powerpc/dexcr: Track the DEXCR per-process
[linux-2.6-block.git] / arch / powerpc / kernel / process.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
14cf11af 2/*
14cf11af
PM
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
8 *
9 * PowerPC version
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
14cf11af
PM
11 */
12
14cf11af
PM
13#include <linux/errno.h>
14#include <linux/sched.h>
b17b0153 15#include <linux/sched/debug.h>
29930025 16#include <linux/sched/task.h>
68db0cf1 17#include <linux/sched/task_stack.h>
14cf11af
PM
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/smp.h>
14cf11af
PM
21#include <linux/stddef.h>
22#include <linux/unistd.h>
23#include <linux/ptrace.h>
24#include <linux/slab.h>
25#include <linux/user.h>
26#include <linux/elf.h>
14cf11af
PM
27#include <linux/prctl.h>
28#include <linux/init_task.h>
4b16f8e2 29#include <linux/export.h>
14cf11af
PM
30#include <linux/kallsyms.h>
31#include <linux/mqueue.h>
32#include <linux/hardirq.h>
06d67d54 33#include <linux/utsname.h>
6794c782 34#include <linux/ftrace.h>
79741dd3 35#include <linux/kernel_stat.h>
d839088c 36#include <linux/personality.h>
5aae8a53 37#include <linux/hw_breakpoint.h>
7b051f66 38#include <linux/uaccess.h>
06bb53b3 39#include <linux/pkeys.h>
fb2d9505 40#include <linux/seq_buf.h>
14cf11af 41
3a96570f 42#include <asm/interrupt.h>
14cf11af
PM
43#include <asm/io.h>
44#include <asm/processor.h>
45#include <asm/mmu.h>
76032de8 46#include <asm/machdep.h>
c6622f63 47#include <asm/time.h>
ae3a197e 48#include <asm/runlatch.h>
a7f31841 49#include <asm/syscalls.h>
ae3a197e 50#include <asm/switch_to.h>
fb09692e 51#include <asm/tm.h>
ae3a197e 52#include <asm/debug.h>
06d67d54
PM
53#ifdef CONFIG_PPC64
54#include <asm/firmware.h>
c2e480ba 55#include <asm/hw_irq.h>
06d67d54 56#endif
7cedd601 57#include <asm/code-patching.h>
7f92bc56 58#include <asm/exec.h>
5d31a96e 59#include <asm/livepatch.h>
b92a226e 60#include <asm/cpu_has_feature.h>
0545d543 61#include <asm/asm-prototypes.h>
c9386bfd 62#include <asm/stacktrace.h>
c1fe190c 63#include <asm/hw_breakpoint.h>
5d31a96e 64
d6a61bfc
LM
65#include <linux/kprobes.h>
66#include <linux/kdebug.h>
14cf11af 67
8b3c34cf
MN
68/* Transactional Memory debug */
69#ifdef TM_DEBUG_SW
70#define TM_DEBUG(x...) printk(KERN_INFO x)
71#else
72#define TM_DEBUG(x...) do { } while(0)
73#endif
74
14cf11af
PM
75extern unsigned long _get_SP(void);
76
d31626f7 77#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
54820530
ME
78/*
79 * Are we running in "Suspend disabled" mode? If so we have to block any
80 * sigreturn that would get us into suspended state, and we also warn in some
81 * other paths that we should never reach with suspend disabled.
82 */
83bool tm_suspend_disabled __ro_after_init = false;
84
b86fd2bd 85static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
86{
87 /*
88 * If we are saving the current thread's registers, and the
89 * thread is in a transactional state, set the TIF_RESTORE_TM
90 * bit so that we know to restore the registers before
91 * returning to userspace.
92 */
93 if (tsk == current && tsk->thread.regs &&
94 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
95 !test_thread_flag(TIF_RESTORE_TM)) {
59dc5bfc
NP
96 regs_set_return_msr(&tsk->thread.ckpt_regs,
97 tsk->thread.regs->msr);
d31626f7
PM
98 set_thread_flag(TIF_RESTORE_TM);
99 }
d31626f7 100}
dc16b553 101
d31626f7 102#else
b86fd2bd 103static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
d31626f7
PM
104#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
105
3eb5d588
AB
106bool strict_msr_control;
107EXPORT_SYMBOL(strict_msr_control);
108
109static int __init enable_strict_msr_control(char *str)
110{
111 strict_msr_control = true;
112 pr_info("Enabling strict facility control\n");
113
114 return 0;
115}
116early_param("ppc_strict_facility_enable", enable_strict_msr_control);
117
e2b36d59
NP
118/* notrace because it's called by restore_math */
119unsigned long notrace msr_check_and_set(unsigned long bits)
98da581e 120{
a0e72cf1
AB
121 unsigned long oldmsr = mfmsr();
122 unsigned long newmsr;
98da581e 123
a0e72cf1 124 newmsr = oldmsr | bits;
98da581e 125
a0e72cf1 126 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e 127 newmsr |= MSR_VSX;
a0e72cf1 128
98da581e 129 if (oldmsr != newmsr)
0fa68318 130 newmsr = mtmsr_isync_irqsafe(newmsr);
3cee070a
CB
131
132 return newmsr;
a0e72cf1 133}
d1c72112 134EXPORT_SYMBOL_GPL(msr_check_and_set);
98da581e 135
e2b36d59
NP
136/* notrace because it's called by restore_math */
137void notrace __msr_check_and_clear(unsigned long bits)
a0e72cf1
AB
138{
139 unsigned long oldmsr = mfmsr();
140 unsigned long newmsr;
141
142 newmsr = oldmsr & ~bits;
143
a0e72cf1
AB
144 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
145 newmsr &= ~MSR_VSX;
a0e72cf1
AB
146
147 if (oldmsr != newmsr)
0fa68318 148 mtmsr_isync_irqsafe(newmsr);
a0e72cf1 149}
3eb5d588 150EXPORT_SYMBOL(__msr_check_and_clear);
a0e72cf1
AB
151
152#ifdef CONFIG_PPC_FPU
1cdf039b 153static void __giveup_fpu(struct task_struct *tsk)
8792468d 154{
8eb98037
AB
155 unsigned long msr;
156
8792468d 157 save_fpu(tsk);
8eb98037 158 msr = tsk->thread.regs->msr;
fe1ef6bc 159 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
8792468d 160 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 161 msr &= ~MSR_VSX;
59dc5bfc 162 regs_set_return_msr(tsk->thread.regs, msr);
8792468d
CB
163}
164
a0e72cf1
AB
165void giveup_fpu(struct task_struct *tsk)
166{
167 check_if_tm_restore_required(tsk);
168
169 msr_check_and_set(MSR_FP);
98da581e 170 __giveup_fpu(tsk);
a0e72cf1 171 msr_check_and_clear(MSR_FP);
98da581e
AB
172}
173EXPORT_SYMBOL(giveup_fpu);
174
14cf11af
PM
175/*
176 * Make sure the floating-point register state in the
177 * the thread_struct is up to date for task tsk.
178 */
179void flush_fp_to_thread(struct task_struct *tsk)
180{
181 if (tsk->thread.regs) {
182 /*
183 * We need to disable preemption here because if we didn't,
184 * another process could get scheduled after the regs->msr
185 * test but before we have finished saving the FP registers
186 * to the thread_struct. That process could take over the
187 * FPU, and then when we get scheduled again we would store
188 * bogus values for the remaining FP registers.
189 */
190 preempt_disable();
191 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
192 /*
193 * This should only ever be called for current or
194 * for a stopped child process. Since we save away
af1bbc3d 195 * the FP register state on context switch,
14cf11af
PM
196 * there is something wrong if a stopped child appears
197 * to still have its FP state in the CPU registers.
198 */
199 BUG_ON(tsk != current);
b86fd2bd 200 giveup_fpu(tsk);
14cf11af
PM
201 }
202 preempt_enable();
203 }
204}
de56a948 205EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
206
207void enable_kernel_fp(void)
208{
e909fb83
CB
209 unsigned long cpumsr;
210
14cf11af
PM
211 WARN_ON(preemptible());
212
e909fb83 213 cpumsr = msr_check_and_set(MSR_FP);
611b0e5c 214
d64d02ce
AB
215 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
216 check_if_tm_restore_required(current);
e909fb83
CB
217 /*
218 * If a thread has already been reclaimed then the
219 * checkpointed registers are on the CPU but have definitely
220 * been saved by the reclaim code. Don't need to and *cannot*
221 * giveup as this would save to the 'live' structure not the
222 * checkpointed structure.
223 */
5c784c84
BL
224 if (!MSR_TM_ACTIVE(cpumsr) &&
225 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 226 return;
a0e72cf1 227 __giveup_fpu(current);
d64d02ce 228 }
14cf11af
PM
229}
230EXPORT_SYMBOL(enable_kernel_fp);
c83c192a
CL
231#else
232static inline void __giveup_fpu(struct task_struct *tsk) { }
d1e1cf2e 233#endif /* CONFIG_PPC_FPU */
14cf11af 234
14cf11af 235#ifdef CONFIG_ALTIVEC
6f515d84
CB
236static void __giveup_altivec(struct task_struct *tsk)
237{
8eb98037
AB
238 unsigned long msr;
239
6f515d84 240 save_altivec(tsk);
8eb98037
AB
241 msr = tsk->thread.regs->msr;
242 msr &= ~MSR_VEC;
6f515d84 243 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 244 msr &= ~MSR_VSX;
59dc5bfc 245 regs_set_return_msr(tsk->thread.regs, msr);
6f515d84
CB
246}
247
98da581e
AB
248void giveup_altivec(struct task_struct *tsk)
249{
98da581e
AB
250 check_if_tm_restore_required(tsk);
251
a0e72cf1 252 msr_check_and_set(MSR_VEC);
98da581e 253 __giveup_altivec(tsk);
a0e72cf1 254 msr_check_and_clear(MSR_VEC);
98da581e
AB
255}
256EXPORT_SYMBOL(giveup_altivec);
257
14cf11af
PM
258void enable_kernel_altivec(void)
259{
e909fb83
CB
260 unsigned long cpumsr;
261
14cf11af
PM
262 WARN_ON(preemptible());
263
e909fb83 264 cpumsr = msr_check_and_set(MSR_VEC);
611b0e5c 265
d64d02ce
AB
266 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
267 check_if_tm_restore_required(current);
e909fb83
CB
268 /*
269 * If a thread has already been reclaimed then the
270 * checkpointed registers are on the CPU but have definitely
271 * been saved by the reclaim code. Don't need to and *cannot*
272 * giveup as this would save to the 'live' structure not the
273 * checkpointed structure.
274 */
5c784c84
BL
275 if (!MSR_TM_ACTIVE(cpumsr) &&
276 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 277 return;
a0e72cf1 278 __giveup_altivec(current);
d64d02ce 279 }
14cf11af
PM
280}
281EXPORT_SYMBOL(enable_kernel_altivec);
282
283/*
284 * Make sure the VMX/Altivec register state in the
285 * the thread_struct is up to date for task tsk.
286 */
287void flush_altivec_to_thread(struct task_struct *tsk)
288{
289 if (tsk->thread.regs) {
290 preempt_disable();
291 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 292 BUG_ON(tsk != current);
b86fd2bd 293 giveup_altivec(tsk);
14cf11af
PM
294 }
295 preempt_enable();
296 }
297}
de56a948 298EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
14cf11af
PM
299#endif /* CONFIG_ALTIVEC */
300
ce48b210 301#ifdef CONFIG_VSX
bf6a4d5b 302static void __giveup_vsx(struct task_struct *tsk)
a7d623d4 303{
dc801081
BH
304 unsigned long msr = tsk->thread.regs->msr;
305
306 /*
1fd02f66 307 * We should never be setting MSR_VSX without also setting
dc801081
BH
308 * MSR_FP and MSR_VEC
309 */
310 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
311
312 /* __giveup_fpu will clear MSR_VSX */
313 if (msr & MSR_FP)
a7d623d4 314 __giveup_fpu(tsk);
dc801081 315 if (msr & MSR_VEC)
a7d623d4 316 __giveup_altivec(tsk);
bf6a4d5b
CB
317}
318
319static void giveup_vsx(struct task_struct *tsk)
320{
321 check_if_tm_restore_required(tsk);
322
323 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 324 __giveup_vsx(tsk);
a0e72cf1 325 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 326}
bf6a4d5b 327
ce48b210
MN
328void enable_kernel_vsx(void)
329{
e909fb83
CB
330 unsigned long cpumsr;
331
ce48b210
MN
332 WARN_ON(preemptible());
333
e909fb83 334 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 335
5a69aec9
BH
336 if (current->thread.regs &&
337 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
d64d02ce 338 check_if_tm_restore_required(current);
e909fb83
CB
339 /*
340 * If a thread has already been reclaimed then the
341 * checkpointed registers are on the CPU but have definitely
342 * been saved by the reclaim code. Don't need to and *cannot*
343 * giveup as this would save to the 'live' structure not the
344 * checkpointed structure.
345 */
5c784c84
BL
346 if (!MSR_TM_ACTIVE(cpumsr) &&
347 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 348 return;
a0e72cf1 349 __giveup_vsx(current);
611b0e5c 350 }
ce48b210
MN
351}
352EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
353
354void flush_vsx_to_thread(struct task_struct *tsk)
355{
356 if (tsk->thread.regs) {
357 preempt_disable();
5a69aec9 358 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
ce48b210 359 BUG_ON(tsk != current);
ce48b210
MN
360 giveup_vsx(tsk);
361 }
362 preempt_enable();
363 }
364}
de56a948 365EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
ce48b210
MN
366#endif /* CONFIG_VSX */
367
14cf11af 368#ifdef CONFIG_SPE
98da581e
AB
369void giveup_spe(struct task_struct *tsk)
370{
98da581e
AB
371 check_if_tm_restore_required(tsk);
372
a0e72cf1 373 msr_check_and_set(MSR_SPE);
98da581e 374 __giveup_spe(tsk);
a0e72cf1 375 msr_check_and_clear(MSR_SPE);
98da581e
AB
376}
377EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
378
379void enable_kernel_spe(void)
380{
381 WARN_ON(preemptible());
382
a0e72cf1 383 msr_check_and_set(MSR_SPE);
611b0e5c 384
d64d02ce
AB
385 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
386 check_if_tm_restore_required(current);
a0e72cf1 387 __giveup_spe(current);
d64d02ce 388 }
14cf11af
PM
389}
390EXPORT_SYMBOL(enable_kernel_spe);
391
392void flush_spe_to_thread(struct task_struct *tsk)
393{
394 if (tsk->thread.regs) {
395 preempt_disable();
396 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 397 BUG_ON(tsk != current);
685659ee 398 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 399 giveup_spe(tsk);
14cf11af
PM
400 }
401 preempt_enable();
402 }
403}
14cf11af
PM
404#endif /* CONFIG_SPE */
405
c2085059
AB
406static unsigned long msr_all_available;
407
408static int __init init_msr_all_available(void)
409{
c83c192a
CL
410 if (IS_ENABLED(CONFIG_PPC_FPU))
411 msr_all_available |= MSR_FP;
c2085059
AB
412 if (cpu_has_feature(CPU_FTR_ALTIVEC))
413 msr_all_available |= MSR_VEC;
c2085059
AB
414 if (cpu_has_feature(CPU_FTR_VSX))
415 msr_all_available |= MSR_VSX;
c2085059
AB
416 if (cpu_has_feature(CPU_FTR_SPE))
417 msr_all_available |= MSR_SPE;
c2085059
AB
418
419 return 0;
420}
421early_initcall(init_msr_all_available);
422
423void giveup_all(struct task_struct *tsk)
424{
425 unsigned long usermsr;
426
427 if (!tsk->thread.regs)
428 return;
429
8205d5d9
GR
430 check_if_tm_restore_required(tsk);
431
c2085059
AB
432 usermsr = tsk->thread.regs->msr;
433
434 if ((usermsr & msr_all_available) == 0)
435 return;
436
437 msr_check_and_set(msr_all_available);
438
96c79b6b
BH
439 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
440
c2085059
AB
441 if (usermsr & MSR_FP)
442 __giveup_fpu(tsk);
c2085059
AB
443 if (usermsr & MSR_VEC)
444 __giveup_altivec(tsk);
c2085059
AB
445 if (usermsr & MSR_SPE)
446 __giveup_spe(tsk);
c2085059
AB
447
448 msr_check_and_clear(msr_all_available);
449}
450EXPORT_SYMBOL(giveup_all);
451
6cc0c16d
NP
452#ifdef CONFIG_PPC_BOOK3S_64
453#ifdef CONFIG_PPC_FPU
01eb0187 454static bool should_restore_fp(void)
6cc0c16d 455{
01eb0187 456 if (current->thread.load_fp) {
6cc0c16d 457 current->thread.load_fp++;
01eb0187 458 return true;
6cc0c16d 459 }
01eb0187
NP
460 return false;
461}
462
463static void do_restore_fp(void)
464{
465 load_fp_state(&current->thread.fp_state);
6cc0c16d
NP
466}
467#else
01eb0187
NP
468static bool should_restore_fp(void) { return false; }
469static void do_restore_fp(void) { }
6cc0c16d
NP
470#endif /* CONFIG_PPC_FPU */
471
472#ifdef CONFIG_ALTIVEC
01eb0187 473static bool should_restore_altivec(void)
6cc0c16d 474{
01eb0187
NP
475 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
476 current->thread.load_vec++;
477 return true;
6cc0c16d 478 }
01eb0187
NP
479 return false;
480}
481
482static void do_restore_altivec(void)
483{
484 load_vr_state(&current->thread.vr_state);
485 current->thread.used_vr = 1;
6cc0c16d
NP
486}
487#else
01eb0187
NP
488static bool should_restore_altivec(void) { return false; }
489static void do_restore_altivec(void) { }
6cc0c16d
NP
490#endif /* CONFIG_ALTIVEC */
491
01eb0187 492static bool should_restore_vsx(void)
6cc0c16d 493{
01eb0187
NP
494 if (cpu_has_feature(CPU_FTR_VSX))
495 return true;
496 return false;
497}
80739c2b 498#ifdef CONFIG_VSX
01eb0187
NP
499static void do_restore_vsx(void)
500{
501 current->thread.used_vsr = 1;
6cc0c16d
NP
502}
503#else
01eb0187 504static void do_restore_vsx(void) { }
6cc0c16d
NP
505#endif /* CONFIG_VSX */
506
e2b36d59
NP
507/*
508 * The exception exit path calls restore_math() with interrupts hard disabled
509 * but the soft irq state not "reconciled". ftrace code that calls
510 * local_irq_save/restore causes warnings.
511 *
512 * Rather than complicate the exit path, just don't trace restore_math. This
513 * could be done by having ftrace entry code check for this un-reconciled
514 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
515 * temporarily fix it up for the duration of the ftrace call.
516 */
517void notrace restore_math(struct pt_regs *regs)
70fe3d98
CB
518{
519 unsigned long msr;
01eb0187 520 unsigned long new_msr = 0;
70fe3d98
CB
521
522 msr = regs->msr;
70fe3d98
CB
523
524 /*
01eb0187
NP
525 * new_msr tracks the facilities that are to be restored. Only reload
526 * if the bit is not set in the user MSR (if it is set, the registers
527 * are live for the user thread).
70fe3d98 528 */
01eb0187 529 if ((!(msr & MSR_FP)) && should_restore_fp())
b91eb518 530 new_msr |= MSR_FP;
70fe3d98 531
01eb0187
NP
532 if ((!(msr & MSR_VEC)) && should_restore_altivec())
533 new_msr |= MSR_VEC;
70fe3d98 534
01eb0187
NP
535 if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
536 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
537 new_msr |= MSR_VSX;
70fe3d98
CB
538 }
539
01eb0187 540 if (new_msr) {
b91eb518
ME
541 unsigned long fpexc_mode = 0;
542
01eb0187
NP
543 msr_check_and_set(new_msr);
544
b91eb518 545 if (new_msr & MSR_FP) {
01eb0187
NP
546 do_restore_fp();
547
b91eb518
ME
548 // This also covers VSX, because VSX implies FP
549 fpexc_mode = current->thread.fpexc_mode;
550 }
551
01eb0187
NP
552 if (new_msr & MSR_VEC)
553 do_restore_altivec();
70fe3d98 554
01eb0187
NP
555 if (new_msr & MSR_VSX)
556 do_restore_vsx();
557
558 msr_check_and_clear(new_msr);
559
59dc5bfc 560 regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
01eb0187 561 }
70fe3d98 562}
60d62bfd 563#endif /* CONFIG_PPC_BOOK3S_64 */
70fe3d98 564
1cdf039b 565static void save_all(struct task_struct *tsk)
de2a20aa
CB
566{
567 unsigned long usermsr;
568
569 if (!tsk->thread.regs)
570 return;
571
572 usermsr = tsk->thread.regs->msr;
573
574 if ((usermsr & msr_all_available) == 0)
575 return;
576
577 msr_check_and_set(msr_all_available);
578
96c79b6b
BH
579 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
580
581 if (usermsr & MSR_FP)
582 save_fpu(tsk);
583
584 if (usermsr & MSR_VEC)
585 save_altivec(tsk);
de2a20aa
CB
586
587 if (usermsr & MSR_SPE)
588 __giveup_spe(tsk);
589
590 msr_check_and_clear(msr_all_available);
591}
592
579e633e
AB
593void flush_all_to_thread(struct task_struct *tsk)
594{
595 if (tsk->thread.regs) {
596 preempt_disable();
597 BUG_ON(tsk != current);
579e633e
AB
598#ifdef CONFIG_SPE
599 if (tsk->thread.regs->msr & MSR_SPE)
600 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
601#endif
e9013785 602 save_all(tsk);
579e633e
AB
603
604 preempt_enable();
605 }
606}
607EXPORT_SYMBOL(flush_all_to_thread);
608
3bffb652
DK
609#ifdef CONFIG_PPC_ADV_DEBUG_REGS
610void do_send_trap(struct pt_regs *regs, unsigned long address,
47355040 611 unsigned long error_code, int breakpt)
3bffb652 612{
47355040 613 current->thread.trap_nr = TRAP_HWBKPT;
3bffb652
DK
614 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
615 11, SIGSEGV) == NOTIFY_STOP)
616 return;
617
618 /* Deliver the signal to userspace */
f71dd7dc
EB
619 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
620 (void __user *)address);
3bffb652
DK
621}
622#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
5b905d77
RB
623
624static void do_break_handler(struct pt_regs *regs)
625{
626 struct arch_hw_breakpoint null_brk = {0};
627 struct arch_hw_breakpoint *info;
c545b9f0 628 ppc_inst_t instr = ppc_inst(0);
5b905d77
RB
629 int type = 0;
630 int size = 0;
631 unsigned long ea;
632 int i;
633
634 /*
635 * If underneath hw supports only one watchpoint, we know it
636 * caused exception. 8xx also falls into this category.
637 */
638 if (nr_wp_slots() == 1) {
639 __set_breakpoint(0, &null_brk);
640 current->thread.hw_brk[0] = null_brk;
641 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
642 return;
643 }
644
1fd02f66 645 /* Otherwise find out which DAWR caused exception and disable it. */
5b905d77
RB
646 wp_get_instr_detail(regs, &instr, &type, &size, &ea);
647
648 for (i = 0; i < nr_wp_slots(); i++) {
649 info = &current->thread.hw_brk[i];
650 if (!info->address)
651 continue;
652
653 if (wp_check_constraints(regs, instr, ea, type, size, info)) {
654 __set_breakpoint(i, &null_brk);
655 current->thread.hw_brk[i] = null_brk;
656 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
657 }
658 }
659}
660
3a96570f 661DEFINE_INTERRUPT_HANDLER(do_break)
d6a61bfc 662{
41ab5266 663 current->thread.trap_nr = TRAP_HWBKPT;
18722ecf 664 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
d6a61bfc
LM
665 11, SIGSEGV) == NOTIFY_STOP)
666 return;
667
9422de3e 668 if (debugger_break_match(regs))
d6a61bfc
LM
669 return;
670
5b905d77
RB
671 /*
672 * We reach here only when watchpoint exception is generated by ptrace
673 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
674 * watchpoint is already handled by hw_breakpoint_handler() so we don't
675 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
676 * we need to manually handle the watchpoint here.
677 */
678 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
679 do_break_handler(regs);
680
d6a61bfc 681 /* Deliver the signal to userspace */
18722ecf 682 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
d6a61bfc 683}
3bffb652 684#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 685
4a8a9379 686static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
a2ceff5e 687
3bffb652
DK
688#ifdef CONFIG_PPC_ADV_DEBUG_REGS
689/*
690 * Set the debug registers back to their default "safe" values.
691 */
692static void set_debug_reg_defaults(struct thread_struct *thread)
693{
51ae8d4a 694 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 695#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 696 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 697#endif
51ae8d4a 698 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 699#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 700 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 701#endif
51ae8d4a 702 thread->debug.dbcr0 = 0;
3bffb652
DK
703#ifdef CONFIG_BOOKE
704 /*
705 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
706 */
51ae8d4a 707 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
708 DBCR1_IAC3US | DBCR1_IAC4US;
709 /*
710 * Force Data Address Compare User/Supervisor bits to be User-only
711 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
712 */
51ae8d4a 713 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 714#else
51ae8d4a 715 thread->debug.dbcr1 = 0;
3bffb652
DK
716#endif
717}
718
f5f97210 719static void prime_debug_regs(struct debug_reg *debug)
3bffb652 720{
6cecf76b
SW
721 /*
722 * We could have inherited MSR_DE from userspace, since
723 * it doesn't get cleared on exception entry. Make sure
724 * MSR_DE is clear before we enable any debug events.
725 */
726 mtmsr(mfmsr() & ~MSR_DE);
727
f5f97210
SW
728 mtspr(SPRN_IAC1, debug->iac1);
729 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 730#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
731 mtspr(SPRN_IAC3, debug->iac3);
732 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 733#endif
f5f97210
SW
734 mtspr(SPRN_DAC1, debug->dac1);
735 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 736#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
737 mtspr(SPRN_DVC1, debug->dvc1);
738 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 739#endif
f5f97210
SW
740 mtspr(SPRN_DBCR0, debug->dbcr0);
741 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 742#ifdef CONFIG_BOOKE
f5f97210 743 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
744#endif
745}
746/*
747 * Unless neither the old or new thread are making use of the
748 * debug registers, set the debug registers from the values
749 * stored in the new thread.
750 */
f5f97210 751void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 752{
51ae8d4a 753 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
754 || (new_debug->dbcr0 & DBCR0_IDM))
755 prime_debug_regs(new_debug);
3bffb652 756}
3743c9b8 757EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 758#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 759#ifndef CONFIG_HAVE_HW_BREAKPOINT
303e6a9d 760static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
b5ac51d7
CL
761{
762 preempt_disable();
303e6a9d 763 __set_breakpoint(i, brk);
b5ac51d7
CL
764 preempt_enable();
765}
766
3bffb652
DK
767static void set_debug_reg_defaults(struct thread_struct *thread)
768{
303e6a9d
RB
769 int i;
770 struct arch_hw_breakpoint null_brk = {0};
771
772 for (i = 0; i < nr_wp_slots(); i++) {
773 thread->hw_brk[i] = null_brk;
774 if (ppc_breakpoint_available())
775 set_breakpoint(i, &thread->hw_brk[i]);
776 }
777}
778
779static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
780 struct arch_hw_breakpoint *b)
781{
782 if (a->address != b->address)
783 return false;
784 if (a->type != b->type)
785 return false;
786 if (a->len != b->len)
787 return false;
788 /* no need to check hw_len. it's calculated from address and len */
789 return true;
790}
791
792static void switch_hw_breakpoint(struct task_struct *new)
793{
794 int i;
795
796 for (i = 0; i < nr_wp_slots(); i++) {
797 if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
798 &new->thread.hw_brk[i])))
799 continue;
800
801 __set_breakpoint(i, &new->thread.hw_brk[i]);
802 }
3bffb652 803}
e0780b72 804#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
805#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
806
9422de3e
MN
807static inline int set_dabr(struct arch_hw_breakpoint *brk)
808{
809 unsigned long dabr, dabrx;
810
811 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
812 dabrx = ((brk->type >> 3) & 0x7);
813
814 if (ppc_md.set_dabr)
815 return ppc_md.set_dabr(dabr, dabrx);
816
ad3ed15c
CL
817 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
818 mtspr(SPRN_DAC1, dabr);
819 if (IS_ENABLED(CONFIG_PPC_47x))
820 isync();
821 return 0;
822 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
823 mtspr(SPRN_DABR, dabr);
824 if (cpu_has_feature(CPU_FTR_DABRX))
825 mtspr(SPRN_DABRX, dabrx);
826 return 0;
827 } else {
828 return -EINVAL;
829 }
9422de3e
MN
830}
831
39413ae0
CL
832static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
833{
834 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
835 LCTRL1_CRWF_RW;
836 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
e68ef121
RB
837 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
838 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
39413ae0
CL
839
840 if (start_addr == 0)
841 lctrl2 |= LCTRL2_LW0LA_F;
e68ef121 842 else if (end_addr == 0)
39413ae0
CL
843 lctrl2 |= LCTRL2_LW0LA_E;
844 else
845 lctrl2 |= LCTRL2_LW0LA_EandF;
846
847 mtspr(SPRN_LCTRL2, 0);
848
849 if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
850 return 0;
851
852 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
853 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
854 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
855 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
856
857 mtspr(SPRN_CMPE, start_addr - 1);
e68ef121 858 mtspr(SPRN_CMPF, end_addr);
39413ae0
CL
859 mtspr(SPRN_LCTRL1, lctrl1);
860 mtspr(SPRN_LCTRL2, lctrl2);
861
862 return 0;
863}
864
3671f4eb 865static void set_hw_breakpoint(int nr, struct arch_hw_breakpoint *brk)
9422de3e 866{
c1fe190c 867 if (dawr_enabled())
252988cb 868 // Power8 or later
4a8a9379 869 set_dawr(nr, brk);
39413ae0
CL
870 else if (IS_ENABLED(CONFIG_PPC_8xx))
871 set_breakpoint_8xx(brk);
252988cb
NP
872 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
873 // Power7 or earlier
04c32a51 874 set_dabr(brk);
252988cb
NP
875 else
876 // Shouldn't happen due to higher level checks
877 WARN_ON_ONCE(1);
9422de3e 878}
14cf11af 879
3671f4eb
JN
880void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
881{
882 memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
883 set_hw_breakpoint(nr, brk);
884}
885
404b27d6
MN
886/* Check if we have DAWR or DABR hardware */
887bool ppc_breakpoint_available(void)
888{
c1fe190c
MN
889 if (dawr_enabled())
890 return true; /* POWER8 DAWR or POWER9 forced DAWR */
404b27d6
MN
891 if (cpu_has_feature(CPU_FTR_ARCH_207S))
892 return false; /* POWER9 with DAWR disabled */
893 /* DABR: Everything but POWER8 and POWER9 */
894 return true;
895}
896EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
897
3671f4eb
JN
898/* Disable the breakpoint in hardware without touching current_brk[] */
899void suspend_breakpoints(void)
900{
901 struct arch_hw_breakpoint brk = {0};
902 int i;
903
904 if (!ppc_breakpoint_available())
905 return;
906
907 for (i = 0; i < nr_wp_slots(); i++)
908 set_hw_breakpoint(i, &brk);
909}
910
911/*
912 * Re-enable breakpoints suspended by suspend_breakpoints() in hardware
913 * from current_brk[]
914 */
915void restore_breakpoints(void)
916{
917 int i;
918
919 if (!ppc_breakpoint_available())
920 return;
921
922 for (i = 0; i < nr_wp_slots(); i++)
923 set_hw_breakpoint(i, this_cpu_ptr(&current_brk[i]));
924}
925
fb09692e 926#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
5d176f75
CB
927
928static inline bool tm_enabled(struct task_struct *tsk)
929{
930 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
931}
932
edd00b83 933static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
d31626f7 934{
7f821fc9
MN
935 /*
936 * Use the current MSR TM suspended bit to track if we have
937 * checkpointed state outstanding.
938 * On signal delivery, we'd normally reclaim the checkpointed
939 * state to obtain stack pointer (see:get_tm_stackpointer()).
940 * This will then directly return to userspace without going
941 * through __switch_to(). However, if the stack frame is bad,
942 * we need to exit this thread which calls __switch_to() which
943 * will again attempt to reclaim the already saved tm state.
944 * Hence we need to check that we've not already reclaimed
945 * this state.
946 * We do this using the current MSR, rather tracking it in
947 * some specific thread_struct bit, as it has the additional
027dfac6 948 * benefit of checking for a potential TM bad thing exception.
7f821fc9
MN
949 */
950 if (!MSR_TM_SUSPENDED(mfmsr()))
951 return;
952
91381b9c
CB
953 giveup_all(container_of(thr, struct task_struct, thread));
954
eb5c3f1c
CB
955 tm_reclaim(thr, cause);
956
f48e91e8
MN
957 /*
958 * If we are in a transaction and FP is off then we can't have
959 * used FP inside that transaction. Hence the checkpointed
960 * state is the same as the live state. We need to copy the
961 * live state to the checkpointed state so that when the
962 * transaction is restored, the checkpointed state is correct
963 * and the aborted transaction sees the correct state. We use
964 * ckpt_regs.msr here as that's what tm_reclaim will use to
965 * determine if it's going to write the checkpointed state or
966 * not. So either this will write the checkpointed registers,
967 * or reclaim will. Similarly for VMX.
968 */
969 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
970 memcpy(&thr->ckfp_state, &thr->fp_state,
971 sizeof(struct thread_fp_state));
972 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
973 memcpy(&thr->ckvr_state, &thr->vr_state,
974 sizeof(struct thread_vr_state));
d31626f7
PM
975}
976
977void tm_reclaim_current(uint8_t cause)
978{
979 tm_enable();
edd00b83 980 tm_reclaim_thread(&current->thread, cause);
d31626f7
PM
981}
982
fb09692e
MN
983static inline void tm_reclaim_task(struct task_struct *tsk)
984{
985 /* We have to work out if we're switching from/to a task that's in the
986 * middle of a transaction.
987 *
988 * In switching we need to maintain a 2nd register state as
989 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
000ec280
CB
990 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
991 * ckvr_state
fb09692e
MN
992 *
993 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
994 */
995 struct thread_struct *thr = &tsk->thread;
996
997 if (!thr->regs)
998 return;
999
1000 if (!MSR_TM_ACTIVE(thr->regs->msr))
1001 goto out_and_saveregs;
1002
92fb8690
MN
1003 WARN_ON(tm_suspend_disabled);
1004
fb09692e
MN
1005 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
1006 "ccr=%lx, msr=%lx, trap=%lx)\n",
1007 tsk->pid, thr->regs->nip,
1008 thr->regs->ccr, thr->regs->msr,
1009 thr->regs->trap);
1010
edd00b83 1011 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
fb09692e
MN
1012
1013 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
1014 tsk->pid);
1015
1016out_and_saveregs:
1017 /* Always save the regs here, even if a transaction's not active.
1018 * This context-switches a thread's TM info SPRs. We do it here to
1019 * be consistent with the restore path (in recheckpoint) which
1020 * cannot happen later in _switch().
1021 */
1022 tm_save_sprs(thr);
1023}
1024
eb5c3f1c 1025extern void __tm_recheckpoint(struct thread_struct *thread);
e6b8fd02 1026
eb5c3f1c 1027void tm_recheckpoint(struct thread_struct *thread)
e6b8fd02
MN
1028{
1029 unsigned long flags;
1030
5d176f75
CB
1031 if (!(thread->regs->msr & MSR_TM))
1032 return;
1033
e6b8fd02
MN
1034 /* We really can't be interrupted here as the TEXASR registers can't
1035 * change and later in the trecheckpoint code, we have a userspace R1.
1036 * So let's hard disable over this region.
1037 */
1038 local_irq_save(flags);
1039 hard_irq_disable();
1040
1041 /* The TM SPRs are restored here, so that TEXASR.FS can be set
1042 * before the trecheckpoint and no explosion occurs.
1043 */
1044 tm_restore_sprs(thread);
1045
eb5c3f1c 1046 __tm_recheckpoint(thread);
e6b8fd02
MN
1047
1048 local_irq_restore(flags);
1049}
1050
bc2a9408 1051static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e 1052{
fb09692e
MN
1053 if (!cpu_has_feature(CPU_FTR_TM))
1054 return;
1055
1056 /* Recheckpoint the registers of the thread we're about to switch to.
1057 *
1058 * If the task was using FP, we non-lazily reload both the original and
1059 * the speculative FP register states. This is because the kernel
1060 * doesn't see if/when a TM rollback occurs, so if we take an FP
dc310669 1061 * unavailable later, we are unable to determine which set of FP regs
fb09692e
MN
1062 * need to be restored.
1063 */
5d176f75 1064 if (!tm_enabled(new))
fb09692e
MN
1065 return;
1066
e6b8fd02
MN
1067 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1068 tm_restore_sprs(&new->thread);
fb09692e 1069 return;
e6b8fd02 1070 }
fb09692e 1071 /* Recheckpoint to restore original checkpointed register state. */
eb5c3f1c
CB
1072 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1073 new->pid, new->thread.regs->msr);
fb09692e 1074
eb5c3f1c 1075 tm_recheckpoint(&new->thread);
fb09692e 1076
dc310669
CB
1077 /*
1078 * The checkpointed state has been restored but the live state has
1079 * not, ensure all the math functionality is turned off to trigger
1080 * restore_math() to reload.
1081 */
1082 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
fb09692e
MN
1083
1084 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1085 "(kernel msr 0x%lx)\n",
1086 new->pid, mfmsr());
1087}
1088
dc310669
CB
1089static inline void __switch_to_tm(struct task_struct *prev,
1090 struct task_struct *new)
fb09692e
MN
1091{
1092 if (cpu_has_feature(CPU_FTR_TM)) {
5d176f75
CB
1093 if (tm_enabled(prev) || tm_enabled(new))
1094 tm_enable();
1095
1096 if (tm_enabled(prev)) {
1097 prev->thread.load_tm++;
1098 tm_reclaim_task(prev);
1099 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1100 prev->thread.regs->msr &= ~MSR_TM;
1101 }
1102
dc310669 1103 tm_recheckpoint_new_task(new);
fb09692e
MN
1104 }
1105}
d31626f7
PM
1106
1107/*
1108 * This is called if we are on the way out to userspace and the
1109 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1110 * FP and/or vector state and does so if necessary.
1111 * If userspace is inside a transaction (whether active or
1112 * suspended) and FP/VMX/VSX instructions have ever been enabled
1113 * inside that transaction, then we have to keep them enabled
1114 * and keep the FP/VMX/VSX state loaded while ever the transaction
1115 * continues. The reason is that if we didn't, and subsequently
1116 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1117 * we don't know whether it's the same transaction, and thus we
1118 * don't know which of the checkpointed state and the transactional
1119 * state to use.
1120 */
1121void restore_tm_state(struct pt_regs *regs)
1122{
1123 unsigned long msr_diff;
1124
dc310669
CB
1125 /*
1126 * This is the only moment we should clear TIF_RESTORE_TM as
1127 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1128 * again, anything else could lead to an incorrect ckpt_msr being
1129 * saved and therefore incorrect signal contexts.
1130 */
d31626f7
PM
1131 clear_thread_flag(TIF_RESTORE_TM);
1132 if (!MSR_TM_ACTIVE(regs->msr))
1133 return;
1134
829023df 1135 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7 1136 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
70fe3d98 1137
dc16b553
CB
1138 /* Ensure that restore_math() will restore */
1139 if (msr_diff & MSR_FP)
1140 current->thread.load_fp = 1;
39715bf9 1141#ifdef CONFIG_ALTIVEC
dc16b553
CB
1142 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1143 current->thread.load_vec = 1;
1144#endif
70fe3d98
CB
1145 restore_math(regs);
1146
59dc5bfc 1147 regs_set_return_msr(regs, regs->msr | msr_diff);
d31626f7
PM
1148}
1149
2d19630e 1150#else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
fb09692e 1151#define tm_recheckpoint_new_task(new)
dc310669 1152#define __switch_to_tm(prev, new)
2d19630e 1153void tm_reclaim_current(uint8_t cause) {}
fb09692e 1154#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 1155
152d523e
AB
1156static inline void save_sprs(struct thread_struct *t)
1157{
1158#ifdef CONFIG_ALTIVEC
01d7c2a2 1159 if (cpu_has_feature(CPU_FTR_ALTIVEC))
152d523e
AB
1160 t->vrsave = mfspr(SPRN_VRSAVE);
1161#endif
359c2ca7
CL
1162#ifdef CONFIG_SPE
1163 if (cpu_has_feature(CPU_FTR_SPE))
1164 t->spefscr = mfspr(SPRN_SPEFSCR);
1165#endif
152d523e
AB
1166#ifdef CONFIG_PPC_BOOK3S_64
1167 if (cpu_has_feature(CPU_FTR_DSCR))
1168 t->dscr = mfspr(SPRN_DSCR);
1169
1170 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1171 t->bescr = mfspr(SPRN_BESCR);
1172 t->ebbhr = mfspr(SPRN_EBBHR);
1173 t->ebbrr = mfspr(SPRN_EBBRR);
1174
1175 t->fscr = mfspr(SPRN_FSCR);
1176
1177 /*
1178 * Note that the TAR is not available for use in the kernel.
1179 * (To provide this, the TAR should be backed up/restored on
1180 * exception entry/exit instead, and be in pt_regs. FIXME,
1181 * this should be in pt_regs anyway (for debug).)
1182 */
1183 t->tar = mfspr(SPRN_TAR);
1184 }
be98fcf7
BG
1185
1186 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
1187 t->hashkeyr = mfspr(SPRN_HASHKEYR);
75171f06
BG
1188
1189 if (cpu_has_feature(CPU_FTR_ARCH_31))
1190 t->dexcr = mfspr(SPRN_DEXCR);
152d523e
AB
1191#endif
1192}
1193
34e119c9
NP
1194#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1195void kvmppc_save_user_regs(void)
1196{
1197 unsigned long usermsr;
1198
1199 if (!current->thread.regs)
1200 return;
1201
1202 usermsr = current->thread.regs->msr;
1203
dc158d23 1204 /* Caller has enabled FP/VEC/VSX/TM in MSR */
34e119c9 1205 if (usermsr & MSR_FP)
dc158d23 1206 __giveup_fpu(current);
34e119c9 1207 if (usermsr & MSR_VEC)
dc158d23 1208 __giveup_altivec(current);
34e119c9
NP
1209
1210#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1211 if (usermsr & MSR_TM) {
1212 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
1213 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
1214 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
1215 current->thread.regs->msr &= ~MSR_TM;
1216 }
1217#endif
1218}
1219EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);
5236756d
NP
1220
1221void kvmppc_save_current_sprs(void)
1222{
1223 save_sprs(&current->thread);
1224}
1225EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
34e119c9
NP
1226#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1227
152d523e
AB
1228static inline void restore_sprs(struct thread_struct *old_thread,
1229 struct thread_struct *new_thread)
1230{
1231#ifdef CONFIG_ALTIVEC
1232 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1233 old_thread->vrsave != new_thread->vrsave)
1234 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1235#endif
359c2ca7
CL
1236#ifdef CONFIG_SPE
1237 if (cpu_has_feature(CPU_FTR_SPE) &&
1238 old_thread->spefscr != new_thread->spefscr)
1239 mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1240#endif
152d523e
AB
1241#ifdef CONFIG_PPC_BOOK3S_64
1242 if (cpu_has_feature(CPU_FTR_DSCR)) {
1243 u64 dscr = get_paca()->dscr_default;
b57bd2de 1244 if (new_thread->dscr_inherit)
152d523e 1245 dscr = new_thread->dscr;
152d523e
AB
1246
1247 if (old_thread->dscr != dscr)
1248 mtspr(SPRN_DSCR, dscr);
152d523e
AB
1249 }
1250
1251 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1252 if (old_thread->bescr != new_thread->bescr)
1253 mtspr(SPRN_BESCR, new_thread->bescr);
1254 if (old_thread->ebbhr != new_thread->ebbhr)
1255 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1256 if (old_thread->ebbrr != new_thread->ebbrr)
1257 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1258
b57bd2de
MN
1259 if (old_thread->fscr != new_thread->fscr)
1260 mtspr(SPRN_FSCR, new_thread->fscr);
1261
152d523e
AB
1262 if (old_thread->tar != new_thread->tar)
1263 mtspr(SPRN_TAR, new_thread->tar);
1264 }
ec233ede 1265
3449f191 1266 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
ec233ede
SB
1267 old_thread->tidr != new_thread->tidr)
1268 mtspr(SPRN_TIDR, new_thread->tidr);
be98fcf7
BG
1269
1270 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE) &&
1271 old_thread->hashkeyr != new_thread->hashkeyr)
1272 mtspr(SPRN_HASHKEYR, new_thread->hashkeyr);
75171f06
BG
1273
1274 if (cpu_has_feature(CPU_FTR_ARCH_31) &&
1275 old_thread->dexcr != new_thread->dexcr)
1276 mtspr(SPRN_DEXCR, new_thread->dexcr);
152d523e 1277#endif
06bb53b3 1278
152d523e
AB
1279}
1280
14cf11af
PM
1281struct task_struct *__switch_to(struct task_struct *prev,
1282 struct task_struct *new)
1283{
1284 struct thread_struct *new_thread, *old_thread;
14cf11af 1285 struct task_struct *last;
387e220a 1286#ifdef CONFIG_PPC_64S_HASH_MMU
d6bf29b4
PZ
1287 struct ppc64_tlb_batch *batch;
1288#endif
14cf11af 1289
152d523e
AB
1290 new_thread = &new->thread;
1291 old_thread = &current->thread;
1292
7ba5fef7
MN
1293 WARN_ON(!irqs_disabled());
1294
387e220a 1295#ifdef CONFIG_PPC_64S_HASH_MMU
69111bac 1296 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1297 if (batch->active) {
1298 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1299 if (batch->index)
1300 __flush_tlb_pending(batch);
1301 batch->active = 0;
1302 }
f35d2f24
NP
1303
1304 /*
1305 * On POWER9 the copy-paste buffer can only paste into
1306 * foreign real addresses, so unprivileged processes can not
1307 * see the data or use it in any way unless they have
1308 * foreign real mappings. If the new process has the foreign
1309 * real address mappings, we must issue a cp_abort to clear
1310 * any state and prevent snooping, corruption or a covert
1311 * channel. ISA v3.1 supports paste into local memory.
1312 */
1313 if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1314 atomic_read(&new->mm->context.vas_windows)))
1315 asm volatile(PPC_CP_ABORT);
4e003747 1316#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 1317
f3d885cc
AB
1318#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1319 switch_booke_debug_regs(&new->thread.debug);
1320#else
1321/*
1322 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1323 * schedule DABR
1324 */
1325#ifndef CONFIG_HAVE_HW_BREAKPOINT
303e6a9d 1326 switch_hw_breakpoint(new);
f3d885cc
AB
1327#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1328#endif
1329
1330 /*
1331 * We need to save SPRs before treclaim/trecheckpoint as these will
1332 * change a number of them.
1333 */
1334 save_sprs(&prev->thread);
1335
f3d885cc
AB
1336 /* Save FPU, Altivec, VSX and SPE state */
1337 giveup_all(prev);
1338
dc310669
CB
1339 __switch_to_tm(prev, new);
1340
e4c0fc5f
NP
1341 if (!radix_enabled()) {
1342 /*
1343 * We can't take a PMU exception inside _switch() since there
1344 * is a window where the kernel stack SLB and the kernel stack
1345 * are out of sync. Hard disable here.
1346 */
1347 hard_irq_disable();
1348 }
bc2a9408 1349
20dbe670 1350 /*
59dc5bfc
NP
1351 * Call restore_sprs() and set_return_regs_changed() before calling
1352 * _switch(). If we move it after _switch() then we miss out on calling
1353 * it for new tasks. The reason for this is we manually create a stack
1354 * frame for new tasks that directly returns through ret_from_fork() or
20dbe670
AB
1355 * ret_from_kernel_thread(). See copy_thread() for details.
1356 */
f3d885cc
AB
1357 restore_sprs(old_thread, new_thread);
1358
59dc5bfc
NP
1359 set_return_regs_changed(); /* _switch changes stack (and regs) */
1360
42e03bc5
CL
1361 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1362 kuap_assert_locked();
1363
20dbe670
AB
1364 last = _switch(old_thread, new_thread);
1365
f35d2f24
NP
1366 /*
1367 * Nothing after _switch will be run for newly created tasks,
1368 * because they switch directly to ret_from_fork/ret_from_kernel_thread
1369 * etc. Code added here should have a comment explaining why that is
1370 * okay.
1371 */
1372
4e003747 1373#ifdef CONFIG_PPC_BOOK3S_64
387e220a 1374#ifdef CONFIG_PPC_64S_HASH_MMU
f35d2f24
NP
1375 /*
1376 * This applies to a process that was context switched while inside
1377 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1378 * deactivated above, before _switch(). This will never be the case
1379 * for new tasks.
1380 */
d6bf29b4
PZ
1381 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1382 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 1383 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1384 batch->active = 1;
1385 }
387e220a 1386#endif
70fe3d98 1387
f35d2f24
NP
1388 /*
1389 * Math facilities are masked out of the child MSR in copy_thread.
1390 * A new task does not need to restore_math because it will
1391 * demand fault them.
1392 */
1393 if (current->thread.regs)
05b98791 1394 restore_math(current->thread.regs);
4e003747 1395#endif /* CONFIG_PPC_BOOK3S_64 */
d6bf29b4 1396
14cf11af
PM
1397 return last;
1398}
1399
df13102f 1400#define NR_INSN_TO_PRINT 16
06d67d54 1401
06d67d54
PM
1402static void show_instructions(struct pt_regs *regs)
1403{
1404 int i;
a6e2c226 1405 unsigned long nip = regs->nip;
df13102f 1406 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
06d67d54 1407
d90bb7b4 1408 printk("Code: ");
06d67d54 1409
a6e2c226
AK
1410 /*
1411 * If we were executing with the MMU off for instructions, adjust pc
1412 * rather than printing XXXXXXXX.
1413 */
1414 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1415 pc = (unsigned long)phys_to_virt(pc);
1416 nip = (unsigned long)phys_to_virt(regs->nip);
1417 }
1418
df13102f 1419 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
06d67d54
PM
1420 int instr;
1421
d9ab6da6 1422 if (get_kernel_nofault(instr, (const void *)pc)) {
2ffd04de 1423 pr_cont("XXXXXXXX ");
06d67d54 1424 } else {
a6e2c226 1425 if (nip == pc)
2ffd04de 1426 pr_cont("<%08x> ", instr);
06d67d54 1427 else
2ffd04de 1428 pr_cont("%08x ", instr);
06d67d54
PM
1429 }
1430
1431 pc += sizeof(int);
1432 }
1433
2ffd04de 1434 pr_cont("\n");
06d67d54
PM
1435}
1436
88b0fe17
MOA
1437void show_user_instructions(struct pt_regs *regs)
1438{
1439 unsigned long pc;
df13102f 1440 int n = NR_INSN_TO_PRINT;
fb2d9505
CL
1441 struct seq_buf s;
1442 char buf[96]; /* enough for 8 times 9 + 2 chars */
88b0fe17 1443
df13102f 1444 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
88b0fe17 1445
fb2d9505 1446 seq_buf_init(&s, buf, sizeof(buf));
88b0fe17 1447
fb2d9505
CL
1448 while (n) {
1449 int i;
88b0fe17 1450
fb2d9505 1451 seq_buf_clear(&s);
88b0fe17 1452
fb2d9505
CL
1453 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1454 int instr;
1455
c0ee37e8
CH
1456 if (copy_from_user_nofault(&instr, (void __user *)pc,
1457 sizeof(instr))) {
fb2d9505
CL
1458 seq_buf_printf(&s, "XXXXXXXX ");
1459 continue;
1460 }
1461 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
88b0fe17
MOA
1462 }
1463
fb2d9505
CL
1464 if (!seq_buf_has_overflowed(&s))
1465 pr_info("%s[%d]: code: %s\n", current->comm,
1466 current->pid, s.buffer);
88b0fe17 1467 }
88b0fe17
MOA
1468}
1469
801c0b2c 1470struct regbit {
06d67d54
PM
1471 unsigned long bit;
1472 const char *name;
801c0b2c
MN
1473};
1474
1475static struct regbit msr_bits[] = {
3bfd0c9c
AB
1476#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1477 {MSR_SF, "SF"},
1478 {MSR_HV, "HV"},
1479#endif
1480 {MSR_VEC, "VEC"},
1481 {MSR_VSX, "VSX"},
1482#ifdef CONFIG_BOOKE
1483 {MSR_CE, "CE"},
1484#endif
06d67d54
PM
1485 {MSR_EE, "EE"},
1486 {MSR_PR, "PR"},
1487 {MSR_FP, "FP"},
1488 {MSR_ME, "ME"},
3bfd0c9c 1489#ifdef CONFIG_BOOKE
1b98326b 1490 {MSR_DE, "DE"},
3bfd0c9c
AB
1491#else
1492 {MSR_SE, "SE"},
1493 {MSR_BE, "BE"},
1494#endif
06d67d54
PM
1495 {MSR_IR, "IR"},
1496 {MSR_DR, "DR"},
3bfd0c9c
AB
1497 {MSR_PMM, "PMM"},
1498#ifndef CONFIG_BOOKE
1499 {MSR_RI, "RI"},
1500 {MSR_LE, "LE"},
1501#endif
06d67d54
PM
1502 {0, NULL}
1503};
1504
801c0b2c 1505static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
06d67d54 1506{
801c0b2c 1507 const char *s = "";
06d67d54 1508
06d67d54
PM
1509 for (; bits->bit; ++bits)
1510 if (val & bits->bit) {
db5ba5ae 1511 pr_cont("%s%s", s, bits->name);
801c0b2c 1512 s = sep;
06d67d54 1513 }
801c0b2c
MN
1514}
1515
1516#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1517static struct regbit msr_tm_bits[] = {
1518 {MSR_TS_T, "T"},
1519 {MSR_TS_S, "S"},
1520 {MSR_TM, "E"},
1521 {0, NULL}
1522};
1523
1524static void print_tm_bits(unsigned long val)
1525{
1526/*
1527 * This only prints something if at least one of the TM bit is set.
1528 * Inside the TM[], the output means:
1529 * E: Enabled (bit 32)
1530 * S: Suspended (bit 33)
1531 * T: Transactional (bit 34)
1532 */
1533 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
db5ba5ae 1534 pr_cont(",TM[");
801c0b2c 1535 print_bits(val, msr_tm_bits, "");
db5ba5ae 1536 pr_cont("]");
801c0b2c
MN
1537 }
1538}
1539#else
1540static void print_tm_bits(unsigned long val) {}
1541#endif
1542
1543static void print_msr_bits(unsigned long val)
1544{
db5ba5ae 1545 pr_cont("<");
801c0b2c
MN
1546 print_bits(val, msr_bits, ",");
1547 print_tm_bits(val);
db5ba5ae 1548 pr_cont(">");
06d67d54
PM
1549}
1550
1551#ifdef CONFIG_PPC64
f6f7dde3 1552#define REG "%016lx"
06d67d54 1553#define REGS_PER_LINE 4
06d67d54 1554#else
f6f7dde3 1555#define REG "%08lx"
06d67d54 1556#define REGS_PER_LINE 8
06d67d54
PM
1557#endif
1558
bf13718b 1559static void __show_regs(struct pt_regs *regs)
14cf11af
PM
1560{
1561 int i, trap;
1562
a6036100 1563 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
06d67d54 1564 regs->nip, regs->link, regs->ctr);
182dc9c7 1565 printk("REGS: %px TRAP: %04lx %s (%s)\n",
96b644bd 1566 regs, regs->trap, print_tainted(), init_utsname()->release);
a6036100 1567 printk("MSR: "REG" ", regs->msr);
801c0b2c 1568 print_msr_bits(regs->msr);
f6fc73fb 1569 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1570 trap = TRAP(regs);
912237ea 1571 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
7dae865f 1572 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
7153d4bf
XS
1573 if (trap == INTERRUPT_MACHINE_CHECK ||
1574 trap == INTERRUPT_DATA_STORAGE ||
1575 trap == INTERRUPT_ALIGNMENT) {
2ec42996 1576 if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
4872cbd0 1577 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
2ec42996
CL
1578 else
1579 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1580 }
1581
9db8bcfd 1582#ifdef CONFIG_PPC64
3130a7bb 1583 pr_cont("IRQMASK: %lx ", regs->softe);
9db8bcfd
AB
1584#endif
1585#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a 1586 if (MSR_TM_ACTIVE(regs->msr))
7dae865f 1587 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1588#endif
14cf11af
PM
1589
1590 for (i = 0; i < 32; i++) {
06d67d54 1591 if ((i % REGS_PER_LINE) == 0)
7dae865f
ME
1592 pr_cont("\nGPR%02d: ", i);
1593 pr_cont(REG " ", regs->gpr[i]);
14cf11af 1594 }
7dae865f 1595 pr_cont("\n");
14cf11af
PM
1596 /*
1597 * Lookup NIP late so we have the best change of getting the
1598 * above info out without failing
1599 */
8f020c7c
CL
1600 if (IS_ENABLED(CONFIG_KALLSYMS)) {
1601 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1602 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1603 }
bf13718b
NP
1604}
1605
1606void show_regs(struct pt_regs *regs)
1607{
1608 show_regs_print_info(KERN_DEFAULT);
1609 __show_regs(regs);
9cb8f069 1610 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
06d67d54
PM
1611 if (!user_mode(regs))
1612 show_instructions(regs);
14cf11af
PM
1613}
1614
14cf11af
PM
1615void flush_thread(void)
1616{
e0780b72 1617#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1618 flush_ptrace_hw_breakpoint(current);
e0780b72 1619#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1620 set_debug_reg_defaults(&current->thread);
e0780b72 1621#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1622}
1623
425d3314
NP
1624void arch_setup_new_exec(void)
1625{
d7df77e8
AK
1626
1627#ifdef CONFIG_PPC_BOOK3S_64
1628 if (!radix_enabled())
1629 hash__setup_new_exec();
425d3314 1630#endif
d7df77e8
AK
1631 /*
1632 * If we exec out of a kernel thread then thread.regs will not be
1633 * set. Do it now.
1634 */
1635 if (!current->thread.regs) {
1636 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1637 current->thread.regs = regs - 1;
1638 }
d5fa30e6
AK
1639
1640#ifdef CONFIG_PPC_MEM_KEYS
1641 current->thread.regs->amr = default_amr;
1642 current->thread.regs->iamr = default_iamr;
1643#endif
d7df77e8 1644}
425d3314 1645
ec233ede 1646#ifdef CONFIG_PPC64
be994293 1647/*
71cc64a8
AS
1648 * Assign a TIDR (thread ID) for task @t and set it in the thread
1649 * structure. For now, we only support setting TIDR for 'current' task.
ec233ede 1650 *
71cc64a8
AS
1651 * Since the TID value is a truncated form of it PID, it is possible
1652 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1653 * that 2 threads share the same TID and are waiting, one of the following
1654 * cases will happen:
ec233ede 1655 *
71cc64a8
AS
1656 * 1. The correct thread is running, the wrong thread is not
1657 * In this situation, the correct thread is woken and proceeds to pass it's
1658 * condition check.
ec233ede 1659 *
71cc64a8
AS
1660 * 2. Neither threads are running
1661 * In this situation, neither thread will be woken. When scheduled, the waiting
1662 * threads will execute either a wait, which will return immediately, followed
1663 * by a condition check, which will pass for the correct thread and fail
1664 * for the wrong thread, or they will execute the condition check immediately.
ec233ede 1665 *
71cc64a8
AS
1666 * 3. The wrong thread is running, the correct thread is not
1667 * The wrong thread will be woken, but will fail it's condition check and
1668 * re-execute wait. The correct thread, when scheduled, will execute either
1669 * it's condition check (which will pass), or wait, which returns immediately
1670 * when called the first time after the thread is scheduled, followed by it's
1671 * condition check (which will pass).
ec233ede 1672 *
71cc64a8
AS
1673 * 4. Both threads are running
1674 * Both threads will be woken. The wrong thread will fail it's condition check
1675 * and execute another wait, while the correct thread will pass it's condition
1676 * check.
1677 *
1678 * @t: the task to set the thread ID for
ec233ede
SB
1679 */
1680int set_thread_tidr(struct task_struct *t)
1681{
3449f191 1682 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
ec233ede
SB
1683 return -EINVAL;
1684
1685 if (t != current)
1686 return -EINVAL;
1687
7e4d4233
VJ
1688 if (t->thread.tidr)
1689 return 0;
1690
71cc64a8 1691 t->thread.tidr = (u16)task_pid_nr(t);
ec233ede
SB
1692 mtspr(SPRN_TIDR, t->thread.tidr);
1693
1694 return 0;
1695}
b1db5513 1696EXPORT_SYMBOL_GPL(set_thread_tidr);
ec233ede
SB
1697
1698#endif /* CONFIG_PPC64 */
1699
14cf11af 1700/*
55ccf3fe
SS
1701 * this gets called so that we can store coprocessor state into memory and
1702 * copy the current task into the new thread.
14cf11af 1703 */
55ccf3fe 1704int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1705{
579e633e 1706 flush_all_to_thread(src);
621b5060
MN
1707 /*
1708 * Flush TM state out so we can copy it. __switch_to_tm() does this
1709 * flush but it removes the checkpointed state from the current CPU and
1710 * transitions the CPU out of TM mode. Hence we need to call
1711 * tm_recheckpoint_new_task() (on the same task) to restore the
1712 * checkpointed state back and the TM mode.
5d176f75
CB
1713 *
1714 * Can't pass dst because it isn't ready. Doesn't matter, passing
1715 * dst is only important for __switch_to()
621b5060 1716 */
dc310669 1717 __switch_to_tm(src, src);
330a1eb7 1718
55ccf3fe 1719 *dst = *src;
330a1eb7
ME
1720
1721 clear_task_ebb(dst);
1722
55ccf3fe 1723 return 0;
14cf11af
PM
1724}
1725
cec15488
ME
1726static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1727{
387e220a 1728#ifdef CONFIG_PPC_64S_HASH_MMU
cec15488
ME
1729 unsigned long sp_vsid;
1730 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1731
caca285e
AK
1732 if (radix_enabled())
1733 return;
1734
cec15488
ME
1735 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1736 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1737 << SLB_VSID_SHIFT_1T;
1738 else
1739 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1740 << SLB_VSID_SHIFT;
1741 sp_vsid |= SLB_VSID_KERNEL | llp;
1742 p->thread.ksp_vsid = sp_vsid;
1743#endif
1744}
1745
14cf11af
PM
1746/*
1747 * Copy a thread..
1748 */
efcac658 1749
6eca8933
AD
1750/*
1751 * Copy architecture-specific thread state
1752 */
c5febea0 1753int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
14cf11af 1754{
eed7c420 1755 struct pt_regs *kregs; /* Switch frame regs */
14cf11af 1756 extern void ret_from_fork(void);
7fa95f9a 1757 extern void ret_from_fork_scv(void);
b504b6aa
NP
1758 extern void ret_from_kernel_user_thread(void);
1759 extern void start_kernel_thread(void);
58254e10 1760 void (*f)(void);
0cec6fd1 1761 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
6b424efa
RB
1762#ifdef CONFIG_HAVE_HW_BREAKPOINT
1763 int i;
1764#endif
5d31a96e 1765
ed1cd6de 1766 klp_init_thread_info(p);
14cf11af 1767
eed7c420 1768 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1769 /* kernel thread */
eed7c420
NP
1770
1771 /* Create initial minimum stack frame. */
1772 sp -= STACK_FRAME_MIN_SIZE;
6895dfc0 1773 ((unsigned long *)sp)[0] = 0;
eed7c420 1774
b504b6aa 1775 f = start_kernel_thread;
eed7c420
NP
1776 p->thread.regs = NULL; /* no user register state */
1777 clear_tsk_compat_task(p);
14cf11af 1778 } else {
6eca8933 1779 /* user thread */
eed7c420
NP
1780 struct pt_regs *childregs;
1781
1782 /* Create initial user return stack frame. */
1783 sp -= STACK_USER_INT_FRAME_SIZE;
1784 *(unsigned long *)(sp + STACK_INT_FRAME_MARKER) = STACK_FRAME_REGS_MARKER;
1785
1786 childregs = (struct pt_regs *)(sp + STACK_INT_FRAME_REGS);
1787
1788 if (unlikely(args->fn)) {
1789 /*
1790 * A user space thread, but it first runs a kernel
1791 * thread, and then returns as though it had called
1792 * execve rather than fork, so user regs will be
1793 * filled in (e.g., by kernel_execve()).
1794 */
1795 ((unsigned long *)sp)[0] = 0;
1796 memset(childregs, 0, sizeof(struct pt_regs));
1797#ifdef CONFIG_PPC64
1798 childregs->softe = IRQS_ENABLED;
1799#endif
b504b6aa 1800 f = ret_from_kernel_user_thread;
eed7c420
NP
1801 } else {
1802 struct pt_regs *regs = current_pt_regs();
1803 unsigned long clone_flags = args->flags;
1804 unsigned long usp = args->stack;
1805
1806 /* Copy registers */
1807 *childregs = *regs;
1808 if (usp)
1809 childregs->gpr[1] = usp;
1810 ((unsigned long *)sp)[0] = childregs->gpr[1];
1811#ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG
1812 WARN_ON_ONCE(childregs->softe != IRQS_ENABLED);
1813#endif
1814 if (clone_flags & CLONE_SETTLS) {
1815 unsigned long tls = args->tls;
1816
1817 if (!is_32bit_task())
1818 childregs->gpr[13] = tls;
1819 else
1820 childregs->gpr[2] = tls;
1821 }
1822
1823 if (trap_is_scv(regs))
1824 f = ret_from_fork_scv;
06d67d54 1825 else
eed7c420 1826 f = ret_from_fork;
06d67d54 1827 }
58254e10 1828
eed7c420
NP
1829 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1830 p->thread.regs = childregs;
14cf11af 1831 }
14cf11af
PM
1832
1833 /*
1834 * The way this works is that at some point in the future
1835 * some task will call _switch to switch to the new task.
1836 * That will pop off the stack frame created below and start
1837 * the new task running at ret_from_fork. The new task will
1838 * do some house keeping and then return from the fork or clone
1839 * system call, using the stack frame created above.
1840 */
edbd0387 1841 ((unsigned long *)sp)[STACK_FRAME_LR_SAVE] = (unsigned long)f;
6f291a03 1842 sp -= STACK_SWITCH_FRAME_SIZE;
edbd0387 1843 ((unsigned long *)sp)[0] = sp + STACK_SWITCH_FRAME_SIZE;
6f291a03 1844 kregs = (struct pt_regs *)(sp + STACK_SWITCH_FRAME_REGS);
c013e9f2 1845 kregs->nip = ppc_function_entry(f);
af5ca9d5
NP
1846 if (unlikely(args->fn)) {
1847 /*
1848 * Put kthread fn, arg parameters in non-volatile GPRs in the
1849 * switch frame so they are loaded by _switch before it returns
1850 * to ret_from_kernel_thread.
1851 */
1852 kregs->gpr[14] = ppc_function_entry((void *)args->fn);
1853 kregs->gpr[15] = (unsigned long)args->fn_arg;
1854 }
14cf11af 1855 p->thread.ksp = sp;
6f291a03 1856
28d170ab 1857#ifdef CONFIG_HAVE_HW_BREAKPOINT
6b424efa
RB
1858 for (i = 0; i < nr_wp_slots(); i++)
1859 p->thread.ptrace_bps[i] = NULL;
28d170ab
ON
1860#endif
1861
b6254ced 1862#ifdef CONFIG_PPC_FPU_REGS
18461960 1863 p->thread.fp_save_area = NULL;
b6254ced 1864#endif
18461960
PM
1865#ifdef CONFIG_ALTIVEC
1866 p->thread.vr_save_area = NULL;
1867#endif
16132529
CL
1868#if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1869 p->thread.kuap = KUAP_NONE;
1870#endif
43afcf8f
CL
1871#if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP)
1872 p->thread.pid = MMU_NO_CONTEXT;
1873#endif
18461960 1874
cec15488
ME
1875 setup_ksp_vsid(p, sp);
1876
efcac658
AK
1877#ifdef CONFIG_PPC64
1878 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26 1879 p->thread.dscr_inherit = current->thread.dscr_inherit;
db1231dc 1880 p->thread.dscr = mfspr(SPRN_DSCR);
efcac658 1881 }
ec233ede
SB
1882
1883 p->thread.tidr = 0;
be98fcf7
BG
1884#endif
1885#ifdef CONFIG_PPC_BOOK3S_64
1886 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
1887 p->thread.hashkeyr = current->thread.hashkeyr;
75171f06
BG
1888
1889 if (cpu_has_feature(CPU_FTR_ARCH_31))
1890 p->thread.dexcr = mfspr(SPRN_DEXCR);
f643fcab 1891#endif
14cf11af
PM
1892 return 0;
1893}
1894
5434ae74
NP
1895void preload_new_slb_context(unsigned long start, unsigned long sp);
1896
14cf11af
PM
1897/*
1898 * Set up a thread for executing a new program
1899 */
06d67d54 1900void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1901{
90eac727
ME
1902#ifdef CONFIG_PPC64
1903 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
5434ae74 1904
bfac2799 1905 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
f89bd8ba 1906 preload_new_slb_context(start, sp);
90eac727
ME
1907#endif
1908
8e96a87c
CB
1909#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1910 /*
1911 * Clear any transactional state, we're exec()ing. The cause is
1912 * not important as there will never be a recheckpoint so it's not
1913 * user visible.
1914 */
1915 if (MSR_TM_SUSPENDED(mfmsr()))
1916 tm_reclaim_current(0);
1917#endif
1918
ec6d0dde 1919 memset(&regs->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
14cf11af
PM
1920 regs->ctr = 0;
1921 regs->link = 0;
1922 regs->xer = 0;
1923 regs->ccr = 0;
14cf11af 1924 regs->gpr[1] = sp;
06d67d54
PM
1925
1926#ifdef CONFIG_PPC32
1927 regs->mq = 0;
1928 regs->nip = start;
14cf11af 1929 regs->msr = MSR_USER;
06d67d54 1930#else
9904b005 1931 if (!is_32bit_task()) {
94af3abf 1932 unsigned long entry;
06d67d54 1933
94af3abf
RR
1934 if (is_elf2_task()) {
1935 /* Look ma, no function descriptors! */
1936 entry = start;
06d67d54 1937
94af3abf
RR
1938 /*
1939 * Ulrich says:
1940 * The latest iteration of the ABI requires that when
1941 * calling a function (at its global entry point),
1942 * the caller must ensure r12 holds the entry point
1943 * address (so that the function can quickly
1944 * establish addressability).
1945 */
1946 regs->gpr[12] = start;
1947 /* Make sure that's restored on entry to userspace. */
1948 set_thread_flag(TIF_RESTOREALL);
1949 } else {
1950 unsigned long toc;
1951
1952 /* start is a relocated pointer to the function
1953 * descriptor for the elf _start routine. The first
1954 * entry in the function descriptor is the entry
1955 * address of _start and the second entry is the TOC
1956 * value we need to use.
1957 */
1958 __get_user(entry, (unsigned long __user *)start);
1959 __get_user(toc, (unsigned long __user *)start+1);
1960
1961 /* Check whether the e_entry function descriptor entries
1962 * need to be relocated before we can use them.
1963 */
1964 if (load_addr != 0) {
1965 entry += load_addr;
1966 toc += load_addr;
1967 }
1968 regs->gpr[2] = toc;
06d67d54 1969 }
59dc5bfc
NP
1970 regs_set_return_ip(regs, entry);
1971 regs_set_return_msr(regs, MSR_USER64);
d4bf9a78 1972 } else {
d4bf9a78 1973 regs->gpr[2] = 0;
59dc5bfc
NP
1974 regs_set_return_ip(regs, start);
1975 regs_set_return_msr(regs, MSR_USER32);
06d67d54 1976 }
59dc5bfc 1977
06d67d54 1978#endif
ce48b210
MN
1979#ifdef CONFIG_VSX
1980 current->thread.used_vsr = 0;
1981#endif
5434ae74 1982 current->thread.load_slb = 0;
1195892c 1983 current->thread.load_fp = 0;
b6254ced 1984#ifdef CONFIG_PPC_FPU_REGS
de79f7b9 1985 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1986 current->thread.fp_save_area = NULL;
b6254ced 1987#endif
14cf11af 1988#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1989 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1990 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1991 current->thread.vr_save_area = NULL;
14cf11af
PM
1992 current->thread.vrsave = 0;
1993 current->thread.used_vr = 0;
1195892c 1994 current->thread.load_vec = 0;
14cf11af
PM
1995#endif /* CONFIG_ALTIVEC */
1996#ifdef CONFIG_SPE
1997 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1998 current->thread.acc = 0;
1999 current->thread.spefscr = 0;
2000 current->thread.used_spe = 0;
2001#endif /* CONFIG_SPE */
bc2a9408 2002#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
bc2a9408
MN
2003 current->thread.tm_tfhar = 0;
2004 current->thread.tm_texasr = 0;
2005 current->thread.tm_tfiar = 0;
7f22ced4 2006 current->thread.load_tm = 0;
bc2a9408 2007#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
be98fcf7
BG
2008#ifdef CONFIG_PPC_BOOK3S_64
2009 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) {
2010 current->thread.hashkeyr = get_random_long();
2011 mtspr(SPRN_HASHKEYR, current->thread.hashkeyr);
2012 }
2013#endif /* CONFIG_PPC_BOOK3S_64 */
14cf11af 2014}
e1802b06 2015EXPORT_SYMBOL(start_thread);
14cf11af
PM
2016
2017#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
2018 | PR_FP_EXC_RES | PR_FP_EXC_INV)
2019
2020int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
2021{
2022 struct pt_regs *regs = tsk->thread.regs;
2023
2024 /* This is a bit hairy. If we are an SPE enabled processor
2025 * (have embedded fp) we store the IEEE exception enable flags in
2026 * fpexc_mode. fpexc_mode is also used for setting FP exception
2027 * mode (asyn, precise, disabled) for 'Classic' FP. */
2028 if (val & PR_FP_EXC_SW_ENABLE) {
5e14d21e 2029 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
2030 /*
2031 * When the sticky exception bits are set
2032 * directly by userspace, it must call prctl
2033 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2034 * in the existing prctl settings) or
2035 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2036 * the bits being set). <fenv.h> functions
2037 * saving and restoring the whole
2038 * floating-point environment need to do so
2039 * anyway to restore the prctl settings from
2040 * the saved environment.
2041 */
532ed190 2042#ifdef CONFIG_SPE
640e9225 2043 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
2044 tsk->thread.fpexc_mode = val &
2045 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
532ed190 2046#endif
5e14d21e
KG
2047 return 0;
2048 } else {
2049 return -EINVAL;
2050 }
14cf11af 2051 }
06d67d54
PM
2052
2053 /* on a CONFIG_SPE this does not hurt us. The bits that
2054 * __pack_fe01 use do not overlap with bits used for
2055 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
2056 * on CONFIG_SPE implementations are reserved so writing to
2057 * them does not change anything */
2058 if (val > PR_FP_EXC_PRECISE)
2059 return -EINVAL;
2060 tsk->thread.fpexc_mode = __pack_fe01(val);
59dc5bfc
NP
2061 if (regs != NULL && (regs->msr & MSR_FP) != 0) {
2062 regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
2063 | tsk->thread.fpexc_mode);
2064 }
14cf11af
PM
2065 return 0;
2066}
2067
2068int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
2069{
d208e13c 2070 unsigned int val = 0;
14cf11af 2071
532ed190 2072 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
640e9225
JM
2073 if (cpu_has_feature(CPU_FTR_SPE)) {
2074 /*
2075 * When the sticky exception bits are set
2076 * directly by userspace, it must call prctl
2077 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2078 * in the existing prctl settings) or
2079 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2080 * the bits being set). <fenv.h> functions
2081 * saving and restoring the whole
2082 * floating-point environment need to do so
2083 * anyway to restore the prctl settings from
2084 * the saved environment.
2085 */
532ed190 2086#ifdef CONFIG_SPE
640e9225 2087 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 2088 val = tsk->thread.fpexc_mode;
532ed190 2089#endif
640e9225 2090 } else
5e14d21e 2091 return -EINVAL;
532ed190 2092 } else {
14cf11af 2093 val = __unpack_fe01(tsk->thread.fpexc_mode);
532ed190 2094 }
14cf11af
PM
2095 return put_user(val, (unsigned int __user *) adr);
2096}
2097
fab5db97
PM
2098int set_endian(struct task_struct *tsk, unsigned int val)
2099{
2100 struct pt_regs *regs = tsk->thread.regs;
2101
2102 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
2103 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2104 return -EINVAL;
2105
2106 if (regs == NULL)
2107 return -EINVAL;
2108
2109 if (val == PR_ENDIAN_BIG)
59dc5bfc 2110 regs_set_return_msr(regs, regs->msr & ~MSR_LE);
fab5db97 2111 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
59dc5bfc 2112 regs_set_return_msr(regs, regs->msr | MSR_LE);
fab5db97
PM
2113 else
2114 return -EINVAL;
2115
2116 return 0;
2117}
2118
2119int get_endian(struct task_struct *tsk, unsigned long adr)
2120{
2121 struct pt_regs *regs = tsk->thread.regs;
2122 unsigned int val;
2123
2124 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2125 !cpu_has_feature(CPU_FTR_REAL_LE))
2126 return -EINVAL;
2127
2128 if (regs == NULL)
2129 return -EINVAL;
2130
2131 if (regs->msr & MSR_LE) {
2132 if (cpu_has_feature(CPU_FTR_REAL_LE))
2133 val = PR_ENDIAN_LITTLE;
2134 else
2135 val = PR_ENDIAN_PPC_LITTLE;
2136 } else
2137 val = PR_ENDIAN_BIG;
2138
2139 return put_user(val, (unsigned int __user *)adr);
2140}
2141
e9370ae1
PM
2142int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2143{
2144 tsk->thread.align_ctl = val;
2145 return 0;
2146}
2147
2148int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2149{
2150 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2151}
2152
bb72c481
PM
2153static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2154 unsigned long nbytes)
2155{
2156 unsigned long stack_page;
2157 unsigned long cpu = task_cpu(p);
2158
1ee4e350
NP
2159 if (!hardirq_ctx[cpu] || !softirq_ctx[cpu])
2160 return 0;
2161
a7916a1d
CL
2162 stack_page = (unsigned long)hardirq_ctx[cpu];
2163 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2164 return 1;
2165
2166 stack_page = (unsigned long)softirq_ctx[cpu];
2167 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2168 return 1;
2169
bb72c481
PM
2170 return 0;
2171}
2172
a2e36683
NP
2173static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2174 unsigned long nbytes)
2175{
2176#ifdef CONFIG_PPC64
2177 unsigned long stack_page;
2178 unsigned long cpu = task_cpu(p);
2179
0ecf6a9e
ME
2180 if (!paca_ptrs)
2181 return 0;
2182
1ee4e350
NP
2183 if (!paca_ptrs[cpu]->emergency_sp)
2184 return 0;
2185
2186# ifdef CONFIG_PPC_BOOK3S_64
2187 if (!paca_ptrs[cpu]->nmi_emergency_sp || !paca_ptrs[cpu]->mc_emergency_sp)
2188 return 0;
2189#endif
2190
a2e36683
NP
2191 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2192 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2193 return 1;
2194
2195# ifdef CONFIG_PPC_BOOK3S_64
2196 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2197 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2198 return 1;
2199
2200 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2201 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2202 return 1;
2203# endif
2204#endif
2205
2206 return 0;
2207}
2208
4cefb0f6
NP
2209/*
2210 * validate the stack frame of a particular minimum size, used for when we are
2211 * looking at a certain object in the stack beyond the minimum.
2212 */
2213int validate_sp_size(unsigned long sp, struct task_struct *p,
2214 unsigned long nbytes)
14cf11af 2215{
0cec6fd1 2216 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af 2217
a7916a1d
CL
2218 if (sp < THREAD_SIZE)
2219 return 0;
2220
2221 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
14cf11af
PM
2222 return 1;
2223
a2e36683
NP
2224 if (valid_irq_stack(sp, p, nbytes))
2225 return 1;
2226
2227 return valid_emergency_stack(sp, p, nbytes);
14cf11af
PM
2228}
2229
4cefb0f6
NP
2230int validate_sp(unsigned long sp, struct task_struct *p)
2231{
90f1b431 2232 return validate_sp_size(sp, p, STACK_FRAME_MIN_SIZE);
4cefb0f6 2233}
2f25194d 2234
42a20f86 2235static unsigned long ___get_wchan(struct task_struct *p)
14cf11af
PM
2236{
2237 unsigned long ip, sp;
2238 int count = 0;
2239
14cf11af 2240 sp = p->thread.ksp;
4cefb0f6 2241 if (!validate_sp(sp, p))
14cf11af
PM
2242 return 0;
2243
2244 do {
a1b29ba2 2245 sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
4cefb0f6 2246 if (!validate_sp(sp, p) || task_is_running(p))
14cf11af
PM
2247 return 0;
2248 if (count > 0) {
a1b29ba2 2249 ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
14cf11af
PM
2250 if (!in_sched_functions(ip))
2251 return ip;
2252 }
2253 } while (count++ < 16);
2254 return 0;
2255}
06d67d54 2256
42a20f86 2257unsigned long __get_wchan(struct task_struct *p)
018cce33
CL
2258{
2259 unsigned long ret;
2260
2261 if (!try_get_task_stack(p))
2262 return 0;
2263
42a20f86 2264 ret = ___get_wchan(p);
018cce33
CL
2265
2266 put_task_stack(p);
2267
2268 return ret;
2269}
2270
d45c4b48
ME
2271static bool empty_user_regs(struct pt_regs *regs, struct task_struct *tsk)
2272{
2273 unsigned long stack_page;
2274
2275 // A non-empty pt_regs should never have a zero MSR or TRAP value.
2276 if (regs->msr || regs->trap)
2277 return false;
2278
2279 // Check it sits at the very base of the stack
2280 stack_page = (unsigned long)task_stack_page(tsk);
2281 if ((unsigned long)(regs + 1) != stack_page + THREAD_SIZE)
2282 return false;
2283
2284 return true;
2285}
2286
c4d04be1 2287static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54 2288
b112fb91
DA
2289void __no_sanitize_address show_stack(struct task_struct *tsk,
2290 unsigned long *stack,
2291 const char *loglvl)
06d67d54
PM
2292{
2293 unsigned long sp, ip, lr, newsp;
2294 int count = 0;
2295 int firstframe = 1;
7c1bb6bb
NR
2296 unsigned long ret_addr;
2297 int ftrace_idx = 0;
06d67d54 2298
06d67d54
PM
2299 if (tsk == NULL)
2300 tsk = current;
018cce33
CL
2301
2302 if (!try_get_task_stack(tsk))
2303 return;
2304
2305 sp = (unsigned long) stack;
06d67d54
PM
2306 if (sp == 0) {
2307 if (tsk == current)
3d13e839 2308 sp = current_stack_frame();
06d67d54
PM
2309 else
2310 sp = tsk->thread.ksp;
2311 }
2312
2313 lr = 0;
b9677a8c 2314 printk("%sCall Trace:\n", loglvl);
06d67d54 2315 do {
4cefb0f6 2316 if (!validate_sp(sp, tsk))
018cce33 2317 break;
06d67d54
PM
2318
2319 stack = (unsigned long *) sp;
2320 newsp = stack[0];
ec2b36b9 2321 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 2322 if (!firstframe || ip != lr) {
b9677a8c
DS
2323 printk("%s["REG"] ["REG"] %pS",
2324 loglvl, sp, ip, (void *)ip);
7c1bb6bb
NR
2325 ret_addr = ftrace_graph_ret_addr(current,
2326 &ftrace_idx, ip, stack);
2327 if (ret_addr != ip)
2328 pr_cont(" (%pS)", (void *)ret_addr);
06d67d54 2329 if (firstframe)
9a1f490f
ME
2330 pr_cont(" (unreliable)");
2331 pr_cont("\n");
06d67d54
PM
2332 }
2333 firstframe = 0;
2334
2335 /*
2336 * See if this is an exception frame.
c03be0a3 2337 * We look for the "regs" marker in the current frame.
6f291a03
NP
2338 *
2339 * STACK_SWITCH_FRAME_SIZE being the smallest frame that
2340 * could hold a pt_regs, if that does not fit then it can't
2341 * have regs.
06d67d54 2342 */
4cefb0f6 2343 if (validate_sp_size(sp, tsk, STACK_SWITCH_FRAME_SIZE)
e856e336 2344 && stack[STACK_INT_FRAME_MARKER_LONGS] == STACK_FRAME_REGS_MARKER) {
06d67d54 2345 struct pt_regs *regs = (struct pt_regs *)
c03be0a3 2346 (sp + STACK_INT_FRAME_REGS);
bf13718b 2347
06d67d54 2348 lr = regs->link;
bf13718b
NP
2349 printk("%s--- interrupt: %lx at %pS\n",
2350 loglvl, regs->trap, (void *)regs->nip);
d45c4b48
ME
2351
2352 // Detect the case of an empty pt_regs at the very base
2353 // of the stack and suppress showing it in full.
2354 if (!empty_user_regs(regs, tsk)) {
2355 __show_regs(regs);
2356 printk("%s--- interrupt: %lx\n", loglvl, regs->trap);
2357 }
bf13718b 2358
06d67d54
PM
2359 firstframe = 1;
2360 }
2361
2362 sp = newsp;
2363 } while (count++ < kstack_depth_to_print);
018cce33
CL
2364
2365 put_task_stack(tsk);
06d67d54
PM
2366}
2367
cb2c9b27 2368#ifdef CONFIG_PPC64
fe1952fc 2369/* Called with hard IRQs off */
0e37739b 2370void notrace __ppc64_runlatch_on(void)
cb2c9b27 2371{
fe1952fc 2372 struct thread_info *ti = current_thread_info();
cb2c9b27 2373
d1d0d5ff
NP
2374 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2375 /*
2376 * Least significant bit (RUN) is the only writable bit of
2377 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2378 * earliest ISA where this is the case, but it's convenient.
2379 */
2380 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2381 } else {
2382 unsigned long ctrl;
2383
2384 /*
2385 * Some architectures (e.g., Cell) have writable fields other
2386 * than RUN, so do the read-modify-write.
2387 */
2388 ctrl = mfspr(SPRN_CTRLF);
2389 ctrl |= CTRL_RUNLATCH;
2390 mtspr(SPRN_CTRLT, ctrl);
2391 }
cb2c9b27 2392
fae2e0fb 2393 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
2394}
2395
fe1952fc 2396/* Called with hard IRQs off */
0e37739b 2397void notrace __ppc64_runlatch_off(void)
cb2c9b27 2398{
fe1952fc 2399 struct thread_info *ti = current_thread_info();
cb2c9b27 2400
fae2e0fb 2401 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 2402
d1d0d5ff
NP
2403 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2404 mtspr(SPRN_CTRLT, 0);
2405 } else {
2406 unsigned long ctrl;
2407
2408 ctrl = mfspr(SPRN_CTRLF);
2409 ctrl &= ~CTRL_RUNLATCH;
2410 mtspr(SPRN_CTRLT, ctrl);
2411 }
cb2c9b27 2412}
fe1952fc 2413#endif /* CONFIG_PPC64 */
f6a61680 2414
d839088c
AB
2415unsigned long arch_align_stack(unsigned long sp)
2416{
2417 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
8032bf12 2418 sp -= get_random_u32_below(PAGE_SIZE);
d839088c
AB
2419 return sp & ~0xf;
2420}