powerpc: copy_thread make ret_from_fork register setup consistent
[linux-2.6-block.git] / arch / powerpc / kernel / process.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
14cf11af 2/*
14cf11af
PM
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
8 *
9 * PowerPC version
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
14cf11af
PM
11 */
12
14cf11af
PM
13#include <linux/errno.h>
14#include <linux/sched.h>
b17b0153 15#include <linux/sched/debug.h>
29930025 16#include <linux/sched/task.h>
68db0cf1 17#include <linux/sched/task_stack.h>
14cf11af
PM
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/smp.h>
14cf11af
PM
21#include <linux/stddef.h>
22#include <linux/unistd.h>
23#include <linux/ptrace.h>
24#include <linux/slab.h>
25#include <linux/user.h>
26#include <linux/elf.h>
14cf11af
PM
27#include <linux/prctl.h>
28#include <linux/init_task.h>
4b16f8e2 29#include <linux/export.h>
14cf11af
PM
30#include <linux/kallsyms.h>
31#include <linux/mqueue.h>
32#include <linux/hardirq.h>
06d67d54 33#include <linux/utsname.h>
6794c782 34#include <linux/ftrace.h>
79741dd3 35#include <linux/kernel_stat.h>
d839088c 36#include <linux/personality.h>
5aae8a53 37#include <linux/hw_breakpoint.h>
7b051f66 38#include <linux/uaccess.h>
06bb53b3 39#include <linux/pkeys.h>
fb2d9505 40#include <linux/seq_buf.h>
14cf11af 41
3a96570f 42#include <asm/interrupt.h>
14cf11af
PM
43#include <asm/io.h>
44#include <asm/processor.h>
45#include <asm/mmu.h>
76032de8 46#include <asm/machdep.h>
c6622f63 47#include <asm/time.h>
ae3a197e 48#include <asm/runlatch.h>
a7f31841 49#include <asm/syscalls.h>
ae3a197e 50#include <asm/switch_to.h>
fb09692e 51#include <asm/tm.h>
ae3a197e 52#include <asm/debug.h>
06d67d54
PM
53#ifdef CONFIG_PPC64
54#include <asm/firmware.h>
c2e480ba 55#include <asm/hw_irq.h>
06d67d54 56#endif
7cedd601 57#include <asm/code-patching.h>
7f92bc56 58#include <asm/exec.h>
5d31a96e 59#include <asm/livepatch.h>
b92a226e 60#include <asm/cpu_has_feature.h>
0545d543 61#include <asm/asm-prototypes.h>
c9386bfd 62#include <asm/stacktrace.h>
c1fe190c 63#include <asm/hw_breakpoint.h>
5d31a96e 64
d6a61bfc
LM
65#include <linux/kprobes.h>
66#include <linux/kdebug.h>
14cf11af 67
8b3c34cf
MN
68/* Transactional Memory debug */
69#ifdef TM_DEBUG_SW
70#define TM_DEBUG(x...) printk(KERN_INFO x)
71#else
72#define TM_DEBUG(x...) do { } while(0)
73#endif
74
14cf11af
PM
75extern unsigned long _get_SP(void);
76
d31626f7 77#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
54820530
ME
78/*
79 * Are we running in "Suspend disabled" mode? If so we have to block any
80 * sigreturn that would get us into suspended state, and we also warn in some
81 * other paths that we should never reach with suspend disabled.
82 */
83bool tm_suspend_disabled __ro_after_init = false;
84
b86fd2bd 85static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
86{
87 /*
88 * If we are saving the current thread's registers, and the
89 * thread is in a transactional state, set the TIF_RESTORE_TM
90 * bit so that we know to restore the registers before
91 * returning to userspace.
92 */
93 if (tsk == current && tsk->thread.regs &&
94 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
95 !test_thread_flag(TIF_RESTORE_TM)) {
59dc5bfc
NP
96 regs_set_return_msr(&tsk->thread.ckpt_regs,
97 tsk->thread.regs->msr);
d31626f7
PM
98 set_thread_flag(TIF_RESTORE_TM);
99 }
d31626f7 100}
dc16b553 101
d31626f7 102#else
b86fd2bd 103static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
d31626f7
PM
104#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
105
3eb5d588
AB
106bool strict_msr_control;
107EXPORT_SYMBOL(strict_msr_control);
108
109static int __init enable_strict_msr_control(char *str)
110{
111 strict_msr_control = true;
112 pr_info("Enabling strict facility control\n");
113
114 return 0;
115}
116early_param("ppc_strict_facility_enable", enable_strict_msr_control);
117
e2b36d59
NP
118/* notrace because it's called by restore_math */
119unsigned long notrace msr_check_and_set(unsigned long bits)
98da581e 120{
a0e72cf1
AB
121 unsigned long oldmsr = mfmsr();
122 unsigned long newmsr;
98da581e 123
a0e72cf1 124 newmsr = oldmsr | bits;
98da581e 125
a0e72cf1 126 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e 127 newmsr |= MSR_VSX;
a0e72cf1 128
98da581e 129 if (oldmsr != newmsr)
0fa68318 130 newmsr = mtmsr_isync_irqsafe(newmsr);
3cee070a
CB
131
132 return newmsr;
a0e72cf1 133}
d1c72112 134EXPORT_SYMBOL_GPL(msr_check_and_set);
98da581e 135
e2b36d59
NP
136/* notrace because it's called by restore_math */
137void notrace __msr_check_and_clear(unsigned long bits)
a0e72cf1
AB
138{
139 unsigned long oldmsr = mfmsr();
140 unsigned long newmsr;
141
142 newmsr = oldmsr & ~bits;
143
a0e72cf1
AB
144 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
145 newmsr &= ~MSR_VSX;
a0e72cf1
AB
146
147 if (oldmsr != newmsr)
0fa68318 148 mtmsr_isync_irqsafe(newmsr);
a0e72cf1 149}
3eb5d588 150EXPORT_SYMBOL(__msr_check_and_clear);
a0e72cf1
AB
151
152#ifdef CONFIG_PPC_FPU
1cdf039b 153static void __giveup_fpu(struct task_struct *tsk)
8792468d 154{
8eb98037
AB
155 unsigned long msr;
156
8792468d 157 save_fpu(tsk);
8eb98037 158 msr = tsk->thread.regs->msr;
fe1ef6bc 159 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
8792468d 160 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 161 msr &= ~MSR_VSX;
59dc5bfc 162 regs_set_return_msr(tsk->thread.regs, msr);
8792468d
CB
163}
164
a0e72cf1
AB
165void giveup_fpu(struct task_struct *tsk)
166{
167 check_if_tm_restore_required(tsk);
168
169 msr_check_and_set(MSR_FP);
98da581e 170 __giveup_fpu(tsk);
a0e72cf1 171 msr_check_and_clear(MSR_FP);
98da581e
AB
172}
173EXPORT_SYMBOL(giveup_fpu);
174
14cf11af
PM
175/*
176 * Make sure the floating-point register state in the
177 * the thread_struct is up to date for task tsk.
178 */
179void flush_fp_to_thread(struct task_struct *tsk)
180{
181 if (tsk->thread.regs) {
182 /*
183 * We need to disable preemption here because if we didn't,
184 * another process could get scheduled after the regs->msr
185 * test but before we have finished saving the FP registers
186 * to the thread_struct. That process could take over the
187 * FPU, and then when we get scheduled again we would store
188 * bogus values for the remaining FP registers.
189 */
190 preempt_disable();
191 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
192 /*
193 * This should only ever be called for current or
194 * for a stopped child process. Since we save away
af1bbc3d 195 * the FP register state on context switch,
14cf11af
PM
196 * there is something wrong if a stopped child appears
197 * to still have its FP state in the CPU registers.
198 */
199 BUG_ON(tsk != current);
b86fd2bd 200 giveup_fpu(tsk);
14cf11af
PM
201 }
202 preempt_enable();
203 }
204}
de56a948 205EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
206
207void enable_kernel_fp(void)
208{
e909fb83
CB
209 unsigned long cpumsr;
210
14cf11af
PM
211 WARN_ON(preemptible());
212
e909fb83 213 cpumsr = msr_check_and_set(MSR_FP);
611b0e5c 214
d64d02ce
AB
215 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
216 check_if_tm_restore_required(current);
e909fb83
CB
217 /*
218 * If a thread has already been reclaimed then the
219 * checkpointed registers are on the CPU but have definitely
220 * been saved by the reclaim code. Don't need to and *cannot*
221 * giveup as this would save to the 'live' structure not the
222 * checkpointed structure.
223 */
5c784c84
BL
224 if (!MSR_TM_ACTIVE(cpumsr) &&
225 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 226 return;
a0e72cf1 227 __giveup_fpu(current);
d64d02ce 228 }
14cf11af
PM
229}
230EXPORT_SYMBOL(enable_kernel_fp);
c83c192a
CL
231#else
232static inline void __giveup_fpu(struct task_struct *tsk) { }
d1e1cf2e 233#endif /* CONFIG_PPC_FPU */
14cf11af 234
14cf11af 235#ifdef CONFIG_ALTIVEC
6f515d84
CB
236static void __giveup_altivec(struct task_struct *tsk)
237{
8eb98037
AB
238 unsigned long msr;
239
6f515d84 240 save_altivec(tsk);
8eb98037
AB
241 msr = tsk->thread.regs->msr;
242 msr &= ~MSR_VEC;
6f515d84 243 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 244 msr &= ~MSR_VSX;
59dc5bfc 245 regs_set_return_msr(tsk->thread.regs, msr);
6f515d84
CB
246}
247
98da581e
AB
248void giveup_altivec(struct task_struct *tsk)
249{
98da581e
AB
250 check_if_tm_restore_required(tsk);
251
a0e72cf1 252 msr_check_and_set(MSR_VEC);
98da581e 253 __giveup_altivec(tsk);
a0e72cf1 254 msr_check_and_clear(MSR_VEC);
98da581e
AB
255}
256EXPORT_SYMBOL(giveup_altivec);
257
14cf11af
PM
258void enable_kernel_altivec(void)
259{
e909fb83
CB
260 unsigned long cpumsr;
261
14cf11af
PM
262 WARN_ON(preemptible());
263
e909fb83 264 cpumsr = msr_check_and_set(MSR_VEC);
611b0e5c 265
d64d02ce
AB
266 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
267 check_if_tm_restore_required(current);
e909fb83
CB
268 /*
269 * If a thread has already been reclaimed then the
270 * checkpointed registers are on the CPU but have definitely
271 * been saved by the reclaim code. Don't need to and *cannot*
272 * giveup as this would save to the 'live' structure not the
273 * checkpointed structure.
274 */
5c784c84
BL
275 if (!MSR_TM_ACTIVE(cpumsr) &&
276 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 277 return;
a0e72cf1 278 __giveup_altivec(current);
d64d02ce 279 }
14cf11af
PM
280}
281EXPORT_SYMBOL(enable_kernel_altivec);
282
283/*
284 * Make sure the VMX/Altivec register state in the
285 * the thread_struct is up to date for task tsk.
286 */
287void flush_altivec_to_thread(struct task_struct *tsk)
288{
289 if (tsk->thread.regs) {
290 preempt_disable();
291 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 292 BUG_ON(tsk != current);
b86fd2bd 293 giveup_altivec(tsk);
14cf11af
PM
294 }
295 preempt_enable();
296 }
297}
de56a948 298EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
14cf11af
PM
299#endif /* CONFIG_ALTIVEC */
300
ce48b210 301#ifdef CONFIG_VSX
bf6a4d5b 302static void __giveup_vsx(struct task_struct *tsk)
a7d623d4 303{
dc801081
BH
304 unsigned long msr = tsk->thread.regs->msr;
305
306 /*
1fd02f66 307 * We should never be setting MSR_VSX without also setting
dc801081
BH
308 * MSR_FP and MSR_VEC
309 */
310 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
311
312 /* __giveup_fpu will clear MSR_VSX */
313 if (msr & MSR_FP)
a7d623d4 314 __giveup_fpu(tsk);
dc801081 315 if (msr & MSR_VEC)
a7d623d4 316 __giveup_altivec(tsk);
bf6a4d5b
CB
317}
318
319static void giveup_vsx(struct task_struct *tsk)
320{
321 check_if_tm_restore_required(tsk);
322
323 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 324 __giveup_vsx(tsk);
a0e72cf1 325 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 326}
bf6a4d5b 327
ce48b210
MN
328void enable_kernel_vsx(void)
329{
e909fb83
CB
330 unsigned long cpumsr;
331
ce48b210
MN
332 WARN_ON(preemptible());
333
e909fb83 334 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 335
5a69aec9
BH
336 if (current->thread.regs &&
337 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
d64d02ce 338 check_if_tm_restore_required(current);
e909fb83
CB
339 /*
340 * If a thread has already been reclaimed then the
341 * checkpointed registers are on the CPU but have definitely
342 * been saved by the reclaim code. Don't need to and *cannot*
343 * giveup as this would save to the 'live' structure not the
344 * checkpointed structure.
345 */
5c784c84
BL
346 if (!MSR_TM_ACTIVE(cpumsr) &&
347 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 348 return;
a0e72cf1 349 __giveup_vsx(current);
611b0e5c 350 }
ce48b210
MN
351}
352EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
353
354void flush_vsx_to_thread(struct task_struct *tsk)
355{
356 if (tsk->thread.regs) {
357 preempt_disable();
5a69aec9 358 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
ce48b210 359 BUG_ON(tsk != current);
ce48b210
MN
360 giveup_vsx(tsk);
361 }
362 preempt_enable();
363 }
364}
de56a948 365EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
ce48b210
MN
366#endif /* CONFIG_VSX */
367
14cf11af 368#ifdef CONFIG_SPE
98da581e
AB
369void giveup_spe(struct task_struct *tsk)
370{
98da581e
AB
371 check_if_tm_restore_required(tsk);
372
a0e72cf1 373 msr_check_and_set(MSR_SPE);
98da581e 374 __giveup_spe(tsk);
a0e72cf1 375 msr_check_and_clear(MSR_SPE);
98da581e
AB
376}
377EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
378
379void enable_kernel_spe(void)
380{
381 WARN_ON(preemptible());
382
a0e72cf1 383 msr_check_and_set(MSR_SPE);
611b0e5c 384
d64d02ce
AB
385 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
386 check_if_tm_restore_required(current);
a0e72cf1 387 __giveup_spe(current);
d64d02ce 388 }
14cf11af
PM
389}
390EXPORT_SYMBOL(enable_kernel_spe);
391
392void flush_spe_to_thread(struct task_struct *tsk)
393{
394 if (tsk->thread.regs) {
395 preempt_disable();
396 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 397 BUG_ON(tsk != current);
685659ee 398 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 399 giveup_spe(tsk);
14cf11af
PM
400 }
401 preempt_enable();
402 }
403}
14cf11af
PM
404#endif /* CONFIG_SPE */
405
c2085059
AB
406static unsigned long msr_all_available;
407
408static int __init init_msr_all_available(void)
409{
c83c192a
CL
410 if (IS_ENABLED(CONFIG_PPC_FPU))
411 msr_all_available |= MSR_FP;
c2085059
AB
412 if (cpu_has_feature(CPU_FTR_ALTIVEC))
413 msr_all_available |= MSR_VEC;
c2085059
AB
414 if (cpu_has_feature(CPU_FTR_VSX))
415 msr_all_available |= MSR_VSX;
c2085059
AB
416 if (cpu_has_feature(CPU_FTR_SPE))
417 msr_all_available |= MSR_SPE;
c2085059
AB
418
419 return 0;
420}
421early_initcall(init_msr_all_available);
422
423void giveup_all(struct task_struct *tsk)
424{
425 unsigned long usermsr;
426
427 if (!tsk->thread.regs)
428 return;
429
8205d5d9
GR
430 check_if_tm_restore_required(tsk);
431
c2085059
AB
432 usermsr = tsk->thread.regs->msr;
433
434 if ((usermsr & msr_all_available) == 0)
435 return;
436
437 msr_check_and_set(msr_all_available);
438
96c79b6b
BH
439 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
440
c2085059
AB
441 if (usermsr & MSR_FP)
442 __giveup_fpu(tsk);
c2085059
AB
443 if (usermsr & MSR_VEC)
444 __giveup_altivec(tsk);
c2085059
AB
445 if (usermsr & MSR_SPE)
446 __giveup_spe(tsk);
c2085059
AB
447
448 msr_check_and_clear(msr_all_available);
449}
450EXPORT_SYMBOL(giveup_all);
451
6cc0c16d
NP
452#ifdef CONFIG_PPC_BOOK3S_64
453#ifdef CONFIG_PPC_FPU
01eb0187 454static bool should_restore_fp(void)
6cc0c16d 455{
01eb0187 456 if (current->thread.load_fp) {
6cc0c16d 457 current->thread.load_fp++;
01eb0187 458 return true;
6cc0c16d 459 }
01eb0187
NP
460 return false;
461}
462
463static void do_restore_fp(void)
464{
465 load_fp_state(&current->thread.fp_state);
6cc0c16d
NP
466}
467#else
01eb0187
NP
468static bool should_restore_fp(void) { return false; }
469static void do_restore_fp(void) { }
6cc0c16d
NP
470#endif /* CONFIG_PPC_FPU */
471
472#ifdef CONFIG_ALTIVEC
01eb0187 473static bool should_restore_altivec(void)
6cc0c16d 474{
01eb0187
NP
475 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
476 current->thread.load_vec++;
477 return true;
6cc0c16d 478 }
01eb0187
NP
479 return false;
480}
481
482static void do_restore_altivec(void)
483{
484 load_vr_state(&current->thread.vr_state);
485 current->thread.used_vr = 1;
6cc0c16d
NP
486}
487#else
01eb0187
NP
488static bool should_restore_altivec(void) { return false; }
489static void do_restore_altivec(void) { }
6cc0c16d
NP
490#endif /* CONFIG_ALTIVEC */
491
01eb0187 492static bool should_restore_vsx(void)
6cc0c16d 493{
01eb0187
NP
494 if (cpu_has_feature(CPU_FTR_VSX))
495 return true;
496 return false;
497}
80739c2b 498#ifdef CONFIG_VSX
01eb0187
NP
499static void do_restore_vsx(void)
500{
501 current->thread.used_vsr = 1;
6cc0c16d
NP
502}
503#else
01eb0187 504static void do_restore_vsx(void) { }
6cc0c16d
NP
505#endif /* CONFIG_VSX */
506
e2b36d59
NP
507/*
508 * The exception exit path calls restore_math() with interrupts hard disabled
509 * but the soft irq state not "reconciled". ftrace code that calls
510 * local_irq_save/restore causes warnings.
511 *
512 * Rather than complicate the exit path, just don't trace restore_math. This
513 * could be done by having ftrace entry code check for this un-reconciled
514 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
515 * temporarily fix it up for the duration of the ftrace call.
516 */
517void notrace restore_math(struct pt_regs *regs)
70fe3d98
CB
518{
519 unsigned long msr;
01eb0187 520 unsigned long new_msr = 0;
70fe3d98
CB
521
522 msr = regs->msr;
70fe3d98
CB
523
524 /*
01eb0187
NP
525 * new_msr tracks the facilities that are to be restored. Only reload
526 * if the bit is not set in the user MSR (if it is set, the registers
527 * are live for the user thread).
70fe3d98 528 */
01eb0187 529 if ((!(msr & MSR_FP)) && should_restore_fp())
b91eb518 530 new_msr |= MSR_FP;
70fe3d98 531
01eb0187
NP
532 if ((!(msr & MSR_VEC)) && should_restore_altivec())
533 new_msr |= MSR_VEC;
70fe3d98 534
01eb0187
NP
535 if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
536 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
537 new_msr |= MSR_VSX;
70fe3d98
CB
538 }
539
01eb0187 540 if (new_msr) {
b91eb518
ME
541 unsigned long fpexc_mode = 0;
542
01eb0187
NP
543 msr_check_and_set(new_msr);
544
b91eb518 545 if (new_msr & MSR_FP) {
01eb0187
NP
546 do_restore_fp();
547
b91eb518
ME
548 // This also covers VSX, because VSX implies FP
549 fpexc_mode = current->thread.fpexc_mode;
550 }
551
01eb0187
NP
552 if (new_msr & MSR_VEC)
553 do_restore_altivec();
70fe3d98 554
01eb0187
NP
555 if (new_msr & MSR_VSX)
556 do_restore_vsx();
557
558 msr_check_and_clear(new_msr);
559
59dc5bfc 560 regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
01eb0187 561 }
70fe3d98 562}
60d62bfd 563#endif /* CONFIG_PPC_BOOK3S_64 */
70fe3d98 564
1cdf039b 565static void save_all(struct task_struct *tsk)
de2a20aa
CB
566{
567 unsigned long usermsr;
568
569 if (!tsk->thread.regs)
570 return;
571
572 usermsr = tsk->thread.regs->msr;
573
574 if ((usermsr & msr_all_available) == 0)
575 return;
576
577 msr_check_and_set(msr_all_available);
578
96c79b6b
BH
579 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
580
581 if (usermsr & MSR_FP)
582 save_fpu(tsk);
583
584 if (usermsr & MSR_VEC)
585 save_altivec(tsk);
de2a20aa
CB
586
587 if (usermsr & MSR_SPE)
588 __giveup_spe(tsk);
589
590 msr_check_and_clear(msr_all_available);
591}
592
579e633e
AB
593void flush_all_to_thread(struct task_struct *tsk)
594{
595 if (tsk->thread.regs) {
596 preempt_disable();
597 BUG_ON(tsk != current);
579e633e
AB
598#ifdef CONFIG_SPE
599 if (tsk->thread.regs->msr & MSR_SPE)
600 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
601#endif
e9013785 602 save_all(tsk);
579e633e
AB
603
604 preempt_enable();
605 }
606}
607EXPORT_SYMBOL(flush_all_to_thread);
608
3bffb652
DK
609#ifdef CONFIG_PPC_ADV_DEBUG_REGS
610void do_send_trap(struct pt_regs *regs, unsigned long address,
47355040 611 unsigned long error_code, int breakpt)
3bffb652 612{
47355040 613 current->thread.trap_nr = TRAP_HWBKPT;
3bffb652
DK
614 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
615 11, SIGSEGV) == NOTIFY_STOP)
616 return;
617
618 /* Deliver the signal to userspace */
f71dd7dc
EB
619 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
620 (void __user *)address);
3bffb652
DK
621}
622#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
5b905d77
RB
623
624static void do_break_handler(struct pt_regs *regs)
625{
626 struct arch_hw_breakpoint null_brk = {0};
627 struct arch_hw_breakpoint *info;
c545b9f0 628 ppc_inst_t instr = ppc_inst(0);
5b905d77
RB
629 int type = 0;
630 int size = 0;
631 unsigned long ea;
632 int i;
633
634 /*
635 * If underneath hw supports only one watchpoint, we know it
636 * caused exception. 8xx also falls into this category.
637 */
638 if (nr_wp_slots() == 1) {
639 __set_breakpoint(0, &null_brk);
640 current->thread.hw_brk[0] = null_brk;
641 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
642 return;
643 }
644
1fd02f66 645 /* Otherwise find out which DAWR caused exception and disable it. */
5b905d77
RB
646 wp_get_instr_detail(regs, &instr, &type, &size, &ea);
647
648 for (i = 0; i < nr_wp_slots(); i++) {
649 info = &current->thread.hw_brk[i];
650 if (!info->address)
651 continue;
652
653 if (wp_check_constraints(regs, instr, ea, type, size, info)) {
654 __set_breakpoint(i, &null_brk);
655 current->thread.hw_brk[i] = null_brk;
656 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
657 }
658 }
659}
660
3a96570f 661DEFINE_INTERRUPT_HANDLER(do_break)
d6a61bfc 662{
41ab5266 663 current->thread.trap_nr = TRAP_HWBKPT;
18722ecf 664 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
d6a61bfc
LM
665 11, SIGSEGV) == NOTIFY_STOP)
666 return;
667
9422de3e 668 if (debugger_break_match(regs))
d6a61bfc
LM
669 return;
670
5b905d77
RB
671 /*
672 * We reach here only when watchpoint exception is generated by ptrace
673 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
674 * watchpoint is already handled by hw_breakpoint_handler() so we don't
675 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
676 * we need to manually handle the watchpoint here.
677 */
678 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
679 do_break_handler(regs);
680
d6a61bfc 681 /* Deliver the signal to userspace */
18722ecf 682 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
d6a61bfc 683}
3bffb652 684#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 685
4a8a9379 686static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
a2ceff5e 687
3bffb652
DK
688#ifdef CONFIG_PPC_ADV_DEBUG_REGS
689/*
690 * Set the debug registers back to their default "safe" values.
691 */
692static void set_debug_reg_defaults(struct thread_struct *thread)
693{
51ae8d4a 694 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 695#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 696 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 697#endif
51ae8d4a 698 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 699#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 700 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 701#endif
51ae8d4a 702 thread->debug.dbcr0 = 0;
3bffb652
DK
703#ifdef CONFIG_BOOKE
704 /*
705 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
706 */
51ae8d4a 707 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
708 DBCR1_IAC3US | DBCR1_IAC4US;
709 /*
710 * Force Data Address Compare User/Supervisor bits to be User-only
711 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
712 */
51ae8d4a 713 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 714#else
51ae8d4a 715 thread->debug.dbcr1 = 0;
3bffb652
DK
716#endif
717}
718
f5f97210 719static void prime_debug_regs(struct debug_reg *debug)
3bffb652 720{
6cecf76b
SW
721 /*
722 * We could have inherited MSR_DE from userspace, since
723 * it doesn't get cleared on exception entry. Make sure
724 * MSR_DE is clear before we enable any debug events.
725 */
726 mtmsr(mfmsr() & ~MSR_DE);
727
f5f97210
SW
728 mtspr(SPRN_IAC1, debug->iac1);
729 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 730#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
731 mtspr(SPRN_IAC3, debug->iac3);
732 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 733#endif
f5f97210
SW
734 mtspr(SPRN_DAC1, debug->dac1);
735 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 736#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
737 mtspr(SPRN_DVC1, debug->dvc1);
738 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 739#endif
f5f97210
SW
740 mtspr(SPRN_DBCR0, debug->dbcr0);
741 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 742#ifdef CONFIG_BOOKE
f5f97210 743 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
744#endif
745}
746/*
747 * Unless neither the old or new thread are making use of the
748 * debug registers, set the debug registers from the values
749 * stored in the new thread.
750 */
f5f97210 751void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 752{
51ae8d4a 753 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
754 || (new_debug->dbcr0 & DBCR0_IDM))
755 prime_debug_regs(new_debug);
3bffb652 756}
3743c9b8 757EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 758#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 759#ifndef CONFIG_HAVE_HW_BREAKPOINT
303e6a9d 760static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
b5ac51d7
CL
761{
762 preempt_disable();
303e6a9d 763 __set_breakpoint(i, brk);
b5ac51d7
CL
764 preempt_enable();
765}
766
3bffb652
DK
767static void set_debug_reg_defaults(struct thread_struct *thread)
768{
303e6a9d
RB
769 int i;
770 struct arch_hw_breakpoint null_brk = {0};
771
772 for (i = 0; i < nr_wp_slots(); i++) {
773 thread->hw_brk[i] = null_brk;
774 if (ppc_breakpoint_available())
775 set_breakpoint(i, &thread->hw_brk[i]);
776 }
777}
778
779static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
780 struct arch_hw_breakpoint *b)
781{
782 if (a->address != b->address)
783 return false;
784 if (a->type != b->type)
785 return false;
786 if (a->len != b->len)
787 return false;
788 /* no need to check hw_len. it's calculated from address and len */
789 return true;
790}
791
792static void switch_hw_breakpoint(struct task_struct *new)
793{
794 int i;
795
796 for (i = 0; i < nr_wp_slots(); i++) {
797 if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
798 &new->thread.hw_brk[i])))
799 continue;
800
801 __set_breakpoint(i, &new->thread.hw_brk[i]);
802 }
3bffb652 803}
e0780b72 804#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
805#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
806
9422de3e
MN
807static inline int set_dabr(struct arch_hw_breakpoint *brk)
808{
809 unsigned long dabr, dabrx;
810
811 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
812 dabrx = ((brk->type >> 3) & 0x7);
813
814 if (ppc_md.set_dabr)
815 return ppc_md.set_dabr(dabr, dabrx);
816
ad3ed15c
CL
817 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
818 mtspr(SPRN_DAC1, dabr);
819 if (IS_ENABLED(CONFIG_PPC_47x))
820 isync();
821 return 0;
822 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
823 mtspr(SPRN_DABR, dabr);
824 if (cpu_has_feature(CPU_FTR_DABRX))
825 mtspr(SPRN_DABRX, dabrx);
826 return 0;
827 } else {
828 return -EINVAL;
829 }
9422de3e
MN
830}
831
39413ae0
CL
832static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
833{
834 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
835 LCTRL1_CRWF_RW;
836 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
e68ef121
RB
837 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
838 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
39413ae0
CL
839
840 if (start_addr == 0)
841 lctrl2 |= LCTRL2_LW0LA_F;
e68ef121 842 else if (end_addr == 0)
39413ae0
CL
843 lctrl2 |= LCTRL2_LW0LA_E;
844 else
845 lctrl2 |= LCTRL2_LW0LA_EandF;
846
847 mtspr(SPRN_LCTRL2, 0);
848
849 if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
850 return 0;
851
852 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
853 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
854 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
855 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
856
857 mtspr(SPRN_CMPE, start_addr - 1);
e68ef121 858 mtspr(SPRN_CMPF, end_addr);
39413ae0
CL
859 mtspr(SPRN_LCTRL1, lctrl1);
860 mtspr(SPRN_LCTRL2, lctrl2);
861
862 return 0;
863}
864
3671f4eb 865static void set_hw_breakpoint(int nr, struct arch_hw_breakpoint *brk)
9422de3e 866{
c1fe190c 867 if (dawr_enabled())
252988cb 868 // Power8 or later
4a8a9379 869 set_dawr(nr, brk);
39413ae0
CL
870 else if (IS_ENABLED(CONFIG_PPC_8xx))
871 set_breakpoint_8xx(brk);
252988cb
NP
872 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
873 // Power7 or earlier
04c32a51 874 set_dabr(brk);
252988cb
NP
875 else
876 // Shouldn't happen due to higher level checks
877 WARN_ON_ONCE(1);
9422de3e 878}
14cf11af 879
3671f4eb
JN
880void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
881{
882 memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
883 set_hw_breakpoint(nr, brk);
884}
885
404b27d6
MN
886/* Check if we have DAWR or DABR hardware */
887bool ppc_breakpoint_available(void)
888{
c1fe190c
MN
889 if (dawr_enabled())
890 return true; /* POWER8 DAWR or POWER9 forced DAWR */
404b27d6
MN
891 if (cpu_has_feature(CPU_FTR_ARCH_207S))
892 return false; /* POWER9 with DAWR disabled */
893 /* DABR: Everything but POWER8 and POWER9 */
894 return true;
895}
896EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
897
3671f4eb
JN
898/* Disable the breakpoint in hardware without touching current_brk[] */
899void suspend_breakpoints(void)
900{
901 struct arch_hw_breakpoint brk = {0};
902 int i;
903
904 if (!ppc_breakpoint_available())
905 return;
906
907 for (i = 0; i < nr_wp_slots(); i++)
908 set_hw_breakpoint(i, &brk);
909}
910
911/*
912 * Re-enable breakpoints suspended by suspend_breakpoints() in hardware
913 * from current_brk[]
914 */
915void restore_breakpoints(void)
916{
917 int i;
918
919 if (!ppc_breakpoint_available())
920 return;
921
922 for (i = 0; i < nr_wp_slots(); i++)
923 set_hw_breakpoint(i, this_cpu_ptr(&current_brk[i]));
924}
925
fb09692e 926#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
5d176f75
CB
927
928static inline bool tm_enabled(struct task_struct *tsk)
929{
930 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
931}
932
edd00b83 933static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
d31626f7 934{
7f821fc9
MN
935 /*
936 * Use the current MSR TM suspended bit to track if we have
937 * checkpointed state outstanding.
938 * On signal delivery, we'd normally reclaim the checkpointed
939 * state to obtain stack pointer (see:get_tm_stackpointer()).
940 * This will then directly return to userspace without going
941 * through __switch_to(). However, if the stack frame is bad,
942 * we need to exit this thread which calls __switch_to() which
943 * will again attempt to reclaim the already saved tm state.
944 * Hence we need to check that we've not already reclaimed
945 * this state.
946 * We do this using the current MSR, rather tracking it in
947 * some specific thread_struct bit, as it has the additional
027dfac6 948 * benefit of checking for a potential TM bad thing exception.
7f821fc9
MN
949 */
950 if (!MSR_TM_SUSPENDED(mfmsr()))
951 return;
952
91381b9c
CB
953 giveup_all(container_of(thr, struct task_struct, thread));
954
eb5c3f1c
CB
955 tm_reclaim(thr, cause);
956
f48e91e8
MN
957 /*
958 * If we are in a transaction and FP is off then we can't have
959 * used FP inside that transaction. Hence the checkpointed
960 * state is the same as the live state. We need to copy the
961 * live state to the checkpointed state so that when the
962 * transaction is restored, the checkpointed state is correct
963 * and the aborted transaction sees the correct state. We use
964 * ckpt_regs.msr here as that's what tm_reclaim will use to
965 * determine if it's going to write the checkpointed state or
966 * not. So either this will write the checkpointed registers,
967 * or reclaim will. Similarly for VMX.
968 */
969 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
970 memcpy(&thr->ckfp_state, &thr->fp_state,
971 sizeof(struct thread_fp_state));
972 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
973 memcpy(&thr->ckvr_state, &thr->vr_state,
974 sizeof(struct thread_vr_state));
d31626f7
PM
975}
976
977void tm_reclaim_current(uint8_t cause)
978{
979 tm_enable();
edd00b83 980 tm_reclaim_thread(&current->thread, cause);
d31626f7
PM
981}
982
fb09692e
MN
983static inline void tm_reclaim_task(struct task_struct *tsk)
984{
985 /* We have to work out if we're switching from/to a task that's in the
986 * middle of a transaction.
987 *
988 * In switching we need to maintain a 2nd register state as
989 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
000ec280
CB
990 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
991 * ckvr_state
fb09692e
MN
992 *
993 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
994 */
995 struct thread_struct *thr = &tsk->thread;
996
997 if (!thr->regs)
998 return;
999
1000 if (!MSR_TM_ACTIVE(thr->regs->msr))
1001 goto out_and_saveregs;
1002
92fb8690
MN
1003 WARN_ON(tm_suspend_disabled);
1004
fb09692e
MN
1005 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
1006 "ccr=%lx, msr=%lx, trap=%lx)\n",
1007 tsk->pid, thr->regs->nip,
1008 thr->regs->ccr, thr->regs->msr,
1009 thr->regs->trap);
1010
edd00b83 1011 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
fb09692e
MN
1012
1013 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
1014 tsk->pid);
1015
1016out_and_saveregs:
1017 /* Always save the regs here, even if a transaction's not active.
1018 * This context-switches a thread's TM info SPRs. We do it here to
1019 * be consistent with the restore path (in recheckpoint) which
1020 * cannot happen later in _switch().
1021 */
1022 tm_save_sprs(thr);
1023}
1024
eb5c3f1c 1025extern void __tm_recheckpoint(struct thread_struct *thread);
e6b8fd02 1026
eb5c3f1c 1027void tm_recheckpoint(struct thread_struct *thread)
e6b8fd02
MN
1028{
1029 unsigned long flags;
1030
5d176f75
CB
1031 if (!(thread->regs->msr & MSR_TM))
1032 return;
1033
e6b8fd02
MN
1034 /* We really can't be interrupted here as the TEXASR registers can't
1035 * change and later in the trecheckpoint code, we have a userspace R1.
1036 * So let's hard disable over this region.
1037 */
1038 local_irq_save(flags);
1039 hard_irq_disable();
1040
1041 /* The TM SPRs are restored here, so that TEXASR.FS can be set
1042 * before the trecheckpoint and no explosion occurs.
1043 */
1044 tm_restore_sprs(thread);
1045
eb5c3f1c 1046 __tm_recheckpoint(thread);
e6b8fd02
MN
1047
1048 local_irq_restore(flags);
1049}
1050
bc2a9408 1051static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e 1052{
fb09692e
MN
1053 if (!cpu_has_feature(CPU_FTR_TM))
1054 return;
1055
1056 /* Recheckpoint the registers of the thread we're about to switch to.
1057 *
1058 * If the task was using FP, we non-lazily reload both the original and
1059 * the speculative FP register states. This is because the kernel
1060 * doesn't see if/when a TM rollback occurs, so if we take an FP
dc310669 1061 * unavailable later, we are unable to determine which set of FP regs
fb09692e
MN
1062 * need to be restored.
1063 */
5d176f75 1064 if (!tm_enabled(new))
fb09692e
MN
1065 return;
1066
e6b8fd02
MN
1067 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1068 tm_restore_sprs(&new->thread);
fb09692e 1069 return;
e6b8fd02 1070 }
fb09692e 1071 /* Recheckpoint to restore original checkpointed register state. */
eb5c3f1c
CB
1072 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1073 new->pid, new->thread.regs->msr);
fb09692e 1074
eb5c3f1c 1075 tm_recheckpoint(&new->thread);
fb09692e 1076
dc310669
CB
1077 /*
1078 * The checkpointed state has been restored but the live state has
1079 * not, ensure all the math functionality is turned off to trigger
1080 * restore_math() to reload.
1081 */
1082 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
fb09692e
MN
1083
1084 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1085 "(kernel msr 0x%lx)\n",
1086 new->pid, mfmsr());
1087}
1088
dc310669
CB
1089static inline void __switch_to_tm(struct task_struct *prev,
1090 struct task_struct *new)
fb09692e
MN
1091{
1092 if (cpu_has_feature(CPU_FTR_TM)) {
5d176f75
CB
1093 if (tm_enabled(prev) || tm_enabled(new))
1094 tm_enable();
1095
1096 if (tm_enabled(prev)) {
1097 prev->thread.load_tm++;
1098 tm_reclaim_task(prev);
1099 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1100 prev->thread.regs->msr &= ~MSR_TM;
1101 }
1102
dc310669 1103 tm_recheckpoint_new_task(new);
fb09692e
MN
1104 }
1105}
d31626f7
PM
1106
1107/*
1108 * This is called if we are on the way out to userspace and the
1109 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1110 * FP and/or vector state and does so if necessary.
1111 * If userspace is inside a transaction (whether active or
1112 * suspended) and FP/VMX/VSX instructions have ever been enabled
1113 * inside that transaction, then we have to keep them enabled
1114 * and keep the FP/VMX/VSX state loaded while ever the transaction
1115 * continues. The reason is that if we didn't, and subsequently
1116 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1117 * we don't know whether it's the same transaction, and thus we
1118 * don't know which of the checkpointed state and the transactional
1119 * state to use.
1120 */
1121void restore_tm_state(struct pt_regs *regs)
1122{
1123 unsigned long msr_diff;
1124
dc310669
CB
1125 /*
1126 * This is the only moment we should clear TIF_RESTORE_TM as
1127 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1128 * again, anything else could lead to an incorrect ckpt_msr being
1129 * saved and therefore incorrect signal contexts.
1130 */
d31626f7
PM
1131 clear_thread_flag(TIF_RESTORE_TM);
1132 if (!MSR_TM_ACTIVE(regs->msr))
1133 return;
1134
829023df 1135 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7 1136 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
70fe3d98 1137
dc16b553
CB
1138 /* Ensure that restore_math() will restore */
1139 if (msr_diff & MSR_FP)
1140 current->thread.load_fp = 1;
39715bf9 1141#ifdef CONFIG_ALTIVEC
dc16b553
CB
1142 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1143 current->thread.load_vec = 1;
1144#endif
70fe3d98
CB
1145 restore_math(regs);
1146
59dc5bfc 1147 regs_set_return_msr(regs, regs->msr | msr_diff);
d31626f7
PM
1148}
1149
2d19630e 1150#else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
fb09692e 1151#define tm_recheckpoint_new_task(new)
dc310669 1152#define __switch_to_tm(prev, new)
2d19630e 1153void tm_reclaim_current(uint8_t cause) {}
fb09692e 1154#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 1155
152d523e
AB
1156static inline void save_sprs(struct thread_struct *t)
1157{
1158#ifdef CONFIG_ALTIVEC
01d7c2a2 1159 if (cpu_has_feature(CPU_FTR_ALTIVEC))
152d523e
AB
1160 t->vrsave = mfspr(SPRN_VRSAVE);
1161#endif
359c2ca7
CL
1162#ifdef CONFIG_SPE
1163 if (cpu_has_feature(CPU_FTR_SPE))
1164 t->spefscr = mfspr(SPRN_SPEFSCR);
1165#endif
152d523e
AB
1166#ifdef CONFIG_PPC_BOOK3S_64
1167 if (cpu_has_feature(CPU_FTR_DSCR))
1168 t->dscr = mfspr(SPRN_DSCR);
1169
1170 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1171 t->bescr = mfspr(SPRN_BESCR);
1172 t->ebbhr = mfspr(SPRN_EBBHR);
1173 t->ebbrr = mfspr(SPRN_EBBRR);
1174
1175 t->fscr = mfspr(SPRN_FSCR);
1176
1177 /*
1178 * Note that the TAR is not available for use in the kernel.
1179 * (To provide this, the TAR should be backed up/restored on
1180 * exception entry/exit instead, and be in pt_regs. FIXME,
1181 * this should be in pt_regs anyway (for debug).)
1182 */
1183 t->tar = mfspr(SPRN_TAR);
1184 }
1185#endif
1186}
1187
34e119c9
NP
1188#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1189void kvmppc_save_user_regs(void)
1190{
1191 unsigned long usermsr;
1192
1193 if (!current->thread.regs)
1194 return;
1195
1196 usermsr = current->thread.regs->msr;
1197
1198 if (usermsr & MSR_FP)
1199 save_fpu(current);
1200
1201 if (usermsr & MSR_VEC)
1202 save_altivec(current);
1203
1204#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1205 if (usermsr & MSR_TM) {
1206 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
1207 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
1208 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
1209 current->thread.regs->msr &= ~MSR_TM;
1210 }
1211#endif
1212}
1213EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);
5236756d
NP
1214
1215void kvmppc_save_current_sprs(void)
1216{
1217 save_sprs(&current->thread);
1218}
1219EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
34e119c9
NP
1220#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1221
152d523e
AB
1222static inline void restore_sprs(struct thread_struct *old_thread,
1223 struct thread_struct *new_thread)
1224{
1225#ifdef CONFIG_ALTIVEC
1226 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1227 old_thread->vrsave != new_thread->vrsave)
1228 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1229#endif
359c2ca7
CL
1230#ifdef CONFIG_SPE
1231 if (cpu_has_feature(CPU_FTR_SPE) &&
1232 old_thread->spefscr != new_thread->spefscr)
1233 mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1234#endif
152d523e
AB
1235#ifdef CONFIG_PPC_BOOK3S_64
1236 if (cpu_has_feature(CPU_FTR_DSCR)) {
1237 u64 dscr = get_paca()->dscr_default;
b57bd2de 1238 if (new_thread->dscr_inherit)
152d523e 1239 dscr = new_thread->dscr;
152d523e
AB
1240
1241 if (old_thread->dscr != dscr)
1242 mtspr(SPRN_DSCR, dscr);
152d523e
AB
1243 }
1244
1245 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1246 if (old_thread->bescr != new_thread->bescr)
1247 mtspr(SPRN_BESCR, new_thread->bescr);
1248 if (old_thread->ebbhr != new_thread->ebbhr)
1249 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1250 if (old_thread->ebbrr != new_thread->ebbrr)
1251 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1252
b57bd2de
MN
1253 if (old_thread->fscr != new_thread->fscr)
1254 mtspr(SPRN_FSCR, new_thread->fscr);
1255
152d523e
AB
1256 if (old_thread->tar != new_thread->tar)
1257 mtspr(SPRN_TAR, new_thread->tar);
1258 }
ec233ede 1259
3449f191 1260 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
ec233ede
SB
1261 old_thread->tidr != new_thread->tidr)
1262 mtspr(SPRN_TIDR, new_thread->tidr);
152d523e 1263#endif
06bb53b3 1264
152d523e
AB
1265}
1266
14cf11af
PM
1267struct task_struct *__switch_to(struct task_struct *prev,
1268 struct task_struct *new)
1269{
1270 struct thread_struct *new_thread, *old_thread;
14cf11af 1271 struct task_struct *last;
387e220a 1272#ifdef CONFIG_PPC_64S_HASH_MMU
d6bf29b4
PZ
1273 struct ppc64_tlb_batch *batch;
1274#endif
14cf11af 1275
152d523e
AB
1276 new_thread = &new->thread;
1277 old_thread = &current->thread;
1278
7ba5fef7
MN
1279 WARN_ON(!irqs_disabled());
1280
387e220a 1281#ifdef CONFIG_PPC_64S_HASH_MMU
69111bac 1282 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1283 if (batch->active) {
1284 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1285 if (batch->index)
1286 __flush_tlb_pending(batch);
1287 batch->active = 0;
1288 }
f35d2f24
NP
1289
1290 /*
1291 * On POWER9 the copy-paste buffer can only paste into
1292 * foreign real addresses, so unprivileged processes can not
1293 * see the data or use it in any way unless they have
1294 * foreign real mappings. If the new process has the foreign
1295 * real address mappings, we must issue a cp_abort to clear
1296 * any state and prevent snooping, corruption or a covert
1297 * channel. ISA v3.1 supports paste into local memory.
1298 */
1299 if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1300 atomic_read(&new->mm->context.vas_windows)))
1301 asm volatile(PPC_CP_ABORT);
4e003747 1302#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 1303
f3d885cc
AB
1304#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1305 switch_booke_debug_regs(&new->thread.debug);
1306#else
1307/*
1308 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1309 * schedule DABR
1310 */
1311#ifndef CONFIG_HAVE_HW_BREAKPOINT
303e6a9d 1312 switch_hw_breakpoint(new);
f3d885cc
AB
1313#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1314#endif
1315
1316 /*
1317 * We need to save SPRs before treclaim/trecheckpoint as these will
1318 * change a number of them.
1319 */
1320 save_sprs(&prev->thread);
1321
f3d885cc
AB
1322 /* Save FPU, Altivec, VSX and SPE state */
1323 giveup_all(prev);
1324
dc310669
CB
1325 __switch_to_tm(prev, new);
1326
e4c0fc5f
NP
1327 if (!radix_enabled()) {
1328 /*
1329 * We can't take a PMU exception inside _switch() since there
1330 * is a window where the kernel stack SLB and the kernel stack
1331 * are out of sync. Hard disable here.
1332 */
1333 hard_irq_disable();
1334 }
bc2a9408 1335
20dbe670 1336 /*
59dc5bfc
NP
1337 * Call restore_sprs() and set_return_regs_changed() before calling
1338 * _switch(). If we move it after _switch() then we miss out on calling
1339 * it for new tasks. The reason for this is we manually create a stack
1340 * frame for new tasks that directly returns through ret_from_fork() or
20dbe670
AB
1341 * ret_from_kernel_thread(). See copy_thread() for details.
1342 */
f3d885cc
AB
1343 restore_sprs(old_thread, new_thread);
1344
59dc5bfc
NP
1345 set_return_regs_changed(); /* _switch changes stack (and regs) */
1346
42e03bc5
CL
1347 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1348 kuap_assert_locked();
1349
20dbe670
AB
1350 last = _switch(old_thread, new_thread);
1351
f35d2f24
NP
1352 /*
1353 * Nothing after _switch will be run for newly created tasks,
1354 * because they switch directly to ret_from_fork/ret_from_kernel_thread
1355 * etc. Code added here should have a comment explaining why that is
1356 * okay.
1357 */
1358
4e003747 1359#ifdef CONFIG_PPC_BOOK3S_64
387e220a 1360#ifdef CONFIG_PPC_64S_HASH_MMU
f35d2f24
NP
1361 /*
1362 * This applies to a process that was context switched while inside
1363 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1364 * deactivated above, before _switch(). This will never be the case
1365 * for new tasks.
1366 */
d6bf29b4
PZ
1367 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1368 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 1369 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1370 batch->active = 1;
1371 }
387e220a 1372#endif
70fe3d98 1373
f35d2f24
NP
1374 /*
1375 * Math facilities are masked out of the child MSR in copy_thread.
1376 * A new task does not need to restore_math because it will
1377 * demand fault them.
1378 */
1379 if (current->thread.regs)
05b98791 1380 restore_math(current->thread.regs);
4e003747 1381#endif /* CONFIG_PPC_BOOK3S_64 */
d6bf29b4 1382
14cf11af
PM
1383 return last;
1384}
1385
df13102f 1386#define NR_INSN_TO_PRINT 16
06d67d54 1387
06d67d54
PM
1388static void show_instructions(struct pt_regs *regs)
1389{
1390 int i;
a6e2c226 1391 unsigned long nip = regs->nip;
df13102f 1392 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
06d67d54 1393
d90bb7b4 1394 printk("Code: ");
06d67d54 1395
a6e2c226
AK
1396 /*
1397 * If we were executing with the MMU off for instructions, adjust pc
1398 * rather than printing XXXXXXXX.
1399 */
1400 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1401 pc = (unsigned long)phys_to_virt(pc);
1402 nip = (unsigned long)phys_to_virt(regs->nip);
1403 }
1404
df13102f 1405 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
06d67d54
PM
1406 int instr;
1407
d9ab6da6 1408 if (get_kernel_nofault(instr, (const void *)pc)) {
2ffd04de 1409 pr_cont("XXXXXXXX ");
06d67d54 1410 } else {
a6e2c226 1411 if (nip == pc)
2ffd04de 1412 pr_cont("<%08x> ", instr);
06d67d54 1413 else
2ffd04de 1414 pr_cont("%08x ", instr);
06d67d54
PM
1415 }
1416
1417 pc += sizeof(int);
1418 }
1419
2ffd04de 1420 pr_cont("\n");
06d67d54
PM
1421}
1422
88b0fe17
MOA
1423void show_user_instructions(struct pt_regs *regs)
1424{
1425 unsigned long pc;
df13102f 1426 int n = NR_INSN_TO_PRINT;
fb2d9505
CL
1427 struct seq_buf s;
1428 char buf[96]; /* enough for 8 times 9 + 2 chars */
88b0fe17 1429
df13102f 1430 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
88b0fe17 1431
fb2d9505 1432 seq_buf_init(&s, buf, sizeof(buf));
88b0fe17 1433
fb2d9505
CL
1434 while (n) {
1435 int i;
88b0fe17 1436
fb2d9505 1437 seq_buf_clear(&s);
88b0fe17 1438
fb2d9505
CL
1439 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1440 int instr;
1441
c0ee37e8
CH
1442 if (copy_from_user_nofault(&instr, (void __user *)pc,
1443 sizeof(instr))) {
fb2d9505
CL
1444 seq_buf_printf(&s, "XXXXXXXX ");
1445 continue;
1446 }
1447 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
88b0fe17
MOA
1448 }
1449
fb2d9505
CL
1450 if (!seq_buf_has_overflowed(&s))
1451 pr_info("%s[%d]: code: %s\n", current->comm,
1452 current->pid, s.buffer);
88b0fe17 1453 }
88b0fe17
MOA
1454}
1455
801c0b2c 1456struct regbit {
06d67d54
PM
1457 unsigned long bit;
1458 const char *name;
801c0b2c
MN
1459};
1460
1461static struct regbit msr_bits[] = {
3bfd0c9c
AB
1462#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1463 {MSR_SF, "SF"},
1464 {MSR_HV, "HV"},
1465#endif
1466 {MSR_VEC, "VEC"},
1467 {MSR_VSX, "VSX"},
1468#ifdef CONFIG_BOOKE
1469 {MSR_CE, "CE"},
1470#endif
06d67d54
PM
1471 {MSR_EE, "EE"},
1472 {MSR_PR, "PR"},
1473 {MSR_FP, "FP"},
1474 {MSR_ME, "ME"},
3bfd0c9c 1475#ifdef CONFIG_BOOKE
1b98326b 1476 {MSR_DE, "DE"},
3bfd0c9c
AB
1477#else
1478 {MSR_SE, "SE"},
1479 {MSR_BE, "BE"},
1480#endif
06d67d54
PM
1481 {MSR_IR, "IR"},
1482 {MSR_DR, "DR"},
3bfd0c9c
AB
1483 {MSR_PMM, "PMM"},
1484#ifndef CONFIG_BOOKE
1485 {MSR_RI, "RI"},
1486 {MSR_LE, "LE"},
1487#endif
06d67d54
PM
1488 {0, NULL}
1489};
1490
801c0b2c 1491static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
06d67d54 1492{
801c0b2c 1493 const char *s = "";
06d67d54 1494
06d67d54
PM
1495 for (; bits->bit; ++bits)
1496 if (val & bits->bit) {
db5ba5ae 1497 pr_cont("%s%s", s, bits->name);
801c0b2c 1498 s = sep;
06d67d54 1499 }
801c0b2c
MN
1500}
1501
1502#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1503static struct regbit msr_tm_bits[] = {
1504 {MSR_TS_T, "T"},
1505 {MSR_TS_S, "S"},
1506 {MSR_TM, "E"},
1507 {0, NULL}
1508};
1509
1510static void print_tm_bits(unsigned long val)
1511{
1512/*
1513 * This only prints something if at least one of the TM bit is set.
1514 * Inside the TM[], the output means:
1515 * E: Enabled (bit 32)
1516 * S: Suspended (bit 33)
1517 * T: Transactional (bit 34)
1518 */
1519 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
db5ba5ae 1520 pr_cont(",TM[");
801c0b2c 1521 print_bits(val, msr_tm_bits, "");
db5ba5ae 1522 pr_cont("]");
801c0b2c
MN
1523 }
1524}
1525#else
1526static void print_tm_bits(unsigned long val) {}
1527#endif
1528
1529static void print_msr_bits(unsigned long val)
1530{
db5ba5ae 1531 pr_cont("<");
801c0b2c
MN
1532 print_bits(val, msr_bits, ",");
1533 print_tm_bits(val);
db5ba5ae 1534 pr_cont(">");
06d67d54
PM
1535}
1536
1537#ifdef CONFIG_PPC64
f6f7dde3 1538#define REG "%016lx"
06d67d54 1539#define REGS_PER_LINE 4
06d67d54 1540#else
f6f7dde3 1541#define REG "%08lx"
06d67d54 1542#define REGS_PER_LINE 8
06d67d54
PM
1543#endif
1544
bf13718b 1545static void __show_regs(struct pt_regs *regs)
14cf11af
PM
1546{
1547 int i, trap;
1548
a6036100 1549 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
06d67d54 1550 regs->nip, regs->link, regs->ctr);
182dc9c7 1551 printk("REGS: %px TRAP: %04lx %s (%s)\n",
96b644bd 1552 regs, regs->trap, print_tainted(), init_utsname()->release);
a6036100 1553 printk("MSR: "REG" ", regs->msr);
801c0b2c 1554 print_msr_bits(regs->msr);
f6fc73fb 1555 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1556 trap = TRAP(regs);
912237ea 1557 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
7dae865f 1558 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
7153d4bf
XS
1559 if (trap == INTERRUPT_MACHINE_CHECK ||
1560 trap == INTERRUPT_DATA_STORAGE ||
1561 trap == INTERRUPT_ALIGNMENT) {
2ec42996 1562 if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
4872cbd0 1563 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
2ec42996
CL
1564 else
1565 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1566 }
1567
9db8bcfd 1568#ifdef CONFIG_PPC64
3130a7bb 1569 pr_cont("IRQMASK: %lx ", regs->softe);
9db8bcfd
AB
1570#endif
1571#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a 1572 if (MSR_TM_ACTIVE(regs->msr))
7dae865f 1573 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1574#endif
14cf11af
PM
1575
1576 for (i = 0; i < 32; i++) {
06d67d54 1577 if ((i % REGS_PER_LINE) == 0)
7dae865f
ME
1578 pr_cont("\nGPR%02d: ", i);
1579 pr_cont(REG " ", regs->gpr[i]);
14cf11af 1580 }
7dae865f 1581 pr_cont("\n");
14cf11af
PM
1582 /*
1583 * Lookup NIP late so we have the best change of getting the
1584 * above info out without failing
1585 */
8f020c7c
CL
1586 if (IS_ENABLED(CONFIG_KALLSYMS)) {
1587 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1588 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1589 }
bf13718b
NP
1590}
1591
1592void show_regs(struct pt_regs *regs)
1593{
1594 show_regs_print_info(KERN_DEFAULT);
1595 __show_regs(regs);
9cb8f069 1596 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
06d67d54
PM
1597 if (!user_mode(regs))
1598 show_instructions(regs);
14cf11af
PM
1599}
1600
14cf11af
PM
1601void flush_thread(void)
1602{
e0780b72 1603#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1604 flush_ptrace_hw_breakpoint(current);
e0780b72 1605#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1606 set_debug_reg_defaults(&current->thread);
e0780b72 1607#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1608}
1609
425d3314
NP
1610void arch_setup_new_exec(void)
1611{
d7df77e8
AK
1612
1613#ifdef CONFIG_PPC_BOOK3S_64
1614 if (!radix_enabled())
1615 hash__setup_new_exec();
425d3314 1616#endif
d7df77e8
AK
1617 /*
1618 * If we exec out of a kernel thread then thread.regs will not be
1619 * set. Do it now.
1620 */
1621 if (!current->thread.regs) {
1622 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1623 current->thread.regs = regs - 1;
1624 }
d5fa30e6
AK
1625
1626#ifdef CONFIG_PPC_MEM_KEYS
1627 current->thread.regs->amr = default_amr;
1628 current->thread.regs->iamr = default_iamr;
1629#endif
d7df77e8 1630}
425d3314 1631
ec233ede 1632#ifdef CONFIG_PPC64
be994293 1633/*
71cc64a8
AS
1634 * Assign a TIDR (thread ID) for task @t and set it in the thread
1635 * structure. For now, we only support setting TIDR for 'current' task.
ec233ede 1636 *
71cc64a8
AS
1637 * Since the TID value is a truncated form of it PID, it is possible
1638 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1639 * that 2 threads share the same TID and are waiting, one of the following
1640 * cases will happen:
ec233ede 1641 *
71cc64a8
AS
1642 * 1. The correct thread is running, the wrong thread is not
1643 * In this situation, the correct thread is woken and proceeds to pass it's
1644 * condition check.
ec233ede 1645 *
71cc64a8
AS
1646 * 2. Neither threads are running
1647 * In this situation, neither thread will be woken. When scheduled, the waiting
1648 * threads will execute either a wait, which will return immediately, followed
1649 * by a condition check, which will pass for the correct thread and fail
1650 * for the wrong thread, or they will execute the condition check immediately.
ec233ede 1651 *
71cc64a8
AS
1652 * 3. The wrong thread is running, the correct thread is not
1653 * The wrong thread will be woken, but will fail it's condition check and
1654 * re-execute wait. The correct thread, when scheduled, will execute either
1655 * it's condition check (which will pass), or wait, which returns immediately
1656 * when called the first time after the thread is scheduled, followed by it's
1657 * condition check (which will pass).
ec233ede 1658 *
71cc64a8
AS
1659 * 4. Both threads are running
1660 * Both threads will be woken. The wrong thread will fail it's condition check
1661 * and execute another wait, while the correct thread will pass it's condition
1662 * check.
1663 *
1664 * @t: the task to set the thread ID for
ec233ede
SB
1665 */
1666int set_thread_tidr(struct task_struct *t)
1667{
3449f191 1668 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
ec233ede
SB
1669 return -EINVAL;
1670
1671 if (t != current)
1672 return -EINVAL;
1673
7e4d4233
VJ
1674 if (t->thread.tidr)
1675 return 0;
1676
71cc64a8 1677 t->thread.tidr = (u16)task_pid_nr(t);
ec233ede
SB
1678 mtspr(SPRN_TIDR, t->thread.tidr);
1679
1680 return 0;
1681}
b1db5513 1682EXPORT_SYMBOL_GPL(set_thread_tidr);
ec233ede
SB
1683
1684#endif /* CONFIG_PPC64 */
1685
14cf11af 1686/*
55ccf3fe
SS
1687 * this gets called so that we can store coprocessor state into memory and
1688 * copy the current task into the new thread.
14cf11af 1689 */
55ccf3fe 1690int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1691{
579e633e 1692 flush_all_to_thread(src);
621b5060
MN
1693 /*
1694 * Flush TM state out so we can copy it. __switch_to_tm() does this
1695 * flush but it removes the checkpointed state from the current CPU and
1696 * transitions the CPU out of TM mode. Hence we need to call
1697 * tm_recheckpoint_new_task() (on the same task) to restore the
1698 * checkpointed state back and the TM mode.
5d176f75
CB
1699 *
1700 * Can't pass dst because it isn't ready. Doesn't matter, passing
1701 * dst is only important for __switch_to()
621b5060 1702 */
dc310669 1703 __switch_to_tm(src, src);
330a1eb7 1704
55ccf3fe 1705 *dst = *src;
330a1eb7
ME
1706
1707 clear_task_ebb(dst);
1708
55ccf3fe 1709 return 0;
14cf11af
PM
1710}
1711
cec15488
ME
1712static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1713{
387e220a 1714#ifdef CONFIG_PPC_64S_HASH_MMU
cec15488
ME
1715 unsigned long sp_vsid;
1716 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1717
caca285e
AK
1718 if (radix_enabled())
1719 return;
1720
cec15488
ME
1721 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1722 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1723 << SLB_VSID_SHIFT_1T;
1724 else
1725 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1726 << SLB_VSID_SHIFT;
1727 sp_vsid |= SLB_VSID_KERNEL | llp;
1728 p->thread.ksp_vsid = sp_vsid;
1729#endif
1730}
1731
14cf11af
PM
1732/*
1733 * Copy a thread..
1734 */
efcac658 1735
6eca8933
AD
1736/*
1737 * Copy architecture-specific thread state
1738 */
c5febea0 1739int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
14cf11af 1740{
c5febea0
EB
1741 unsigned long clone_flags = args->flags;
1742 unsigned long usp = args->stack;
c5febea0 1743 unsigned long tls = args->tls;
14cf11af
PM
1744 struct pt_regs *childregs, *kregs;
1745 extern void ret_from_fork(void);
7fa95f9a 1746 extern void ret_from_fork_scv(void);
58254e10
AV
1747 extern void ret_from_kernel_thread(void);
1748 void (*f)(void);
0cec6fd1 1749 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
5d31a96e 1750 struct thread_info *ti = task_thread_info(p);
6b424efa
RB
1751#ifdef CONFIG_HAVE_HW_BREAKPOINT
1752 int i;
1753#endif
5d31a96e 1754
ed1cd6de 1755 klp_init_thread_info(p);
14cf11af 1756
bc067736 1757 /* Create initial stack frame. */
1223e5a2 1758 sp -= STACK_USER_INT_FRAME_SIZE;
6895dfc0 1759 *(unsigned long *)(sp + STACK_INT_FRAME_MARKER) = STACK_FRAME_REGS_MARKER;
bc067736 1760
14cf11af 1761 /* Copy registers */
1223e5a2 1762 childregs = (struct pt_regs *)(sp + STACK_INT_FRAME_REGS);
5bd2e97c 1763 if (unlikely(args->fn)) {
6eca8933 1764 /* kernel thread */
6895dfc0 1765 ((unsigned long *)sp)[0] = 0;
58254e10 1766 memset(childregs, 0, sizeof(struct pt_regs));
1223e5a2 1767 childregs->gpr[1] = sp + STACK_USER_INT_FRAME_SIZE;
7cedd601 1768 /* function */
5bd2e97c
EB
1769 if (args->fn)
1770 childregs->gpr[14] = ppc_function_entry((void *)args->fn);
58254e10 1771#ifdef CONFIG_PPC64
b5e2fc1c 1772 clear_tsk_thread_flag(p, TIF_32BIT);
c2e480ba 1773 childregs->softe = IRQS_ENABLED;
06d67d54 1774#endif
5bd2e97c 1775 childregs->gpr[15] = (unsigned long)args->fn_arg;
14cf11af 1776 p->thread.regs = NULL; /* no user register state */
138d1ce8 1777 ti->flags |= _TIF_RESTOREALL;
58254e10 1778 f = ret_from_kernel_thread;
14cf11af 1779 } else {
6eca8933 1780 /* user thread */
afa86fc4 1781 struct pt_regs *regs = current_pt_regs();
58254e10 1782 *childregs = *regs;
ea516b11
AV
1783 if (usp)
1784 childregs->gpr[1] = usp;
6895dfc0 1785 ((unsigned long *)sp)[0] = childregs->gpr[1];
14cf11af 1786 p->thread.regs = childregs;
06d67d54 1787 if (clone_flags & CLONE_SETTLS) {
9904b005 1788 if (!is_32bit_task())
facd04a9 1789 childregs->gpr[13] = tls;
06d67d54 1790 else
facd04a9 1791 childregs->gpr[2] = tls;
06d67d54 1792 }
58254e10 1793
7fa95f9a
NP
1794 if (trap_is_scv(regs))
1795 f = ret_from_fork_scv;
1796 else
1797 f = ret_from_fork;
14cf11af 1798 }
d272f667 1799 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
14cf11af
PM
1800
1801 /*
1802 * The way this works is that at some point in the future
1803 * some task will call _switch to switch to the new task.
1804 * That will pop off the stack frame created below and start
1805 * the new task running at ret_from_fork. The new task will
1806 * do some house keeping and then return from the fork or clone
1807 * system call, using the stack frame created above.
1808 */
edbd0387 1809 ((unsigned long *)sp)[STACK_FRAME_LR_SAVE] = (unsigned long)f;
6f291a03 1810 sp -= STACK_SWITCH_FRAME_SIZE;
edbd0387 1811 ((unsigned long *)sp)[0] = sp + STACK_SWITCH_FRAME_SIZE;
6f291a03 1812 kregs = (struct pt_regs *)(sp + STACK_SWITCH_FRAME_REGS);
c013e9f2 1813 kregs->nip = ppc_function_entry(f);
14cf11af 1814 p->thread.ksp = sp;
6f291a03 1815
28d170ab 1816#ifdef CONFIG_HAVE_HW_BREAKPOINT
6b424efa
RB
1817 for (i = 0; i < nr_wp_slots(); i++)
1818 p->thread.ptrace_bps[i] = NULL;
28d170ab
ON
1819#endif
1820
b6254ced 1821#ifdef CONFIG_PPC_FPU_REGS
18461960 1822 p->thread.fp_save_area = NULL;
b6254ced 1823#endif
18461960
PM
1824#ifdef CONFIG_ALTIVEC
1825 p->thread.vr_save_area = NULL;
1826#endif
16132529
CL
1827#if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1828 p->thread.kuap = KUAP_NONE;
1829#endif
43afcf8f
CL
1830#if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP)
1831 p->thread.pid = MMU_NO_CONTEXT;
1832#endif
18461960 1833
cec15488
ME
1834 setup_ksp_vsid(p, sp);
1835
efcac658
AK
1836#ifdef CONFIG_PPC64
1837 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26 1838 p->thread.dscr_inherit = current->thread.dscr_inherit;
db1231dc 1839 p->thread.dscr = mfspr(SPRN_DSCR);
efcac658 1840 }
92779245 1841 if (cpu_has_feature(CPU_FTR_HAS_PPR))
4c2de74c 1842 childregs->ppr = DEFAULT_PPR;
ec233ede
SB
1843
1844 p->thread.tidr = 0;
f643fcab 1845#endif
14cf11af
PM
1846 return 0;
1847}
1848
5434ae74
NP
1849void preload_new_slb_context(unsigned long start, unsigned long sp);
1850
14cf11af
PM
1851/*
1852 * Set up a thread for executing a new program
1853 */
06d67d54 1854void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1855{
90eac727
ME
1856#ifdef CONFIG_PPC64
1857 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
5434ae74 1858
bfac2799 1859 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
f89bd8ba 1860 preload_new_slb_context(start, sp);
90eac727
ME
1861#endif
1862
8e96a87c
CB
1863#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1864 /*
1865 * Clear any transactional state, we're exec()ing. The cause is
1866 * not important as there will never be a recheckpoint so it's not
1867 * user visible.
1868 */
1869 if (MSR_TM_SUSPENDED(mfmsr()))
1870 tm_reclaim_current(0);
1871#endif
1872
ec6d0dde 1873 memset(&regs->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
14cf11af
PM
1874 regs->ctr = 0;
1875 regs->link = 0;
1876 regs->xer = 0;
1877 regs->ccr = 0;
14cf11af 1878 regs->gpr[1] = sp;
06d67d54
PM
1879
1880#ifdef CONFIG_PPC32
1881 regs->mq = 0;
1882 regs->nip = start;
14cf11af 1883 regs->msr = MSR_USER;
06d67d54 1884#else
9904b005 1885 if (!is_32bit_task()) {
94af3abf 1886 unsigned long entry;
06d67d54 1887
94af3abf
RR
1888 if (is_elf2_task()) {
1889 /* Look ma, no function descriptors! */
1890 entry = start;
06d67d54 1891
94af3abf
RR
1892 /*
1893 * Ulrich says:
1894 * The latest iteration of the ABI requires that when
1895 * calling a function (at its global entry point),
1896 * the caller must ensure r12 holds the entry point
1897 * address (so that the function can quickly
1898 * establish addressability).
1899 */
1900 regs->gpr[12] = start;
1901 /* Make sure that's restored on entry to userspace. */
1902 set_thread_flag(TIF_RESTOREALL);
1903 } else {
1904 unsigned long toc;
1905
1906 /* start is a relocated pointer to the function
1907 * descriptor for the elf _start routine. The first
1908 * entry in the function descriptor is the entry
1909 * address of _start and the second entry is the TOC
1910 * value we need to use.
1911 */
1912 __get_user(entry, (unsigned long __user *)start);
1913 __get_user(toc, (unsigned long __user *)start+1);
1914
1915 /* Check whether the e_entry function descriptor entries
1916 * need to be relocated before we can use them.
1917 */
1918 if (load_addr != 0) {
1919 entry += load_addr;
1920 toc += load_addr;
1921 }
1922 regs->gpr[2] = toc;
06d67d54 1923 }
59dc5bfc
NP
1924 regs_set_return_ip(regs, entry);
1925 regs_set_return_msr(regs, MSR_USER64);
d4bf9a78 1926 } else {
d4bf9a78 1927 regs->gpr[2] = 0;
59dc5bfc
NP
1928 regs_set_return_ip(regs, start);
1929 regs_set_return_msr(regs, MSR_USER32);
06d67d54 1930 }
59dc5bfc 1931
06d67d54 1932#endif
ce48b210
MN
1933#ifdef CONFIG_VSX
1934 current->thread.used_vsr = 0;
1935#endif
5434ae74 1936 current->thread.load_slb = 0;
1195892c 1937 current->thread.load_fp = 0;
b6254ced 1938#ifdef CONFIG_PPC_FPU_REGS
de79f7b9 1939 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1940 current->thread.fp_save_area = NULL;
b6254ced 1941#endif
14cf11af 1942#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1943 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1944 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1945 current->thread.vr_save_area = NULL;
14cf11af
PM
1946 current->thread.vrsave = 0;
1947 current->thread.used_vr = 0;
1195892c 1948 current->thread.load_vec = 0;
14cf11af
PM
1949#endif /* CONFIG_ALTIVEC */
1950#ifdef CONFIG_SPE
1951 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1952 current->thread.acc = 0;
1953 current->thread.spefscr = 0;
1954 current->thread.used_spe = 0;
1955#endif /* CONFIG_SPE */
bc2a9408 1956#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
bc2a9408
MN
1957 current->thread.tm_tfhar = 0;
1958 current->thread.tm_texasr = 0;
1959 current->thread.tm_tfiar = 0;
7f22ced4 1960 current->thread.load_tm = 0;
bc2a9408 1961#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af 1962}
e1802b06 1963EXPORT_SYMBOL(start_thread);
14cf11af
PM
1964
1965#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1966 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1967
1968int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1969{
1970 struct pt_regs *regs = tsk->thread.regs;
1971
1972 /* This is a bit hairy. If we are an SPE enabled processor
1973 * (have embedded fp) we store the IEEE exception enable flags in
1974 * fpexc_mode. fpexc_mode is also used for setting FP exception
1975 * mode (asyn, precise, disabled) for 'Classic' FP. */
1976 if (val & PR_FP_EXC_SW_ENABLE) {
5e14d21e 1977 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1978 /*
1979 * When the sticky exception bits are set
1980 * directly by userspace, it must call prctl
1981 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1982 * in the existing prctl settings) or
1983 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1984 * the bits being set). <fenv.h> functions
1985 * saving and restoring the whole
1986 * floating-point environment need to do so
1987 * anyway to restore the prctl settings from
1988 * the saved environment.
1989 */
532ed190 1990#ifdef CONFIG_SPE
640e9225 1991 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1992 tsk->thread.fpexc_mode = val &
1993 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
532ed190 1994#endif
5e14d21e
KG
1995 return 0;
1996 } else {
1997 return -EINVAL;
1998 }
14cf11af 1999 }
06d67d54
PM
2000
2001 /* on a CONFIG_SPE this does not hurt us. The bits that
2002 * __pack_fe01 use do not overlap with bits used for
2003 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
2004 * on CONFIG_SPE implementations are reserved so writing to
2005 * them does not change anything */
2006 if (val > PR_FP_EXC_PRECISE)
2007 return -EINVAL;
2008 tsk->thread.fpexc_mode = __pack_fe01(val);
59dc5bfc
NP
2009 if (regs != NULL && (regs->msr & MSR_FP) != 0) {
2010 regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
2011 | tsk->thread.fpexc_mode);
2012 }
14cf11af
PM
2013 return 0;
2014}
2015
2016int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
2017{
d208e13c 2018 unsigned int val = 0;
14cf11af 2019
532ed190 2020 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
640e9225
JM
2021 if (cpu_has_feature(CPU_FTR_SPE)) {
2022 /*
2023 * When the sticky exception bits are set
2024 * directly by userspace, it must call prctl
2025 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2026 * in the existing prctl settings) or
2027 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2028 * the bits being set). <fenv.h> functions
2029 * saving and restoring the whole
2030 * floating-point environment need to do so
2031 * anyway to restore the prctl settings from
2032 * the saved environment.
2033 */
532ed190 2034#ifdef CONFIG_SPE
640e9225 2035 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 2036 val = tsk->thread.fpexc_mode;
532ed190 2037#endif
640e9225 2038 } else
5e14d21e 2039 return -EINVAL;
532ed190 2040 } else {
14cf11af 2041 val = __unpack_fe01(tsk->thread.fpexc_mode);
532ed190 2042 }
14cf11af
PM
2043 return put_user(val, (unsigned int __user *) adr);
2044}
2045
fab5db97
PM
2046int set_endian(struct task_struct *tsk, unsigned int val)
2047{
2048 struct pt_regs *regs = tsk->thread.regs;
2049
2050 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
2051 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2052 return -EINVAL;
2053
2054 if (regs == NULL)
2055 return -EINVAL;
2056
2057 if (val == PR_ENDIAN_BIG)
59dc5bfc 2058 regs_set_return_msr(regs, regs->msr & ~MSR_LE);
fab5db97 2059 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
59dc5bfc 2060 regs_set_return_msr(regs, regs->msr | MSR_LE);
fab5db97
PM
2061 else
2062 return -EINVAL;
2063
2064 return 0;
2065}
2066
2067int get_endian(struct task_struct *tsk, unsigned long adr)
2068{
2069 struct pt_regs *regs = tsk->thread.regs;
2070 unsigned int val;
2071
2072 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2073 !cpu_has_feature(CPU_FTR_REAL_LE))
2074 return -EINVAL;
2075
2076 if (regs == NULL)
2077 return -EINVAL;
2078
2079 if (regs->msr & MSR_LE) {
2080 if (cpu_has_feature(CPU_FTR_REAL_LE))
2081 val = PR_ENDIAN_LITTLE;
2082 else
2083 val = PR_ENDIAN_PPC_LITTLE;
2084 } else
2085 val = PR_ENDIAN_BIG;
2086
2087 return put_user(val, (unsigned int __user *)adr);
2088}
2089
e9370ae1
PM
2090int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2091{
2092 tsk->thread.align_ctl = val;
2093 return 0;
2094}
2095
2096int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2097{
2098 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2099}
2100
bb72c481
PM
2101static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2102 unsigned long nbytes)
2103{
2104 unsigned long stack_page;
2105 unsigned long cpu = task_cpu(p);
2106
1ee4e350
NP
2107 if (!hardirq_ctx[cpu] || !softirq_ctx[cpu])
2108 return 0;
2109
a7916a1d
CL
2110 stack_page = (unsigned long)hardirq_ctx[cpu];
2111 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2112 return 1;
2113
2114 stack_page = (unsigned long)softirq_ctx[cpu];
2115 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2116 return 1;
2117
bb72c481
PM
2118 return 0;
2119}
2120
a2e36683
NP
2121static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2122 unsigned long nbytes)
2123{
2124#ifdef CONFIG_PPC64
2125 unsigned long stack_page;
2126 unsigned long cpu = task_cpu(p);
2127
0ecf6a9e
ME
2128 if (!paca_ptrs)
2129 return 0;
2130
1ee4e350
NP
2131 if (!paca_ptrs[cpu]->emergency_sp)
2132 return 0;
2133
2134# ifdef CONFIG_PPC_BOOK3S_64
2135 if (!paca_ptrs[cpu]->nmi_emergency_sp || !paca_ptrs[cpu]->mc_emergency_sp)
2136 return 0;
2137#endif
2138
a2e36683
NP
2139 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2140 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2141 return 1;
2142
2143# ifdef CONFIG_PPC_BOOK3S_64
2144 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2145 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2146 return 1;
2147
2148 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2149 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2150 return 1;
2151# endif
2152#endif
2153
2154 return 0;
2155}
2156
4cefb0f6
NP
2157/*
2158 * validate the stack frame of a particular minimum size, used for when we are
2159 * looking at a certain object in the stack beyond the minimum.
2160 */
2161int validate_sp_size(unsigned long sp, struct task_struct *p,
2162 unsigned long nbytes)
14cf11af 2163{
0cec6fd1 2164 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af 2165
a7916a1d
CL
2166 if (sp < THREAD_SIZE)
2167 return 0;
2168
2169 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
14cf11af
PM
2170 return 1;
2171
a2e36683
NP
2172 if (valid_irq_stack(sp, p, nbytes))
2173 return 1;
2174
2175 return valid_emergency_stack(sp, p, nbytes);
14cf11af
PM
2176}
2177
4cefb0f6
NP
2178int validate_sp(unsigned long sp, struct task_struct *p)
2179{
90f1b431 2180 return validate_sp_size(sp, p, STACK_FRAME_MIN_SIZE);
4cefb0f6 2181}
2f25194d 2182
42a20f86 2183static unsigned long ___get_wchan(struct task_struct *p)
14cf11af
PM
2184{
2185 unsigned long ip, sp;
2186 int count = 0;
2187
14cf11af 2188 sp = p->thread.ksp;
4cefb0f6 2189 if (!validate_sp(sp, p))
14cf11af
PM
2190 return 0;
2191
2192 do {
a1b29ba2 2193 sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
4cefb0f6 2194 if (!validate_sp(sp, p) || task_is_running(p))
14cf11af
PM
2195 return 0;
2196 if (count > 0) {
a1b29ba2 2197 ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
14cf11af
PM
2198 if (!in_sched_functions(ip))
2199 return ip;
2200 }
2201 } while (count++ < 16);
2202 return 0;
2203}
06d67d54 2204
42a20f86 2205unsigned long __get_wchan(struct task_struct *p)
018cce33
CL
2206{
2207 unsigned long ret;
2208
2209 if (!try_get_task_stack(p))
2210 return 0;
2211
42a20f86 2212 ret = ___get_wchan(p);
018cce33
CL
2213
2214 put_task_stack(p);
2215
2216 return ret;
2217}
2218
c4d04be1 2219static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54 2220
b112fb91
DA
2221void __no_sanitize_address show_stack(struct task_struct *tsk,
2222 unsigned long *stack,
2223 const char *loglvl)
06d67d54
PM
2224{
2225 unsigned long sp, ip, lr, newsp;
2226 int count = 0;
2227 int firstframe = 1;
7c1bb6bb
NR
2228 unsigned long ret_addr;
2229 int ftrace_idx = 0;
06d67d54 2230
06d67d54
PM
2231 if (tsk == NULL)
2232 tsk = current;
018cce33
CL
2233
2234 if (!try_get_task_stack(tsk))
2235 return;
2236
2237 sp = (unsigned long) stack;
06d67d54
PM
2238 if (sp == 0) {
2239 if (tsk == current)
3d13e839 2240 sp = current_stack_frame();
06d67d54
PM
2241 else
2242 sp = tsk->thread.ksp;
2243 }
2244
2245 lr = 0;
b9677a8c 2246 printk("%sCall Trace:\n", loglvl);
06d67d54 2247 do {
4cefb0f6 2248 if (!validate_sp(sp, tsk))
018cce33 2249 break;
06d67d54
PM
2250
2251 stack = (unsigned long *) sp;
2252 newsp = stack[0];
ec2b36b9 2253 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 2254 if (!firstframe || ip != lr) {
b9677a8c
DS
2255 printk("%s["REG"] ["REG"] %pS",
2256 loglvl, sp, ip, (void *)ip);
7c1bb6bb
NR
2257 ret_addr = ftrace_graph_ret_addr(current,
2258 &ftrace_idx, ip, stack);
2259 if (ret_addr != ip)
2260 pr_cont(" (%pS)", (void *)ret_addr);
06d67d54 2261 if (firstframe)
9a1f490f
ME
2262 pr_cont(" (unreliable)");
2263 pr_cont("\n");
06d67d54
PM
2264 }
2265 firstframe = 0;
2266
2267 /*
2268 * See if this is an exception frame.
c03be0a3 2269 * We look for the "regs" marker in the current frame.
6f291a03
NP
2270 *
2271 * STACK_SWITCH_FRAME_SIZE being the smallest frame that
2272 * could hold a pt_regs, if that does not fit then it can't
2273 * have regs.
06d67d54 2274 */
4cefb0f6 2275 if (validate_sp_size(sp, tsk, STACK_SWITCH_FRAME_SIZE)
e856e336 2276 && stack[STACK_INT_FRAME_MARKER_LONGS] == STACK_FRAME_REGS_MARKER) {
06d67d54 2277 struct pt_regs *regs = (struct pt_regs *)
c03be0a3 2278 (sp + STACK_INT_FRAME_REGS);
bf13718b 2279
06d67d54 2280 lr = regs->link;
bf13718b
NP
2281 printk("%s--- interrupt: %lx at %pS\n",
2282 loglvl, regs->trap, (void *)regs->nip);
2283 __show_regs(regs);
2284 printk("%s--- interrupt: %lx\n",
2285 loglvl, regs->trap);
2286
06d67d54
PM
2287 firstframe = 1;
2288 }
2289
2290 sp = newsp;
2291 } while (count++ < kstack_depth_to_print);
018cce33
CL
2292
2293 put_task_stack(tsk);
06d67d54
PM
2294}
2295
cb2c9b27 2296#ifdef CONFIG_PPC64
fe1952fc 2297/* Called with hard IRQs off */
0e37739b 2298void notrace __ppc64_runlatch_on(void)
cb2c9b27 2299{
fe1952fc 2300 struct thread_info *ti = current_thread_info();
cb2c9b27 2301
d1d0d5ff
NP
2302 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2303 /*
2304 * Least significant bit (RUN) is the only writable bit of
2305 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2306 * earliest ISA where this is the case, but it's convenient.
2307 */
2308 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2309 } else {
2310 unsigned long ctrl;
2311
2312 /*
2313 * Some architectures (e.g., Cell) have writable fields other
2314 * than RUN, so do the read-modify-write.
2315 */
2316 ctrl = mfspr(SPRN_CTRLF);
2317 ctrl |= CTRL_RUNLATCH;
2318 mtspr(SPRN_CTRLT, ctrl);
2319 }
cb2c9b27 2320
fae2e0fb 2321 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
2322}
2323
fe1952fc 2324/* Called with hard IRQs off */
0e37739b 2325void notrace __ppc64_runlatch_off(void)
cb2c9b27 2326{
fe1952fc 2327 struct thread_info *ti = current_thread_info();
cb2c9b27 2328
fae2e0fb 2329 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 2330
d1d0d5ff
NP
2331 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2332 mtspr(SPRN_CTRLT, 0);
2333 } else {
2334 unsigned long ctrl;
2335
2336 ctrl = mfspr(SPRN_CTRLF);
2337 ctrl &= ~CTRL_RUNLATCH;
2338 mtspr(SPRN_CTRLT, ctrl);
2339 }
cb2c9b27 2340}
fe1952fc 2341#endif /* CONFIG_PPC64 */
f6a61680 2342
d839088c
AB
2343unsigned long arch_align_stack(unsigned long sp)
2344{
2345 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
8032bf12 2346 sp -= get_random_u32_below(PAGE_SIZE);
d839088c
AB
2347 return sp & ~0xf;
2348}