powerpc: remove superflous inclusions of asm/fixmap.h
[linux-2.6-block.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
b17b0153 19#include <linux/sched/debug.h>
29930025 20#include <linux/sched/task.h>
68db0cf1 21#include <linux/sched/task_stack.h>
14cf11af
PM
22#include <linux/kernel.h>
23#include <linux/mm.h>
24#include <linux/smp.h>
14cf11af
PM
25#include <linux/stddef.h>
26#include <linux/unistd.h>
27#include <linux/ptrace.h>
28#include <linux/slab.h>
29#include <linux/user.h>
30#include <linux/elf.h>
14cf11af
PM
31#include <linux/prctl.h>
32#include <linux/init_task.h>
4b16f8e2 33#include <linux/export.h>
14cf11af
PM
34#include <linux/kallsyms.h>
35#include <linux/mqueue.h>
36#include <linux/hardirq.h>
06d67d54 37#include <linux/utsname.h>
6794c782 38#include <linux/ftrace.h>
79741dd3 39#include <linux/kernel_stat.h>
d839088c
AB
40#include <linux/personality.h>
41#include <linux/random.h>
5aae8a53 42#include <linux/hw_breakpoint.h>
7b051f66 43#include <linux/uaccess.h>
7f92bc56 44#include <linux/elf-randomize.h>
06bb53b3 45#include <linux/pkeys.h>
14cf11af
PM
46
47#include <asm/pgtable.h>
14cf11af
PM
48#include <asm/io.h>
49#include <asm/processor.h>
50#include <asm/mmu.h>
51#include <asm/prom.h>
76032de8 52#include <asm/machdep.h>
c6622f63 53#include <asm/time.h>
ae3a197e 54#include <asm/runlatch.h>
a7f31841 55#include <asm/syscalls.h>
ae3a197e 56#include <asm/switch_to.h>
fb09692e 57#include <asm/tm.h>
ae3a197e 58#include <asm/debug.h>
06d67d54
PM
59#ifdef CONFIG_PPC64
60#include <asm/firmware.h>
c2e480ba 61#include <asm/hw_irq.h>
06d67d54 62#endif
7cedd601 63#include <asm/code-patching.h>
7f92bc56 64#include <asm/exec.h>
5d31a96e 65#include <asm/livepatch.h>
b92a226e 66#include <asm/cpu_has_feature.h>
0545d543 67#include <asm/asm-prototypes.h>
5d31a96e 68
d6a61bfc
LM
69#include <linux/kprobes.h>
70#include <linux/kdebug.h>
14cf11af 71
8b3c34cf
MN
72/* Transactional Memory debug */
73#ifdef TM_DEBUG_SW
74#define TM_DEBUG(x...) printk(KERN_INFO x)
75#else
76#define TM_DEBUG(x...) do { } while(0)
77#endif
78
14cf11af
PM
79extern unsigned long _get_SP(void);
80
d31626f7 81#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
54820530
ME
82/*
83 * Are we running in "Suspend disabled" mode? If so we have to block any
84 * sigreturn that would get us into suspended state, and we also warn in some
85 * other paths that we should never reach with suspend disabled.
86 */
87bool tm_suspend_disabled __ro_after_init = false;
88
b86fd2bd 89static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
90{
91 /*
92 * If we are saving the current thread's registers, and the
93 * thread is in a transactional state, set the TIF_RESTORE_TM
94 * bit so that we know to restore the registers before
95 * returning to userspace.
96 */
97 if (tsk == current && tsk->thread.regs &&
98 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
99 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 100 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
101 set_thread_flag(TIF_RESTORE_TM);
102 }
d31626f7 103}
dc16b553
CB
104
105static inline bool msr_tm_active(unsigned long msr)
106{
107 return MSR_TM_ACTIVE(msr);
108}
a7771176
CB
109
110static bool tm_active_with_fp(struct task_struct *tsk)
111{
112 return msr_tm_active(tsk->thread.regs->msr) &&
113 (tsk->thread.ckpt_regs.msr & MSR_FP);
114}
115
116static bool tm_active_with_altivec(struct task_struct *tsk)
117{
118 return msr_tm_active(tsk->thread.regs->msr) &&
119 (tsk->thread.ckpt_regs.msr & MSR_VEC);
120}
d31626f7 121#else
dc16b553 122static inline bool msr_tm_active(unsigned long msr) { return false; }
b86fd2bd 123static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
a7771176
CB
124static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
125static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
d31626f7
PM
126#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
127
3eb5d588
AB
128bool strict_msr_control;
129EXPORT_SYMBOL(strict_msr_control);
130
131static int __init enable_strict_msr_control(char *str)
132{
133 strict_msr_control = true;
134 pr_info("Enabling strict facility control\n");
135
136 return 0;
137}
138early_param("ppc_strict_facility_enable", enable_strict_msr_control);
139
3cee070a 140unsigned long msr_check_and_set(unsigned long bits)
98da581e 141{
a0e72cf1
AB
142 unsigned long oldmsr = mfmsr();
143 unsigned long newmsr;
98da581e 144
a0e72cf1 145 newmsr = oldmsr | bits;
98da581e 146
98da581e 147#ifdef CONFIG_VSX
a0e72cf1 148 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e
AB
149 newmsr |= MSR_VSX;
150#endif
a0e72cf1 151
98da581e
AB
152 if (oldmsr != newmsr)
153 mtmsr_isync(newmsr);
3cee070a
CB
154
155 return newmsr;
a0e72cf1 156}
d1c72112 157EXPORT_SYMBOL_GPL(msr_check_and_set);
98da581e 158
3eb5d588 159void __msr_check_and_clear(unsigned long bits)
a0e72cf1
AB
160{
161 unsigned long oldmsr = mfmsr();
162 unsigned long newmsr;
163
164 newmsr = oldmsr & ~bits;
165
166#ifdef CONFIG_VSX
167 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
168 newmsr &= ~MSR_VSX;
169#endif
170
171 if (oldmsr != newmsr)
172 mtmsr_isync(newmsr);
173}
3eb5d588 174EXPORT_SYMBOL(__msr_check_and_clear);
a0e72cf1
AB
175
176#ifdef CONFIG_PPC_FPU
1cdf039b 177static void __giveup_fpu(struct task_struct *tsk)
8792468d 178{
8eb98037
AB
179 unsigned long msr;
180
8792468d 181 save_fpu(tsk);
8eb98037
AB
182 msr = tsk->thread.regs->msr;
183 msr &= ~MSR_FP;
8792468d
CB
184#ifdef CONFIG_VSX
185 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 186 msr &= ~MSR_VSX;
8792468d 187#endif
8eb98037 188 tsk->thread.regs->msr = msr;
8792468d
CB
189}
190
a0e72cf1
AB
191void giveup_fpu(struct task_struct *tsk)
192{
193 check_if_tm_restore_required(tsk);
194
195 msr_check_and_set(MSR_FP);
98da581e 196 __giveup_fpu(tsk);
a0e72cf1 197 msr_check_and_clear(MSR_FP);
98da581e
AB
198}
199EXPORT_SYMBOL(giveup_fpu);
200
14cf11af
PM
201/*
202 * Make sure the floating-point register state in the
203 * the thread_struct is up to date for task tsk.
204 */
205void flush_fp_to_thread(struct task_struct *tsk)
206{
207 if (tsk->thread.regs) {
208 /*
209 * We need to disable preemption here because if we didn't,
210 * another process could get scheduled after the regs->msr
211 * test but before we have finished saving the FP registers
212 * to the thread_struct. That process could take over the
213 * FPU, and then when we get scheduled again we would store
214 * bogus values for the remaining FP registers.
215 */
216 preempt_disable();
217 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
218 /*
219 * This should only ever be called for current or
220 * for a stopped child process. Since we save away
af1bbc3d 221 * the FP register state on context switch,
14cf11af
PM
222 * there is something wrong if a stopped child appears
223 * to still have its FP state in the CPU registers.
224 */
225 BUG_ON(tsk != current);
b86fd2bd 226 giveup_fpu(tsk);
14cf11af
PM
227 }
228 preempt_enable();
229 }
230}
de56a948 231EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
232
233void enable_kernel_fp(void)
234{
e909fb83
CB
235 unsigned long cpumsr;
236
14cf11af
PM
237 WARN_ON(preemptible());
238
e909fb83 239 cpumsr = msr_check_and_set(MSR_FP);
611b0e5c 240
d64d02ce
AB
241 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
242 check_if_tm_restore_required(current);
e909fb83
CB
243 /*
244 * If a thread has already been reclaimed then the
245 * checkpointed registers are on the CPU but have definitely
246 * been saved by the reclaim code. Don't need to and *cannot*
247 * giveup as this would save to the 'live' structure not the
248 * checkpointed structure.
249 */
250 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
251 return;
a0e72cf1 252 __giveup_fpu(current);
d64d02ce 253 }
14cf11af
PM
254}
255EXPORT_SYMBOL(enable_kernel_fp);
70fe3d98 256
6a303833
BH
257static int restore_fp(struct task_struct *tsk)
258{
a7771176 259 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
70fe3d98
CB
260 load_fp_state(&current->thread.fp_state);
261 current->thread.load_fp++;
262 return 1;
263 }
264 return 0;
265}
266#else
267static int restore_fp(struct task_struct *tsk) { return 0; }
d1e1cf2e 268#endif /* CONFIG_PPC_FPU */
14cf11af 269
14cf11af 270#ifdef CONFIG_ALTIVEC
70fe3d98
CB
271#define loadvec(thr) ((thr).load_vec)
272
6f515d84
CB
273static void __giveup_altivec(struct task_struct *tsk)
274{
8eb98037
AB
275 unsigned long msr;
276
6f515d84 277 save_altivec(tsk);
8eb98037
AB
278 msr = tsk->thread.regs->msr;
279 msr &= ~MSR_VEC;
6f515d84
CB
280#ifdef CONFIG_VSX
281 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 282 msr &= ~MSR_VSX;
6f515d84 283#endif
8eb98037 284 tsk->thread.regs->msr = msr;
6f515d84
CB
285}
286
98da581e
AB
287void giveup_altivec(struct task_struct *tsk)
288{
98da581e
AB
289 check_if_tm_restore_required(tsk);
290
a0e72cf1 291 msr_check_and_set(MSR_VEC);
98da581e 292 __giveup_altivec(tsk);
a0e72cf1 293 msr_check_and_clear(MSR_VEC);
98da581e
AB
294}
295EXPORT_SYMBOL(giveup_altivec);
296
14cf11af
PM
297void enable_kernel_altivec(void)
298{
e909fb83
CB
299 unsigned long cpumsr;
300
14cf11af
PM
301 WARN_ON(preemptible());
302
e909fb83 303 cpumsr = msr_check_and_set(MSR_VEC);
611b0e5c 304
d64d02ce
AB
305 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
306 check_if_tm_restore_required(current);
e909fb83
CB
307 /*
308 * If a thread has already been reclaimed then the
309 * checkpointed registers are on the CPU but have definitely
310 * been saved by the reclaim code. Don't need to and *cannot*
311 * giveup as this would save to the 'live' structure not the
312 * checkpointed structure.
313 */
314 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
315 return;
a0e72cf1 316 __giveup_altivec(current);
d64d02ce 317 }
14cf11af
PM
318}
319EXPORT_SYMBOL(enable_kernel_altivec);
320
321/*
322 * Make sure the VMX/Altivec register state in the
323 * the thread_struct is up to date for task tsk.
324 */
325void flush_altivec_to_thread(struct task_struct *tsk)
326{
327 if (tsk->thread.regs) {
328 preempt_disable();
329 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 330 BUG_ON(tsk != current);
b86fd2bd 331 giveup_altivec(tsk);
14cf11af
PM
332 }
333 preempt_enable();
334 }
335}
de56a948 336EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
70fe3d98
CB
337
338static int restore_altivec(struct task_struct *tsk)
339{
dc16b553 340 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
a7771176 341 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
70fe3d98
CB
342 load_vr_state(&tsk->thread.vr_state);
343 tsk->thread.used_vr = 1;
344 tsk->thread.load_vec++;
345
346 return 1;
347 }
348 return 0;
349}
350#else
351#define loadvec(thr) 0
352static inline int restore_altivec(struct task_struct *tsk) { return 0; }
14cf11af
PM
353#endif /* CONFIG_ALTIVEC */
354
ce48b210 355#ifdef CONFIG_VSX
bf6a4d5b 356static void __giveup_vsx(struct task_struct *tsk)
a7d623d4 357{
dc801081
BH
358 unsigned long msr = tsk->thread.regs->msr;
359
360 /*
361 * We should never be ssetting MSR_VSX without also setting
362 * MSR_FP and MSR_VEC
363 */
364 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
365
366 /* __giveup_fpu will clear MSR_VSX */
367 if (msr & MSR_FP)
a7d623d4 368 __giveup_fpu(tsk);
dc801081 369 if (msr & MSR_VEC)
a7d623d4 370 __giveup_altivec(tsk);
bf6a4d5b
CB
371}
372
373static void giveup_vsx(struct task_struct *tsk)
374{
375 check_if_tm_restore_required(tsk);
376
377 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 378 __giveup_vsx(tsk);
a0e72cf1 379 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 380}
bf6a4d5b 381
ce48b210
MN
382void enable_kernel_vsx(void)
383{
e909fb83
CB
384 unsigned long cpumsr;
385
ce48b210
MN
386 WARN_ON(preemptible());
387
e909fb83 388 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 389
5a69aec9
BH
390 if (current->thread.regs &&
391 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
d64d02ce 392 check_if_tm_restore_required(current);
e909fb83
CB
393 /*
394 * If a thread has already been reclaimed then the
395 * checkpointed registers are on the CPU but have definitely
396 * been saved by the reclaim code. Don't need to and *cannot*
397 * giveup as this would save to the 'live' structure not the
398 * checkpointed structure.
399 */
400 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
401 return;
a0e72cf1 402 __giveup_vsx(current);
611b0e5c 403 }
ce48b210
MN
404}
405EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
406
407void flush_vsx_to_thread(struct task_struct *tsk)
408{
409 if (tsk->thread.regs) {
410 preempt_disable();
5a69aec9 411 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
ce48b210 412 BUG_ON(tsk != current);
ce48b210
MN
413 giveup_vsx(tsk);
414 }
415 preempt_enable();
416 }
417}
de56a948 418EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
70fe3d98
CB
419
420static int restore_vsx(struct task_struct *tsk)
421{
422 if (cpu_has_feature(CPU_FTR_VSX)) {
423 tsk->thread.used_vsr = 1;
424 return 1;
425 }
426
427 return 0;
428}
429#else
430static inline int restore_vsx(struct task_struct *tsk) { return 0; }
ce48b210
MN
431#endif /* CONFIG_VSX */
432
14cf11af 433#ifdef CONFIG_SPE
98da581e
AB
434void giveup_spe(struct task_struct *tsk)
435{
98da581e
AB
436 check_if_tm_restore_required(tsk);
437
a0e72cf1 438 msr_check_and_set(MSR_SPE);
98da581e 439 __giveup_spe(tsk);
a0e72cf1 440 msr_check_and_clear(MSR_SPE);
98da581e
AB
441}
442EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
443
444void enable_kernel_spe(void)
445{
446 WARN_ON(preemptible());
447
a0e72cf1 448 msr_check_and_set(MSR_SPE);
611b0e5c 449
d64d02ce
AB
450 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
451 check_if_tm_restore_required(current);
a0e72cf1 452 __giveup_spe(current);
d64d02ce 453 }
14cf11af
PM
454}
455EXPORT_SYMBOL(enable_kernel_spe);
456
457void flush_spe_to_thread(struct task_struct *tsk)
458{
459 if (tsk->thread.regs) {
460 preempt_disable();
461 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 462 BUG_ON(tsk != current);
685659ee 463 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 464 giveup_spe(tsk);
14cf11af
PM
465 }
466 preempt_enable();
467 }
468}
14cf11af
PM
469#endif /* CONFIG_SPE */
470
c2085059
AB
471static unsigned long msr_all_available;
472
473static int __init init_msr_all_available(void)
474{
475#ifdef CONFIG_PPC_FPU
476 msr_all_available |= MSR_FP;
477#endif
478#ifdef CONFIG_ALTIVEC
479 if (cpu_has_feature(CPU_FTR_ALTIVEC))
480 msr_all_available |= MSR_VEC;
481#endif
482#ifdef CONFIG_VSX
483 if (cpu_has_feature(CPU_FTR_VSX))
484 msr_all_available |= MSR_VSX;
485#endif
486#ifdef CONFIG_SPE
487 if (cpu_has_feature(CPU_FTR_SPE))
488 msr_all_available |= MSR_SPE;
489#endif
490
491 return 0;
492}
493early_initcall(init_msr_all_available);
494
495void giveup_all(struct task_struct *tsk)
496{
497 unsigned long usermsr;
498
499 if (!tsk->thread.regs)
500 return;
501
502 usermsr = tsk->thread.regs->msr;
503
504 if ((usermsr & msr_all_available) == 0)
505 return;
506
507 msr_check_and_set(msr_all_available);
b0f16b46 508 check_if_tm_restore_required(tsk);
c2085059 509
96c79b6b
BH
510 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
511
c2085059
AB
512#ifdef CONFIG_PPC_FPU
513 if (usermsr & MSR_FP)
514 __giveup_fpu(tsk);
515#endif
516#ifdef CONFIG_ALTIVEC
517 if (usermsr & MSR_VEC)
518 __giveup_altivec(tsk);
519#endif
c2085059
AB
520#ifdef CONFIG_SPE
521 if (usermsr & MSR_SPE)
522 __giveup_spe(tsk);
523#endif
524
525 msr_check_and_clear(msr_all_available);
526}
527EXPORT_SYMBOL(giveup_all);
528
70fe3d98
CB
529void restore_math(struct pt_regs *regs)
530{
531 unsigned long msr;
532
dc16b553
CB
533 if (!msr_tm_active(regs->msr) &&
534 !current->thread.load_fp && !loadvec(current->thread))
70fe3d98
CB
535 return;
536
537 msr = regs->msr;
538 msr_check_and_set(msr_all_available);
539
540 /*
541 * Only reload if the bit is not set in the user MSR, the bit BEING set
542 * indicates that the registers are hot
543 */
544 if ((!(msr & MSR_FP)) && restore_fp(current))
545 msr |= MSR_FP | current->thread.fpexc_mode;
546
547 if ((!(msr & MSR_VEC)) && restore_altivec(current))
548 msr |= MSR_VEC;
549
550 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
551 restore_vsx(current)) {
552 msr |= MSR_VSX;
553 }
554
555 msr_check_and_clear(msr_all_available);
556
557 regs->msr = msr;
558}
559
1cdf039b 560static void save_all(struct task_struct *tsk)
de2a20aa
CB
561{
562 unsigned long usermsr;
563
564 if (!tsk->thread.regs)
565 return;
566
567 usermsr = tsk->thread.regs->msr;
568
569 if ((usermsr & msr_all_available) == 0)
570 return;
571
572 msr_check_and_set(msr_all_available);
573
96c79b6b
BH
574 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
575
576 if (usermsr & MSR_FP)
577 save_fpu(tsk);
578
579 if (usermsr & MSR_VEC)
580 save_altivec(tsk);
de2a20aa
CB
581
582 if (usermsr & MSR_SPE)
583 __giveup_spe(tsk);
584
585 msr_check_and_clear(msr_all_available);
c76662e8 586 thread_pkey_regs_save(&tsk->thread);
de2a20aa
CB
587}
588
579e633e
AB
589void flush_all_to_thread(struct task_struct *tsk)
590{
591 if (tsk->thread.regs) {
592 preempt_disable();
593 BUG_ON(tsk != current);
de2a20aa 594 save_all(tsk);
579e633e
AB
595
596#ifdef CONFIG_SPE
597 if (tsk->thread.regs->msr & MSR_SPE)
598 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
599#endif
600
601 preempt_enable();
602 }
603}
604EXPORT_SYMBOL(flush_all_to_thread);
605
3bffb652
DK
606#ifdef CONFIG_PPC_ADV_DEBUG_REGS
607void do_send_trap(struct pt_regs *regs, unsigned long address,
47355040 608 unsigned long error_code, int breakpt)
3bffb652 609{
47355040 610 current->thread.trap_nr = TRAP_HWBKPT;
3bffb652
DK
611 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
612 11, SIGSEGV) == NOTIFY_STOP)
613 return;
614
615 /* Deliver the signal to userspace */
f71dd7dc
EB
616 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
617 (void __user *)address);
3bffb652
DK
618}
619#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 620void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
621 unsigned long error_code)
622{
623 siginfo_t info;
624
41ab5266 625 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
626 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
627 11, SIGSEGV) == NOTIFY_STOP)
628 return;
629
9422de3e 630 if (debugger_break_match(regs))
d6a61bfc
LM
631 return;
632
9422de3e
MN
633 /* Clear the breakpoint */
634 hw_breakpoint_disable();
d6a61bfc
LM
635
636 /* Deliver the signal to userspace */
3eb0f519 637 clear_siginfo(&info);
d6a61bfc
LM
638 info.si_signo = SIGTRAP;
639 info.si_errno = 0;
640 info.si_code = TRAP_HWBKPT;
641 info.si_addr = (void __user *)address;
642 force_sig_info(SIGTRAP, &info, current);
643}
3bffb652 644#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 645
9422de3e 646static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 647
3bffb652
DK
648#ifdef CONFIG_PPC_ADV_DEBUG_REGS
649/*
650 * Set the debug registers back to their default "safe" values.
651 */
652static void set_debug_reg_defaults(struct thread_struct *thread)
653{
51ae8d4a 654 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 655#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 656 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 657#endif
51ae8d4a 658 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 659#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 660 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 661#endif
51ae8d4a 662 thread->debug.dbcr0 = 0;
3bffb652
DK
663#ifdef CONFIG_BOOKE
664 /*
665 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
666 */
51ae8d4a 667 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
668 DBCR1_IAC3US | DBCR1_IAC4US;
669 /*
670 * Force Data Address Compare User/Supervisor bits to be User-only
671 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
672 */
51ae8d4a 673 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 674#else
51ae8d4a 675 thread->debug.dbcr1 = 0;
3bffb652
DK
676#endif
677}
678
f5f97210 679static void prime_debug_regs(struct debug_reg *debug)
3bffb652 680{
6cecf76b
SW
681 /*
682 * We could have inherited MSR_DE from userspace, since
683 * it doesn't get cleared on exception entry. Make sure
684 * MSR_DE is clear before we enable any debug events.
685 */
686 mtmsr(mfmsr() & ~MSR_DE);
687
f5f97210
SW
688 mtspr(SPRN_IAC1, debug->iac1);
689 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 690#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
691 mtspr(SPRN_IAC3, debug->iac3);
692 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 693#endif
f5f97210
SW
694 mtspr(SPRN_DAC1, debug->dac1);
695 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 696#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
697 mtspr(SPRN_DVC1, debug->dvc1);
698 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 699#endif
f5f97210
SW
700 mtspr(SPRN_DBCR0, debug->dbcr0);
701 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 702#ifdef CONFIG_BOOKE
f5f97210 703 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
704#endif
705}
706/*
707 * Unless neither the old or new thread are making use of the
708 * debug registers, set the debug registers from the values
709 * stored in the new thread.
710 */
f5f97210 711void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 712{
51ae8d4a 713 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
714 || (new_debug->dbcr0 & DBCR0_IDM))
715 prime_debug_regs(new_debug);
3bffb652 716}
3743c9b8 717EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 718#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 719#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
720static void set_debug_reg_defaults(struct thread_struct *thread)
721{
9422de3e
MN
722 thread->hw_brk.address = 0;
723 thread->hw_brk.type = 0;
252988cb
NP
724 if (ppc_breakpoint_available())
725 set_breakpoint(&thread->hw_brk);
3bffb652 726}
e0780b72 727#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
728#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
729
172ae2e7 730#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
731static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
732{
d6a61bfc 733 mtspr(SPRN_DAC1, dabr);
221c185d
DK
734#ifdef CONFIG_PPC_47x
735 isync();
736#endif
9422de3e
MN
737 return 0;
738}
c6c9eace 739#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
740static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
741{
c6c9eace 742 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
743 if (cpu_has_feature(CPU_FTR_DABRX))
744 mtspr(SPRN_DABRX, dabrx);
cab0af98 745 return 0;
14cf11af 746}
4ad8622d
CL
747#elif defined(CONFIG_PPC_8xx)
748static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
749{
750 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
751 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
752 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
753
754 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
755 lctrl1 |= 0xa0000;
756 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
757 lctrl1 |= 0xf0000;
758 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
759 lctrl2 = 0;
760
761 mtspr(SPRN_LCTRL2, 0);
762 mtspr(SPRN_CMPE, addr);
763 mtspr(SPRN_CMPF, addr + 4);
764 mtspr(SPRN_LCTRL1, lctrl1);
765 mtspr(SPRN_LCTRL2, lctrl2);
766
767 return 0;
768}
9422de3e
MN
769#else
770static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
771{
772 return -EINVAL;
773}
774#endif
775
776static inline int set_dabr(struct arch_hw_breakpoint *brk)
777{
778 unsigned long dabr, dabrx;
779
780 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
781 dabrx = ((brk->type >> 3) & 0x7);
782
783 if (ppc_md.set_dabr)
784 return ppc_md.set_dabr(dabr, dabrx);
785
786 return __set_dabr(dabr, dabrx);
787}
788
bf99de36
MN
789static inline int set_dawr(struct arch_hw_breakpoint *brk)
790{
05d694ea 791 unsigned long dawr, dawrx, mrd;
bf99de36
MN
792
793 dawr = brk->address;
794
795 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
796 << (63 - 58); //* read/write bits */
797 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
798 << (63 - 59); //* translate */
799 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
800 >> 3; //* PRIM bits */
05d694ea
MN
801 /* dawr length is stored in field MDR bits 48:53. Matches range in
802 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
803 0b111111=64DW.
804 brk->len is in bytes.
805 This aligns up to double word size, shifts and does the bias.
806 */
807 mrd = ((brk->len + 7) >> 3) - 1;
808 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
809
810 if (ppc_md.set_dawr)
811 return ppc_md.set_dawr(dawr, dawrx);
812 mtspr(SPRN_DAWR, dawr);
813 mtspr(SPRN_DAWRX, dawrx);
814 return 0;
815}
816
21f58507 817void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e 818{
69111bac 819 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
9422de3e 820
bf99de36 821 if (cpu_has_feature(CPU_FTR_DAWR))
252988cb 822 // Power8 or later
04c32a51 823 set_dawr(brk);
252988cb
NP
824 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
825 // Power7 or earlier
04c32a51 826 set_dabr(brk);
252988cb
NP
827 else
828 // Shouldn't happen due to higher level checks
829 WARN_ON_ONCE(1);
9422de3e 830}
14cf11af 831
21f58507
PG
832void set_breakpoint(struct arch_hw_breakpoint *brk)
833{
834 preempt_disable();
835 __set_breakpoint(brk);
836 preempt_enable();
837}
838
404b27d6
MN
839/* Check if we have DAWR or DABR hardware */
840bool ppc_breakpoint_available(void)
841{
842 if (cpu_has_feature(CPU_FTR_DAWR))
843 return true; /* POWER8 DAWR */
844 if (cpu_has_feature(CPU_FTR_ARCH_207S))
845 return false; /* POWER9 with DAWR disabled */
846 /* DABR: Everything but POWER8 and POWER9 */
847 return true;
848}
849EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
850
9422de3e
MN
851static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
852 struct arch_hw_breakpoint *b)
853{
854 if (a->address != b->address)
855 return false;
856 if (a->type != b->type)
857 return false;
858 if (a->len != b->len)
859 return false;
860 return true;
861}
d31626f7 862
fb09692e 863#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
5d176f75
CB
864
865static inline bool tm_enabled(struct task_struct *tsk)
866{
867 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
868}
869
edd00b83 870static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
d31626f7 871{
7f821fc9
MN
872 /*
873 * Use the current MSR TM suspended bit to track if we have
874 * checkpointed state outstanding.
875 * On signal delivery, we'd normally reclaim the checkpointed
876 * state to obtain stack pointer (see:get_tm_stackpointer()).
877 * This will then directly return to userspace without going
878 * through __switch_to(). However, if the stack frame is bad,
879 * we need to exit this thread which calls __switch_to() which
880 * will again attempt to reclaim the already saved tm state.
881 * Hence we need to check that we've not already reclaimed
882 * this state.
883 * We do this using the current MSR, rather tracking it in
884 * some specific thread_struct bit, as it has the additional
027dfac6 885 * benefit of checking for a potential TM bad thing exception.
7f821fc9
MN
886 */
887 if (!MSR_TM_SUSPENDED(mfmsr()))
888 return;
889
91381b9c
CB
890 giveup_all(container_of(thr, struct task_struct, thread));
891
eb5c3f1c
CB
892 tm_reclaim(thr, cause);
893
f48e91e8
MN
894 /*
895 * If we are in a transaction and FP is off then we can't have
896 * used FP inside that transaction. Hence the checkpointed
897 * state is the same as the live state. We need to copy the
898 * live state to the checkpointed state so that when the
899 * transaction is restored, the checkpointed state is correct
900 * and the aborted transaction sees the correct state. We use
901 * ckpt_regs.msr here as that's what tm_reclaim will use to
902 * determine if it's going to write the checkpointed state or
903 * not. So either this will write the checkpointed registers,
904 * or reclaim will. Similarly for VMX.
905 */
906 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
907 memcpy(&thr->ckfp_state, &thr->fp_state,
908 sizeof(struct thread_fp_state));
909 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
910 memcpy(&thr->ckvr_state, &thr->vr_state,
911 sizeof(struct thread_vr_state));
d31626f7
PM
912}
913
914void tm_reclaim_current(uint8_t cause)
915{
916 tm_enable();
edd00b83 917 tm_reclaim_thread(&current->thread, cause);
d31626f7
PM
918}
919
fb09692e
MN
920static inline void tm_reclaim_task(struct task_struct *tsk)
921{
922 /* We have to work out if we're switching from/to a task that's in the
923 * middle of a transaction.
924 *
925 * In switching we need to maintain a 2nd register state as
926 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
000ec280
CB
927 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
928 * ckvr_state
fb09692e
MN
929 *
930 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
931 */
932 struct thread_struct *thr = &tsk->thread;
933
934 if (!thr->regs)
935 return;
936
937 if (!MSR_TM_ACTIVE(thr->regs->msr))
938 goto out_and_saveregs;
939
92fb8690
MN
940 WARN_ON(tm_suspend_disabled);
941
fb09692e
MN
942 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
943 "ccr=%lx, msr=%lx, trap=%lx)\n",
944 tsk->pid, thr->regs->nip,
945 thr->regs->ccr, thr->regs->msr,
946 thr->regs->trap);
947
edd00b83 948 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
fb09692e
MN
949
950 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
951 tsk->pid);
952
953out_and_saveregs:
954 /* Always save the regs here, even if a transaction's not active.
955 * This context-switches a thread's TM info SPRs. We do it here to
956 * be consistent with the restore path (in recheckpoint) which
957 * cannot happen later in _switch().
958 */
959 tm_save_sprs(thr);
960}
961
eb5c3f1c 962extern void __tm_recheckpoint(struct thread_struct *thread);
e6b8fd02 963
eb5c3f1c 964void tm_recheckpoint(struct thread_struct *thread)
e6b8fd02
MN
965{
966 unsigned long flags;
967
5d176f75
CB
968 if (!(thread->regs->msr & MSR_TM))
969 return;
970
e6b8fd02
MN
971 /* We really can't be interrupted here as the TEXASR registers can't
972 * change and later in the trecheckpoint code, we have a userspace R1.
973 * So let's hard disable over this region.
974 */
975 local_irq_save(flags);
976 hard_irq_disable();
977
978 /* The TM SPRs are restored here, so that TEXASR.FS can be set
979 * before the trecheckpoint and no explosion occurs.
980 */
981 tm_restore_sprs(thread);
982
eb5c3f1c 983 __tm_recheckpoint(thread);
e6b8fd02
MN
984
985 local_irq_restore(flags);
986}
987
bc2a9408 988static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e 989{
fb09692e
MN
990 if (!cpu_has_feature(CPU_FTR_TM))
991 return;
992
993 /* Recheckpoint the registers of the thread we're about to switch to.
994 *
995 * If the task was using FP, we non-lazily reload both the original and
996 * the speculative FP register states. This is because the kernel
997 * doesn't see if/when a TM rollback occurs, so if we take an FP
dc310669 998 * unavailable later, we are unable to determine which set of FP regs
fb09692e
MN
999 * need to be restored.
1000 */
5d176f75 1001 if (!tm_enabled(new))
fb09692e
MN
1002 return;
1003
e6b8fd02
MN
1004 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1005 tm_restore_sprs(&new->thread);
fb09692e 1006 return;
e6b8fd02 1007 }
fb09692e 1008 /* Recheckpoint to restore original checkpointed register state. */
eb5c3f1c
CB
1009 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1010 new->pid, new->thread.regs->msr);
fb09692e 1011
eb5c3f1c 1012 tm_recheckpoint(&new->thread);
fb09692e 1013
dc310669
CB
1014 /*
1015 * The checkpointed state has been restored but the live state has
1016 * not, ensure all the math functionality is turned off to trigger
1017 * restore_math() to reload.
1018 */
1019 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
fb09692e
MN
1020
1021 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1022 "(kernel msr 0x%lx)\n",
1023 new->pid, mfmsr());
1024}
1025
dc310669
CB
1026static inline void __switch_to_tm(struct task_struct *prev,
1027 struct task_struct *new)
fb09692e
MN
1028{
1029 if (cpu_has_feature(CPU_FTR_TM)) {
5d176f75
CB
1030 if (tm_enabled(prev) || tm_enabled(new))
1031 tm_enable();
1032
1033 if (tm_enabled(prev)) {
1034 prev->thread.load_tm++;
1035 tm_reclaim_task(prev);
1036 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1037 prev->thread.regs->msr &= ~MSR_TM;
1038 }
1039
dc310669 1040 tm_recheckpoint_new_task(new);
fb09692e
MN
1041 }
1042}
d31626f7
PM
1043
1044/*
1045 * This is called if we are on the way out to userspace and the
1046 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1047 * FP and/or vector state and does so if necessary.
1048 * If userspace is inside a transaction (whether active or
1049 * suspended) and FP/VMX/VSX instructions have ever been enabled
1050 * inside that transaction, then we have to keep them enabled
1051 * and keep the FP/VMX/VSX state loaded while ever the transaction
1052 * continues. The reason is that if we didn't, and subsequently
1053 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1054 * we don't know whether it's the same transaction, and thus we
1055 * don't know which of the checkpointed state and the transactional
1056 * state to use.
1057 */
1058void restore_tm_state(struct pt_regs *regs)
1059{
1060 unsigned long msr_diff;
1061
dc310669
CB
1062 /*
1063 * This is the only moment we should clear TIF_RESTORE_TM as
1064 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1065 * again, anything else could lead to an incorrect ckpt_msr being
1066 * saved and therefore incorrect signal contexts.
1067 */
d31626f7
PM
1068 clear_thread_flag(TIF_RESTORE_TM);
1069 if (!MSR_TM_ACTIVE(regs->msr))
1070 return;
1071
829023df 1072 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7 1073 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
70fe3d98 1074
dc16b553
CB
1075 /* Ensure that restore_math() will restore */
1076 if (msr_diff & MSR_FP)
1077 current->thread.load_fp = 1;
39715bf9 1078#ifdef CONFIG_ALTIVEC
dc16b553
CB
1079 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1080 current->thread.load_vec = 1;
1081#endif
70fe3d98
CB
1082 restore_math(regs);
1083
d31626f7
PM
1084 regs->msr |= msr_diff;
1085}
1086
fb09692e
MN
1087#else
1088#define tm_recheckpoint_new_task(new)
dc310669 1089#define __switch_to_tm(prev, new)
fb09692e 1090#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 1091
152d523e
AB
1092static inline void save_sprs(struct thread_struct *t)
1093{
1094#ifdef CONFIG_ALTIVEC
01d7c2a2 1095 if (cpu_has_feature(CPU_FTR_ALTIVEC))
152d523e
AB
1096 t->vrsave = mfspr(SPRN_VRSAVE);
1097#endif
1098#ifdef CONFIG_PPC_BOOK3S_64
1099 if (cpu_has_feature(CPU_FTR_DSCR))
1100 t->dscr = mfspr(SPRN_DSCR);
1101
1102 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1103 t->bescr = mfspr(SPRN_BESCR);
1104 t->ebbhr = mfspr(SPRN_EBBHR);
1105 t->ebbrr = mfspr(SPRN_EBBRR);
1106
1107 t->fscr = mfspr(SPRN_FSCR);
1108
1109 /*
1110 * Note that the TAR is not available for use in the kernel.
1111 * (To provide this, the TAR should be backed up/restored on
1112 * exception entry/exit instead, and be in pt_regs. FIXME,
1113 * this should be in pt_regs anyway (for debug).)
1114 */
1115 t->tar = mfspr(SPRN_TAR);
1116 }
1117#endif
06bb53b3
RP
1118
1119 thread_pkey_regs_save(t);
152d523e
AB
1120}
1121
1122static inline void restore_sprs(struct thread_struct *old_thread,
1123 struct thread_struct *new_thread)
1124{
1125#ifdef CONFIG_ALTIVEC
1126 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1127 old_thread->vrsave != new_thread->vrsave)
1128 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1129#endif
1130#ifdef CONFIG_PPC_BOOK3S_64
1131 if (cpu_has_feature(CPU_FTR_DSCR)) {
1132 u64 dscr = get_paca()->dscr_default;
b57bd2de 1133 if (new_thread->dscr_inherit)
152d523e 1134 dscr = new_thread->dscr;
152d523e
AB
1135
1136 if (old_thread->dscr != dscr)
1137 mtspr(SPRN_DSCR, dscr);
152d523e
AB
1138 }
1139
1140 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1141 if (old_thread->bescr != new_thread->bescr)
1142 mtspr(SPRN_BESCR, new_thread->bescr);
1143 if (old_thread->ebbhr != new_thread->ebbhr)
1144 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1145 if (old_thread->ebbrr != new_thread->ebbrr)
1146 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1147
b57bd2de
MN
1148 if (old_thread->fscr != new_thread->fscr)
1149 mtspr(SPRN_FSCR, new_thread->fscr);
1150
152d523e
AB
1151 if (old_thread->tar != new_thread->tar)
1152 mtspr(SPRN_TAR, new_thread->tar);
1153 }
ec233ede 1154
3449f191 1155 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
ec233ede
SB
1156 old_thread->tidr != new_thread->tidr)
1157 mtspr(SPRN_TIDR, new_thread->tidr);
152d523e 1158#endif
06bb53b3
RP
1159
1160 thread_pkey_regs_restore(new_thread, old_thread);
152d523e
AB
1161}
1162
07d2a628
NP
1163#ifdef CONFIG_PPC_BOOK3S_64
1164#define CP_SIZE 128
1165static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1166#endif
1167
14cf11af
PM
1168struct task_struct *__switch_to(struct task_struct *prev,
1169 struct task_struct *new)
1170{
1171 struct thread_struct *new_thread, *old_thread;
14cf11af 1172 struct task_struct *last;
d6bf29b4
PZ
1173#ifdef CONFIG_PPC_BOOK3S_64
1174 struct ppc64_tlb_batch *batch;
1175#endif
14cf11af 1176
152d523e
AB
1177 new_thread = &new->thread;
1178 old_thread = &current->thread;
1179
7ba5fef7
MN
1180 WARN_ON(!irqs_disabled());
1181
4e003747 1182#ifdef CONFIG_PPC_BOOK3S_64
69111bac 1183 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1184 if (batch->active) {
1185 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1186 if (batch->index)
1187 __flush_tlb_pending(batch);
1188 batch->active = 0;
1189 }
4e003747 1190#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 1191
f3d885cc
AB
1192#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1193 switch_booke_debug_regs(&new->thread.debug);
1194#else
1195/*
1196 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1197 * schedule DABR
1198 */
1199#ifndef CONFIG_HAVE_HW_BREAKPOINT
1200 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1201 __set_breakpoint(&new->thread.hw_brk);
1202#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1203#endif
1204
1205 /*
1206 * We need to save SPRs before treclaim/trecheckpoint as these will
1207 * change a number of them.
1208 */
1209 save_sprs(&prev->thread);
1210
f3d885cc
AB
1211 /* Save FPU, Altivec, VSX and SPE state */
1212 giveup_all(prev);
1213
dc310669
CB
1214 __switch_to_tm(prev, new);
1215
e4c0fc5f
NP
1216 if (!radix_enabled()) {
1217 /*
1218 * We can't take a PMU exception inside _switch() since there
1219 * is a window where the kernel stack SLB and the kernel stack
1220 * are out of sync. Hard disable here.
1221 */
1222 hard_irq_disable();
1223 }
bc2a9408 1224
20dbe670
AB
1225 /*
1226 * Call restore_sprs() before calling _switch(). If we move it after
1227 * _switch() then we miss out on calling it for new tasks. The reason
1228 * for this is we manually create a stack frame for new tasks that
1229 * directly returns through ret_from_fork() or
1230 * ret_from_kernel_thread(). See copy_thread() for details.
1231 */
f3d885cc
AB
1232 restore_sprs(old_thread, new_thread);
1233
20dbe670
AB
1234 last = _switch(old_thread, new_thread);
1235
4e003747 1236#ifdef CONFIG_PPC_BOOK3S_64
d6bf29b4
PZ
1237 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1238 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 1239 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1240 batch->active = 1;
1241 }
70fe3d98 1242
07d2a628 1243 if (current_thread_info()->task->thread.regs) {
70fe3d98 1244 restore_math(current_thread_info()->task->thread.regs);
07d2a628
NP
1245
1246 /*
1247 * The copy-paste buffer can only store into foreign real
1248 * addresses, so unprivileged processes can not see the
1249 * data or use it in any way unless they have foreign real
9d2a4d71
SB
1250 * mappings. If the new process has the foreign real address
1251 * mappings, we must issue a cp_abort to clear any state and
1252 * prevent snooping, corruption or a covert channel.
07d2a628 1253 */
2bf1071a 1254 if (current_thread_info()->task->thread.used_vas)
9d2a4d71 1255 asm volatile(PPC_CP_ABORT);
07d2a628 1256 }
4e003747 1257#endif /* CONFIG_PPC_BOOK3S_64 */
d6bf29b4 1258
14cf11af
PM
1259 return last;
1260}
1261
06d67d54
PM
1262static int instructions_to_print = 16;
1263
06d67d54
PM
1264static void show_instructions(struct pt_regs *regs)
1265{
1266 int i;
1267 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1268 sizeof(int));
1269
1270 printk("Instruction dump:");
1271
1272 for (i = 0; i < instructions_to_print; i++) {
1273 int instr;
1274
1275 if (!(i % 8))
2ffd04de 1276 pr_cont("\n");
06d67d54 1277
0de2d820
SW
1278#if !defined(CONFIG_BOOKE)
1279 /* If executing with the IMMU off, adjust pc rather
1280 * than print XXXXXXXX.
1281 */
1282 if (!(regs->msr & MSR_IR))
1283 pc = (unsigned long)phys_to_virt(pc);
1284#endif
1285
00ae36de 1286 if (!__kernel_text_address(pc) ||
7b051f66 1287 probe_kernel_address((unsigned int __user *)pc, instr)) {
2ffd04de 1288 pr_cont("XXXXXXXX ");
06d67d54
PM
1289 } else {
1290 if (regs->nip == pc)
2ffd04de 1291 pr_cont("<%08x> ", instr);
06d67d54 1292 else
2ffd04de 1293 pr_cont("%08x ", instr);
06d67d54
PM
1294 }
1295
1296 pc += sizeof(int);
1297 }
1298
2ffd04de 1299 pr_cont("\n");
06d67d54
PM
1300}
1301
801c0b2c 1302struct regbit {
06d67d54
PM
1303 unsigned long bit;
1304 const char *name;
801c0b2c
MN
1305};
1306
1307static struct regbit msr_bits[] = {
3bfd0c9c
AB
1308#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1309 {MSR_SF, "SF"},
1310 {MSR_HV, "HV"},
1311#endif
1312 {MSR_VEC, "VEC"},
1313 {MSR_VSX, "VSX"},
1314#ifdef CONFIG_BOOKE
1315 {MSR_CE, "CE"},
1316#endif
06d67d54
PM
1317 {MSR_EE, "EE"},
1318 {MSR_PR, "PR"},
1319 {MSR_FP, "FP"},
1320 {MSR_ME, "ME"},
3bfd0c9c 1321#ifdef CONFIG_BOOKE
1b98326b 1322 {MSR_DE, "DE"},
3bfd0c9c
AB
1323#else
1324 {MSR_SE, "SE"},
1325 {MSR_BE, "BE"},
1326#endif
06d67d54
PM
1327 {MSR_IR, "IR"},
1328 {MSR_DR, "DR"},
3bfd0c9c
AB
1329 {MSR_PMM, "PMM"},
1330#ifndef CONFIG_BOOKE
1331 {MSR_RI, "RI"},
1332 {MSR_LE, "LE"},
1333#endif
06d67d54
PM
1334 {0, NULL}
1335};
1336
801c0b2c 1337static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
06d67d54 1338{
801c0b2c 1339 const char *s = "";
06d67d54 1340
06d67d54
PM
1341 for (; bits->bit; ++bits)
1342 if (val & bits->bit) {
db5ba5ae 1343 pr_cont("%s%s", s, bits->name);
801c0b2c 1344 s = sep;
06d67d54 1345 }
801c0b2c
MN
1346}
1347
1348#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1349static struct regbit msr_tm_bits[] = {
1350 {MSR_TS_T, "T"},
1351 {MSR_TS_S, "S"},
1352 {MSR_TM, "E"},
1353 {0, NULL}
1354};
1355
1356static void print_tm_bits(unsigned long val)
1357{
1358/*
1359 * This only prints something if at least one of the TM bit is set.
1360 * Inside the TM[], the output means:
1361 * E: Enabled (bit 32)
1362 * S: Suspended (bit 33)
1363 * T: Transactional (bit 34)
1364 */
1365 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
db5ba5ae 1366 pr_cont(",TM[");
801c0b2c 1367 print_bits(val, msr_tm_bits, "");
db5ba5ae 1368 pr_cont("]");
801c0b2c
MN
1369 }
1370}
1371#else
1372static void print_tm_bits(unsigned long val) {}
1373#endif
1374
1375static void print_msr_bits(unsigned long val)
1376{
db5ba5ae 1377 pr_cont("<");
801c0b2c
MN
1378 print_bits(val, msr_bits, ",");
1379 print_tm_bits(val);
db5ba5ae 1380 pr_cont(">");
06d67d54
PM
1381}
1382
1383#ifdef CONFIG_PPC64
f6f7dde3 1384#define REG "%016lx"
06d67d54
PM
1385#define REGS_PER_LINE 4
1386#define LAST_VOLATILE 13
1387#else
f6f7dde3 1388#define REG "%08lx"
06d67d54
PM
1389#define REGS_PER_LINE 8
1390#define LAST_VOLATILE 12
1391#endif
1392
14cf11af
PM
1393void show_regs(struct pt_regs * regs)
1394{
1395 int i, trap;
1396
a43cb95d
TH
1397 show_regs_print_info(KERN_DEFAULT);
1398
a6036100 1399 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
06d67d54 1400 regs->nip, regs->link, regs->ctr);
182dc9c7 1401 printk("REGS: %px TRAP: %04lx %s (%s)\n",
96b644bd 1402 regs, regs->trap, print_tainted(), init_utsname()->release);
a6036100 1403 printk("MSR: "REG" ", regs->msr);
801c0b2c 1404 print_msr_bits(regs->msr);
f6fc73fb 1405 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1406 trap = TRAP(regs);
2271db20 1407 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
7dae865f 1408 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1409 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1410#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
7dae865f 1411 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1412#else
7dae865f 1413 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
9db8bcfd
AB
1414#endif
1415#ifdef CONFIG_PPC64
3130a7bb 1416 pr_cont("IRQMASK: %lx ", regs->softe);
9db8bcfd
AB
1417#endif
1418#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a 1419 if (MSR_TM_ACTIVE(regs->msr))
7dae865f 1420 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1421#endif
14cf11af
PM
1422
1423 for (i = 0; i < 32; i++) {
06d67d54 1424 if ((i % REGS_PER_LINE) == 0)
7dae865f
ME
1425 pr_cont("\nGPR%02d: ", i);
1426 pr_cont(REG " ", regs->gpr[i]);
06d67d54 1427 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1428 break;
1429 }
7dae865f 1430 pr_cont("\n");
14cf11af
PM
1431#ifdef CONFIG_KALLSYMS
1432 /*
1433 * Lookup NIP late so we have the best change of getting the
1434 * above info out without failing
1435 */
058c78f4
BH
1436 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1437 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1438#endif
14cf11af 1439 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1440 if (!user_mode(regs))
1441 show_instructions(regs);
14cf11af
PM
1442}
1443
14cf11af
PM
1444void flush_thread(void)
1445{
e0780b72 1446#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1447 flush_ptrace_hw_breakpoint(current);
e0780b72 1448#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1449 set_debug_reg_defaults(&current->thread);
e0780b72 1450#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1451}
1452
9d2a4d71
SB
1453int set_thread_uses_vas(void)
1454{
1455#ifdef CONFIG_PPC_BOOK3S_64
1456 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1457 return -EINVAL;
1458
1459 current->thread.used_vas = 1;
1460
1461 /*
1462 * Even a process that has no foreign real address mapping can use
1463 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1464 * to clear any pending COPY and prevent a covert channel.
1465 *
1466 * __switch_to() will issue CP_ABORT on future context switches.
1467 */
1468 asm volatile(PPC_CP_ABORT);
1469
1470#endif /* CONFIG_PPC_BOOK3S_64 */
1471 return 0;
1472}
1473
ec233ede 1474#ifdef CONFIG_PPC64
71cc64a8
AS
1475/**
1476 * Assign a TIDR (thread ID) for task @t and set it in the thread
1477 * structure. For now, we only support setting TIDR for 'current' task.
ec233ede 1478 *
71cc64a8
AS
1479 * Since the TID value is a truncated form of it PID, it is possible
1480 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1481 * that 2 threads share the same TID and are waiting, one of the following
1482 * cases will happen:
ec233ede 1483 *
71cc64a8
AS
1484 * 1. The correct thread is running, the wrong thread is not
1485 * In this situation, the correct thread is woken and proceeds to pass it's
1486 * condition check.
ec233ede 1487 *
71cc64a8
AS
1488 * 2. Neither threads are running
1489 * In this situation, neither thread will be woken. When scheduled, the waiting
1490 * threads will execute either a wait, which will return immediately, followed
1491 * by a condition check, which will pass for the correct thread and fail
1492 * for the wrong thread, or they will execute the condition check immediately.
ec233ede 1493 *
71cc64a8
AS
1494 * 3. The wrong thread is running, the correct thread is not
1495 * The wrong thread will be woken, but will fail it's condition check and
1496 * re-execute wait. The correct thread, when scheduled, will execute either
1497 * it's condition check (which will pass), or wait, which returns immediately
1498 * when called the first time after the thread is scheduled, followed by it's
1499 * condition check (which will pass).
ec233ede 1500 *
71cc64a8
AS
1501 * 4. Both threads are running
1502 * Both threads will be woken. The wrong thread will fail it's condition check
1503 * and execute another wait, while the correct thread will pass it's condition
1504 * check.
1505 *
1506 * @t: the task to set the thread ID for
ec233ede
SB
1507 */
1508int set_thread_tidr(struct task_struct *t)
1509{
3449f191 1510 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
ec233ede
SB
1511 return -EINVAL;
1512
1513 if (t != current)
1514 return -EINVAL;
1515
7e4d4233
VJ
1516 if (t->thread.tidr)
1517 return 0;
1518
71cc64a8 1519 t->thread.tidr = (u16)task_pid_nr(t);
ec233ede
SB
1520 mtspr(SPRN_TIDR, t->thread.tidr);
1521
1522 return 0;
1523}
b1db5513 1524EXPORT_SYMBOL_GPL(set_thread_tidr);
ec233ede
SB
1525
1526#endif /* CONFIG_PPC64 */
1527
14cf11af
PM
1528void
1529release_thread(struct task_struct *t)
1530{
1531}
1532
1533/*
55ccf3fe
SS
1534 * this gets called so that we can store coprocessor state into memory and
1535 * copy the current task into the new thread.
14cf11af 1536 */
55ccf3fe 1537int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1538{
579e633e 1539 flush_all_to_thread(src);
621b5060
MN
1540 /*
1541 * Flush TM state out so we can copy it. __switch_to_tm() does this
1542 * flush but it removes the checkpointed state from the current CPU and
1543 * transitions the CPU out of TM mode. Hence we need to call
1544 * tm_recheckpoint_new_task() (on the same task) to restore the
1545 * checkpointed state back and the TM mode.
5d176f75
CB
1546 *
1547 * Can't pass dst because it isn't ready. Doesn't matter, passing
1548 * dst is only important for __switch_to()
621b5060 1549 */
dc310669 1550 __switch_to_tm(src, src);
330a1eb7 1551
55ccf3fe 1552 *dst = *src;
330a1eb7
ME
1553
1554 clear_task_ebb(dst);
1555
55ccf3fe 1556 return 0;
14cf11af
PM
1557}
1558
cec15488
ME
1559static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1560{
4e003747 1561#ifdef CONFIG_PPC_BOOK3S_64
cec15488
ME
1562 unsigned long sp_vsid;
1563 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1564
caca285e
AK
1565 if (radix_enabled())
1566 return;
1567
cec15488
ME
1568 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1569 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1570 << SLB_VSID_SHIFT_1T;
1571 else
1572 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1573 << SLB_VSID_SHIFT;
1574 sp_vsid |= SLB_VSID_KERNEL | llp;
1575 p->thread.ksp_vsid = sp_vsid;
1576#endif
1577}
1578
14cf11af
PM
1579/*
1580 * Copy a thread..
1581 */
efcac658 1582
6eca8933
AD
1583/*
1584 * Copy architecture-specific thread state
1585 */
6f2c55b8 1586int copy_thread(unsigned long clone_flags, unsigned long usp,
6eca8933 1587 unsigned long kthread_arg, struct task_struct *p)
14cf11af
PM
1588{
1589 struct pt_regs *childregs, *kregs;
1590 extern void ret_from_fork(void);
58254e10
AV
1591 extern void ret_from_kernel_thread(void);
1592 void (*f)(void);
0cec6fd1 1593 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
5d31a96e
ME
1594 struct thread_info *ti = task_thread_info(p);
1595
1596 klp_init_thread_info(ti);
14cf11af 1597
14cf11af
PM
1598 /* Copy registers */
1599 sp -= sizeof(struct pt_regs);
1600 childregs = (struct pt_regs *) sp;
ab75819d 1601 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1602 /* kernel thread */
58254e10 1603 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1604 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1605 /* function */
1606 if (usp)
1607 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1608#ifdef CONFIG_PPC64
b5e2fc1c 1609 clear_tsk_thread_flag(p, TIF_32BIT);
c2e480ba 1610 childregs->softe = IRQS_ENABLED;
06d67d54 1611#endif
6eca8933 1612 childregs->gpr[15] = kthread_arg;
14cf11af 1613 p->thread.regs = NULL; /* no user register state */
138d1ce8 1614 ti->flags |= _TIF_RESTOREALL;
58254e10 1615 f = ret_from_kernel_thread;
14cf11af 1616 } else {
6eca8933 1617 /* user thread */
afa86fc4 1618 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1619 CHECK_FULL_REGS(regs);
1620 *childregs = *regs;
ea516b11
AV
1621 if (usp)
1622 childregs->gpr[1] = usp;
14cf11af 1623 p->thread.regs = childregs;
58254e10 1624 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1625 if (clone_flags & CLONE_SETTLS) {
1626#ifdef CONFIG_PPC64
9904b005 1627 if (!is_32bit_task())
06d67d54
PM
1628 childregs->gpr[13] = childregs->gpr[6];
1629 else
1630#endif
1631 childregs->gpr[2] = childregs->gpr[6];
1632 }
58254e10
AV
1633
1634 f = ret_from_fork;
14cf11af 1635 }
d272f667 1636 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
14cf11af 1637 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1638
1639 /*
1640 * The way this works is that at some point in the future
1641 * some task will call _switch to switch to the new task.
1642 * That will pop off the stack frame created below and start
1643 * the new task running at ret_from_fork. The new task will
1644 * do some house keeping and then return from the fork or clone
1645 * system call, using the stack frame created above.
1646 */
af945cf4 1647 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1648 sp -= sizeof(struct pt_regs);
1649 kregs = (struct pt_regs *) sp;
1650 sp -= STACK_FRAME_OVERHEAD;
1651 p->thread.ksp = sp;
cbc9565e 1652#ifdef CONFIG_PPC32
85218827
KG
1653 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1654 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1655#endif
28d170ab
ON
1656#ifdef CONFIG_HAVE_HW_BREAKPOINT
1657 p->thread.ptrace_bps[0] = NULL;
1658#endif
1659
18461960
PM
1660 p->thread.fp_save_area = NULL;
1661#ifdef CONFIG_ALTIVEC
1662 p->thread.vr_save_area = NULL;
1663#endif
1664
cec15488
ME
1665 setup_ksp_vsid(p, sp);
1666
efcac658
AK
1667#ifdef CONFIG_PPC64
1668 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26 1669 p->thread.dscr_inherit = current->thread.dscr_inherit;
db1231dc 1670 p->thread.dscr = mfspr(SPRN_DSCR);
efcac658 1671 }
92779245
HM
1672 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1673 p->thread.ppr = INIT_PPR;
ec233ede
SB
1674
1675 p->thread.tidr = 0;
efcac658 1676#endif
7cedd601 1677 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1678 return 0;
1679}
1680
1681/*
1682 * Set up a thread for executing a new program
1683 */
06d67d54 1684void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1685{
90eac727
ME
1686#ifdef CONFIG_PPC64
1687 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1688#endif
1689
06d67d54
PM
1690 /*
1691 * If we exec out of a kernel thread then thread.regs will not be
1692 * set. Do it now.
1693 */
1694 if (!current->thread.regs) {
0cec6fd1
AV
1695 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1696 current->thread.regs = regs - 1;
06d67d54
PM
1697 }
1698
8e96a87c
CB
1699#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1700 /*
1701 * Clear any transactional state, we're exec()ing. The cause is
1702 * not important as there will never be a recheckpoint so it's not
1703 * user visible.
1704 */
1705 if (MSR_TM_SUSPENDED(mfmsr()))
1706 tm_reclaim_current(0);
1707#endif
1708
14cf11af
PM
1709 memset(regs->gpr, 0, sizeof(regs->gpr));
1710 regs->ctr = 0;
1711 regs->link = 0;
1712 regs->xer = 0;
1713 regs->ccr = 0;
14cf11af 1714 regs->gpr[1] = sp;
06d67d54 1715
474f8196
RM
1716 /*
1717 * We have just cleared all the nonvolatile GPRs, so make
1718 * FULL_REGS(regs) return true. This is necessary to allow
1719 * ptrace to examine the thread immediately after exec.
1720 */
1721 regs->trap &= ~1UL;
1722
06d67d54
PM
1723#ifdef CONFIG_PPC32
1724 regs->mq = 0;
1725 regs->nip = start;
14cf11af 1726 regs->msr = MSR_USER;
06d67d54 1727#else
9904b005 1728 if (!is_32bit_task()) {
94af3abf 1729 unsigned long entry;
06d67d54 1730
94af3abf
RR
1731 if (is_elf2_task()) {
1732 /* Look ma, no function descriptors! */
1733 entry = start;
06d67d54 1734
94af3abf
RR
1735 /*
1736 * Ulrich says:
1737 * The latest iteration of the ABI requires that when
1738 * calling a function (at its global entry point),
1739 * the caller must ensure r12 holds the entry point
1740 * address (so that the function can quickly
1741 * establish addressability).
1742 */
1743 regs->gpr[12] = start;
1744 /* Make sure that's restored on entry to userspace. */
1745 set_thread_flag(TIF_RESTOREALL);
1746 } else {
1747 unsigned long toc;
1748
1749 /* start is a relocated pointer to the function
1750 * descriptor for the elf _start routine. The first
1751 * entry in the function descriptor is the entry
1752 * address of _start and the second entry is the TOC
1753 * value we need to use.
1754 */
1755 __get_user(entry, (unsigned long __user *)start);
1756 __get_user(toc, (unsigned long __user *)start+1);
1757
1758 /* Check whether the e_entry function descriptor entries
1759 * need to be relocated before we can use them.
1760 */
1761 if (load_addr != 0) {
1762 entry += load_addr;
1763 toc += load_addr;
1764 }
1765 regs->gpr[2] = toc;
06d67d54
PM
1766 }
1767 regs->nip = entry;
06d67d54 1768 regs->msr = MSR_USER64;
d4bf9a78
SR
1769 } else {
1770 regs->nip = start;
1771 regs->gpr[2] = 0;
1772 regs->msr = MSR_USER32;
06d67d54
PM
1773 }
1774#endif
ce48b210
MN
1775#ifdef CONFIG_VSX
1776 current->thread.used_vsr = 0;
1777#endif
1195892c 1778 current->thread.load_fp = 0;
de79f7b9 1779 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1780 current->thread.fp_save_area = NULL;
14cf11af 1781#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1782 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1783 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1784 current->thread.vr_save_area = NULL;
14cf11af
PM
1785 current->thread.vrsave = 0;
1786 current->thread.used_vr = 0;
1195892c 1787 current->thread.load_vec = 0;
14cf11af
PM
1788#endif /* CONFIG_ALTIVEC */
1789#ifdef CONFIG_SPE
1790 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1791 current->thread.acc = 0;
1792 current->thread.spefscr = 0;
1793 current->thread.used_spe = 0;
1794#endif /* CONFIG_SPE */
bc2a9408 1795#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
bc2a9408
MN
1796 current->thread.tm_tfhar = 0;
1797 current->thread.tm_texasr = 0;
1798 current->thread.tm_tfiar = 0;
7f22ced4 1799 current->thread.load_tm = 0;
bc2a9408 1800#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
06bb53b3
RP
1801
1802 thread_pkey_regs_init(&current->thread);
14cf11af 1803}
e1802b06 1804EXPORT_SYMBOL(start_thread);
14cf11af
PM
1805
1806#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1807 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1808
1809int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1810{
1811 struct pt_regs *regs = tsk->thread.regs;
1812
1813 /* This is a bit hairy. If we are an SPE enabled processor
1814 * (have embedded fp) we store the IEEE exception enable flags in
1815 * fpexc_mode. fpexc_mode is also used for setting FP exception
1816 * mode (asyn, precise, disabled) for 'Classic' FP. */
1817 if (val & PR_FP_EXC_SW_ENABLE) {
1818#ifdef CONFIG_SPE
5e14d21e 1819 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1820 /*
1821 * When the sticky exception bits are set
1822 * directly by userspace, it must call prctl
1823 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1824 * in the existing prctl settings) or
1825 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1826 * the bits being set). <fenv.h> functions
1827 * saving and restoring the whole
1828 * floating-point environment need to do so
1829 * anyway to restore the prctl settings from
1830 * the saved environment.
1831 */
1832 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1833 tsk->thread.fpexc_mode = val &
1834 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1835 return 0;
1836 } else {
1837 return -EINVAL;
1838 }
14cf11af
PM
1839#else
1840 return -EINVAL;
1841#endif
14cf11af 1842 }
06d67d54
PM
1843
1844 /* on a CONFIG_SPE this does not hurt us. The bits that
1845 * __pack_fe01 use do not overlap with bits used for
1846 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1847 * on CONFIG_SPE implementations are reserved so writing to
1848 * them does not change anything */
1849 if (val > PR_FP_EXC_PRECISE)
1850 return -EINVAL;
1851 tsk->thread.fpexc_mode = __pack_fe01(val);
1852 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1853 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1854 | tsk->thread.fpexc_mode;
14cf11af
PM
1855 return 0;
1856}
1857
1858int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1859{
1860 unsigned int val;
1861
1862 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1863#ifdef CONFIG_SPE
640e9225
JM
1864 if (cpu_has_feature(CPU_FTR_SPE)) {
1865 /*
1866 * When the sticky exception bits are set
1867 * directly by userspace, it must call prctl
1868 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1869 * in the existing prctl settings) or
1870 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1871 * the bits being set). <fenv.h> functions
1872 * saving and restoring the whole
1873 * floating-point environment need to do so
1874 * anyway to restore the prctl settings from
1875 * the saved environment.
1876 */
1877 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1878 val = tsk->thread.fpexc_mode;
640e9225 1879 } else
5e14d21e 1880 return -EINVAL;
14cf11af
PM
1881#else
1882 return -EINVAL;
1883#endif
1884 else
1885 val = __unpack_fe01(tsk->thread.fpexc_mode);
1886 return put_user(val, (unsigned int __user *) adr);
1887}
1888
fab5db97
PM
1889int set_endian(struct task_struct *tsk, unsigned int val)
1890{
1891 struct pt_regs *regs = tsk->thread.regs;
1892
1893 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1894 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1895 return -EINVAL;
1896
1897 if (regs == NULL)
1898 return -EINVAL;
1899
1900 if (val == PR_ENDIAN_BIG)
1901 regs->msr &= ~MSR_LE;
1902 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1903 regs->msr |= MSR_LE;
1904 else
1905 return -EINVAL;
1906
1907 return 0;
1908}
1909
1910int get_endian(struct task_struct *tsk, unsigned long adr)
1911{
1912 struct pt_regs *regs = tsk->thread.regs;
1913 unsigned int val;
1914
1915 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1916 !cpu_has_feature(CPU_FTR_REAL_LE))
1917 return -EINVAL;
1918
1919 if (regs == NULL)
1920 return -EINVAL;
1921
1922 if (regs->msr & MSR_LE) {
1923 if (cpu_has_feature(CPU_FTR_REAL_LE))
1924 val = PR_ENDIAN_LITTLE;
1925 else
1926 val = PR_ENDIAN_PPC_LITTLE;
1927 } else
1928 val = PR_ENDIAN_BIG;
1929
1930 return put_user(val, (unsigned int __user *)adr);
1931}
1932
e9370ae1
PM
1933int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1934{
1935 tsk->thread.align_ctl = val;
1936 return 0;
1937}
1938
1939int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1940{
1941 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1942}
1943
bb72c481
PM
1944static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1945 unsigned long nbytes)
1946{
1947 unsigned long stack_page;
1948 unsigned long cpu = task_cpu(p);
1949
1950 /*
1951 * Avoid crashing if the stack has overflowed and corrupted
1952 * task_cpu(p), which is in the thread_info struct.
1953 */
1954 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1955 stack_page = (unsigned long) hardirq_ctx[cpu];
1956 if (sp >= stack_page + sizeof(struct thread_struct)
1957 && sp <= stack_page + THREAD_SIZE - nbytes)
1958 return 1;
1959
1960 stack_page = (unsigned long) softirq_ctx[cpu];
1961 if (sp >= stack_page + sizeof(struct thread_struct)
1962 && sp <= stack_page + THREAD_SIZE - nbytes)
1963 return 1;
1964 }
1965 return 0;
1966}
1967
2f25194d 1968int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1969 unsigned long nbytes)
1970{
0cec6fd1 1971 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1972
1973 if (sp >= stack_page + sizeof(struct thread_struct)
1974 && sp <= stack_page + THREAD_SIZE - nbytes)
1975 return 1;
1976
bb72c481 1977 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1978}
1979
2f25194d
AB
1980EXPORT_SYMBOL(validate_sp);
1981
14cf11af
PM
1982unsigned long get_wchan(struct task_struct *p)
1983{
1984 unsigned long ip, sp;
1985 int count = 0;
1986
1987 if (!p || p == current || p->state == TASK_RUNNING)
1988 return 0;
1989
1990 sp = p->thread.ksp;
ec2b36b9 1991 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1992 return 0;
1993
1994 do {
1995 sp = *(unsigned long *)sp;
4ca360f3
KC
1996 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
1997 p->state == TASK_RUNNING)
14cf11af
PM
1998 return 0;
1999 if (count > 0) {
ec2b36b9 2000 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
2001 if (!in_sched_functions(ip))
2002 return ip;
2003 }
2004 } while (count++ < 16);
2005 return 0;
2006}
06d67d54 2007
c4d04be1 2008static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
2009
2010void show_stack(struct task_struct *tsk, unsigned long *stack)
2011{
2012 unsigned long sp, ip, lr, newsp;
2013 int count = 0;
2014 int firstframe = 1;
6794c782
SR
2015#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2016 int curr_frame = current->curr_ret_stack;
2017 extern void return_to_handler(void);
9135c3cc 2018 unsigned long rth = (unsigned long)return_to_handler;
6794c782 2019#endif
06d67d54
PM
2020
2021 sp = (unsigned long) stack;
2022 if (tsk == NULL)
2023 tsk = current;
2024 if (sp == 0) {
2025 if (tsk == current)
acf620ec 2026 sp = current_stack_pointer();
06d67d54
PM
2027 else
2028 sp = tsk->thread.ksp;
2029 }
2030
2031 lr = 0;
2032 printk("Call Trace:\n");
2033 do {
ec2b36b9 2034 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
2035 return;
2036
2037 stack = (unsigned long *) sp;
2038 newsp = stack[0];
ec2b36b9 2039 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 2040 if (!firstframe || ip != lr) {
058c78f4 2041 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 2042#ifdef CONFIG_FUNCTION_GRAPH_TRACER
7d56c65a 2043 if ((ip == rth) && curr_frame >= 0) {
9a1f490f 2044 pr_cont(" (%pS)",
6794c782
SR
2045 (void *)current->ret_stack[curr_frame].ret);
2046 curr_frame--;
2047 }
2048#endif
06d67d54 2049 if (firstframe)
9a1f490f
ME
2050 pr_cont(" (unreliable)");
2051 pr_cont("\n");
06d67d54
PM
2052 }
2053 firstframe = 0;
2054
2055 /*
2056 * See if this is an exception frame.
2057 * We look for the "regshere" marker in the current frame.
2058 */
ec2b36b9
BH
2059 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2060 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
2061 struct pt_regs *regs = (struct pt_regs *)
2062 (sp + STACK_FRAME_OVERHEAD);
06d67d54 2063 lr = regs->link;
9be9be2e 2064 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 2065 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
2066 firstframe = 1;
2067 }
2068
2069 sp = newsp;
2070 } while (count++ < kstack_depth_to_print);
2071}
2072
cb2c9b27 2073#ifdef CONFIG_PPC64
fe1952fc 2074/* Called with hard IRQs off */
0e37739b 2075void notrace __ppc64_runlatch_on(void)
cb2c9b27 2076{
fe1952fc 2077 struct thread_info *ti = current_thread_info();
cb2c9b27 2078
d1d0d5ff
NP
2079 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2080 /*
2081 * Least significant bit (RUN) is the only writable bit of
2082 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2083 * earliest ISA where this is the case, but it's convenient.
2084 */
2085 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2086 } else {
2087 unsigned long ctrl;
2088
2089 /*
2090 * Some architectures (e.g., Cell) have writable fields other
2091 * than RUN, so do the read-modify-write.
2092 */
2093 ctrl = mfspr(SPRN_CTRLF);
2094 ctrl |= CTRL_RUNLATCH;
2095 mtspr(SPRN_CTRLT, ctrl);
2096 }
cb2c9b27 2097
fae2e0fb 2098 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
2099}
2100
fe1952fc 2101/* Called with hard IRQs off */
0e37739b 2102void notrace __ppc64_runlatch_off(void)
cb2c9b27 2103{
fe1952fc 2104 struct thread_info *ti = current_thread_info();
cb2c9b27 2105
fae2e0fb 2106 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 2107
d1d0d5ff
NP
2108 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2109 mtspr(SPRN_CTRLT, 0);
2110 } else {
2111 unsigned long ctrl;
2112
2113 ctrl = mfspr(SPRN_CTRLF);
2114 ctrl &= ~CTRL_RUNLATCH;
2115 mtspr(SPRN_CTRLT, ctrl);
2116 }
cb2c9b27 2117}
fe1952fc 2118#endif /* CONFIG_PPC64 */
f6a61680 2119
d839088c
AB
2120unsigned long arch_align_stack(unsigned long sp)
2121{
2122 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2123 sp -= get_random_int() & ~PAGE_MASK;
2124 return sp & ~0xf;
2125}
912f9ee2
AB
2126
2127static inline unsigned long brk_rnd(void)
2128{
2129 unsigned long rnd = 0;
2130
2131 /* 8MB for 32bit, 1GB for 64bit */
2132 if (is_32bit_task())
5ef11c35 2133 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
912f9ee2 2134 else
5ef11c35 2135 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
912f9ee2
AB
2136
2137 return rnd << PAGE_SHIFT;
2138}
2139
2140unsigned long arch_randomize_brk(struct mm_struct *mm)
2141{
8bbde7a7
AB
2142 unsigned long base = mm->brk;
2143 unsigned long ret;
2144
4e003747 2145#ifdef CONFIG_PPC_BOOK3S_64
8bbde7a7
AB
2146 /*
2147 * If we are using 1TB segments and we are allowed to randomise
2148 * the heap, we can put it above 1TB so it is backed by a 1TB
2149 * segment. Otherwise the heap will be in the bottom 1TB
2150 * which always uses 256MB segments and this may result in a
caca285e
AK
2151 * performance penalty. We don't need to worry about radix. For
2152 * radix, mmu_highuser_ssize remains unchanged from 256MB.
8bbde7a7
AB
2153 */
2154 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2155 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2156#endif
2157
2158 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
2159
2160 if (ret < mm->brk)
2161 return mm->brk;
2162
2163 return ret;
2164}
501cb16d 2165