powerpc: Remove UP only lazy floating point and vector optimisations
[linux-2.6-block.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
14cf11af
PM
28#include <linux/prctl.h>
29#include <linux/init_task.h>
4b16f8e2 30#include <linux/export.h>
14cf11af
PM
31#include <linux/kallsyms.h>
32#include <linux/mqueue.h>
33#include <linux/hardirq.h>
06d67d54 34#include <linux/utsname.h>
6794c782 35#include <linux/ftrace.h>
79741dd3 36#include <linux/kernel_stat.h>
d839088c
AB
37#include <linux/personality.h>
38#include <linux/random.h>
5aae8a53 39#include <linux/hw_breakpoint.h>
7b051f66 40#include <linux/uaccess.h>
14cf11af
PM
41
42#include <asm/pgtable.h>
14cf11af
PM
43#include <asm/io.h>
44#include <asm/processor.h>
45#include <asm/mmu.h>
46#include <asm/prom.h>
76032de8 47#include <asm/machdep.h>
c6622f63 48#include <asm/time.h>
ae3a197e 49#include <asm/runlatch.h>
a7f31841 50#include <asm/syscalls.h>
ae3a197e 51#include <asm/switch_to.h>
fb09692e 52#include <asm/tm.h>
ae3a197e 53#include <asm/debug.h>
06d67d54
PM
54#ifdef CONFIG_PPC64
55#include <asm/firmware.h>
06d67d54 56#endif
7cedd601 57#include <asm/code-patching.h>
d6a61bfc
LM
58#include <linux/kprobes.h>
59#include <linux/kdebug.h>
14cf11af 60
8b3c34cf
MN
61/* Transactional Memory debug */
62#ifdef TM_DEBUG_SW
63#define TM_DEBUG(x...) printk(KERN_INFO x)
64#else
65#define TM_DEBUG(x...) do { } while(0)
66#endif
67
14cf11af
PM
68extern unsigned long _get_SP(void);
69
d31626f7
PM
70#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
71void giveup_fpu_maybe_transactional(struct task_struct *tsk)
72{
73 /*
74 * If we are saving the current thread's registers, and the
75 * thread is in a transactional state, set the TIF_RESTORE_TM
76 * bit so that we know to restore the registers before
77 * returning to userspace.
78 */
79 if (tsk == current && tsk->thread.regs &&
80 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
81 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 82 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
83 set_thread_flag(TIF_RESTORE_TM);
84 }
85
86 giveup_fpu(tsk);
87}
88
89void giveup_altivec_maybe_transactional(struct task_struct *tsk)
90{
91 /*
92 * If we are saving the current thread's registers, and the
93 * thread is in a transactional state, set the TIF_RESTORE_TM
94 * bit so that we know to restore the registers before
95 * returning to userspace.
96 */
97 if (tsk == current && tsk->thread.regs &&
98 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
99 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 100 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
101 set_thread_flag(TIF_RESTORE_TM);
102 }
103
104 giveup_altivec(tsk);
105}
106
107#else
108#define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk)
109#define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
110#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
111
037f0eed 112#ifdef CONFIG_PPC_FPU
14cf11af
PM
113/*
114 * Make sure the floating-point register state in the
115 * the thread_struct is up to date for task tsk.
116 */
117void flush_fp_to_thread(struct task_struct *tsk)
118{
119 if (tsk->thread.regs) {
120 /*
121 * We need to disable preemption here because if we didn't,
122 * another process could get scheduled after the regs->msr
123 * test but before we have finished saving the FP registers
124 * to the thread_struct. That process could take over the
125 * FPU, and then when we get scheduled again we would store
126 * bogus values for the remaining FP registers.
127 */
128 preempt_disable();
129 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
130 /*
131 * This should only ever be called for current or
132 * for a stopped child process. Since we save away
af1bbc3d 133 * the FP register state on context switch,
14cf11af
PM
134 * there is something wrong if a stopped child appears
135 * to still have its FP state in the CPU registers.
136 */
137 BUG_ON(tsk != current);
d31626f7 138 giveup_fpu_maybe_transactional(tsk);
14cf11af
PM
139 }
140 preempt_enable();
141 }
142}
de56a948 143EXPORT_SYMBOL_GPL(flush_fp_to_thread);
d31626f7 144#endif /* CONFIG_PPC_FPU */
14cf11af
PM
145
146void enable_kernel_fp(void)
147{
148 WARN_ON(preemptible());
149
14cf11af 150 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
d31626f7 151 giveup_fpu_maybe_transactional(current);
14cf11af
PM
152 else
153 giveup_fpu(NULL); /* just enables FP for kernel */
14cf11af
PM
154}
155EXPORT_SYMBOL(enable_kernel_fp);
156
14cf11af
PM
157#ifdef CONFIG_ALTIVEC
158void enable_kernel_altivec(void)
159{
160 WARN_ON(preemptible());
161
14cf11af 162 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
d31626f7 163 giveup_altivec_maybe_transactional(current);
14cf11af 164 else
35000870 165 giveup_altivec_notask();
14cf11af
PM
166}
167EXPORT_SYMBOL(enable_kernel_altivec);
168
169/*
170 * Make sure the VMX/Altivec register state in the
171 * the thread_struct is up to date for task tsk.
172 */
173void flush_altivec_to_thread(struct task_struct *tsk)
174{
175 if (tsk->thread.regs) {
176 preempt_disable();
177 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 178 BUG_ON(tsk != current);
d31626f7 179 giveup_altivec_maybe_transactional(tsk);
14cf11af
PM
180 }
181 preempt_enable();
182 }
183}
de56a948 184EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
14cf11af
PM
185#endif /* CONFIG_ALTIVEC */
186
ce48b210 187#ifdef CONFIG_VSX
ce48b210
MN
188void enable_kernel_vsx(void)
189{
190 WARN_ON(preemptible());
191
ce48b210
MN
192 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
193 giveup_vsx(current);
194 else
195 giveup_vsx(NULL); /* just enable vsx for kernel - force */
ce48b210
MN
196}
197EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210 198
7c292170
MN
199void giveup_vsx(struct task_struct *tsk)
200{
d31626f7
PM
201 giveup_fpu_maybe_transactional(tsk);
202 giveup_altivec_maybe_transactional(tsk);
7c292170
MN
203 __giveup_vsx(tsk);
204}
e1802b06 205EXPORT_SYMBOL(giveup_vsx);
7c292170 206
ce48b210
MN
207void flush_vsx_to_thread(struct task_struct *tsk)
208{
209 if (tsk->thread.regs) {
210 preempt_disable();
211 if (tsk->thread.regs->msr & MSR_VSX) {
ce48b210 212 BUG_ON(tsk != current);
ce48b210
MN
213 giveup_vsx(tsk);
214 }
215 preempt_enable();
216 }
217}
de56a948 218EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
ce48b210
MN
219#endif /* CONFIG_VSX */
220
14cf11af
PM
221#ifdef CONFIG_SPE
222
223void enable_kernel_spe(void)
224{
225 WARN_ON(preemptible());
226
14cf11af
PM
227 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
228 giveup_spe(current);
229 else
230 giveup_spe(NULL); /* just enable SPE for kernel - force */
14cf11af
PM
231}
232EXPORT_SYMBOL(enable_kernel_spe);
233
234void flush_spe_to_thread(struct task_struct *tsk)
235{
236 if (tsk->thread.regs) {
237 preempt_disable();
238 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 239 BUG_ON(tsk != current);
685659ee 240 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 241 giveup_spe(tsk);
14cf11af
PM
242 }
243 preempt_enable();
244 }
245}
14cf11af
PM
246#endif /* CONFIG_SPE */
247
3bffb652
DK
248#ifdef CONFIG_PPC_ADV_DEBUG_REGS
249void do_send_trap(struct pt_regs *regs, unsigned long address,
250 unsigned long error_code, int signal_code, int breakpt)
251{
252 siginfo_t info;
253
41ab5266 254 current->thread.trap_nr = signal_code;
3bffb652
DK
255 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
256 11, SIGSEGV) == NOTIFY_STOP)
257 return;
258
259 /* Deliver the signal to userspace */
260 info.si_signo = SIGTRAP;
261 info.si_errno = breakpt; /* breakpoint or watchpoint id */
262 info.si_code = signal_code;
263 info.si_addr = (void __user *)address;
264 force_sig_info(SIGTRAP, &info, current);
265}
266#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 267void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
268 unsigned long error_code)
269{
270 siginfo_t info;
271
41ab5266 272 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
273 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
274 11, SIGSEGV) == NOTIFY_STOP)
275 return;
276
9422de3e 277 if (debugger_break_match(regs))
d6a61bfc
LM
278 return;
279
9422de3e
MN
280 /* Clear the breakpoint */
281 hw_breakpoint_disable();
d6a61bfc
LM
282
283 /* Deliver the signal to userspace */
284 info.si_signo = SIGTRAP;
285 info.si_errno = 0;
286 info.si_code = TRAP_HWBKPT;
287 info.si_addr = (void __user *)address;
288 force_sig_info(SIGTRAP, &info, current);
289}
3bffb652 290#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 291
9422de3e 292static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 293
3bffb652
DK
294#ifdef CONFIG_PPC_ADV_DEBUG_REGS
295/*
296 * Set the debug registers back to their default "safe" values.
297 */
298static void set_debug_reg_defaults(struct thread_struct *thread)
299{
51ae8d4a 300 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 301#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 302 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 303#endif
51ae8d4a 304 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 305#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 306 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 307#endif
51ae8d4a 308 thread->debug.dbcr0 = 0;
3bffb652
DK
309#ifdef CONFIG_BOOKE
310 /*
311 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
312 */
51ae8d4a 313 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
314 DBCR1_IAC3US | DBCR1_IAC4US;
315 /*
316 * Force Data Address Compare User/Supervisor bits to be User-only
317 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
318 */
51ae8d4a 319 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 320#else
51ae8d4a 321 thread->debug.dbcr1 = 0;
3bffb652
DK
322#endif
323}
324
f5f97210 325static void prime_debug_regs(struct debug_reg *debug)
3bffb652 326{
6cecf76b
SW
327 /*
328 * We could have inherited MSR_DE from userspace, since
329 * it doesn't get cleared on exception entry. Make sure
330 * MSR_DE is clear before we enable any debug events.
331 */
332 mtmsr(mfmsr() & ~MSR_DE);
333
f5f97210
SW
334 mtspr(SPRN_IAC1, debug->iac1);
335 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 336#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
337 mtspr(SPRN_IAC3, debug->iac3);
338 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 339#endif
f5f97210
SW
340 mtspr(SPRN_DAC1, debug->dac1);
341 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 342#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
343 mtspr(SPRN_DVC1, debug->dvc1);
344 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 345#endif
f5f97210
SW
346 mtspr(SPRN_DBCR0, debug->dbcr0);
347 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 348#ifdef CONFIG_BOOKE
f5f97210 349 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
350#endif
351}
352/*
353 * Unless neither the old or new thread are making use of the
354 * debug registers, set the debug registers from the values
355 * stored in the new thread.
356 */
f5f97210 357void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 358{
51ae8d4a 359 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
360 || (new_debug->dbcr0 & DBCR0_IDM))
361 prime_debug_regs(new_debug);
3bffb652 362}
3743c9b8 363EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 364#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 365#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
366static void set_debug_reg_defaults(struct thread_struct *thread)
367{
9422de3e
MN
368 thread->hw_brk.address = 0;
369 thread->hw_brk.type = 0;
b9818c33 370 set_breakpoint(&thread->hw_brk);
3bffb652 371}
e0780b72 372#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
373#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
374
172ae2e7 375#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
376static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
377{
d6a61bfc 378 mtspr(SPRN_DAC1, dabr);
221c185d
DK
379#ifdef CONFIG_PPC_47x
380 isync();
381#endif
9422de3e
MN
382 return 0;
383}
c6c9eace 384#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
385static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
386{
c6c9eace 387 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
388 if (cpu_has_feature(CPU_FTR_DABRX))
389 mtspr(SPRN_DABRX, dabrx);
cab0af98 390 return 0;
14cf11af 391}
9422de3e
MN
392#else
393static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
394{
395 return -EINVAL;
396}
397#endif
398
399static inline int set_dabr(struct arch_hw_breakpoint *brk)
400{
401 unsigned long dabr, dabrx;
402
403 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
404 dabrx = ((brk->type >> 3) & 0x7);
405
406 if (ppc_md.set_dabr)
407 return ppc_md.set_dabr(dabr, dabrx);
408
409 return __set_dabr(dabr, dabrx);
410}
411
bf99de36
MN
412static inline int set_dawr(struct arch_hw_breakpoint *brk)
413{
05d694ea 414 unsigned long dawr, dawrx, mrd;
bf99de36
MN
415
416 dawr = brk->address;
417
418 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
419 << (63 - 58); //* read/write bits */
420 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
421 << (63 - 59); //* translate */
422 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
423 >> 3; //* PRIM bits */
05d694ea
MN
424 /* dawr length is stored in field MDR bits 48:53. Matches range in
425 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
426 0b111111=64DW.
427 brk->len is in bytes.
428 This aligns up to double word size, shifts and does the bias.
429 */
430 mrd = ((brk->len + 7) >> 3) - 1;
431 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
432
433 if (ppc_md.set_dawr)
434 return ppc_md.set_dawr(dawr, dawrx);
435 mtspr(SPRN_DAWR, dawr);
436 mtspr(SPRN_DAWRX, dawrx);
437 return 0;
438}
439
21f58507 440void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e 441{
69111bac 442 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
9422de3e 443
bf99de36 444 if (cpu_has_feature(CPU_FTR_DAWR))
04c32a51
PG
445 set_dawr(brk);
446 else
447 set_dabr(brk);
9422de3e 448}
14cf11af 449
21f58507
PG
450void set_breakpoint(struct arch_hw_breakpoint *brk)
451{
452 preempt_disable();
453 __set_breakpoint(brk);
454 preempt_enable();
455}
456
06d67d54
PM
457#ifdef CONFIG_PPC64
458DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 459#endif
14cf11af 460
9422de3e
MN
461static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
462 struct arch_hw_breakpoint *b)
463{
464 if (a->address != b->address)
465 return false;
466 if (a->type != b->type)
467 return false;
468 if (a->len != b->len)
469 return false;
470 return true;
471}
d31626f7 472
fb09692e 473#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
d31626f7
PM
474static void tm_reclaim_thread(struct thread_struct *thr,
475 struct thread_info *ti, uint8_t cause)
476{
477 unsigned long msr_diff = 0;
478
479 /*
480 * If FP/VSX registers have been already saved to the
481 * thread_struct, move them to the transact_fp array.
482 * We clear the TIF_RESTORE_TM bit since after the reclaim
483 * the thread will no longer be transactional.
484 */
485 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
829023df 486 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
d31626f7
PM
487 if (msr_diff & MSR_FP)
488 memcpy(&thr->transact_fp, &thr->fp_state,
489 sizeof(struct thread_fp_state));
490 if (msr_diff & MSR_VEC)
491 memcpy(&thr->transact_vr, &thr->vr_state,
492 sizeof(struct thread_vr_state));
493 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
494 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
495 }
496
497 tm_reclaim(thr, thr->regs->msr, cause);
498
499 /* Having done the reclaim, we now have the checkpointed
500 * FP/VSX values in the registers. These might be valid
501 * even if we have previously called enable_kernel_fp() or
502 * flush_fp_to_thread(), so update thr->regs->msr to
503 * indicate their current validity.
504 */
505 thr->regs->msr |= msr_diff;
506}
507
508void tm_reclaim_current(uint8_t cause)
509{
510 tm_enable();
511 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
512}
513
fb09692e
MN
514static inline void tm_reclaim_task(struct task_struct *tsk)
515{
516 /* We have to work out if we're switching from/to a task that's in the
517 * middle of a transaction.
518 *
519 * In switching we need to maintain a 2nd register state as
520 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
521 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
522 * (current) FPRs into oldtask->thread.transact_fpr[].
523 *
524 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
525 */
526 struct thread_struct *thr = &tsk->thread;
527
528 if (!thr->regs)
529 return;
530
531 if (!MSR_TM_ACTIVE(thr->regs->msr))
532 goto out_and_saveregs;
533
534 /* Stash the original thread MSR, as giveup_fpu et al will
535 * modify it. We hold onto it to see whether the task used
d31626f7 536 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
829023df 537 * ckpt_regs.msr is already set.
fb09692e 538 */
d31626f7 539 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
829023df 540 thr->ckpt_regs.msr = thr->regs->msr;
fb09692e
MN
541
542 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
543 "ccr=%lx, msr=%lx, trap=%lx)\n",
544 tsk->pid, thr->regs->nip,
545 thr->regs->ccr, thr->regs->msr,
546 thr->regs->trap);
547
d31626f7 548 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
fb09692e
MN
549
550 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
551 tsk->pid);
552
553out_and_saveregs:
554 /* Always save the regs here, even if a transaction's not active.
555 * This context-switches a thread's TM info SPRs. We do it here to
556 * be consistent with the restore path (in recheckpoint) which
557 * cannot happen later in _switch().
558 */
559 tm_save_sprs(thr);
560}
561
e6b8fd02
MN
562extern void __tm_recheckpoint(struct thread_struct *thread,
563 unsigned long orig_msr);
564
565void tm_recheckpoint(struct thread_struct *thread,
566 unsigned long orig_msr)
567{
568 unsigned long flags;
569
570 /* We really can't be interrupted here as the TEXASR registers can't
571 * change and later in the trecheckpoint code, we have a userspace R1.
572 * So let's hard disable over this region.
573 */
574 local_irq_save(flags);
575 hard_irq_disable();
576
577 /* The TM SPRs are restored here, so that TEXASR.FS can be set
578 * before the trecheckpoint and no explosion occurs.
579 */
580 tm_restore_sprs(thread);
581
582 __tm_recheckpoint(thread, orig_msr);
583
584 local_irq_restore(flags);
585}
586
bc2a9408 587static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
588{
589 unsigned long msr;
590
591 if (!cpu_has_feature(CPU_FTR_TM))
592 return;
593
594 /* Recheckpoint the registers of the thread we're about to switch to.
595 *
596 * If the task was using FP, we non-lazily reload both the original and
597 * the speculative FP register states. This is because the kernel
598 * doesn't see if/when a TM rollback occurs, so if we take an FP
599 * unavoidable later, we are unable to determine which set of FP regs
600 * need to be restored.
601 */
602 if (!new->thread.regs)
603 return;
604
e6b8fd02
MN
605 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
606 tm_restore_sprs(&new->thread);
fb09692e 607 return;
e6b8fd02 608 }
829023df 609 msr = new->thread.ckpt_regs.msr;
fb09692e
MN
610 /* Recheckpoint to restore original checkpointed register state. */
611 TM_DEBUG("*** tm_recheckpoint of pid %d "
612 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
613 new->pid, new->thread.regs->msr, msr);
614
615 /* This loads the checkpointed FP/VEC state, if used */
616 tm_recheckpoint(&new->thread, msr);
617
618 /* This loads the speculative FP/VEC state, if used */
619 if (msr & MSR_FP) {
620 do_load_up_transact_fpu(&new->thread);
621 new->thread.regs->msr |=
622 (MSR_FP | new->thread.fpexc_mode);
623 }
f110c0c1 624#ifdef CONFIG_ALTIVEC
fb09692e
MN
625 if (msr & MSR_VEC) {
626 do_load_up_transact_altivec(&new->thread);
627 new->thread.regs->msr |= MSR_VEC;
628 }
f110c0c1 629#endif
fb09692e
MN
630 /* We may as well turn on VSX too since all the state is restored now */
631 if (msr & MSR_VSX)
632 new->thread.regs->msr |= MSR_VSX;
633
634 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
635 "(kernel msr 0x%lx)\n",
636 new->pid, mfmsr());
637}
638
639static inline void __switch_to_tm(struct task_struct *prev)
640{
641 if (cpu_has_feature(CPU_FTR_TM)) {
642 tm_enable();
643 tm_reclaim_task(prev);
644 }
645}
d31626f7
PM
646
647/*
648 * This is called if we are on the way out to userspace and the
649 * TIF_RESTORE_TM flag is set. It checks if we need to reload
650 * FP and/or vector state and does so if necessary.
651 * If userspace is inside a transaction (whether active or
652 * suspended) and FP/VMX/VSX instructions have ever been enabled
653 * inside that transaction, then we have to keep them enabled
654 * and keep the FP/VMX/VSX state loaded while ever the transaction
655 * continues. The reason is that if we didn't, and subsequently
656 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
657 * we don't know whether it's the same transaction, and thus we
658 * don't know which of the checkpointed state and the transactional
659 * state to use.
660 */
661void restore_tm_state(struct pt_regs *regs)
662{
663 unsigned long msr_diff;
664
665 clear_thread_flag(TIF_RESTORE_TM);
666 if (!MSR_TM_ACTIVE(regs->msr))
667 return;
668
829023df 669 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7
PM
670 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
671 if (msr_diff & MSR_FP) {
672 fp_enable();
673 load_fp_state(&current->thread.fp_state);
674 regs->msr |= current->thread.fpexc_mode;
675 }
676 if (msr_diff & MSR_VEC) {
677 vec_enable();
678 load_vr_state(&current->thread.vr_state);
679 }
680 regs->msr |= msr_diff;
681}
682
fb09692e
MN
683#else
684#define tm_recheckpoint_new_task(new)
685#define __switch_to_tm(prev)
686#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 687
152d523e
AB
688static inline void save_sprs(struct thread_struct *t)
689{
690#ifdef CONFIG_ALTIVEC
691 if (cpu_has_feature(cpu_has_feature(CPU_FTR_ALTIVEC)))
692 t->vrsave = mfspr(SPRN_VRSAVE);
693#endif
694#ifdef CONFIG_PPC_BOOK3S_64
695 if (cpu_has_feature(CPU_FTR_DSCR))
696 t->dscr = mfspr(SPRN_DSCR);
697
698 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
699 t->bescr = mfspr(SPRN_BESCR);
700 t->ebbhr = mfspr(SPRN_EBBHR);
701 t->ebbrr = mfspr(SPRN_EBBRR);
702
703 t->fscr = mfspr(SPRN_FSCR);
704
705 /*
706 * Note that the TAR is not available for use in the kernel.
707 * (To provide this, the TAR should be backed up/restored on
708 * exception entry/exit instead, and be in pt_regs. FIXME,
709 * this should be in pt_regs anyway (for debug).)
710 */
711 t->tar = mfspr(SPRN_TAR);
712 }
713#endif
714}
715
716static inline void restore_sprs(struct thread_struct *old_thread,
717 struct thread_struct *new_thread)
718{
719#ifdef CONFIG_ALTIVEC
720 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
721 old_thread->vrsave != new_thread->vrsave)
722 mtspr(SPRN_VRSAVE, new_thread->vrsave);
723#endif
724#ifdef CONFIG_PPC_BOOK3S_64
725 if (cpu_has_feature(CPU_FTR_DSCR)) {
726 u64 dscr = get_paca()->dscr_default;
727 u64 fscr = old_thread->fscr & ~FSCR_DSCR;
728
729 if (new_thread->dscr_inherit) {
730 dscr = new_thread->dscr;
731 fscr |= FSCR_DSCR;
732 }
733
734 if (old_thread->dscr != dscr)
735 mtspr(SPRN_DSCR, dscr);
736
737 if (old_thread->fscr != fscr)
738 mtspr(SPRN_FSCR, fscr);
739 }
740
741 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
742 if (old_thread->bescr != new_thread->bescr)
743 mtspr(SPRN_BESCR, new_thread->bescr);
744 if (old_thread->ebbhr != new_thread->ebbhr)
745 mtspr(SPRN_EBBHR, new_thread->ebbhr);
746 if (old_thread->ebbrr != new_thread->ebbrr)
747 mtspr(SPRN_EBBRR, new_thread->ebbrr);
748
749 if (old_thread->tar != new_thread->tar)
750 mtspr(SPRN_TAR, new_thread->tar);
751 }
752#endif
753}
754
14cf11af
PM
755struct task_struct *__switch_to(struct task_struct *prev,
756 struct task_struct *new)
757{
758 struct thread_struct *new_thread, *old_thread;
14cf11af 759 struct task_struct *last;
d6bf29b4
PZ
760#ifdef CONFIG_PPC_BOOK3S_64
761 struct ppc64_tlb_batch *batch;
762#endif
14cf11af 763
152d523e
AB
764 new_thread = &new->thread;
765 old_thread = &current->thread;
766
7ba5fef7
MN
767 WARN_ON(!irqs_disabled());
768
152d523e
AB
769 /*
770 * We need to save SPRs before treclaim/trecheckpoint as these will
771 * change a number of them.
c2d52644 772 */
152d523e 773 save_sprs(&prev->thread);
c2d52644 774
bc2a9408
MN
775 __switch_to_tm(prev);
776
14cf11af
PM
777 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
778 giveup_fpu(prev);
779#ifdef CONFIG_ALTIVEC
14cf11af
PM
780 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
781 giveup_altivec(prev);
14cf11af 782#endif /* CONFIG_ALTIVEC */
ce48b210
MN
783#ifdef CONFIG_VSX
784 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
7c292170
MN
785 /* VMX and FPU registers are already save here */
786 __giveup_vsx(prev);
ce48b210 787#endif /* CONFIG_VSX */
14cf11af 788#ifdef CONFIG_SPE
14cf11af
PM
789 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
790 giveup_spe(prev);
c0c0d996
PM
791#endif /* CONFIG_SPE */
792
172ae2e7 793#ifdef CONFIG_PPC_ADV_DEBUG_REGS
f5f97210 794 switch_booke_debug_regs(&new->thread.debug);
c6c9eace 795#else
5aae8a53
P
796/*
797 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
798 * schedule DABR
799 */
800#ifndef CONFIG_HAVE_HW_BREAKPOINT
69111bac 801 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
21f58507 802 __set_breakpoint(&new->thread.hw_brk);
5aae8a53 803#endif /* CONFIG_HAVE_HW_BREAKPOINT */
d6a61bfc
LM
804#endif
805
06d67d54
PM
806#ifdef CONFIG_PPC64
807 /*
808 * Collect processor utilization data per process
809 */
810 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
69111bac 811 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
06d67d54
PM
812 long unsigned start_tb, current_tb;
813 start_tb = old_thread->start_tb;
814 cu->current_tb = current_tb = mfspr(SPRN_PURR);
815 old_thread->accum_tb += (current_tb - start_tb);
816 new_thread->start_tb = current_tb;
817 }
d6bf29b4
PZ
818#endif /* CONFIG_PPC64 */
819
820#ifdef CONFIG_PPC_BOOK3S_64
69111bac 821 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
822 if (batch->active) {
823 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
824 if (batch->index)
825 __flush_tlb_pending(batch);
826 batch->active = 0;
827 }
828#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 829
44387e9f
AB
830 /*
831 * We can't take a PMU exception inside _switch() since there is a
832 * window where the kernel stack SLB and the kernel stack are out
833 * of sync. Hard disable here.
834 */
835 hard_irq_disable();
bc2a9408
MN
836
837 tm_recheckpoint_new_task(new);
838
14cf11af
PM
839 last = _switch(old_thread, new_thread);
840
152d523e
AB
841 /* Need to recalculate these after calling _switch() */
842 old_thread = &last->thread;
843 new_thread = &current->thread;
844
d6bf29b4
PZ
845#ifdef CONFIG_PPC_BOOK3S_64
846 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
847 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 848 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
849 batch->active = 1;
850 }
851#endif /* CONFIG_PPC_BOOK3S_64 */
852
152d523e
AB
853 restore_sprs(old_thread, new_thread);
854
14cf11af
PM
855 return last;
856}
857
06d67d54
PM
858static int instructions_to_print = 16;
859
06d67d54
PM
860static void show_instructions(struct pt_regs *regs)
861{
862 int i;
863 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
864 sizeof(int));
865
866 printk("Instruction dump:");
867
868 for (i = 0; i < instructions_to_print; i++) {
869 int instr;
870
871 if (!(i % 8))
872 printk("\n");
873
0de2d820
SW
874#if !defined(CONFIG_BOOKE)
875 /* If executing with the IMMU off, adjust pc rather
876 * than print XXXXXXXX.
877 */
878 if (!(regs->msr & MSR_IR))
879 pc = (unsigned long)phys_to_virt(pc);
880#endif
881
00ae36de 882 if (!__kernel_text_address(pc) ||
7b051f66 883 probe_kernel_address((unsigned int __user *)pc, instr)) {
40c8cefa 884 printk(KERN_CONT "XXXXXXXX ");
06d67d54
PM
885 } else {
886 if (regs->nip == pc)
40c8cefa 887 printk(KERN_CONT "<%08x> ", instr);
06d67d54 888 else
40c8cefa 889 printk(KERN_CONT "%08x ", instr);
06d67d54
PM
890 }
891
892 pc += sizeof(int);
893 }
894
895 printk("\n");
896}
897
898static struct regbit {
899 unsigned long bit;
900 const char *name;
901} msr_bits[] = {
3bfd0c9c
AB
902#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
903 {MSR_SF, "SF"},
904 {MSR_HV, "HV"},
905#endif
906 {MSR_VEC, "VEC"},
907 {MSR_VSX, "VSX"},
908#ifdef CONFIG_BOOKE
909 {MSR_CE, "CE"},
910#endif
06d67d54
PM
911 {MSR_EE, "EE"},
912 {MSR_PR, "PR"},
913 {MSR_FP, "FP"},
914 {MSR_ME, "ME"},
3bfd0c9c 915#ifdef CONFIG_BOOKE
1b98326b 916 {MSR_DE, "DE"},
3bfd0c9c
AB
917#else
918 {MSR_SE, "SE"},
919 {MSR_BE, "BE"},
920#endif
06d67d54
PM
921 {MSR_IR, "IR"},
922 {MSR_DR, "DR"},
3bfd0c9c
AB
923 {MSR_PMM, "PMM"},
924#ifndef CONFIG_BOOKE
925 {MSR_RI, "RI"},
926 {MSR_LE, "LE"},
927#endif
06d67d54
PM
928 {0, NULL}
929};
930
931static void printbits(unsigned long val, struct regbit *bits)
932{
933 const char *sep = "";
934
935 printk("<");
936 for (; bits->bit; ++bits)
937 if (val & bits->bit) {
938 printk("%s%s", sep, bits->name);
939 sep = ",";
940 }
941 printk(">");
942}
943
944#ifdef CONFIG_PPC64
f6f7dde3 945#define REG "%016lx"
06d67d54
PM
946#define REGS_PER_LINE 4
947#define LAST_VOLATILE 13
948#else
f6f7dde3 949#define REG "%08lx"
06d67d54
PM
950#define REGS_PER_LINE 8
951#define LAST_VOLATILE 12
952#endif
953
14cf11af
PM
954void show_regs(struct pt_regs * regs)
955{
956 int i, trap;
957
a43cb95d
TH
958 show_regs_print_info(KERN_DEFAULT);
959
06d67d54
PM
960 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
961 regs->nip, regs->link, regs->ctr);
962 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 963 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
964 printk("MSR: "REG" ", regs->msr);
965 printbits(regs->msr, msr_bits);
f6f7dde3 966 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 967 trap = TRAP(regs);
5115a026 968 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
9db8bcfd 969 printk("CFAR: "REG" ", regs->orig_gpr3);
c5400649 970 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 971#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
9db8bcfd 972 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 973#else
9db8bcfd
AB
974 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
975#endif
976#ifdef CONFIG_PPC64
977 printk("SOFTE: %ld ", regs->softe);
978#endif
979#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a
AB
980 if (MSR_TM_ACTIVE(regs->msr))
981 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 982#endif
14cf11af
PM
983
984 for (i = 0; i < 32; i++) {
06d67d54 985 if ((i % REGS_PER_LINE) == 0)
a2367194 986 printk("\nGPR%02d: ", i);
06d67d54
PM
987 printk(REG " ", regs->gpr[i]);
988 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
989 break;
990 }
991 printk("\n");
992#ifdef CONFIG_KALLSYMS
993 /*
994 * Lookup NIP late so we have the best change of getting the
995 * above info out without failing
996 */
058c78f4
BH
997 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
998 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 999#endif
14cf11af 1000 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1001 if (!user_mode(regs))
1002 show_instructions(regs);
14cf11af
PM
1003}
1004
1005void exit_thread(void)
1006{
14cf11af
PM
1007}
1008
1009void flush_thread(void)
1010{
e0780b72 1011#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1012 flush_ptrace_hw_breakpoint(current);
e0780b72 1013#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1014 set_debug_reg_defaults(&current->thread);
e0780b72 1015#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1016}
1017
1018void
1019release_thread(struct task_struct *t)
1020{
1021}
1022
1023/*
55ccf3fe
SS
1024 * this gets called so that we can store coprocessor state into memory and
1025 * copy the current task into the new thread.
14cf11af 1026 */
55ccf3fe 1027int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1028{
55ccf3fe
SS
1029 flush_fp_to_thread(src);
1030 flush_altivec_to_thread(src);
1031 flush_vsx_to_thread(src);
1032 flush_spe_to_thread(src);
621b5060
MN
1033 /*
1034 * Flush TM state out so we can copy it. __switch_to_tm() does this
1035 * flush but it removes the checkpointed state from the current CPU and
1036 * transitions the CPU out of TM mode. Hence we need to call
1037 * tm_recheckpoint_new_task() (on the same task) to restore the
1038 * checkpointed state back and the TM mode.
1039 */
1040 __switch_to_tm(src);
1041 tm_recheckpoint_new_task(src);
330a1eb7 1042
55ccf3fe 1043 *dst = *src;
330a1eb7
ME
1044
1045 clear_task_ebb(dst);
1046
55ccf3fe 1047 return 0;
14cf11af
PM
1048}
1049
cec15488
ME
1050static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1051{
1052#ifdef CONFIG_PPC_STD_MMU_64
1053 unsigned long sp_vsid;
1054 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1055
1056 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1057 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1058 << SLB_VSID_SHIFT_1T;
1059 else
1060 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1061 << SLB_VSID_SHIFT;
1062 sp_vsid |= SLB_VSID_KERNEL | llp;
1063 p->thread.ksp_vsid = sp_vsid;
1064#endif
1065}
1066
14cf11af
PM
1067/*
1068 * Copy a thread..
1069 */
efcac658 1070
6eca8933
AD
1071/*
1072 * Copy architecture-specific thread state
1073 */
6f2c55b8 1074int copy_thread(unsigned long clone_flags, unsigned long usp,
6eca8933 1075 unsigned long kthread_arg, struct task_struct *p)
14cf11af
PM
1076{
1077 struct pt_regs *childregs, *kregs;
1078 extern void ret_from_fork(void);
58254e10
AV
1079 extern void ret_from_kernel_thread(void);
1080 void (*f)(void);
0cec6fd1 1081 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af 1082
14cf11af
PM
1083 /* Copy registers */
1084 sp -= sizeof(struct pt_regs);
1085 childregs = (struct pt_regs *) sp;
ab75819d 1086 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1087 /* kernel thread */
138d1ce8 1088 struct thread_info *ti = (void *)task_stack_page(p);
58254e10 1089 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1090 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1091 /* function */
1092 if (usp)
1093 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1094#ifdef CONFIG_PPC64
b5e2fc1c 1095 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 1096 childregs->softe = 1;
06d67d54 1097#endif
6eca8933 1098 childregs->gpr[15] = kthread_arg;
14cf11af 1099 p->thread.regs = NULL; /* no user register state */
138d1ce8 1100 ti->flags |= _TIF_RESTOREALL;
58254e10 1101 f = ret_from_kernel_thread;
14cf11af 1102 } else {
6eca8933 1103 /* user thread */
afa86fc4 1104 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1105 CHECK_FULL_REGS(regs);
1106 *childregs = *regs;
ea516b11
AV
1107 if (usp)
1108 childregs->gpr[1] = usp;
14cf11af 1109 p->thread.regs = childregs;
58254e10 1110 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1111 if (clone_flags & CLONE_SETTLS) {
1112#ifdef CONFIG_PPC64
9904b005 1113 if (!is_32bit_task())
06d67d54
PM
1114 childregs->gpr[13] = childregs->gpr[6];
1115 else
1116#endif
1117 childregs->gpr[2] = childregs->gpr[6];
1118 }
58254e10
AV
1119
1120 f = ret_from_fork;
14cf11af 1121 }
14cf11af 1122 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1123
1124 /*
1125 * The way this works is that at some point in the future
1126 * some task will call _switch to switch to the new task.
1127 * That will pop off the stack frame created below and start
1128 * the new task running at ret_from_fork. The new task will
1129 * do some house keeping and then return from the fork or clone
1130 * system call, using the stack frame created above.
1131 */
af945cf4 1132 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1133 sp -= sizeof(struct pt_regs);
1134 kregs = (struct pt_regs *) sp;
1135 sp -= STACK_FRAME_OVERHEAD;
1136 p->thread.ksp = sp;
cbc9565e 1137#ifdef CONFIG_PPC32
85218827
KG
1138 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1139 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1140#endif
28d170ab
ON
1141#ifdef CONFIG_HAVE_HW_BREAKPOINT
1142 p->thread.ptrace_bps[0] = NULL;
1143#endif
1144
18461960
PM
1145 p->thread.fp_save_area = NULL;
1146#ifdef CONFIG_ALTIVEC
1147 p->thread.vr_save_area = NULL;
1148#endif
1149
cec15488
ME
1150 setup_ksp_vsid(p, sp);
1151
efcac658
AK
1152#ifdef CONFIG_PPC64
1153 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26
AB
1154 p->thread.dscr_inherit = current->thread.dscr_inherit;
1155 p->thread.dscr = current->thread.dscr;
efcac658 1156 }
92779245
HM
1157 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1158 p->thread.ppr = INIT_PPR;
efcac658 1159#endif
7cedd601 1160 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1161 return 0;
1162}
1163
1164/*
1165 * Set up a thread for executing a new program
1166 */
06d67d54 1167void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1168{
90eac727
ME
1169#ifdef CONFIG_PPC64
1170 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1171#endif
1172
06d67d54
PM
1173 /*
1174 * If we exec out of a kernel thread then thread.regs will not be
1175 * set. Do it now.
1176 */
1177 if (!current->thread.regs) {
0cec6fd1
AV
1178 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1179 current->thread.regs = regs - 1;
06d67d54
PM
1180 }
1181
14cf11af
PM
1182 memset(regs->gpr, 0, sizeof(regs->gpr));
1183 regs->ctr = 0;
1184 regs->link = 0;
1185 regs->xer = 0;
1186 regs->ccr = 0;
14cf11af 1187 regs->gpr[1] = sp;
06d67d54 1188
474f8196
RM
1189 /*
1190 * We have just cleared all the nonvolatile GPRs, so make
1191 * FULL_REGS(regs) return true. This is necessary to allow
1192 * ptrace to examine the thread immediately after exec.
1193 */
1194 regs->trap &= ~1UL;
1195
06d67d54
PM
1196#ifdef CONFIG_PPC32
1197 regs->mq = 0;
1198 regs->nip = start;
14cf11af 1199 regs->msr = MSR_USER;
06d67d54 1200#else
9904b005 1201 if (!is_32bit_task()) {
94af3abf 1202 unsigned long entry;
06d67d54 1203
94af3abf
RR
1204 if (is_elf2_task()) {
1205 /* Look ma, no function descriptors! */
1206 entry = start;
06d67d54 1207
94af3abf
RR
1208 /*
1209 * Ulrich says:
1210 * The latest iteration of the ABI requires that when
1211 * calling a function (at its global entry point),
1212 * the caller must ensure r12 holds the entry point
1213 * address (so that the function can quickly
1214 * establish addressability).
1215 */
1216 regs->gpr[12] = start;
1217 /* Make sure that's restored on entry to userspace. */
1218 set_thread_flag(TIF_RESTOREALL);
1219 } else {
1220 unsigned long toc;
1221
1222 /* start is a relocated pointer to the function
1223 * descriptor for the elf _start routine. The first
1224 * entry in the function descriptor is the entry
1225 * address of _start and the second entry is the TOC
1226 * value we need to use.
1227 */
1228 __get_user(entry, (unsigned long __user *)start);
1229 __get_user(toc, (unsigned long __user *)start+1);
1230
1231 /* Check whether the e_entry function descriptor entries
1232 * need to be relocated before we can use them.
1233 */
1234 if (load_addr != 0) {
1235 entry += load_addr;
1236 toc += load_addr;
1237 }
1238 regs->gpr[2] = toc;
06d67d54
PM
1239 }
1240 regs->nip = entry;
06d67d54 1241 regs->msr = MSR_USER64;
d4bf9a78
SR
1242 } else {
1243 regs->nip = start;
1244 regs->gpr[2] = 0;
1245 regs->msr = MSR_USER32;
06d67d54
PM
1246 }
1247#endif
ce48b210
MN
1248#ifdef CONFIG_VSX
1249 current->thread.used_vsr = 0;
1250#endif
de79f7b9 1251 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1252 current->thread.fp_save_area = NULL;
14cf11af 1253#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1254 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1255 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1256 current->thread.vr_save_area = NULL;
14cf11af
PM
1257 current->thread.vrsave = 0;
1258 current->thread.used_vr = 0;
1259#endif /* CONFIG_ALTIVEC */
1260#ifdef CONFIG_SPE
1261 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1262 current->thread.acc = 0;
1263 current->thread.spefscr = 0;
1264 current->thread.used_spe = 0;
1265#endif /* CONFIG_SPE */
bc2a9408
MN
1266#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1267 if (cpu_has_feature(CPU_FTR_TM))
1268 regs->msr |= MSR_TM;
1269 current->thread.tm_tfhar = 0;
1270 current->thread.tm_texasr = 0;
1271 current->thread.tm_tfiar = 0;
1272#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af 1273}
e1802b06 1274EXPORT_SYMBOL(start_thread);
14cf11af
PM
1275
1276#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1277 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1278
1279int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1280{
1281 struct pt_regs *regs = tsk->thread.regs;
1282
1283 /* This is a bit hairy. If we are an SPE enabled processor
1284 * (have embedded fp) we store the IEEE exception enable flags in
1285 * fpexc_mode. fpexc_mode is also used for setting FP exception
1286 * mode (asyn, precise, disabled) for 'Classic' FP. */
1287 if (val & PR_FP_EXC_SW_ENABLE) {
1288#ifdef CONFIG_SPE
5e14d21e 1289 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1290 /*
1291 * When the sticky exception bits are set
1292 * directly by userspace, it must call prctl
1293 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1294 * in the existing prctl settings) or
1295 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1296 * the bits being set). <fenv.h> functions
1297 * saving and restoring the whole
1298 * floating-point environment need to do so
1299 * anyway to restore the prctl settings from
1300 * the saved environment.
1301 */
1302 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1303 tsk->thread.fpexc_mode = val &
1304 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1305 return 0;
1306 } else {
1307 return -EINVAL;
1308 }
14cf11af
PM
1309#else
1310 return -EINVAL;
1311#endif
14cf11af 1312 }
06d67d54
PM
1313
1314 /* on a CONFIG_SPE this does not hurt us. The bits that
1315 * __pack_fe01 use do not overlap with bits used for
1316 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1317 * on CONFIG_SPE implementations are reserved so writing to
1318 * them does not change anything */
1319 if (val > PR_FP_EXC_PRECISE)
1320 return -EINVAL;
1321 tsk->thread.fpexc_mode = __pack_fe01(val);
1322 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1323 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1324 | tsk->thread.fpexc_mode;
14cf11af
PM
1325 return 0;
1326}
1327
1328int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1329{
1330 unsigned int val;
1331
1332 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1333#ifdef CONFIG_SPE
640e9225
JM
1334 if (cpu_has_feature(CPU_FTR_SPE)) {
1335 /*
1336 * When the sticky exception bits are set
1337 * directly by userspace, it must call prctl
1338 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1339 * in the existing prctl settings) or
1340 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1341 * the bits being set). <fenv.h> functions
1342 * saving and restoring the whole
1343 * floating-point environment need to do so
1344 * anyway to restore the prctl settings from
1345 * the saved environment.
1346 */
1347 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1348 val = tsk->thread.fpexc_mode;
640e9225 1349 } else
5e14d21e 1350 return -EINVAL;
14cf11af
PM
1351#else
1352 return -EINVAL;
1353#endif
1354 else
1355 val = __unpack_fe01(tsk->thread.fpexc_mode);
1356 return put_user(val, (unsigned int __user *) adr);
1357}
1358
fab5db97
PM
1359int set_endian(struct task_struct *tsk, unsigned int val)
1360{
1361 struct pt_regs *regs = tsk->thread.regs;
1362
1363 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1364 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1365 return -EINVAL;
1366
1367 if (regs == NULL)
1368 return -EINVAL;
1369
1370 if (val == PR_ENDIAN_BIG)
1371 regs->msr &= ~MSR_LE;
1372 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1373 regs->msr |= MSR_LE;
1374 else
1375 return -EINVAL;
1376
1377 return 0;
1378}
1379
1380int get_endian(struct task_struct *tsk, unsigned long adr)
1381{
1382 struct pt_regs *regs = tsk->thread.regs;
1383 unsigned int val;
1384
1385 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1386 !cpu_has_feature(CPU_FTR_REAL_LE))
1387 return -EINVAL;
1388
1389 if (regs == NULL)
1390 return -EINVAL;
1391
1392 if (regs->msr & MSR_LE) {
1393 if (cpu_has_feature(CPU_FTR_REAL_LE))
1394 val = PR_ENDIAN_LITTLE;
1395 else
1396 val = PR_ENDIAN_PPC_LITTLE;
1397 } else
1398 val = PR_ENDIAN_BIG;
1399
1400 return put_user(val, (unsigned int __user *)adr);
1401}
1402
e9370ae1
PM
1403int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1404{
1405 tsk->thread.align_ctl = val;
1406 return 0;
1407}
1408
1409int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1410{
1411 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1412}
1413
bb72c481
PM
1414static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1415 unsigned long nbytes)
1416{
1417 unsigned long stack_page;
1418 unsigned long cpu = task_cpu(p);
1419
1420 /*
1421 * Avoid crashing if the stack has overflowed and corrupted
1422 * task_cpu(p), which is in the thread_info struct.
1423 */
1424 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1425 stack_page = (unsigned long) hardirq_ctx[cpu];
1426 if (sp >= stack_page + sizeof(struct thread_struct)
1427 && sp <= stack_page + THREAD_SIZE - nbytes)
1428 return 1;
1429
1430 stack_page = (unsigned long) softirq_ctx[cpu];
1431 if (sp >= stack_page + sizeof(struct thread_struct)
1432 && sp <= stack_page + THREAD_SIZE - nbytes)
1433 return 1;
1434 }
1435 return 0;
1436}
1437
2f25194d 1438int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1439 unsigned long nbytes)
1440{
0cec6fd1 1441 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1442
1443 if (sp >= stack_page + sizeof(struct thread_struct)
1444 && sp <= stack_page + THREAD_SIZE - nbytes)
1445 return 1;
1446
bb72c481 1447 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1448}
1449
2f25194d
AB
1450EXPORT_SYMBOL(validate_sp);
1451
14cf11af
PM
1452unsigned long get_wchan(struct task_struct *p)
1453{
1454 unsigned long ip, sp;
1455 int count = 0;
1456
1457 if (!p || p == current || p->state == TASK_RUNNING)
1458 return 0;
1459
1460 sp = p->thread.ksp;
ec2b36b9 1461 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1462 return 0;
1463
1464 do {
1465 sp = *(unsigned long *)sp;
ec2b36b9 1466 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1467 return 0;
1468 if (count > 0) {
ec2b36b9 1469 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1470 if (!in_sched_functions(ip))
1471 return ip;
1472 }
1473 } while (count++ < 16);
1474 return 0;
1475}
06d67d54 1476
c4d04be1 1477static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1478
1479void show_stack(struct task_struct *tsk, unsigned long *stack)
1480{
1481 unsigned long sp, ip, lr, newsp;
1482 int count = 0;
1483 int firstframe = 1;
6794c782
SR
1484#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1485 int curr_frame = current->curr_ret_stack;
1486 extern void return_to_handler(void);
9135c3cc 1487 unsigned long rth = (unsigned long)return_to_handler;
6794c782 1488#endif
06d67d54
PM
1489
1490 sp = (unsigned long) stack;
1491 if (tsk == NULL)
1492 tsk = current;
1493 if (sp == 0) {
1494 if (tsk == current)
acf620ec 1495 sp = current_stack_pointer();
06d67d54
PM
1496 else
1497 sp = tsk->thread.ksp;
1498 }
1499
1500 lr = 0;
1501 printk("Call Trace:\n");
1502 do {
ec2b36b9 1503 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1504 return;
1505
1506 stack = (unsigned long *) sp;
1507 newsp = stack[0];
ec2b36b9 1508 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1509 if (!firstframe || ip != lr) {
058c78f4 1510 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1511#ifdef CONFIG_FUNCTION_GRAPH_TRACER
7d56c65a 1512 if ((ip == rth) && curr_frame >= 0) {
6794c782
SR
1513 printk(" (%pS)",
1514 (void *)current->ret_stack[curr_frame].ret);
1515 curr_frame--;
1516 }
1517#endif
06d67d54
PM
1518 if (firstframe)
1519 printk(" (unreliable)");
1520 printk("\n");
1521 }
1522 firstframe = 0;
1523
1524 /*
1525 * See if this is an exception frame.
1526 * We look for the "regshere" marker in the current frame.
1527 */
ec2b36b9
BH
1528 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1529 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1530 struct pt_regs *regs = (struct pt_regs *)
1531 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1532 lr = regs->link;
9be9be2e 1533 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 1534 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1535 firstframe = 1;
1536 }
1537
1538 sp = newsp;
1539 } while (count++ < kstack_depth_to_print);
1540}
1541
cb2c9b27 1542#ifdef CONFIG_PPC64
fe1952fc 1543/* Called with hard IRQs off */
0e37739b 1544void notrace __ppc64_runlatch_on(void)
cb2c9b27 1545{
fe1952fc 1546 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1547 unsigned long ctrl;
1548
fe1952fc
BH
1549 ctrl = mfspr(SPRN_CTRLF);
1550 ctrl |= CTRL_RUNLATCH;
1551 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1552
fae2e0fb 1553 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
1554}
1555
fe1952fc 1556/* Called with hard IRQs off */
0e37739b 1557void notrace __ppc64_runlatch_off(void)
cb2c9b27 1558{
fe1952fc 1559 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1560 unsigned long ctrl;
1561
fae2e0fb 1562 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 1563
4138d653
AB
1564 ctrl = mfspr(SPRN_CTRLF);
1565 ctrl &= ~CTRL_RUNLATCH;
1566 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1567}
fe1952fc 1568#endif /* CONFIG_PPC64 */
f6a61680 1569
d839088c
AB
1570unsigned long arch_align_stack(unsigned long sp)
1571{
1572 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1573 sp -= get_random_int() & ~PAGE_MASK;
1574 return sp & ~0xf;
1575}
912f9ee2
AB
1576
1577static inline unsigned long brk_rnd(void)
1578{
1579 unsigned long rnd = 0;
1580
1581 /* 8MB for 32bit, 1GB for 64bit */
1582 if (is_32bit_task())
1583 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1584 else
1585 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1586
1587 return rnd << PAGE_SHIFT;
1588}
1589
1590unsigned long arch_randomize_brk(struct mm_struct *mm)
1591{
8bbde7a7
AB
1592 unsigned long base = mm->brk;
1593 unsigned long ret;
1594
ce7a35c7 1595#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1596 /*
1597 * If we are using 1TB segments and we are allowed to randomise
1598 * the heap, we can put it above 1TB so it is backed by a 1TB
1599 * segment. Otherwise the heap will be in the bottom 1TB
1600 * which always uses 256MB segments and this may result in a
1601 * performance penalty.
1602 */
1603 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1604 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1605#endif
1606
1607 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1608
1609 if (ret < mm->brk)
1610 return mm->brk;
1611
1612 return ret;
1613}
501cb16d 1614