powerpc/embedded6xx: Make functions flipper_pic_init() & ug_udbg_putc() static
[linux-2.6-block.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
b17b0153 19#include <linux/sched/debug.h>
29930025 20#include <linux/sched/task.h>
68db0cf1 21#include <linux/sched/task_stack.h>
14cf11af
PM
22#include <linux/kernel.h>
23#include <linux/mm.h>
24#include <linux/smp.h>
14cf11af
PM
25#include <linux/stddef.h>
26#include <linux/unistd.h>
27#include <linux/ptrace.h>
28#include <linux/slab.h>
29#include <linux/user.h>
30#include <linux/elf.h>
14cf11af
PM
31#include <linux/prctl.h>
32#include <linux/init_task.h>
4b16f8e2 33#include <linux/export.h>
14cf11af
PM
34#include <linux/kallsyms.h>
35#include <linux/mqueue.h>
36#include <linux/hardirq.h>
06d67d54 37#include <linux/utsname.h>
6794c782 38#include <linux/ftrace.h>
79741dd3 39#include <linux/kernel_stat.h>
d839088c
AB
40#include <linux/personality.h>
41#include <linux/random.h>
5aae8a53 42#include <linux/hw_breakpoint.h>
7b051f66 43#include <linux/uaccess.h>
7f92bc56 44#include <linux/elf-randomize.h>
06bb53b3 45#include <linux/pkeys.h>
14cf11af
PM
46
47#include <asm/pgtable.h>
14cf11af
PM
48#include <asm/io.h>
49#include <asm/processor.h>
50#include <asm/mmu.h>
51#include <asm/prom.h>
76032de8 52#include <asm/machdep.h>
c6622f63 53#include <asm/time.h>
ae3a197e 54#include <asm/runlatch.h>
a7f31841 55#include <asm/syscalls.h>
ae3a197e 56#include <asm/switch_to.h>
fb09692e 57#include <asm/tm.h>
ae3a197e 58#include <asm/debug.h>
06d67d54
PM
59#ifdef CONFIG_PPC64
60#include <asm/firmware.h>
c2e480ba 61#include <asm/hw_irq.h>
06d67d54 62#endif
7cedd601 63#include <asm/code-patching.h>
7f92bc56 64#include <asm/exec.h>
5d31a96e 65#include <asm/livepatch.h>
b92a226e 66#include <asm/cpu_has_feature.h>
0545d543 67#include <asm/asm-prototypes.h>
5d31a96e 68
d6a61bfc
LM
69#include <linux/kprobes.h>
70#include <linux/kdebug.h>
14cf11af 71
8b3c34cf
MN
72/* Transactional Memory debug */
73#ifdef TM_DEBUG_SW
74#define TM_DEBUG(x...) printk(KERN_INFO x)
75#else
76#define TM_DEBUG(x...) do { } while(0)
77#endif
78
14cf11af
PM
79extern unsigned long _get_SP(void);
80
d31626f7 81#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
54820530
ME
82/*
83 * Are we running in "Suspend disabled" mode? If so we have to block any
84 * sigreturn that would get us into suspended state, and we also warn in some
85 * other paths that we should never reach with suspend disabled.
86 */
87bool tm_suspend_disabled __ro_after_init = false;
88
b86fd2bd 89static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
90{
91 /*
92 * If we are saving the current thread's registers, and the
93 * thread is in a transactional state, set the TIF_RESTORE_TM
94 * bit so that we know to restore the registers before
95 * returning to userspace.
96 */
97 if (tsk == current && tsk->thread.regs &&
98 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
99 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 100 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
101 set_thread_flag(TIF_RESTORE_TM);
102 }
d31626f7 103}
dc16b553
CB
104
105static inline bool msr_tm_active(unsigned long msr)
106{
107 return MSR_TM_ACTIVE(msr);
108}
a7771176
CB
109
110static bool tm_active_with_fp(struct task_struct *tsk)
111{
112 return msr_tm_active(tsk->thread.regs->msr) &&
113 (tsk->thread.ckpt_regs.msr & MSR_FP);
114}
115
116static bool tm_active_with_altivec(struct task_struct *tsk)
117{
118 return msr_tm_active(tsk->thread.regs->msr) &&
119 (tsk->thread.ckpt_regs.msr & MSR_VEC);
120}
d31626f7 121#else
dc16b553 122static inline bool msr_tm_active(unsigned long msr) { return false; }
b86fd2bd 123static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
a7771176
CB
124static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
125static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
d31626f7
PM
126#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
127
3eb5d588
AB
128bool strict_msr_control;
129EXPORT_SYMBOL(strict_msr_control);
130
131static int __init enable_strict_msr_control(char *str)
132{
133 strict_msr_control = true;
134 pr_info("Enabling strict facility control\n");
135
136 return 0;
137}
138early_param("ppc_strict_facility_enable", enable_strict_msr_control);
139
3cee070a 140unsigned long msr_check_and_set(unsigned long bits)
98da581e 141{
a0e72cf1
AB
142 unsigned long oldmsr = mfmsr();
143 unsigned long newmsr;
98da581e 144
a0e72cf1 145 newmsr = oldmsr | bits;
98da581e 146
98da581e 147#ifdef CONFIG_VSX
a0e72cf1 148 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e
AB
149 newmsr |= MSR_VSX;
150#endif
a0e72cf1 151
98da581e
AB
152 if (oldmsr != newmsr)
153 mtmsr_isync(newmsr);
3cee070a
CB
154
155 return newmsr;
a0e72cf1 156}
98da581e 157
3eb5d588 158void __msr_check_and_clear(unsigned long bits)
a0e72cf1
AB
159{
160 unsigned long oldmsr = mfmsr();
161 unsigned long newmsr;
162
163 newmsr = oldmsr & ~bits;
164
165#ifdef CONFIG_VSX
166 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
167 newmsr &= ~MSR_VSX;
168#endif
169
170 if (oldmsr != newmsr)
171 mtmsr_isync(newmsr);
172}
3eb5d588 173EXPORT_SYMBOL(__msr_check_and_clear);
a0e72cf1
AB
174
175#ifdef CONFIG_PPC_FPU
8792468d
CB
176void __giveup_fpu(struct task_struct *tsk)
177{
8eb98037
AB
178 unsigned long msr;
179
8792468d 180 save_fpu(tsk);
8eb98037
AB
181 msr = tsk->thread.regs->msr;
182 msr &= ~MSR_FP;
8792468d
CB
183#ifdef CONFIG_VSX
184 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 185 msr &= ~MSR_VSX;
8792468d 186#endif
8eb98037 187 tsk->thread.regs->msr = msr;
8792468d
CB
188}
189
a0e72cf1
AB
190void giveup_fpu(struct task_struct *tsk)
191{
192 check_if_tm_restore_required(tsk);
193
194 msr_check_and_set(MSR_FP);
98da581e 195 __giveup_fpu(tsk);
a0e72cf1 196 msr_check_and_clear(MSR_FP);
98da581e
AB
197}
198EXPORT_SYMBOL(giveup_fpu);
199
14cf11af
PM
200/*
201 * Make sure the floating-point register state in the
202 * the thread_struct is up to date for task tsk.
203 */
204void flush_fp_to_thread(struct task_struct *tsk)
205{
206 if (tsk->thread.regs) {
207 /*
208 * We need to disable preemption here because if we didn't,
209 * another process could get scheduled after the regs->msr
210 * test but before we have finished saving the FP registers
211 * to the thread_struct. That process could take over the
212 * FPU, and then when we get scheduled again we would store
213 * bogus values for the remaining FP registers.
214 */
215 preempt_disable();
216 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
217 /*
218 * This should only ever be called for current or
219 * for a stopped child process. Since we save away
af1bbc3d 220 * the FP register state on context switch,
14cf11af
PM
221 * there is something wrong if a stopped child appears
222 * to still have its FP state in the CPU registers.
223 */
224 BUG_ON(tsk != current);
b86fd2bd 225 giveup_fpu(tsk);
14cf11af
PM
226 }
227 preempt_enable();
228 }
229}
de56a948 230EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
231
232void enable_kernel_fp(void)
233{
e909fb83
CB
234 unsigned long cpumsr;
235
14cf11af
PM
236 WARN_ON(preemptible());
237
e909fb83 238 cpumsr = msr_check_and_set(MSR_FP);
611b0e5c 239
d64d02ce
AB
240 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
241 check_if_tm_restore_required(current);
e909fb83
CB
242 /*
243 * If a thread has already been reclaimed then the
244 * checkpointed registers are on the CPU but have definitely
245 * been saved by the reclaim code. Don't need to and *cannot*
246 * giveup as this would save to the 'live' structure not the
247 * checkpointed structure.
248 */
249 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
250 return;
a0e72cf1 251 __giveup_fpu(current);
d64d02ce 252 }
14cf11af
PM
253}
254EXPORT_SYMBOL(enable_kernel_fp);
70fe3d98 255
6a303833
BH
256static int restore_fp(struct task_struct *tsk)
257{
a7771176 258 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
70fe3d98
CB
259 load_fp_state(&current->thread.fp_state);
260 current->thread.load_fp++;
261 return 1;
262 }
263 return 0;
264}
265#else
266static int restore_fp(struct task_struct *tsk) { return 0; }
d1e1cf2e 267#endif /* CONFIG_PPC_FPU */
14cf11af 268
14cf11af 269#ifdef CONFIG_ALTIVEC
70fe3d98
CB
270#define loadvec(thr) ((thr).load_vec)
271
6f515d84
CB
272static void __giveup_altivec(struct task_struct *tsk)
273{
8eb98037
AB
274 unsigned long msr;
275
6f515d84 276 save_altivec(tsk);
8eb98037
AB
277 msr = tsk->thread.regs->msr;
278 msr &= ~MSR_VEC;
6f515d84
CB
279#ifdef CONFIG_VSX
280 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 281 msr &= ~MSR_VSX;
6f515d84 282#endif
8eb98037 283 tsk->thread.regs->msr = msr;
6f515d84
CB
284}
285
98da581e
AB
286void giveup_altivec(struct task_struct *tsk)
287{
98da581e
AB
288 check_if_tm_restore_required(tsk);
289
a0e72cf1 290 msr_check_and_set(MSR_VEC);
98da581e 291 __giveup_altivec(tsk);
a0e72cf1 292 msr_check_and_clear(MSR_VEC);
98da581e
AB
293}
294EXPORT_SYMBOL(giveup_altivec);
295
14cf11af
PM
296void enable_kernel_altivec(void)
297{
e909fb83
CB
298 unsigned long cpumsr;
299
14cf11af
PM
300 WARN_ON(preemptible());
301
e909fb83 302 cpumsr = msr_check_and_set(MSR_VEC);
611b0e5c 303
d64d02ce
AB
304 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
305 check_if_tm_restore_required(current);
e909fb83
CB
306 /*
307 * If a thread has already been reclaimed then the
308 * checkpointed registers are on the CPU but have definitely
309 * been saved by the reclaim code. Don't need to and *cannot*
310 * giveup as this would save to the 'live' structure not the
311 * checkpointed structure.
312 */
313 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
314 return;
a0e72cf1 315 __giveup_altivec(current);
d64d02ce 316 }
14cf11af
PM
317}
318EXPORT_SYMBOL(enable_kernel_altivec);
319
320/*
321 * Make sure the VMX/Altivec register state in the
322 * the thread_struct is up to date for task tsk.
323 */
324void flush_altivec_to_thread(struct task_struct *tsk)
325{
326 if (tsk->thread.regs) {
327 preempt_disable();
328 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 329 BUG_ON(tsk != current);
b86fd2bd 330 giveup_altivec(tsk);
14cf11af
PM
331 }
332 preempt_enable();
333 }
334}
de56a948 335EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
70fe3d98
CB
336
337static int restore_altivec(struct task_struct *tsk)
338{
dc16b553 339 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
a7771176 340 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
70fe3d98
CB
341 load_vr_state(&tsk->thread.vr_state);
342 tsk->thread.used_vr = 1;
343 tsk->thread.load_vec++;
344
345 return 1;
346 }
347 return 0;
348}
349#else
350#define loadvec(thr) 0
351static inline int restore_altivec(struct task_struct *tsk) { return 0; }
14cf11af
PM
352#endif /* CONFIG_ALTIVEC */
353
ce48b210 354#ifdef CONFIG_VSX
bf6a4d5b 355static void __giveup_vsx(struct task_struct *tsk)
a7d623d4 356{
dc801081
BH
357 unsigned long msr = tsk->thread.regs->msr;
358
359 /*
360 * We should never be ssetting MSR_VSX without also setting
361 * MSR_FP and MSR_VEC
362 */
363 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
364
365 /* __giveup_fpu will clear MSR_VSX */
366 if (msr & MSR_FP)
a7d623d4 367 __giveup_fpu(tsk);
dc801081 368 if (msr & MSR_VEC)
a7d623d4 369 __giveup_altivec(tsk);
bf6a4d5b
CB
370}
371
372static void giveup_vsx(struct task_struct *tsk)
373{
374 check_if_tm_restore_required(tsk);
375
376 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 377 __giveup_vsx(tsk);
a0e72cf1 378 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 379}
bf6a4d5b 380
ce48b210
MN
381void enable_kernel_vsx(void)
382{
e909fb83
CB
383 unsigned long cpumsr;
384
ce48b210
MN
385 WARN_ON(preemptible());
386
e909fb83 387 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 388
5a69aec9
BH
389 if (current->thread.regs &&
390 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
d64d02ce 391 check_if_tm_restore_required(current);
e909fb83
CB
392 /*
393 * If a thread has already been reclaimed then the
394 * checkpointed registers are on the CPU but have definitely
395 * been saved by the reclaim code. Don't need to and *cannot*
396 * giveup as this would save to the 'live' structure not the
397 * checkpointed structure.
398 */
399 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
400 return;
a0e72cf1 401 __giveup_vsx(current);
611b0e5c 402 }
ce48b210
MN
403}
404EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
405
406void flush_vsx_to_thread(struct task_struct *tsk)
407{
408 if (tsk->thread.regs) {
409 preempt_disable();
5a69aec9 410 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
ce48b210 411 BUG_ON(tsk != current);
ce48b210
MN
412 giveup_vsx(tsk);
413 }
414 preempt_enable();
415 }
416}
de56a948 417EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
70fe3d98
CB
418
419static int restore_vsx(struct task_struct *tsk)
420{
421 if (cpu_has_feature(CPU_FTR_VSX)) {
422 tsk->thread.used_vsr = 1;
423 return 1;
424 }
425
426 return 0;
427}
428#else
429static inline int restore_vsx(struct task_struct *tsk) { return 0; }
ce48b210
MN
430#endif /* CONFIG_VSX */
431
14cf11af 432#ifdef CONFIG_SPE
98da581e
AB
433void giveup_spe(struct task_struct *tsk)
434{
98da581e
AB
435 check_if_tm_restore_required(tsk);
436
a0e72cf1 437 msr_check_and_set(MSR_SPE);
98da581e 438 __giveup_spe(tsk);
a0e72cf1 439 msr_check_and_clear(MSR_SPE);
98da581e
AB
440}
441EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
442
443void enable_kernel_spe(void)
444{
445 WARN_ON(preemptible());
446
a0e72cf1 447 msr_check_and_set(MSR_SPE);
611b0e5c 448
d64d02ce
AB
449 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
450 check_if_tm_restore_required(current);
a0e72cf1 451 __giveup_spe(current);
d64d02ce 452 }
14cf11af
PM
453}
454EXPORT_SYMBOL(enable_kernel_spe);
455
456void flush_spe_to_thread(struct task_struct *tsk)
457{
458 if (tsk->thread.regs) {
459 preempt_disable();
460 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 461 BUG_ON(tsk != current);
685659ee 462 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 463 giveup_spe(tsk);
14cf11af
PM
464 }
465 preempt_enable();
466 }
467}
14cf11af
PM
468#endif /* CONFIG_SPE */
469
c2085059
AB
470static unsigned long msr_all_available;
471
472static int __init init_msr_all_available(void)
473{
474#ifdef CONFIG_PPC_FPU
475 msr_all_available |= MSR_FP;
476#endif
477#ifdef CONFIG_ALTIVEC
478 if (cpu_has_feature(CPU_FTR_ALTIVEC))
479 msr_all_available |= MSR_VEC;
480#endif
481#ifdef CONFIG_VSX
482 if (cpu_has_feature(CPU_FTR_VSX))
483 msr_all_available |= MSR_VSX;
484#endif
485#ifdef CONFIG_SPE
486 if (cpu_has_feature(CPU_FTR_SPE))
487 msr_all_available |= MSR_SPE;
488#endif
489
490 return 0;
491}
492early_initcall(init_msr_all_available);
493
494void giveup_all(struct task_struct *tsk)
495{
496 unsigned long usermsr;
497
498 if (!tsk->thread.regs)
499 return;
500
501 usermsr = tsk->thread.regs->msr;
502
503 if ((usermsr & msr_all_available) == 0)
504 return;
505
506 msr_check_and_set(msr_all_available);
b0f16b46 507 check_if_tm_restore_required(tsk);
c2085059 508
96c79b6b
BH
509 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
510
c2085059
AB
511#ifdef CONFIG_PPC_FPU
512 if (usermsr & MSR_FP)
513 __giveup_fpu(tsk);
514#endif
515#ifdef CONFIG_ALTIVEC
516 if (usermsr & MSR_VEC)
517 __giveup_altivec(tsk);
518#endif
c2085059
AB
519#ifdef CONFIG_SPE
520 if (usermsr & MSR_SPE)
521 __giveup_spe(tsk);
522#endif
523
524 msr_check_and_clear(msr_all_available);
525}
526EXPORT_SYMBOL(giveup_all);
527
70fe3d98
CB
528void restore_math(struct pt_regs *regs)
529{
530 unsigned long msr;
531
dc16b553
CB
532 if (!msr_tm_active(regs->msr) &&
533 !current->thread.load_fp && !loadvec(current->thread))
70fe3d98
CB
534 return;
535
536 msr = regs->msr;
537 msr_check_and_set(msr_all_available);
538
539 /*
540 * Only reload if the bit is not set in the user MSR, the bit BEING set
541 * indicates that the registers are hot
542 */
543 if ((!(msr & MSR_FP)) && restore_fp(current))
544 msr |= MSR_FP | current->thread.fpexc_mode;
545
546 if ((!(msr & MSR_VEC)) && restore_altivec(current))
547 msr |= MSR_VEC;
548
549 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
550 restore_vsx(current)) {
551 msr |= MSR_VSX;
552 }
553
554 msr_check_and_clear(msr_all_available);
555
556 regs->msr = msr;
557}
558
de2a20aa
CB
559void save_all(struct task_struct *tsk)
560{
561 unsigned long usermsr;
562
563 if (!tsk->thread.regs)
564 return;
565
566 usermsr = tsk->thread.regs->msr;
567
568 if ((usermsr & msr_all_available) == 0)
569 return;
570
571 msr_check_and_set(msr_all_available);
572
96c79b6b
BH
573 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
574
575 if (usermsr & MSR_FP)
576 save_fpu(tsk);
577
578 if (usermsr & MSR_VEC)
579 save_altivec(tsk);
de2a20aa
CB
580
581 if (usermsr & MSR_SPE)
582 __giveup_spe(tsk);
583
584 msr_check_and_clear(msr_all_available);
585}
586
579e633e
AB
587void flush_all_to_thread(struct task_struct *tsk)
588{
589 if (tsk->thread.regs) {
590 preempt_disable();
591 BUG_ON(tsk != current);
de2a20aa 592 save_all(tsk);
579e633e
AB
593
594#ifdef CONFIG_SPE
595 if (tsk->thread.regs->msr & MSR_SPE)
596 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
597#endif
598
599 preempt_enable();
600 }
601}
602EXPORT_SYMBOL(flush_all_to_thread);
603
3bffb652
DK
604#ifdef CONFIG_PPC_ADV_DEBUG_REGS
605void do_send_trap(struct pt_regs *regs, unsigned long address,
47355040 606 unsigned long error_code, int breakpt)
3bffb652 607{
47355040 608 current->thread.trap_nr = TRAP_HWBKPT;
3bffb652
DK
609 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
610 11, SIGSEGV) == NOTIFY_STOP)
611 return;
612
613 /* Deliver the signal to userspace */
f71dd7dc
EB
614 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
615 (void __user *)address);
3bffb652
DK
616}
617#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 618void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
619 unsigned long error_code)
620{
621 siginfo_t info;
622
41ab5266 623 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
624 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
625 11, SIGSEGV) == NOTIFY_STOP)
626 return;
627
9422de3e 628 if (debugger_break_match(regs))
d6a61bfc
LM
629 return;
630
9422de3e
MN
631 /* Clear the breakpoint */
632 hw_breakpoint_disable();
d6a61bfc
LM
633
634 /* Deliver the signal to userspace */
635 info.si_signo = SIGTRAP;
636 info.si_errno = 0;
637 info.si_code = TRAP_HWBKPT;
638 info.si_addr = (void __user *)address;
639 force_sig_info(SIGTRAP, &info, current);
640}
3bffb652 641#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 642
9422de3e 643static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 644
3bffb652
DK
645#ifdef CONFIG_PPC_ADV_DEBUG_REGS
646/*
647 * Set the debug registers back to their default "safe" values.
648 */
649static void set_debug_reg_defaults(struct thread_struct *thread)
650{
51ae8d4a 651 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 652#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 653 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 654#endif
51ae8d4a 655 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 656#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 657 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 658#endif
51ae8d4a 659 thread->debug.dbcr0 = 0;
3bffb652
DK
660#ifdef CONFIG_BOOKE
661 /*
662 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
663 */
51ae8d4a 664 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
665 DBCR1_IAC3US | DBCR1_IAC4US;
666 /*
667 * Force Data Address Compare User/Supervisor bits to be User-only
668 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
669 */
51ae8d4a 670 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 671#else
51ae8d4a 672 thread->debug.dbcr1 = 0;
3bffb652
DK
673#endif
674}
675
f5f97210 676static void prime_debug_regs(struct debug_reg *debug)
3bffb652 677{
6cecf76b
SW
678 /*
679 * We could have inherited MSR_DE from userspace, since
680 * it doesn't get cleared on exception entry. Make sure
681 * MSR_DE is clear before we enable any debug events.
682 */
683 mtmsr(mfmsr() & ~MSR_DE);
684
f5f97210
SW
685 mtspr(SPRN_IAC1, debug->iac1);
686 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 687#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
688 mtspr(SPRN_IAC3, debug->iac3);
689 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 690#endif
f5f97210
SW
691 mtspr(SPRN_DAC1, debug->dac1);
692 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 693#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
694 mtspr(SPRN_DVC1, debug->dvc1);
695 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 696#endif
f5f97210
SW
697 mtspr(SPRN_DBCR0, debug->dbcr0);
698 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 699#ifdef CONFIG_BOOKE
f5f97210 700 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
701#endif
702}
703/*
704 * Unless neither the old or new thread are making use of the
705 * debug registers, set the debug registers from the values
706 * stored in the new thread.
707 */
f5f97210 708void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 709{
51ae8d4a 710 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
711 || (new_debug->dbcr0 & DBCR0_IDM))
712 prime_debug_regs(new_debug);
3bffb652 713}
3743c9b8 714EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 715#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 716#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
717static void set_debug_reg_defaults(struct thread_struct *thread)
718{
9422de3e
MN
719 thread->hw_brk.address = 0;
720 thread->hw_brk.type = 0;
b9818c33 721 set_breakpoint(&thread->hw_brk);
3bffb652 722}
e0780b72 723#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
724#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
725
172ae2e7 726#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
727static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
728{
d6a61bfc 729 mtspr(SPRN_DAC1, dabr);
221c185d
DK
730#ifdef CONFIG_PPC_47x
731 isync();
732#endif
9422de3e
MN
733 return 0;
734}
c6c9eace 735#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
736static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
737{
c6c9eace 738 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
739 if (cpu_has_feature(CPU_FTR_DABRX))
740 mtspr(SPRN_DABRX, dabrx);
cab0af98 741 return 0;
14cf11af 742}
4ad8622d
CL
743#elif defined(CONFIG_PPC_8xx)
744static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
745{
746 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
747 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
748 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
749
750 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
751 lctrl1 |= 0xa0000;
752 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
753 lctrl1 |= 0xf0000;
754 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
755 lctrl2 = 0;
756
757 mtspr(SPRN_LCTRL2, 0);
758 mtspr(SPRN_CMPE, addr);
759 mtspr(SPRN_CMPF, addr + 4);
760 mtspr(SPRN_LCTRL1, lctrl1);
761 mtspr(SPRN_LCTRL2, lctrl2);
762
763 return 0;
764}
9422de3e
MN
765#else
766static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
767{
768 return -EINVAL;
769}
770#endif
771
772static inline int set_dabr(struct arch_hw_breakpoint *brk)
773{
774 unsigned long dabr, dabrx;
775
776 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
777 dabrx = ((brk->type >> 3) & 0x7);
778
779 if (ppc_md.set_dabr)
780 return ppc_md.set_dabr(dabr, dabrx);
781
782 return __set_dabr(dabr, dabrx);
783}
784
bf99de36
MN
785static inline int set_dawr(struct arch_hw_breakpoint *brk)
786{
05d694ea 787 unsigned long dawr, dawrx, mrd;
bf99de36
MN
788
789 dawr = brk->address;
790
791 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
792 << (63 - 58); //* read/write bits */
793 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
794 << (63 - 59); //* translate */
795 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
796 >> 3; //* PRIM bits */
05d694ea
MN
797 /* dawr length is stored in field MDR bits 48:53. Matches range in
798 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
799 0b111111=64DW.
800 brk->len is in bytes.
801 This aligns up to double word size, shifts and does the bias.
802 */
803 mrd = ((brk->len + 7) >> 3) - 1;
804 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
805
806 if (ppc_md.set_dawr)
807 return ppc_md.set_dawr(dawr, dawrx);
808 mtspr(SPRN_DAWR, dawr);
809 mtspr(SPRN_DAWRX, dawrx);
810 return 0;
811}
812
21f58507 813void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e 814{
69111bac 815 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
9422de3e 816
bf99de36 817 if (cpu_has_feature(CPU_FTR_DAWR))
04c32a51
PG
818 set_dawr(brk);
819 else
820 set_dabr(brk);
9422de3e 821}
14cf11af 822
21f58507
PG
823void set_breakpoint(struct arch_hw_breakpoint *brk)
824{
825 preempt_disable();
826 __set_breakpoint(brk);
827 preempt_enable();
828}
829
06d67d54
PM
830#ifdef CONFIG_PPC64
831DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 832#endif
14cf11af 833
9422de3e
MN
834static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
835 struct arch_hw_breakpoint *b)
836{
837 if (a->address != b->address)
838 return false;
839 if (a->type != b->type)
840 return false;
841 if (a->len != b->len)
842 return false;
843 return true;
844}
d31626f7 845
fb09692e 846#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
5d176f75
CB
847
848static inline bool tm_enabled(struct task_struct *tsk)
849{
850 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
851}
852
d31626f7
PM
853static void tm_reclaim_thread(struct thread_struct *thr,
854 struct thread_info *ti, uint8_t cause)
855{
7f821fc9
MN
856 /*
857 * Use the current MSR TM suspended bit to track if we have
858 * checkpointed state outstanding.
859 * On signal delivery, we'd normally reclaim the checkpointed
860 * state to obtain stack pointer (see:get_tm_stackpointer()).
861 * This will then directly return to userspace without going
862 * through __switch_to(). However, if the stack frame is bad,
863 * we need to exit this thread which calls __switch_to() which
864 * will again attempt to reclaim the already saved tm state.
865 * Hence we need to check that we've not already reclaimed
866 * this state.
867 * We do this using the current MSR, rather tracking it in
868 * some specific thread_struct bit, as it has the additional
027dfac6 869 * benefit of checking for a potential TM bad thing exception.
7f821fc9
MN
870 */
871 if (!MSR_TM_SUSPENDED(mfmsr()))
872 return;
873
91381b9c
CB
874 giveup_all(container_of(thr, struct task_struct, thread));
875
eb5c3f1c
CB
876 tm_reclaim(thr, cause);
877
f48e91e8
MN
878 /*
879 * If we are in a transaction and FP is off then we can't have
880 * used FP inside that transaction. Hence the checkpointed
881 * state is the same as the live state. We need to copy the
882 * live state to the checkpointed state so that when the
883 * transaction is restored, the checkpointed state is correct
884 * and the aborted transaction sees the correct state. We use
885 * ckpt_regs.msr here as that's what tm_reclaim will use to
886 * determine if it's going to write the checkpointed state or
887 * not. So either this will write the checkpointed registers,
888 * or reclaim will. Similarly for VMX.
889 */
890 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
891 memcpy(&thr->ckfp_state, &thr->fp_state,
892 sizeof(struct thread_fp_state));
893 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
894 memcpy(&thr->ckvr_state, &thr->vr_state,
895 sizeof(struct thread_vr_state));
d31626f7
PM
896}
897
898void tm_reclaim_current(uint8_t cause)
899{
900 tm_enable();
901 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
902}
903
fb09692e
MN
904static inline void tm_reclaim_task(struct task_struct *tsk)
905{
906 /* We have to work out if we're switching from/to a task that's in the
907 * middle of a transaction.
908 *
909 * In switching we need to maintain a 2nd register state as
910 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
000ec280
CB
911 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
912 * ckvr_state
fb09692e
MN
913 *
914 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
915 */
916 struct thread_struct *thr = &tsk->thread;
917
918 if (!thr->regs)
919 return;
920
921 if (!MSR_TM_ACTIVE(thr->regs->msr))
922 goto out_and_saveregs;
923
92fb8690
MN
924 WARN_ON(tm_suspend_disabled);
925
fb09692e
MN
926 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
927 "ccr=%lx, msr=%lx, trap=%lx)\n",
928 tsk->pid, thr->regs->nip,
929 thr->regs->ccr, thr->regs->msr,
930 thr->regs->trap);
931
d31626f7 932 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
fb09692e
MN
933
934 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
935 tsk->pid);
936
937out_and_saveregs:
938 /* Always save the regs here, even if a transaction's not active.
939 * This context-switches a thread's TM info SPRs. We do it here to
940 * be consistent with the restore path (in recheckpoint) which
941 * cannot happen later in _switch().
942 */
943 tm_save_sprs(thr);
944}
945
eb5c3f1c 946extern void __tm_recheckpoint(struct thread_struct *thread);
e6b8fd02 947
eb5c3f1c 948void tm_recheckpoint(struct thread_struct *thread)
e6b8fd02
MN
949{
950 unsigned long flags;
951
5d176f75
CB
952 if (!(thread->regs->msr & MSR_TM))
953 return;
954
e6b8fd02
MN
955 /* We really can't be interrupted here as the TEXASR registers can't
956 * change and later in the trecheckpoint code, we have a userspace R1.
957 * So let's hard disable over this region.
958 */
959 local_irq_save(flags);
960 hard_irq_disable();
961
962 /* The TM SPRs are restored here, so that TEXASR.FS can be set
963 * before the trecheckpoint and no explosion occurs.
964 */
965 tm_restore_sprs(thread);
966
eb5c3f1c 967 __tm_recheckpoint(thread);
e6b8fd02
MN
968
969 local_irq_restore(flags);
970}
971
bc2a9408 972static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e 973{
fb09692e
MN
974 if (!cpu_has_feature(CPU_FTR_TM))
975 return;
976
977 /* Recheckpoint the registers of the thread we're about to switch to.
978 *
979 * If the task was using FP, we non-lazily reload both the original and
980 * the speculative FP register states. This is because the kernel
981 * doesn't see if/when a TM rollback occurs, so if we take an FP
dc310669 982 * unavailable later, we are unable to determine which set of FP regs
fb09692e
MN
983 * need to be restored.
984 */
5d176f75 985 if (!tm_enabled(new))
fb09692e
MN
986 return;
987
e6b8fd02
MN
988 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
989 tm_restore_sprs(&new->thread);
fb09692e 990 return;
e6b8fd02 991 }
fb09692e 992 /* Recheckpoint to restore original checkpointed register state. */
eb5c3f1c
CB
993 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
994 new->pid, new->thread.regs->msr);
fb09692e 995
eb5c3f1c 996 tm_recheckpoint(&new->thread);
fb09692e 997
dc310669
CB
998 /*
999 * The checkpointed state has been restored but the live state has
1000 * not, ensure all the math functionality is turned off to trigger
1001 * restore_math() to reload.
1002 */
1003 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
fb09692e
MN
1004
1005 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1006 "(kernel msr 0x%lx)\n",
1007 new->pid, mfmsr());
1008}
1009
dc310669
CB
1010static inline void __switch_to_tm(struct task_struct *prev,
1011 struct task_struct *new)
fb09692e
MN
1012{
1013 if (cpu_has_feature(CPU_FTR_TM)) {
5d176f75
CB
1014 if (tm_enabled(prev) || tm_enabled(new))
1015 tm_enable();
1016
1017 if (tm_enabled(prev)) {
1018 prev->thread.load_tm++;
1019 tm_reclaim_task(prev);
1020 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1021 prev->thread.regs->msr &= ~MSR_TM;
1022 }
1023
dc310669 1024 tm_recheckpoint_new_task(new);
fb09692e
MN
1025 }
1026}
d31626f7
PM
1027
1028/*
1029 * This is called if we are on the way out to userspace and the
1030 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1031 * FP and/or vector state and does so if necessary.
1032 * If userspace is inside a transaction (whether active or
1033 * suspended) and FP/VMX/VSX instructions have ever been enabled
1034 * inside that transaction, then we have to keep them enabled
1035 * and keep the FP/VMX/VSX state loaded while ever the transaction
1036 * continues. The reason is that if we didn't, and subsequently
1037 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1038 * we don't know whether it's the same transaction, and thus we
1039 * don't know which of the checkpointed state and the transactional
1040 * state to use.
1041 */
1042void restore_tm_state(struct pt_regs *regs)
1043{
1044 unsigned long msr_diff;
1045
dc310669
CB
1046 /*
1047 * This is the only moment we should clear TIF_RESTORE_TM as
1048 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1049 * again, anything else could lead to an incorrect ckpt_msr being
1050 * saved and therefore incorrect signal contexts.
1051 */
d31626f7
PM
1052 clear_thread_flag(TIF_RESTORE_TM);
1053 if (!MSR_TM_ACTIVE(regs->msr))
1054 return;
1055
829023df 1056 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7 1057 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
70fe3d98 1058
dc16b553
CB
1059 /* Ensure that restore_math() will restore */
1060 if (msr_diff & MSR_FP)
1061 current->thread.load_fp = 1;
39715bf9 1062#ifdef CONFIG_ALTIVEC
dc16b553
CB
1063 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1064 current->thread.load_vec = 1;
1065#endif
70fe3d98
CB
1066 restore_math(regs);
1067
d31626f7
PM
1068 regs->msr |= msr_diff;
1069}
1070
fb09692e
MN
1071#else
1072#define tm_recheckpoint_new_task(new)
dc310669 1073#define __switch_to_tm(prev, new)
fb09692e 1074#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 1075
152d523e
AB
1076static inline void save_sprs(struct thread_struct *t)
1077{
1078#ifdef CONFIG_ALTIVEC
01d7c2a2 1079 if (cpu_has_feature(CPU_FTR_ALTIVEC))
152d523e
AB
1080 t->vrsave = mfspr(SPRN_VRSAVE);
1081#endif
1082#ifdef CONFIG_PPC_BOOK3S_64
1083 if (cpu_has_feature(CPU_FTR_DSCR))
1084 t->dscr = mfspr(SPRN_DSCR);
1085
1086 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1087 t->bescr = mfspr(SPRN_BESCR);
1088 t->ebbhr = mfspr(SPRN_EBBHR);
1089 t->ebbrr = mfspr(SPRN_EBBRR);
1090
1091 t->fscr = mfspr(SPRN_FSCR);
1092
1093 /*
1094 * Note that the TAR is not available for use in the kernel.
1095 * (To provide this, the TAR should be backed up/restored on
1096 * exception entry/exit instead, and be in pt_regs. FIXME,
1097 * this should be in pt_regs anyway (for debug).)
1098 */
1099 t->tar = mfspr(SPRN_TAR);
1100 }
1101#endif
06bb53b3
RP
1102
1103 thread_pkey_regs_save(t);
152d523e
AB
1104}
1105
1106static inline void restore_sprs(struct thread_struct *old_thread,
1107 struct thread_struct *new_thread)
1108{
1109#ifdef CONFIG_ALTIVEC
1110 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1111 old_thread->vrsave != new_thread->vrsave)
1112 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1113#endif
1114#ifdef CONFIG_PPC_BOOK3S_64
1115 if (cpu_has_feature(CPU_FTR_DSCR)) {
1116 u64 dscr = get_paca()->dscr_default;
b57bd2de 1117 if (new_thread->dscr_inherit)
152d523e 1118 dscr = new_thread->dscr;
152d523e
AB
1119
1120 if (old_thread->dscr != dscr)
1121 mtspr(SPRN_DSCR, dscr);
152d523e
AB
1122 }
1123
1124 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1125 if (old_thread->bescr != new_thread->bescr)
1126 mtspr(SPRN_BESCR, new_thread->bescr);
1127 if (old_thread->ebbhr != new_thread->ebbhr)
1128 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1129 if (old_thread->ebbrr != new_thread->ebbrr)
1130 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1131
b57bd2de
MN
1132 if (old_thread->fscr != new_thread->fscr)
1133 mtspr(SPRN_FSCR, new_thread->fscr);
1134
152d523e
AB
1135 if (old_thread->tar != new_thread->tar)
1136 mtspr(SPRN_TAR, new_thread->tar);
1137 }
ec233ede
SB
1138
1139 if (cpu_has_feature(CPU_FTR_ARCH_300) &&
1140 old_thread->tidr != new_thread->tidr)
1141 mtspr(SPRN_TIDR, new_thread->tidr);
152d523e 1142#endif
06bb53b3
RP
1143
1144 thread_pkey_regs_restore(new_thread, old_thread);
152d523e
AB
1145}
1146
07d2a628
NP
1147#ifdef CONFIG_PPC_BOOK3S_64
1148#define CP_SIZE 128
1149static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1150#endif
1151
14cf11af
PM
1152struct task_struct *__switch_to(struct task_struct *prev,
1153 struct task_struct *new)
1154{
1155 struct thread_struct *new_thread, *old_thread;
14cf11af 1156 struct task_struct *last;
d6bf29b4
PZ
1157#ifdef CONFIG_PPC_BOOK3S_64
1158 struct ppc64_tlb_batch *batch;
1159#endif
14cf11af 1160
152d523e
AB
1161 new_thread = &new->thread;
1162 old_thread = &current->thread;
1163
7ba5fef7
MN
1164 WARN_ON(!irqs_disabled());
1165
06d67d54
PM
1166#ifdef CONFIG_PPC64
1167 /*
1168 * Collect processor utilization data per process
1169 */
1170 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
69111bac 1171 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
06d67d54
PM
1172 long unsigned start_tb, current_tb;
1173 start_tb = old_thread->start_tb;
1174 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1175 old_thread->accum_tb += (current_tb - start_tb);
1176 new_thread->start_tb = current_tb;
1177 }
d6bf29b4
PZ
1178#endif /* CONFIG_PPC64 */
1179
4e003747 1180#ifdef CONFIG_PPC_BOOK3S_64
69111bac 1181 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1182 if (batch->active) {
1183 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1184 if (batch->index)
1185 __flush_tlb_pending(batch);
1186 batch->active = 0;
1187 }
4e003747 1188#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 1189
f3d885cc
AB
1190#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1191 switch_booke_debug_regs(&new->thread.debug);
1192#else
1193/*
1194 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1195 * schedule DABR
1196 */
1197#ifndef CONFIG_HAVE_HW_BREAKPOINT
1198 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1199 __set_breakpoint(&new->thread.hw_brk);
1200#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1201#endif
1202
1203 /*
1204 * We need to save SPRs before treclaim/trecheckpoint as these will
1205 * change a number of them.
1206 */
1207 save_sprs(&prev->thread);
1208
f3d885cc
AB
1209 /* Save FPU, Altivec, VSX and SPE state */
1210 giveup_all(prev);
1211
dc310669
CB
1212 __switch_to_tm(prev, new);
1213
e4c0fc5f
NP
1214 if (!radix_enabled()) {
1215 /*
1216 * We can't take a PMU exception inside _switch() since there
1217 * is a window where the kernel stack SLB and the kernel stack
1218 * are out of sync. Hard disable here.
1219 */
1220 hard_irq_disable();
1221 }
bc2a9408 1222
20dbe670
AB
1223 /*
1224 * Call restore_sprs() before calling _switch(). If we move it after
1225 * _switch() then we miss out on calling it for new tasks. The reason
1226 * for this is we manually create a stack frame for new tasks that
1227 * directly returns through ret_from_fork() or
1228 * ret_from_kernel_thread(). See copy_thread() for details.
1229 */
f3d885cc
AB
1230 restore_sprs(old_thread, new_thread);
1231
20dbe670
AB
1232 last = _switch(old_thread, new_thread);
1233
4e003747 1234#ifdef CONFIG_PPC_BOOK3S_64
d6bf29b4
PZ
1235 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1236 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 1237 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1238 batch->active = 1;
1239 }
70fe3d98 1240
07d2a628 1241 if (current_thread_info()->task->thread.regs) {
70fe3d98 1242 restore_math(current_thread_info()->task->thread.regs);
07d2a628
NP
1243
1244 /*
1245 * The copy-paste buffer can only store into foreign real
1246 * addresses, so unprivileged processes can not see the
1247 * data or use it in any way unless they have foreign real
9d2a4d71
SB
1248 * mappings. If the new process has the foreign real address
1249 * mappings, we must issue a cp_abort to clear any state and
1250 * prevent snooping, corruption or a covert channel.
1251 *
1252 * DD1 allows paste into normal system memory so we do an
1253 * unpaired copy, rather than cp_abort, to clear the buffer,
1254 * since cp_abort is quite expensive.
07d2a628 1255 */
9d2a4d71
SB
1256 if (current_thread_info()->task->thread.used_vas) {
1257 asm volatile(PPC_CP_ABORT);
1258 } else if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
07d2a628
NP
1259 asm volatile(PPC_COPY(%0, %1)
1260 : : "r"(dummy_copy_buffer), "r"(0));
1261 }
1262 }
4e003747 1263#endif /* CONFIG_PPC_BOOK3S_64 */
d6bf29b4 1264
14cf11af
PM
1265 return last;
1266}
1267
06d67d54
PM
1268static int instructions_to_print = 16;
1269
06d67d54
PM
1270static void show_instructions(struct pt_regs *regs)
1271{
1272 int i;
1273 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1274 sizeof(int));
1275
1276 printk("Instruction dump:");
1277
1278 for (i = 0; i < instructions_to_print; i++) {
1279 int instr;
1280
1281 if (!(i % 8))
2ffd04de 1282 pr_cont("\n");
06d67d54 1283
0de2d820
SW
1284#if !defined(CONFIG_BOOKE)
1285 /* If executing with the IMMU off, adjust pc rather
1286 * than print XXXXXXXX.
1287 */
1288 if (!(regs->msr & MSR_IR))
1289 pc = (unsigned long)phys_to_virt(pc);
1290#endif
1291
00ae36de 1292 if (!__kernel_text_address(pc) ||
7b051f66 1293 probe_kernel_address((unsigned int __user *)pc, instr)) {
2ffd04de 1294 pr_cont("XXXXXXXX ");
06d67d54
PM
1295 } else {
1296 if (regs->nip == pc)
2ffd04de 1297 pr_cont("<%08x> ", instr);
06d67d54 1298 else
2ffd04de 1299 pr_cont("%08x ", instr);
06d67d54
PM
1300 }
1301
1302 pc += sizeof(int);
1303 }
1304
2ffd04de 1305 pr_cont("\n");
06d67d54
PM
1306}
1307
801c0b2c 1308struct regbit {
06d67d54
PM
1309 unsigned long bit;
1310 const char *name;
801c0b2c
MN
1311};
1312
1313static struct regbit msr_bits[] = {
3bfd0c9c
AB
1314#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1315 {MSR_SF, "SF"},
1316 {MSR_HV, "HV"},
1317#endif
1318 {MSR_VEC, "VEC"},
1319 {MSR_VSX, "VSX"},
1320#ifdef CONFIG_BOOKE
1321 {MSR_CE, "CE"},
1322#endif
06d67d54
PM
1323 {MSR_EE, "EE"},
1324 {MSR_PR, "PR"},
1325 {MSR_FP, "FP"},
1326 {MSR_ME, "ME"},
3bfd0c9c 1327#ifdef CONFIG_BOOKE
1b98326b 1328 {MSR_DE, "DE"},
3bfd0c9c
AB
1329#else
1330 {MSR_SE, "SE"},
1331 {MSR_BE, "BE"},
1332#endif
06d67d54
PM
1333 {MSR_IR, "IR"},
1334 {MSR_DR, "DR"},
3bfd0c9c
AB
1335 {MSR_PMM, "PMM"},
1336#ifndef CONFIG_BOOKE
1337 {MSR_RI, "RI"},
1338 {MSR_LE, "LE"},
1339#endif
06d67d54
PM
1340 {0, NULL}
1341};
1342
801c0b2c 1343static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
06d67d54 1344{
801c0b2c 1345 const char *s = "";
06d67d54 1346
06d67d54
PM
1347 for (; bits->bit; ++bits)
1348 if (val & bits->bit) {
db5ba5ae 1349 pr_cont("%s%s", s, bits->name);
801c0b2c 1350 s = sep;
06d67d54 1351 }
801c0b2c
MN
1352}
1353
1354#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1355static struct regbit msr_tm_bits[] = {
1356 {MSR_TS_T, "T"},
1357 {MSR_TS_S, "S"},
1358 {MSR_TM, "E"},
1359 {0, NULL}
1360};
1361
1362static void print_tm_bits(unsigned long val)
1363{
1364/*
1365 * This only prints something if at least one of the TM bit is set.
1366 * Inside the TM[], the output means:
1367 * E: Enabled (bit 32)
1368 * S: Suspended (bit 33)
1369 * T: Transactional (bit 34)
1370 */
1371 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
db5ba5ae 1372 pr_cont(",TM[");
801c0b2c 1373 print_bits(val, msr_tm_bits, "");
db5ba5ae 1374 pr_cont("]");
801c0b2c
MN
1375 }
1376}
1377#else
1378static void print_tm_bits(unsigned long val) {}
1379#endif
1380
1381static void print_msr_bits(unsigned long val)
1382{
db5ba5ae 1383 pr_cont("<");
801c0b2c
MN
1384 print_bits(val, msr_bits, ",");
1385 print_tm_bits(val);
db5ba5ae 1386 pr_cont(">");
06d67d54
PM
1387}
1388
1389#ifdef CONFIG_PPC64
f6f7dde3 1390#define REG "%016lx"
06d67d54
PM
1391#define REGS_PER_LINE 4
1392#define LAST_VOLATILE 13
1393#else
f6f7dde3 1394#define REG "%08lx"
06d67d54
PM
1395#define REGS_PER_LINE 8
1396#define LAST_VOLATILE 12
1397#endif
1398
14cf11af
PM
1399void show_regs(struct pt_regs * regs)
1400{
1401 int i, trap;
1402
a43cb95d
TH
1403 show_regs_print_info(KERN_DEFAULT);
1404
a6036100 1405 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
06d67d54 1406 regs->nip, regs->link, regs->ctr);
182dc9c7 1407 printk("REGS: %px TRAP: %04lx %s (%s)\n",
96b644bd 1408 regs, regs->trap, print_tainted(), init_utsname()->release);
a6036100 1409 printk("MSR: "REG" ", regs->msr);
801c0b2c 1410 print_msr_bits(regs->msr);
f6fc73fb 1411 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1412 trap = TRAP(regs);
2271db20 1413 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
7dae865f 1414 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1415 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1416#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
7dae865f 1417 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1418#else
7dae865f 1419 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
9db8bcfd
AB
1420#endif
1421#ifdef CONFIG_PPC64
7dae865f 1422 pr_cont("SOFTE: %ld ", regs->softe);
9db8bcfd
AB
1423#endif
1424#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a 1425 if (MSR_TM_ACTIVE(regs->msr))
7dae865f 1426 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1427#endif
14cf11af
PM
1428
1429 for (i = 0; i < 32; i++) {
06d67d54 1430 if ((i % REGS_PER_LINE) == 0)
7dae865f
ME
1431 pr_cont("\nGPR%02d: ", i);
1432 pr_cont(REG " ", regs->gpr[i]);
06d67d54 1433 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1434 break;
1435 }
7dae865f 1436 pr_cont("\n");
14cf11af
PM
1437#ifdef CONFIG_KALLSYMS
1438 /*
1439 * Lookup NIP late so we have the best change of getting the
1440 * above info out without failing
1441 */
058c78f4
BH
1442 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1443 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1444#endif
14cf11af 1445 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1446 if (!user_mode(regs))
1447 show_instructions(regs);
14cf11af
PM
1448}
1449
14cf11af
PM
1450void flush_thread(void)
1451{
e0780b72 1452#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1453 flush_ptrace_hw_breakpoint(current);
e0780b72 1454#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1455 set_debug_reg_defaults(&current->thread);
e0780b72 1456#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1457}
1458
9d2a4d71
SB
1459int set_thread_uses_vas(void)
1460{
1461#ifdef CONFIG_PPC_BOOK3S_64
1462 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1463 return -EINVAL;
1464
1465 current->thread.used_vas = 1;
1466
1467 /*
1468 * Even a process that has no foreign real address mapping can use
1469 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1470 * to clear any pending COPY and prevent a covert channel.
1471 *
1472 * __switch_to() will issue CP_ABORT on future context switches.
1473 */
1474 asm volatile(PPC_CP_ABORT);
1475
1476#endif /* CONFIG_PPC_BOOK3S_64 */
1477 return 0;
1478}
1479
ec233ede
SB
1480#ifdef CONFIG_PPC64
1481static DEFINE_SPINLOCK(vas_thread_id_lock);
1482static DEFINE_IDA(vas_thread_ida);
1483
1484/*
1485 * We need to assign a unique thread id to each thread in a process.
1486 *
1487 * This thread id, referred to as TIDR, and separate from the Linux's tgid,
1488 * is intended to be used to direct an ASB_Notify from the hardware to the
1489 * thread, when a suitable event occurs in the system.
1490 *
1491 * One such event is a "paste" instruction in the context of Fast Thread
1492 * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard
1493 * (VAS) in POWER9.
1494 *
1495 * To get a unique TIDR per process we could simply reuse task_pid_nr() but
1496 * the problem is that task_pid_nr() is not yet available copy_thread() is
1497 * called. Fixing that would require changing more intrusive arch-neutral
1498 * code in code path in copy_process()?.
1499 *
1500 * Further, to assign unique TIDRs within each process, we need an atomic
1501 * field (or an IDR) in task_struct, which again intrudes into the arch-
1502 * neutral code. So try to assign globally unique TIDRs for now.
1503 *
1504 * NOTE: TIDR 0 indicates that the thread does not need a TIDR value.
1505 * For now, only threads that expect to be notified by the VAS
1506 * hardware need a TIDR value and we assign values > 0 for those.
1507 */
1508#define MAX_THREAD_CONTEXT ((1 << 16) - 1)
1509static int assign_thread_tidr(void)
1510{
1511 int index;
1512 int err;
384dfd62 1513 unsigned long flags;
ec233ede
SB
1514
1515again:
1516 if (!ida_pre_get(&vas_thread_ida, GFP_KERNEL))
1517 return -ENOMEM;
1518
384dfd62 1519 spin_lock_irqsave(&vas_thread_id_lock, flags);
ec233ede 1520 err = ida_get_new_above(&vas_thread_ida, 1, &index);
384dfd62 1521 spin_unlock_irqrestore(&vas_thread_id_lock, flags);
ec233ede
SB
1522
1523 if (err == -EAGAIN)
1524 goto again;
1525 else if (err)
1526 return err;
1527
1528 if (index > MAX_THREAD_CONTEXT) {
384dfd62 1529 spin_lock_irqsave(&vas_thread_id_lock, flags);
ec233ede 1530 ida_remove(&vas_thread_ida, index);
384dfd62 1531 spin_unlock_irqrestore(&vas_thread_id_lock, flags);
ec233ede
SB
1532 return -ENOMEM;
1533 }
1534
1535 return index;
1536}
1537
1538static void free_thread_tidr(int id)
1539{
384dfd62
SB
1540 unsigned long flags;
1541
1542 spin_lock_irqsave(&vas_thread_id_lock, flags);
ec233ede 1543 ida_remove(&vas_thread_ida, id);
384dfd62 1544 spin_unlock_irqrestore(&vas_thread_id_lock, flags);
ec233ede
SB
1545}
1546
1547/*
1548 * Clear any TIDR value assigned to this thread.
1549 */
1550void clear_thread_tidr(struct task_struct *t)
1551{
1552 if (!t->thread.tidr)
1553 return;
1554
1555 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1556 WARN_ON_ONCE(1);
1557 return;
1558 }
1559
1560 mtspr(SPRN_TIDR, 0);
1561 free_thread_tidr(t->thread.tidr);
1562 t->thread.tidr = 0;
1563}
1564
1565void arch_release_task_struct(struct task_struct *t)
1566{
1567 clear_thread_tidr(t);
1568}
1569
1570/*
1571 * Assign a unique TIDR (thread id) for task @t and set it in the thread
1572 * structure. For now, we only support setting TIDR for 'current' task.
1573 */
1574int set_thread_tidr(struct task_struct *t)
1575{
aca7573f
VJ
1576 int rc;
1577
ec233ede
SB
1578 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1579 return -EINVAL;
1580
1581 if (t != current)
1582 return -EINVAL;
1583
7e4d4233
VJ
1584 if (t->thread.tidr)
1585 return 0;
1586
aca7573f
VJ
1587 rc = assign_thread_tidr();
1588 if (rc < 0)
1589 return rc;
ec233ede 1590
aca7573f 1591 t->thread.tidr = rc;
ec233ede
SB
1592 mtspr(SPRN_TIDR, t->thread.tidr);
1593
1594 return 0;
1595}
b1db5513 1596EXPORT_SYMBOL_GPL(set_thread_tidr);
ec233ede
SB
1597
1598#endif /* CONFIG_PPC64 */
1599
14cf11af
PM
1600void
1601release_thread(struct task_struct *t)
1602{
1603}
1604
1605/*
55ccf3fe
SS
1606 * this gets called so that we can store coprocessor state into memory and
1607 * copy the current task into the new thread.
14cf11af 1608 */
55ccf3fe 1609int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1610{
579e633e 1611 flush_all_to_thread(src);
621b5060
MN
1612 /*
1613 * Flush TM state out so we can copy it. __switch_to_tm() does this
1614 * flush but it removes the checkpointed state from the current CPU and
1615 * transitions the CPU out of TM mode. Hence we need to call
1616 * tm_recheckpoint_new_task() (on the same task) to restore the
1617 * checkpointed state back and the TM mode.
5d176f75
CB
1618 *
1619 * Can't pass dst because it isn't ready. Doesn't matter, passing
1620 * dst is only important for __switch_to()
621b5060 1621 */
dc310669 1622 __switch_to_tm(src, src);
330a1eb7 1623
55ccf3fe 1624 *dst = *src;
330a1eb7
ME
1625
1626 clear_task_ebb(dst);
1627
55ccf3fe 1628 return 0;
14cf11af
PM
1629}
1630
cec15488
ME
1631static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1632{
4e003747 1633#ifdef CONFIG_PPC_BOOK3S_64
cec15488
ME
1634 unsigned long sp_vsid;
1635 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1636
caca285e
AK
1637 if (radix_enabled())
1638 return;
1639
cec15488
ME
1640 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1641 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1642 << SLB_VSID_SHIFT_1T;
1643 else
1644 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1645 << SLB_VSID_SHIFT;
1646 sp_vsid |= SLB_VSID_KERNEL | llp;
1647 p->thread.ksp_vsid = sp_vsid;
1648#endif
1649}
1650
14cf11af
PM
1651/*
1652 * Copy a thread..
1653 */
efcac658 1654
6eca8933
AD
1655/*
1656 * Copy architecture-specific thread state
1657 */
6f2c55b8 1658int copy_thread(unsigned long clone_flags, unsigned long usp,
6eca8933 1659 unsigned long kthread_arg, struct task_struct *p)
14cf11af
PM
1660{
1661 struct pt_regs *childregs, *kregs;
1662 extern void ret_from_fork(void);
58254e10
AV
1663 extern void ret_from_kernel_thread(void);
1664 void (*f)(void);
0cec6fd1 1665 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
5d31a96e
ME
1666 struct thread_info *ti = task_thread_info(p);
1667
1668 klp_init_thread_info(ti);
14cf11af 1669
14cf11af
PM
1670 /* Copy registers */
1671 sp -= sizeof(struct pt_regs);
1672 childregs = (struct pt_regs *) sp;
ab75819d 1673 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1674 /* kernel thread */
58254e10 1675 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1676 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1677 /* function */
1678 if (usp)
1679 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1680#ifdef CONFIG_PPC64
b5e2fc1c 1681 clear_tsk_thread_flag(p, TIF_32BIT);
c2e480ba 1682 childregs->softe = IRQS_ENABLED;
06d67d54 1683#endif
6eca8933 1684 childregs->gpr[15] = kthread_arg;
14cf11af 1685 p->thread.regs = NULL; /* no user register state */
138d1ce8 1686 ti->flags |= _TIF_RESTOREALL;
58254e10 1687 f = ret_from_kernel_thread;
14cf11af 1688 } else {
6eca8933 1689 /* user thread */
afa86fc4 1690 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1691 CHECK_FULL_REGS(regs);
1692 *childregs = *regs;
ea516b11
AV
1693 if (usp)
1694 childregs->gpr[1] = usp;
14cf11af 1695 p->thread.regs = childregs;
58254e10 1696 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1697 if (clone_flags & CLONE_SETTLS) {
1698#ifdef CONFIG_PPC64
9904b005 1699 if (!is_32bit_task())
06d67d54
PM
1700 childregs->gpr[13] = childregs->gpr[6];
1701 else
1702#endif
1703 childregs->gpr[2] = childregs->gpr[6];
1704 }
58254e10
AV
1705
1706 f = ret_from_fork;
14cf11af 1707 }
d272f667 1708 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
14cf11af 1709 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1710
1711 /*
1712 * The way this works is that at some point in the future
1713 * some task will call _switch to switch to the new task.
1714 * That will pop off the stack frame created below and start
1715 * the new task running at ret_from_fork. The new task will
1716 * do some house keeping and then return from the fork or clone
1717 * system call, using the stack frame created above.
1718 */
af945cf4 1719 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1720 sp -= sizeof(struct pt_regs);
1721 kregs = (struct pt_regs *) sp;
1722 sp -= STACK_FRAME_OVERHEAD;
1723 p->thread.ksp = sp;
cbc9565e 1724#ifdef CONFIG_PPC32
85218827
KG
1725 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1726 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1727#endif
28d170ab
ON
1728#ifdef CONFIG_HAVE_HW_BREAKPOINT
1729 p->thread.ptrace_bps[0] = NULL;
1730#endif
1731
18461960
PM
1732 p->thread.fp_save_area = NULL;
1733#ifdef CONFIG_ALTIVEC
1734 p->thread.vr_save_area = NULL;
1735#endif
1736
cec15488
ME
1737 setup_ksp_vsid(p, sp);
1738
efcac658
AK
1739#ifdef CONFIG_PPC64
1740 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26 1741 p->thread.dscr_inherit = current->thread.dscr_inherit;
db1231dc 1742 p->thread.dscr = mfspr(SPRN_DSCR);
efcac658 1743 }
92779245
HM
1744 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1745 p->thread.ppr = INIT_PPR;
ec233ede
SB
1746
1747 p->thread.tidr = 0;
efcac658 1748#endif
7cedd601 1749 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1750 return 0;
1751}
1752
1753/*
1754 * Set up a thread for executing a new program
1755 */
06d67d54 1756void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1757{
90eac727
ME
1758#ifdef CONFIG_PPC64
1759 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1760#endif
1761
06d67d54
PM
1762 /*
1763 * If we exec out of a kernel thread then thread.regs will not be
1764 * set. Do it now.
1765 */
1766 if (!current->thread.regs) {
0cec6fd1
AV
1767 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1768 current->thread.regs = regs - 1;
06d67d54
PM
1769 }
1770
8e96a87c
CB
1771#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1772 /*
1773 * Clear any transactional state, we're exec()ing. The cause is
1774 * not important as there will never be a recheckpoint so it's not
1775 * user visible.
1776 */
1777 if (MSR_TM_SUSPENDED(mfmsr()))
1778 tm_reclaim_current(0);
1779#endif
1780
14cf11af
PM
1781 memset(regs->gpr, 0, sizeof(regs->gpr));
1782 regs->ctr = 0;
1783 regs->link = 0;
1784 regs->xer = 0;
1785 regs->ccr = 0;
14cf11af 1786 regs->gpr[1] = sp;
06d67d54 1787
474f8196
RM
1788 /*
1789 * We have just cleared all the nonvolatile GPRs, so make
1790 * FULL_REGS(regs) return true. This is necessary to allow
1791 * ptrace to examine the thread immediately after exec.
1792 */
1793 regs->trap &= ~1UL;
1794
06d67d54
PM
1795#ifdef CONFIG_PPC32
1796 regs->mq = 0;
1797 regs->nip = start;
14cf11af 1798 regs->msr = MSR_USER;
06d67d54 1799#else
9904b005 1800 if (!is_32bit_task()) {
94af3abf 1801 unsigned long entry;
06d67d54 1802
94af3abf
RR
1803 if (is_elf2_task()) {
1804 /* Look ma, no function descriptors! */
1805 entry = start;
06d67d54 1806
94af3abf
RR
1807 /*
1808 * Ulrich says:
1809 * The latest iteration of the ABI requires that when
1810 * calling a function (at its global entry point),
1811 * the caller must ensure r12 holds the entry point
1812 * address (so that the function can quickly
1813 * establish addressability).
1814 */
1815 regs->gpr[12] = start;
1816 /* Make sure that's restored on entry to userspace. */
1817 set_thread_flag(TIF_RESTOREALL);
1818 } else {
1819 unsigned long toc;
1820
1821 /* start is a relocated pointer to the function
1822 * descriptor for the elf _start routine. The first
1823 * entry in the function descriptor is the entry
1824 * address of _start and the second entry is the TOC
1825 * value we need to use.
1826 */
1827 __get_user(entry, (unsigned long __user *)start);
1828 __get_user(toc, (unsigned long __user *)start+1);
1829
1830 /* Check whether the e_entry function descriptor entries
1831 * need to be relocated before we can use them.
1832 */
1833 if (load_addr != 0) {
1834 entry += load_addr;
1835 toc += load_addr;
1836 }
1837 regs->gpr[2] = toc;
06d67d54
PM
1838 }
1839 regs->nip = entry;
06d67d54 1840 regs->msr = MSR_USER64;
d4bf9a78
SR
1841 } else {
1842 regs->nip = start;
1843 regs->gpr[2] = 0;
1844 regs->msr = MSR_USER32;
06d67d54
PM
1845 }
1846#endif
ce48b210
MN
1847#ifdef CONFIG_VSX
1848 current->thread.used_vsr = 0;
1849#endif
1195892c 1850 current->thread.load_fp = 0;
de79f7b9 1851 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1852 current->thread.fp_save_area = NULL;
14cf11af 1853#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1854 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1855 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1856 current->thread.vr_save_area = NULL;
14cf11af
PM
1857 current->thread.vrsave = 0;
1858 current->thread.used_vr = 0;
1195892c 1859 current->thread.load_vec = 0;
14cf11af
PM
1860#endif /* CONFIG_ALTIVEC */
1861#ifdef CONFIG_SPE
1862 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1863 current->thread.acc = 0;
1864 current->thread.spefscr = 0;
1865 current->thread.used_spe = 0;
1866#endif /* CONFIG_SPE */
bc2a9408 1867#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
bc2a9408
MN
1868 current->thread.tm_tfhar = 0;
1869 current->thread.tm_texasr = 0;
1870 current->thread.tm_tfiar = 0;
7f22ced4 1871 current->thread.load_tm = 0;
bc2a9408 1872#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
06bb53b3
RP
1873
1874 thread_pkey_regs_init(&current->thread);
14cf11af 1875}
e1802b06 1876EXPORT_SYMBOL(start_thread);
14cf11af
PM
1877
1878#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1879 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1880
1881int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1882{
1883 struct pt_regs *regs = tsk->thread.regs;
1884
1885 /* This is a bit hairy. If we are an SPE enabled processor
1886 * (have embedded fp) we store the IEEE exception enable flags in
1887 * fpexc_mode. fpexc_mode is also used for setting FP exception
1888 * mode (asyn, precise, disabled) for 'Classic' FP. */
1889 if (val & PR_FP_EXC_SW_ENABLE) {
1890#ifdef CONFIG_SPE
5e14d21e 1891 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1892 /*
1893 * When the sticky exception bits are set
1894 * directly by userspace, it must call prctl
1895 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1896 * in the existing prctl settings) or
1897 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1898 * the bits being set). <fenv.h> functions
1899 * saving and restoring the whole
1900 * floating-point environment need to do so
1901 * anyway to restore the prctl settings from
1902 * the saved environment.
1903 */
1904 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1905 tsk->thread.fpexc_mode = val &
1906 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1907 return 0;
1908 } else {
1909 return -EINVAL;
1910 }
14cf11af
PM
1911#else
1912 return -EINVAL;
1913#endif
14cf11af 1914 }
06d67d54
PM
1915
1916 /* on a CONFIG_SPE this does not hurt us. The bits that
1917 * __pack_fe01 use do not overlap with bits used for
1918 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1919 * on CONFIG_SPE implementations are reserved so writing to
1920 * them does not change anything */
1921 if (val > PR_FP_EXC_PRECISE)
1922 return -EINVAL;
1923 tsk->thread.fpexc_mode = __pack_fe01(val);
1924 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1925 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1926 | tsk->thread.fpexc_mode;
14cf11af
PM
1927 return 0;
1928}
1929
1930int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1931{
1932 unsigned int val;
1933
1934 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1935#ifdef CONFIG_SPE
640e9225
JM
1936 if (cpu_has_feature(CPU_FTR_SPE)) {
1937 /*
1938 * When the sticky exception bits are set
1939 * directly by userspace, it must call prctl
1940 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1941 * in the existing prctl settings) or
1942 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1943 * the bits being set). <fenv.h> functions
1944 * saving and restoring the whole
1945 * floating-point environment need to do so
1946 * anyway to restore the prctl settings from
1947 * the saved environment.
1948 */
1949 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1950 val = tsk->thread.fpexc_mode;
640e9225 1951 } else
5e14d21e 1952 return -EINVAL;
14cf11af
PM
1953#else
1954 return -EINVAL;
1955#endif
1956 else
1957 val = __unpack_fe01(tsk->thread.fpexc_mode);
1958 return put_user(val, (unsigned int __user *) adr);
1959}
1960
fab5db97
PM
1961int set_endian(struct task_struct *tsk, unsigned int val)
1962{
1963 struct pt_regs *regs = tsk->thread.regs;
1964
1965 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1966 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1967 return -EINVAL;
1968
1969 if (regs == NULL)
1970 return -EINVAL;
1971
1972 if (val == PR_ENDIAN_BIG)
1973 regs->msr &= ~MSR_LE;
1974 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1975 regs->msr |= MSR_LE;
1976 else
1977 return -EINVAL;
1978
1979 return 0;
1980}
1981
1982int get_endian(struct task_struct *tsk, unsigned long adr)
1983{
1984 struct pt_regs *regs = tsk->thread.regs;
1985 unsigned int val;
1986
1987 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1988 !cpu_has_feature(CPU_FTR_REAL_LE))
1989 return -EINVAL;
1990
1991 if (regs == NULL)
1992 return -EINVAL;
1993
1994 if (regs->msr & MSR_LE) {
1995 if (cpu_has_feature(CPU_FTR_REAL_LE))
1996 val = PR_ENDIAN_LITTLE;
1997 else
1998 val = PR_ENDIAN_PPC_LITTLE;
1999 } else
2000 val = PR_ENDIAN_BIG;
2001
2002 return put_user(val, (unsigned int __user *)adr);
2003}
2004
e9370ae1
PM
2005int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2006{
2007 tsk->thread.align_ctl = val;
2008 return 0;
2009}
2010
2011int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2012{
2013 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2014}
2015
bb72c481
PM
2016static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2017 unsigned long nbytes)
2018{
2019 unsigned long stack_page;
2020 unsigned long cpu = task_cpu(p);
2021
2022 /*
2023 * Avoid crashing if the stack has overflowed and corrupted
2024 * task_cpu(p), which is in the thread_info struct.
2025 */
2026 if (cpu < NR_CPUS && cpu_possible(cpu)) {
2027 stack_page = (unsigned long) hardirq_ctx[cpu];
2028 if (sp >= stack_page + sizeof(struct thread_struct)
2029 && sp <= stack_page + THREAD_SIZE - nbytes)
2030 return 1;
2031
2032 stack_page = (unsigned long) softirq_ctx[cpu];
2033 if (sp >= stack_page + sizeof(struct thread_struct)
2034 && sp <= stack_page + THREAD_SIZE - nbytes)
2035 return 1;
2036 }
2037 return 0;
2038}
2039
2f25194d 2040int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
2041 unsigned long nbytes)
2042{
0cec6fd1 2043 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
2044
2045 if (sp >= stack_page + sizeof(struct thread_struct)
2046 && sp <= stack_page + THREAD_SIZE - nbytes)
2047 return 1;
2048
bb72c481 2049 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
2050}
2051
2f25194d
AB
2052EXPORT_SYMBOL(validate_sp);
2053
14cf11af
PM
2054unsigned long get_wchan(struct task_struct *p)
2055{
2056 unsigned long ip, sp;
2057 int count = 0;
2058
2059 if (!p || p == current || p->state == TASK_RUNNING)
2060 return 0;
2061
2062 sp = p->thread.ksp;
ec2b36b9 2063 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
2064 return 0;
2065
2066 do {
2067 sp = *(unsigned long *)sp;
4ca360f3
KC
2068 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2069 p->state == TASK_RUNNING)
14cf11af
PM
2070 return 0;
2071 if (count > 0) {
ec2b36b9 2072 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
2073 if (!in_sched_functions(ip))
2074 return ip;
2075 }
2076 } while (count++ < 16);
2077 return 0;
2078}
06d67d54 2079
c4d04be1 2080static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
2081
2082void show_stack(struct task_struct *tsk, unsigned long *stack)
2083{
2084 unsigned long sp, ip, lr, newsp;
2085 int count = 0;
2086 int firstframe = 1;
6794c782
SR
2087#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2088 int curr_frame = current->curr_ret_stack;
2089 extern void return_to_handler(void);
9135c3cc 2090 unsigned long rth = (unsigned long)return_to_handler;
6794c782 2091#endif
06d67d54
PM
2092
2093 sp = (unsigned long) stack;
2094 if (tsk == NULL)
2095 tsk = current;
2096 if (sp == 0) {
2097 if (tsk == current)
acf620ec 2098 sp = current_stack_pointer();
06d67d54
PM
2099 else
2100 sp = tsk->thread.ksp;
2101 }
2102
2103 lr = 0;
2104 printk("Call Trace:\n");
2105 do {
ec2b36b9 2106 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
2107 return;
2108
2109 stack = (unsigned long *) sp;
2110 newsp = stack[0];
ec2b36b9 2111 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 2112 if (!firstframe || ip != lr) {
058c78f4 2113 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 2114#ifdef CONFIG_FUNCTION_GRAPH_TRACER
7d56c65a 2115 if ((ip == rth) && curr_frame >= 0) {
9a1f490f 2116 pr_cont(" (%pS)",
6794c782
SR
2117 (void *)current->ret_stack[curr_frame].ret);
2118 curr_frame--;
2119 }
2120#endif
06d67d54 2121 if (firstframe)
9a1f490f
ME
2122 pr_cont(" (unreliable)");
2123 pr_cont("\n");
06d67d54
PM
2124 }
2125 firstframe = 0;
2126
2127 /*
2128 * See if this is an exception frame.
2129 * We look for the "regshere" marker in the current frame.
2130 */
ec2b36b9
BH
2131 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2132 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
2133 struct pt_regs *regs = (struct pt_regs *)
2134 (sp + STACK_FRAME_OVERHEAD);
06d67d54 2135 lr = regs->link;
9be9be2e 2136 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 2137 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
2138 firstframe = 1;
2139 }
2140
2141 sp = newsp;
2142 } while (count++ < kstack_depth_to_print);
2143}
2144
cb2c9b27 2145#ifdef CONFIG_PPC64
fe1952fc 2146/* Called with hard IRQs off */
0e37739b 2147void notrace __ppc64_runlatch_on(void)
cb2c9b27 2148{
fe1952fc 2149 struct thread_info *ti = current_thread_info();
cb2c9b27 2150
d1d0d5ff
NP
2151 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2152 /*
2153 * Least significant bit (RUN) is the only writable bit of
2154 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2155 * earliest ISA where this is the case, but it's convenient.
2156 */
2157 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2158 } else {
2159 unsigned long ctrl;
2160
2161 /*
2162 * Some architectures (e.g., Cell) have writable fields other
2163 * than RUN, so do the read-modify-write.
2164 */
2165 ctrl = mfspr(SPRN_CTRLF);
2166 ctrl |= CTRL_RUNLATCH;
2167 mtspr(SPRN_CTRLT, ctrl);
2168 }
cb2c9b27 2169
fae2e0fb 2170 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
2171}
2172
fe1952fc 2173/* Called with hard IRQs off */
0e37739b 2174void notrace __ppc64_runlatch_off(void)
cb2c9b27 2175{
fe1952fc 2176 struct thread_info *ti = current_thread_info();
cb2c9b27 2177
fae2e0fb 2178 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 2179
d1d0d5ff
NP
2180 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2181 mtspr(SPRN_CTRLT, 0);
2182 } else {
2183 unsigned long ctrl;
2184
2185 ctrl = mfspr(SPRN_CTRLF);
2186 ctrl &= ~CTRL_RUNLATCH;
2187 mtspr(SPRN_CTRLT, ctrl);
2188 }
cb2c9b27 2189}
fe1952fc 2190#endif /* CONFIG_PPC64 */
f6a61680 2191
d839088c
AB
2192unsigned long arch_align_stack(unsigned long sp)
2193{
2194 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2195 sp -= get_random_int() & ~PAGE_MASK;
2196 return sp & ~0xf;
2197}
912f9ee2
AB
2198
2199static inline unsigned long brk_rnd(void)
2200{
2201 unsigned long rnd = 0;
2202
2203 /* 8MB for 32bit, 1GB for 64bit */
2204 if (is_32bit_task())
5ef11c35 2205 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
912f9ee2 2206 else
5ef11c35 2207 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
912f9ee2
AB
2208
2209 return rnd << PAGE_SHIFT;
2210}
2211
2212unsigned long arch_randomize_brk(struct mm_struct *mm)
2213{
8bbde7a7
AB
2214 unsigned long base = mm->brk;
2215 unsigned long ret;
2216
4e003747 2217#ifdef CONFIG_PPC_BOOK3S_64
8bbde7a7
AB
2218 /*
2219 * If we are using 1TB segments and we are allowed to randomise
2220 * the heap, we can put it above 1TB so it is backed by a 1TB
2221 * segment. Otherwise the heap will be in the bottom 1TB
2222 * which always uses 256MB segments and this may result in a
caca285e
AK
2223 * performance penalty. We don't need to worry about radix. For
2224 * radix, mmu_highuser_ssize remains unchanged from 256MB.
8bbde7a7
AB
2225 */
2226 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2227 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2228#endif
2229
2230 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
2231
2232 if (ret < mm->brk)
2233 return mm->brk;
2234
2235 return ret;
2236}
501cb16d 2237