = mfspr(SPRN_DSCR);
efcac658 1886 }
ec233ede
SB
1887
1888 p->thread.tidr = 0;
be98fcf7
BG
1889#endif
1890#ifdef CONFIG_PPC_BOOK3S_64
1891 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
1892 p->thread.hashkeyr = current->thread.hashkeyr;
75171f06
BG
1893
1894 if (cpu_has_feature(CPU_FTR_ARCH_31))
1895 p->thread.dexcr = mfspr(SPRN_DEXCR);
f643fcab 1896#endif
14cf11af
PM
1897 return 0;
1898}
1899
5434ae74
NP
1900void preload_new_slb_context(unsigned long start, unsigned long sp);
1901
14cf11af
PM
1902/*
1903 * Set up a thread for executing a new program
1904 */
06d67d54 1905void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1906{
90eac727
ME
1907#ifdef CONFIG_PPC64
1908 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
5434ae74 1909
bfac2799 1910 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
f89bd8ba 1911 preload_new_slb_context(start, sp);
90eac727
ME
1912#endif
1913
8e96a87c
CB
1914#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1915 /*
1916 * Clear any transactional state, we're exec()ing. The cause is
1917 * not important as there will never be a recheckpoint so it's not
1918 * user visible.
1919 */
1920 if (MSR_TM_SUSPENDED(mfmsr()))
1921 tm_reclaim_current(0);
1922#endif
1923
ec6d0dde 1924 memset(&regs->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
14cf11af
PM
1925 regs->ctr = 0;
1926 regs->link = 0;
1927 regs->xer = 0;
1928 regs->ccr = 0;
14cf11af 1929 regs->gpr[1] = sp;
06d67d54
PM
1930
1931#ifdef CONFIG_PPC32
1932 regs->mq = 0;
1933 regs->nip = start;
14cf11af 1934 regs->msr = MSR_USER;
06d67d54 1935#else
9904b005 1936 if (!is_32bit_task()) {
94af3abf 1937 unsigned long entry;
06d67d54 1938
94af3abf
RR
1939 if (is_elf2_task()) {
1940 /* Look ma, no function descriptors! */
1941 entry = start;
06d67d54 1942
94af3abf
RR
1943 /*
1944 * Ulrich says:
1945 * The latest iteration of the ABI requires that when
1946 * calling a function (at its global entry point),
1947 * the caller must ensure r12 holds the entry point
1948 * address (so that the function can quickly
1949 * establish addressability).
1950 */
1951 regs->gpr[12] = start;
1952 /* Make sure that's restored on entry to userspace. */
1953 set_thread_flag(TIF_RESTOREALL);
1954 } else {
1955 unsigned long toc;
1956
1957 /* start is a relocated pointer to the function
1958 * descriptor for the elf _start routine. The first
1959 * entry in the function descriptor is the entry
1960 * address of _start and the second entry is the TOC
1961 * value we need to use.
1962 */
f66dbe43
ME
1963 get_user(entry, (unsigned long __user *)start);
1964 get_user(toc, (unsigned long __user *)start+1);
94af3abf
RR
1965
1966 /* Check whether the e_entry function descriptor entries
1967 * need to be relocated before we can use them.
1968 */
1969 if (load_addr != 0) {
1970 entry += load_addr;
1971 toc += load_addr;
1972 }
1973 regs->gpr[2] = toc;
06d67d54 1974 }
59dc5bfc
NP
1975 regs_set_return_ip(regs, entry);
1976 regs_set_return_msr(regs, MSR_USER64);
d4bf9a78 1977 } else {
d4bf9a78 1978 regs->gpr[2] = 0;
59dc5bfc
NP
1979 regs_set_return_ip(regs, start);
1980 regs_set_return_msr(regs, MSR_USER32);
06d67d54 1981 }
59dc5bfc 1982
06d67d54 1983#endif
ce48b210
MN
1984#ifdef CONFIG_VSX
1985 current->thread.used_vsr = 0;
1986#endif
5434ae74 1987 current->thread.load_slb = 0;
1195892c 1988 current->thread.load_fp = 0;
b6254ced 1989#ifdef CONFIG_PPC_FPU_REGS
de79f7b9 1990 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1991 current->thread.fp_save_area = NULL;
b6254ced 1992#endif
14cf11af 1993#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1994 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1995 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1996 current->thread.vr_save_area = NULL;
14cf11af
PM
1997 current->thread.vrsave = 0;
1998 current->thread.used_vr = 0;
1195892c 1999 current->thread.load_vec = 0;
14cf11af
PM
2000#endif /* CONFIG_ALTIVEC */
2001#ifdef CONFIG_SPE
2002 memset(current->thread.evr, 0, sizeof(current->thread.evr));
2003 current->thread.acc = 0;
2004 current->thread.spefscr = 0;
2005 current->thread.used_spe = 0;
2006#endif /* CONFIG_SPE */
bc2a9408 2007#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
bc2a9408
MN
2008 current->thread.tm_tfhar = 0;
2009 current->thread.tm_texasr = 0;
2010 current->thread.tm_tfiar = 0;
7f22ced4 2011 current->thread.load_tm = 0;
bc2a9408 2012#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
be98fcf7
BG
2013#ifdef CONFIG_PPC_BOOK3S_64
2014 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) {
2015 current->thread.hashkeyr = get_random_long();
2016 mtspr(SPRN_HASHKEYR, current->thread.hashkeyr);
2017 }
2018#endif /* CONFIG_PPC_BOOK3S_64 */
14cf11af 2019}
e1802b06 2020EXPORT_SYMBOL(start_thread);
14cf11af
PM
2021
2022#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
2023 | PR_FP_EXC_RES | PR_FP_EXC_INV)
2024
2025int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
2026{
2027 struct pt_regs *regs = tsk->thread.regs;
2028
2029 /* This is a bit hairy. If we are an SPE enabled processor
2030 * (have embedded fp) we store the IEEE exception enable flags in
2031 * fpexc_mode. fpexc_mode is also used for setting FP exception
2032 * mode (asyn, precise, disabled) for 'Classic' FP. */
2033 if (val & PR_FP_EXC_SW_ENABLE) {
5e14d21e 2034 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
2035 /*
2036 * When the sticky exception bits are set
2037 * directly by userspace, it must call prctl
2038 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2039 * in the existing prctl settings) or
2040 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2041 * the bits being set). <fenv.h> functions
2042 * saving and restoring the whole
2043 * floating-point environment need to do so
2044 * anyway to restore the prctl settings from
2045 * the saved environment.
2046 */
532ed190 2047#ifdef CONFIG_SPE
640e9225 2048 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
2049 tsk->thread.fpexc_mode = val &
2050 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
532ed190 2051#endif
5e14d21e
KG
2052 return 0;
2053 } else {
2054 return -EINVAL;
2055 }
14cf11af 2056 }
06d67d54
PM
2057
2058 /* on a CONFIG_SPE this does not hurt us. The bits that
2059 * __pack_fe01 use do not overlap with bits used for
2060 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
2061 * on CONFIG_SPE implementations are reserved so writing to
2062 * them does not change anything */
2063 if (val > PR_FP_EXC_PRECISE)
2064 return -EINVAL;
2065 tsk->thread.fpexc_mode = __pack_fe01(val);
59dc5bfc
NP
2066 if (regs != NULL && (regs->msr & MSR_FP) != 0) {
2067 regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
2068 | tsk->thread.fpexc_mode);
2069 }
14cf11af
PM
2070 return 0;
2071}
2072
2073int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
2074{
d208e13c 2075 unsigned int val = 0;
14cf11af 2076
532ed190 2077 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
640e9225
JM
2078 if (cpu_has_feature(CPU_FTR_SPE)) {
2079 /*
2080 * When the sticky exception bits are set
2081 * directly by userspace, it must call prctl
2082 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2083 * in the existing prctl settings) or
2084 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2085 * the bits being set). <fenv.h> functions
2086 * saving and restoring the whole
2087 * floating-point environment need to do so
2088 * anyway to restore the prctl settings from
2089 * the saved environment.
2090 */
532ed190 2091#ifdef CONFIG_SPE
640e9225 2092 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 2093 val = tsk->thread.fpexc_mode;
532ed190 2094#endif
640e9225 2095 } else
5e14d21e 2096 return -EINVAL;
532ed190 2097 } else {
14cf11af 2098 val = __unpack_fe01(tsk->thread.fpexc_mode);
532ed190 2099 }
14cf11af
PM
2100 return put_user(val, (unsigned int __user *) adr);
2101}
2102
fab5db97
PM
2103int set_endian(struct task_struct *tsk, unsigned int val)
2104{
2105 struct pt_regs *regs = tsk->thread.regs;
2106
2107 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
2108 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2109 return -EINVAL;
2110
2111 if (regs == NULL)
2112 return -EINVAL;
2113
2114 if (val == PR_ENDIAN_BIG)
59dc5bfc 2115 regs_set_return_msr(regs, regs->msr & ~MSR_LE);
fab5db97 2116 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
59dc5bfc 2117 regs_set_return_msr(regs, regs->msr | MSR_LE);
fab5db97
PM
2118 else
2119 return -EINVAL;
2120
2121 return 0;
2122}
2123
2124int get_endian(struct task_struct *tsk, unsigned long adr)
2125{
2126 struct pt_regs *regs = tsk->thread.regs;
2127 unsigned int val;
2128
2129 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2130 !cpu_has_feature(CPU_FTR_REAL_LE))
2131 return -EINVAL;
2132
2133 if (regs == NULL)
2134 return -EINVAL;
2135
2136 if (regs->msr & MSR_LE) {
2137 if (cpu_has_feature(CPU_FTR_REAL_LE))
2138 val = PR_ENDIAN_LITTLE;
2139 else
2140 val = PR_ENDIAN_PPC_LITTLE;
2141 } else
2142 val = PR_ENDIAN_BIG;
2143
2144 return put_user(val, (unsigned int __user *)adr);
2145}
2146
e9370ae1
PM
2147int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2148{
2149 tsk->thread.align_ctl = val;
2150 return 0;
2151}
2152
2153int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2154{
2155 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2156}
2157
bb72c481
PM
2158static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2159 unsigned long nbytes)
2160{
2161 unsigned long stack_page;
2162 unsigned long cpu = task_cpu(p);
2163
1ee4e350
NP
2164 if (!hardirq_ctx[cpu] || !softirq_ctx[cpu])
2165 return 0;
2166
a7916a1d
CL
2167 stack_page = (unsigned long)hardirq_ctx[cpu];
2168 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2169 return 1;
2170
2171 stack_page = (unsigned long)softirq_ctx[cpu];
2172 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2173 return 1;
2174
bb72c481
PM
2175 return 0;
2176}
2177
dca5b1d6 2178#ifdef CONFIG_PPC64
a2e36683
NP
2179static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2180 unsigned long nbytes)
2181{
a2e36683
NP
2182 unsigned long stack_page;
2183 unsigned long cpu = task_cpu(p);
2184
0ecf6a9e
ME
2185 if (!paca_ptrs)
2186 return 0;
2187
1ee4e350
NP
2188 if (!paca_ptrs[cpu]->emergency_sp)
2189 return 0;
2190
2191# ifdef CONFIG_PPC_BOOK3S_64
2192 if (!paca_ptrs[cpu]->nmi_emergency_sp || !paca_ptrs[cpu]->mc_emergency_sp)
2193 return 0;
2194#endif
2195
a2e36683
NP
2196 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2197 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2198 return 1;
2199
2200# ifdef CONFIG_PPC_BOOK3S_64
2201 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2202 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2203 return 1;
2204
2205 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2206 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2207 return 1;
2208# endif
a2e36683
NP
2209
2210 return 0;
2211}
dca5b1d6
CL
2212#else
2213static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2214 unsigned long nbytes)
2215{
2216 unsigned long stack_page;
2217 unsigned long cpu = task_cpu(p);
2218
2219 if (!IS_ENABLED(CONFIG_VMAP_STACK))
2220 return 0;
2221
2222 stack_page = (unsigned long)emergency_ctx[cpu] - THREAD_SIZE;
2223 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2224 return 1;
2225
2226 return 0;
2227}
2228#endif
a2e36683 2229
4cefb0f6
NP
2230/*
2231 * validate the stack frame of a particular minimum size, used for when we are
2232 * looking at a certain object in the stack beyond the minimum.
2233 */
2234int validate_sp_size(unsigned long sp, struct task_struct *p,
2235 unsigned long nbytes)
14cf11af 2236{
0cec6fd1 2237 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af 2238
a7916a1d
CL
2239 if (sp < THREAD_SIZE)
2240 return 0;
2241
2242 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
14cf11af
PM
2243 return 1;
2244
a2e36683
NP
2245 if (valid_irq_stack(sp, p, nbytes))
2246 return 1;
2247
2248 return valid_emergency_stack(sp, p, nbytes);
14cf11af
PM
2249}
2250
4cefb0f6
NP
2251int validate_sp(unsigned long sp, struct task_struct *p)
2252{
90f1b431 2253 return validate_sp_size(sp, p, STACK_FRAME_MIN_SIZE);
4cefb0f6 2254}
2f25194d 2255
42a20f86 2256static unsigned long ___get_wchan(struct task_struct *p)
14cf11af
PM
2257{
2258 unsigned long ip, sp;
2259 int count = 0;
2260
14cf11af 2261 sp = p->thread.ksp;
4cefb0f6 2262 if (!validate_sp(sp, p))
14cf11af
PM
2263 return 0;
2264
2265 do {
a1b29ba2 2266 sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
4cefb0f6 2267 if (!validate_sp(sp, p) || task_is_running(p))
14cf11af
PM
2268 return 0;
2269 if (count > 0) {
a1b29ba2 2270 ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
14cf11af
PM
2271 if (!in_sched_functions(ip))
2272 return ip;
2273 }
2274 } while (count++ < 16);
2275 return 0;
2276}
06d67d54 2277
42a20f86 2278unsigned long __get_wchan(struct task_struct *p)
018cce33
CL
2279{
2280 unsigned long ret;
2281
2282 if (!try_get_task_stack(p))
2283 return 0;
2284
42a20f86 2285 ret = ___get_wchan(p);
018cce33
CL
2286
2287 put_task_stack(p);
2288
2289 return ret;
2290}
2291
d45c4b48
ME
2292static bool empty_user_regs(struct pt_regs *regs, struct task_struct *tsk)
2293{
2294 unsigned long stack_page;
2295
2296 // A non-empty pt_regs should never have a zero MSR or TRAP value.
2297 if (regs->msr || regs->trap)
2298 return false;
2299
2300 // Check it sits at the very base of the stack
2301 stack_page = (unsigned long)task_stack_page(tsk);
2302 if ((unsigned long)(regs + 1) != stack_page + THREAD_SIZE)
2303 return false;
2304
2305 return true;
2306}
2307
c4d04be1 2308static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54 2309
b112fb91
DA
2310void __no_sanitize_address show_stack(struct task_struct *tsk,
2311 unsigned long *stack,
2312 const char *loglvl)
06d67d54
PM
2313{
2314 unsigned long sp, ip, lr, newsp;
2315 int count = 0;
2316 int firstframe = 1;
7c1bb6bb
NR
2317 unsigned long ret_addr;
2318 int ftrace_idx = 0;
06d67d54 2319
06d67d54
PM
2320 if (tsk == NULL)
2321 tsk = current;
018cce33
CL
2322
2323 if (!try_get_task_stack(tsk))
2324 return;
2325
2326 sp = (unsigned long) stack;
06d67d54
PM
2327 if (sp == 0) {
2328 if (tsk == current)
3d13e839 2329 sp = current_stack_frame();
06d67d54
PM
2330 else
2331 sp = tsk->thread.ksp;
2332 }
2333
2334 lr = 0;
b9677a8c 2335 printk("%sCall Trace:\n", loglvl);
06d67d54 2336 do {
4cefb0f6 2337 if (!validate_sp(sp, tsk))
018cce33 2338 break;
06d67d54
PM
2339
2340 stack = (unsigned long *) sp;
2341 newsp = stack[0];
ec2b36b9 2342 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 2343 if (!firstframe || ip != lr) {
b9677a8c
DS
2344 printk("%s["REG"] ["REG"] %pS",
2345 loglvl, sp, ip, (void *)ip);
7c1bb6bb
NR
2346 ret_addr = ftrace_graph_ret_addr(current,
2347 &ftrace_idx, ip, stack);
2348 if (ret_addr != ip)
2349 pr_cont(" (%pS)", (void *)ret_addr);
06d67d54 2350 if (firstframe)
9a1f490f
ME
2351 pr_cont(" (unreliable)");
2352 pr_cont("\n");
06d67d54
PM
2353 }
2354 firstframe = 0;
2355
2356 /*
2357 * See if this is an exception frame.
c03be0a3 2358 * We look for the "regs" marker in the current frame.
6f291a03
NP
2359 *
2360 * STACK_SWITCH_FRAME_SIZE being the smallest frame that
2361 * could hold a pt_regs, if that does not fit then it can't
2362 * have regs.
06d67d54 2363 */
4cefb0f6 2364 if (validate_sp_size(sp, tsk, STACK_SWITCH_FRAME_SIZE)
e856e336 2365 && stack[STACK_INT_FRAME_MARKER_LONGS] == STACK_FRAME_REGS_MARKER) {
06d67d54 2366 struct pt_regs *regs = (struct pt_regs *)
c03be0a3 2367 (sp + STACK_INT_FRAME_REGS);
bf13718b 2368
06d67d54 2369 lr = regs->link;
b2f64cf1 2370 printk("%s---- interrupt: %lx at %pS\n",
bf13718b 2371 loglvl, regs->trap, (void *)regs->nip);
d45c4b48
ME
2372
2373 // Detect the case of an empty pt_regs at the very base
2374 // of the stack and suppress showing it in full.
2375 if (!empty_user_regs(regs, tsk)) {
2376 __show_regs(regs);
b2f64cf1 2377 printk("%s---- interrupt: %lx\n", loglvl, regs->trap);
d45c4b48 2378 }
bf13718b 2379
06d67d54
PM
2380 firstframe = 1;
2381 }
2382
2383 sp = newsp;
2384 } while (count++ < kstack_depth_to_print);
018cce33
CL
2385
2386 put_task_stack(tsk);
06d67d54
PM
2387}
2388
cb2c9b27 2389#ifdef CONFIG_PPC64
fe1952fc 2390/* Called with hard IRQs off */
0e37739b 2391void notrace __ppc64_runlatch_on(void)
cb2c9b27 2392{
fe1952fc 2393 struct thread_info *ti = current_thread_info();
cb2c9b27 2394
d1d0d5ff
NP
2395 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2396 /*
2397 * Least significant bit (RUN) is the only writable bit of
2398 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2399 * earliest ISA where this is the case, but it's convenient.
2400 */
2401 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2402 } else {
2403 unsigned long ctrl;
2404
2405 /*
2406 * Some architectures (e.g., Cell) have writable fields other
2407 * than RUN, so do the read-modify-write.
2408 */
2409 ctrl = mfspr(SPRN_CTRLF);
2410 ctrl |= CTRL_RUNLATCH;
2411 mtspr(SPRN_CTRLT, ctrl);
2412 }
cb2c9b27 2413
fae2e0fb 2414 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
2415}
2416
fe1952fc 2417/* Called with hard IRQs off */
0e37739b 2418void notrace __ppc64_runlatch_off(void)
cb2c9b27 2419{
fe1952fc 2420 struct thread_info *ti = current_thread_info();
cb2c9b27 2421
fae2e0fb 2422 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 2423
d1d0d5ff
NP
2424 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2425 mtspr(SPRN_CTRLT, 0);
2426 } else {
2427 unsigned long ctrl;
2428
2429 ctrl = mfspr(SPRN_CTRLF);
2430 ctrl &= ~CTRL_RUNLATCH;
2431 mtspr(SPRN_CTRLT, ctrl);
2432 }
cb2c9b27 2433}
fe1952fc 2434#endif /* CONFIG_PPC64 */
f6a61680 2435
d839088c
AB
2436unsigned long arch_align_stack(unsigned long sp)
2437{
2438 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
8032bf12 2439 sp -= get_random_u32_below(PAGE_SIZE);
d839088c
AB
2440 return sp & ~0xf;
2441}