powerpc: Remove redundant FP/Altivec giveup code
[linux-2.6-block.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
b17b0153 19#include <linux/sched/debug.h>
29930025 20#include <linux/sched/task.h>
68db0cf1 21#include <linux/sched/task_stack.h>
14cf11af
PM
22#include <linux/kernel.h>
23#include <linux/mm.h>
24#include <linux/smp.h>
14cf11af
PM
25#include <linux/stddef.h>
26#include <linux/unistd.h>
27#include <linux/ptrace.h>
28#include <linux/slab.h>
29#include <linux/user.h>
30#include <linux/elf.h>
14cf11af
PM
31#include <linux/prctl.h>
32#include <linux/init_task.h>
4b16f8e2 33#include <linux/export.h>
14cf11af
PM
34#include <linux/kallsyms.h>
35#include <linux/mqueue.h>
36#include <linux/hardirq.h>
06d67d54 37#include <linux/utsname.h>
6794c782 38#include <linux/ftrace.h>
79741dd3 39#include <linux/kernel_stat.h>
d839088c
AB
40#include <linux/personality.h>
41#include <linux/random.h>
5aae8a53 42#include <linux/hw_breakpoint.h>
7b051f66 43#include <linux/uaccess.h>
7f92bc56 44#include <linux/elf-randomize.h>
14cf11af
PM
45
46#include <asm/pgtable.h>
14cf11af
PM
47#include <asm/io.h>
48#include <asm/processor.h>
49#include <asm/mmu.h>
50#include <asm/prom.h>
76032de8 51#include <asm/machdep.h>
c6622f63 52#include <asm/time.h>
ae3a197e 53#include <asm/runlatch.h>
a7f31841 54#include <asm/syscalls.h>
ae3a197e 55#include <asm/switch_to.h>
fb09692e 56#include <asm/tm.h>
ae3a197e 57#include <asm/debug.h>
06d67d54
PM
58#ifdef CONFIG_PPC64
59#include <asm/firmware.h>
06d67d54 60#endif
7cedd601 61#include <asm/code-patching.h>
7f92bc56 62#include <asm/exec.h>
5d31a96e 63#include <asm/livepatch.h>
b92a226e 64#include <asm/cpu_has_feature.h>
0545d543 65#include <asm/asm-prototypes.h>
5d31a96e 66
d6a61bfc
LM
67#include <linux/kprobes.h>
68#include <linux/kdebug.h>
14cf11af 69
8b3c34cf
MN
70/* Transactional Memory debug */
71#ifdef TM_DEBUG_SW
72#define TM_DEBUG(x...) printk(KERN_INFO x)
73#else
74#define TM_DEBUG(x...) do { } while(0)
75#endif
76
14cf11af
PM
77extern unsigned long _get_SP(void);
78
d31626f7 79#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
b86fd2bd 80static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
81{
82 /*
83 * If we are saving the current thread's registers, and the
84 * thread is in a transactional state, set the TIF_RESTORE_TM
85 * bit so that we know to restore the registers before
86 * returning to userspace.
87 */
88 if (tsk == current && tsk->thread.regs &&
89 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
90 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 91 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
92 set_thread_flag(TIF_RESTORE_TM);
93 }
d31626f7 94}
dc16b553
CB
95
96static inline bool msr_tm_active(unsigned long msr)
97{
98 return MSR_TM_ACTIVE(msr);
99}
d31626f7 100#else
dc16b553 101static inline bool msr_tm_active(unsigned long msr) { return false; }
b86fd2bd 102static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
d31626f7
PM
103#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
104
3eb5d588
AB
105bool strict_msr_control;
106EXPORT_SYMBOL(strict_msr_control);
107
108static int __init enable_strict_msr_control(char *str)
109{
110 strict_msr_control = true;
111 pr_info("Enabling strict facility control\n");
112
113 return 0;
114}
115early_param("ppc_strict_facility_enable", enable_strict_msr_control);
116
3cee070a 117unsigned long msr_check_and_set(unsigned long bits)
98da581e 118{
a0e72cf1
AB
119 unsigned long oldmsr = mfmsr();
120 unsigned long newmsr;
98da581e 121
a0e72cf1 122 newmsr = oldmsr | bits;
98da581e 123
98da581e 124#ifdef CONFIG_VSX
a0e72cf1 125 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e
AB
126 newmsr |= MSR_VSX;
127#endif
a0e72cf1 128
98da581e
AB
129 if (oldmsr != newmsr)
130 mtmsr_isync(newmsr);
3cee070a
CB
131
132 return newmsr;
a0e72cf1 133}
98da581e 134
3eb5d588 135void __msr_check_and_clear(unsigned long bits)
a0e72cf1
AB
136{
137 unsigned long oldmsr = mfmsr();
138 unsigned long newmsr;
139
140 newmsr = oldmsr & ~bits;
141
142#ifdef CONFIG_VSX
143 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
144 newmsr &= ~MSR_VSX;
145#endif
146
147 if (oldmsr != newmsr)
148 mtmsr_isync(newmsr);
149}
3eb5d588 150EXPORT_SYMBOL(__msr_check_and_clear);
a0e72cf1
AB
151
152#ifdef CONFIG_PPC_FPU
8792468d
CB
153void __giveup_fpu(struct task_struct *tsk)
154{
8eb98037
AB
155 unsigned long msr;
156
8792468d 157 save_fpu(tsk);
8eb98037
AB
158 msr = tsk->thread.regs->msr;
159 msr &= ~MSR_FP;
8792468d
CB
160#ifdef CONFIG_VSX
161 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 162 msr &= ~MSR_VSX;
8792468d 163#endif
8eb98037 164 tsk->thread.regs->msr = msr;
8792468d
CB
165}
166
a0e72cf1
AB
167void giveup_fpu(struct task_struct *tsk)
168{
169 check_if_tm_restore_required(tsk);
170
171 msr_check_and_set(MSR_FP);
98da581e 172 __giveup_fpu(tsk);
a0e72cf1 173 msr_check_and_clear(MSR_FP);
98da581e
AB
174}
175EXPORT_SYMBOL(giveup_fpu);
176
14cf11af
PM
177/*
178 * Make sure the floating-point register state in the
179 * the thread_struct is up to date for task tsk.
180 */
181void flush_fp_to_thread(struct task_struct *tsk)
182{
183 if (tsk->thread.regs) {
184 /*
185 * We need to disable preemption here because if we didn't,
186 * another process could get scheduled after the regs->msr
187 * test but before we have finished saving the FP registers
188 * to the thread_struct. That process could take over the
189 * FPU, and then when we get scheduled again we would store
190 * bogus values for the remaining FP registers.
191 */
192 preempt_disable();
193 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
194 /*
195 * This should only ever be called for current or
196 * for a stopped child process. Since we save away
af1bbc3d 197 * the FP register state on context switch,
14cf11af
PM
198 * there is something wrong if a stopped child appears
199 * to still have its FP state in the CPU registers.
200 */
201 BUG_ON(tsk != current);
b86fd2bd 202 giveup_fpu(tsk);
14cf11af
PM
203 }
204 preempt_enable();
205 }
206}
de56a948 207EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
208
209void enable_kernel_fp(void)
210{
e909fb83
CB
211 unsigned long cpumsr;
212
14cf11af
PM
213 WARN_ON(preemptible());
214
e909fb83 215 cpumsr = msr_check_and_set(MSR_FP);
611b0e5c 216
d64d02ce
AB
217 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
218 check_if_tm_restore_required(current);
e909fb83
CB
219 /*
220 * If a thread has already been reclaimed then the
221 * checkpointed registers are on the CPU but have definitely
222 * been saved by the reclaim code. Don't need to and *cannot*
223 * giveup as this would save to the 'live' structure not the
224 * checkpointed structure.
225 */
226 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
227 return;
a0e72cf1 228 __giveup_fpu(current);
d64d02ce 229 }
14cf11af
PM
230}
231EXPORT_SYMBOL(enable_kernel_fp);
70fe3d98 232
6a303833
BH
233static int restore_fp(struct task_struct *tsk)
234{
dc16b553 235 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
70fe3d98
CB
236 load_fp_state(&current->thread.fp_state);
237 current->thread.load_fp++;
238 return 1;
239 }
240 return 0;
241}
242#else
243static int restore_fp(struct task_struct *tsk) { return 0; }
d1e1cf2e 244#endif /* CONFIG_PPC_FPU */
14cf11af 245
14cf11af 246#ifdef CONFIG_ALTIVEC
70fe3d98
CB
247#define loadvec(thr) ((thr).load_vec)
248
6f515d84
CB
249static void __giveup_altivec(struct task_struct *tsk)
250{
8eb98037
AB
251 unsigned long msr;
252
6f515d84 253 save_altivec(tsk);
8eb98037
AB
254 msr = tsk->thread.regs->msr;
255 msr &= ~MSR_VEC;
6f515d84
CB
256#ifdef CONFIG_VSX
257 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 258 msr &= ~MSR_VSX;
6f515d84 259#endif
8eb98037 260 tsk->thread.regs->msr = msr;
6f515d84
CB
261}
262
98da581e
AB
263void giveup_altivec(struct task_struct *tsk)
264{
98da581e
AB
265 check_if_tm_restore_required(tsk);
266
a0e72cf1 267 msr_check_and_set(MSR_VEC);
98da581e 268 __giveup_altivec(tsk);
a0e72cf1 269 msr_check_and_clear(MSR_VEC);
98da581e
AB
270}
271EXPORT_SYMBOL(giveup_altivec);
272
14cf11af
PM
273void enable_kernel_altivec(void)
274{
e909fb83
CB
275 unsigned long cpumsr;
276
14cf11af
PM
277 WARN_ON(preemptible());
278
e909fb83 279 cpumsr = msr_check_and_set(MSR_VEC);
611b0e5c 280
d64d02ce
AB
281 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
282 check_if_tm_restore_required(current);
e909fb83
CB
283 /*
284 * If a thread has already been reclaimed then the
285 * checkpointed registers are on the CPU but have definitely
286 * been saved by the reclaim code. Don't need to and *cannot*
287 * giveup as this would save to the 'live' structure not the
288 * checkpointed structure.
289 */
290 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
291 return;
a0e72cf1 292 __giveup_altivec(current);
d64d02ce 293 }
14cf11af
PM
294}
295EXPORT_SYMBOL(enable_kernel_altivec);
296
297/*
298 * Make sure the VMX/Altivec register state in the
299 * the thread_struct is up to date for task tsk.
300 */
301void flush_altivec_to_thread(struct task_struct *tsk)
302{
303 if (tsk->thread.regs) {
304 preempt_disable();
305 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 306 BUG_ON(tsk != current);
b86fd2bd 307 giveup_altivec(tsk);
14cf11af
PM
308 }
309 preempt_enable();
310 }
311}
de56a948 312EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
70fe3d98
CB
313
314static int restore_altivec(struct task_struct *tsk)
315{
dc16b553
CB
316 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
317 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
70fe3d98
CB
318 load_vr_state(&tsk->thread.vr_state);
319 tsk->thread.used_vr = 1;
320 tsk->thread.load_vec++;
321
322 return 1;
323 }
324 return 0;
325}
326#else
327#define loadvec(thr) 0
328static inline int restore_altivec(struct task_struct *tsk) { return 0; }
14cf11af
PM
329#endif /* CONFIG_ALTIVEC */
330
ce48b210 331#ifdef CONFIG_VSX
bf6a4d5b 332static void __giveup_vsx(struct task_struct *tsk)
a7d623d4 333{
a7d623d4
AB
334 if (tsk->thread.regs->msr & MSR_FP)
335 __giveup_fpu(tsk);
336 if (tsk->thread.regs->msr & MSR_VEC)
337 __giveup_altivec(tsk);
bf6a4d5b
CB
338 tsk->thread.regs->msr &= ~MSR_VSX;
339}
340
341static void giveup_vsx(struct task_struct *tsk)
342{
343 check_if_tm_restore_required(tsk);
344
345 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 346 __giveup_vsx(tsk);
a0e72cf1 347 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 348}
bf6a4d5b
CB
349
350static void save_vsx(struct task_struct *tsk)
351{
352 if (tsk->thread.regs->msr & MSR_FP)
353 save_fpu(tsk);
354 if (tsk->thread.regs->msr & MSR_VEC)
355 save_altivec(tsk);
356}
a7d623d4 357
ce48b210
MN
358void enable_kernel_vsx(void)
359{
e909fb83
CB
360 unsigned long cpumsr;
361
ce48b210
MN
362 WARN_ON(preemptible());
363
e909fb83 364 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 365
a0e72cf1 366 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
d64d02ce 367 check_if_tm_restore_required(current);
e909fb83
CB
368 /*
369 * If a thread has already been reclaimed then the
370 * checkpointed registers are on the CPU but have definitely
371 * been saved by the reclaim code. Don't need to and *cannot*
372 * giveup as this would save to the 'live' structure not the
373 * checkpointed structure.
374 */
375 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
376 return;
a0e72cf1 377 __giveup_vsx(current);
611b0e5c 378 }
ce48b210
MN
379}
380EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
381
382void flush_vsx_to_thread(struct task_struct *tsk)
383{
384 if (tsk->thread.regs) {
385 preempt_disable();
386 if (tsk->thread.regs->msr & MSR_VSX) {
ce48b210 387 BUG_ON(tsk != current);
ce48b210
MN
388 giveup_vsx(tsk);
389 }
390 preempt_enable();
391 }
392}
de56a948 393EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
70fe3d98
CB
394
395static int restore_vsx(struct task_struct *tsk)
396{
397 if (cpu_has_feature(CPU_FTR_VSX)) {
398 tsk->thread.used_vsr = 1;
399 return 1;
400 }
401
402 return 0;
403}
404#else
405static inline int restore_vsx(struct task_struct *tsk) { return 0; }
bf6a4d5b 406static inline void save_vsx(struct task_struct *tsk) { }
ce48b210
MN
407#endif /* CONFIG_VSX */
408
14cf11af 409#ifdef CONFIG_SPE
98da581e
AB
410void giveup_spe(struct task_struct *tsk)
411{
98da581e
AB
412 check_if_tm_restore_required(tsk);
413
a0e72cf1 414 msr_check_and_set(MSR_SPE);
98da581e 415 __giveup_spe(tsk);
a0e72cf1 416 msr_check_and_clear(MSR_SPE);
98da581e
AB
417}
418EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
419
420void enable_kernel_spe(void)
421{
422 WARN_ON(preemptible());
423
a0e72cf1 424 msr_check_and_set(MSR_SPE);
611b0e5c 425
d64d02ce
AB
426 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
427 check_if_tm_restore_required(current);
a0e72cf1 428 __giveup_spe(current);
d64d02ce 429 }
14cf11af
PM
430}
431EXPORT_SYMBOL(enable_kernel_spe);
432
433void flush_spe_to_thread(struct task_struct *tsk)
434{
435 if (tsk->thread.regs) {
436 preempt_disable();
437 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 438 BUG_ON(tsk != current);
685659ee 439 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 440 giveup_spe(tsk);
14cf11af
PM
441 }
442 preempt_enable();
443 }
444}
14cf11af
PM
445#endif /* CONFIG_SPE */
446
c2085059
AB
447static unsigned long msr_all_available;
448
449static int __init init_msr_all_available(void)
450{
451#ifdef CONFIG_PPC_FPU
452 msr_all_available |= MSR_FP;
453#endif
454#ifdef CONFIG_ALTIVEC
455 if (cpu_has_feature(CPU_FTR_ALTIVEC))
456 msr_all_available |= MSR_VEC;
457#endif
458#ifdef CONFIG_VSX
459 if (cpu_has_feature(CPU_FTR_VSX))
460 msr_all_available |= MSR_VSX;
461#endif
462#ifdef CONFIG_SPE
463 if (cpu_has_feature(CPU_FTR_SPE))
464 msr_all_available |= MSR_SPE;
465#endif
466
467 return 0;
468}
469early_initcall(init_msr_all_available);
470
471void giveup_all(struct task_struct *tsk)
472{
473 unsigned long usermsr;
474
475 if (!tsk->thread.regs)
476 return;
477
478 usermsr = tsk->thread.regs->msr;
479
480 if ((usermsr & msr_all_available) == 0)
481 return;
482
483 msr_check_and_set(msr_all_available);
b0f16b46 484 check_if_tm_restore_required(tsk);
c2085059
AB
485
486#ifdef CONFIG_PPC_FPU
487 if (usermsr & MSR_FP)
488 __giveup_fpu(tsk);
489#endif
490#ifdef CONFIG_ALTIVEC
491 if (usermsr & MSR_VEC)
492 __giveup_altivec(tsk);
493#endif
494#ifdef CONFIG_VSX
495 if (usermsr & MSR_VSX)
496 __giveup_vsx(tsk);
497#endif
498#ifdef CONFIG_SPE
499 if (usermsr & MSR_SPE)
500 __giveup_spe(tsk);
501#endif
502
503 msr_check_and_clear(msr_all_available);
504}
505EXPORT_SYMBOL(giveup_all);
506
70fe3d98
CB
507void restore_math(struct pt_regs *regs)
508{
509 unsigned long msr;
510
bc4f65e4
NP
511 /*
512 * Syscall exit makes a similar initial check before branching
513 * to restore_math. Keep them in synch.
514 */
dc16b553
CB
515 if (!msr_tm_active(regs->msr) &&
516 !current->thread.load_fp && !loadvec(current->thread))
70fe3d98
CB
517 return;
518
519 msr = regs->msr;
520 msr_check_and_set(msr_all_available);
521
522 /*
523 * Only reload if the bit is not set in the user MSR, the bit BEING set
524 * indicates that the registers are hot
525 */
526 if ((!(msr & MSR_FP)) && restore_fp(current))
527 msr |= MSR_FP | current->thread.fpexc_mode;
528
529 if ((!(msr & MSR_VEC)) && restore_altivec(current))
530 msr |= MSR_VEC;
531
532 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
533 restore_vsx(current)) {
534 msr |= MSR_VSX;
535 }
536
537 msr_check_and_clear(msr_all_available);
538
539 regs->msr = msr;
540}
541
de2a20aa
CB
542void save_all(struct task_struct *tsk)
543{
544 unsigned long usermsr;
545
546 if (!tsk->thread.regs)
547 return;
548
549 usermsr = tsk->thread.regs->msr;
550
551 if ((usermsr & msr_all_available) == 0)
552 return;
553
554 msr_check_and_set(msr_all_available);
555
bf6a4d5b
CB
556 /*
557 * Saving the way the register space is in hardware, save_vsx boils
558 * down to a save_fpu() and save_altivec()
559 */
560 if (usermsr & MSR_VSX) {
561 save_vsx(tsk);
562 } else {
563 if (usermsr & MSR_FP)
564 save_fpu(tsk);
565
566 if (usermsr & MSR_VEC)
567 save_altivec(tsk);
568 }
de2a20aa
CB
569
570 if (usermsr & MSR_SPE)
571 __giveup_spe(tsk);
572
573 msr_check_and_clear(msr_all_available);
574}
575
579e633e
AB
576void flush_all_to_thread(struct task_struct *tsk)
577{
578 if (tsk->thread.regs) {
579 preempt_disable();
580 BUG_ON(tsk != current);
de2a20aa 581 save_all(tsk);
579e633e
AB
582
583#ifdef CONFIG_SPE
584 if (tsk->thread.regs->msr & MSR_SPE)
585 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
586#endif
587
588 preempt_enable();
589 }
590}
591EXPORT_SYMBOL(flush_all_to_thread);
592
3bffb652
DK
593#ifdef CONFIG_PPC_ADV_DEBUG_REGS
594void do_send_trap(struct pt_regs *regs, unsigned long address,
595 unsigned long error_code, int signal_code, int breakpt)
596{
597 siginfo_t info;
598
41ab5266 599 current->thread.trap_nr = signal_code;
3bffb652
DK
600 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
601 11, SIGSEGV) == NOTIFY_STOP)
602 return;
603
604 /* Deliver the signal to userspace */
605 info.si_signo = SIGTRAP;
606 info.si_errno = breakpt; /* breakpoint or watchpoint id */
607 info.si_code = signal_code;
608 info.si_addr = (void __user *)address;
609 force_sig_info(SIGTRAP, &info, current);
610}
611#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 612void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
613 unsigned long error_code)
614{
615 siginfo_t info;
616
41ab5266 617 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
618 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
619 11, SIGSEGV) == NOTIFY_STOP)
620 return;
621
9422de3e 622 if (debugger_break_match(regs))
d6a61bfc
LM
623 return;
624
9422de3e
MN
625 /* Clear the breakpoint */
626 hw_breakpoint_disable();
d6a61bfc
LM
627
628 /* Deliver the signal to userspace */
629 info.si_signo = SIGTRAP;
630 info.si_errno = 0;
631 info.si_code = TRAP_HWBKPT;
632 info.si_addr = (void __user *)address;
633 force_sig_info(SIGTRAP, &info, current);
634}
3bffb652 635#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 636
9422de3e 637static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 638
3bffb652
DK
639#ifdef CONFIG_PPC_ADV_DEBUG_REGS
640/*
641 * Set the debug registers back to their default "safe" values.
642 */
643static void set_debug_reg_defaults(struct thread_struct *thread)
644{
51ae8d4a 645 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 646#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 647 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 648#endif
51ae8d4a 649 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 650#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 651 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 652#endif
51ae8d4a 653 thread->debug.dbcr0 = 0;
3bffb652
DK
654#ifdef CONFIG_BOOKE
655 /*
656 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
657 */
51ae8d4a 658 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
659 DBCR1_IAC3US | DBCR1_IAC4US;
660 /*
661 * Force Data Address Compare User/Supervisor bits to be User-only
662 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
663 */
51ae8d4a 664 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 665#else
51ae8d4a 666 thread->debug.dbcr1 = 0;
3bffb652
DK
667#endif
668}
669
f5f97210 670static void prime_debug_regs(struct debug_reg *debug)
3bffb652 671{
6cecf76b
SW
672 /*
673 * We could have inherited MSR_DE from userspace, since
674 * it doesn't get cleared on exception entry. Make sure
675 * MSR_DE is clear before we enable any debug events.
676 */
677 mtmsr(mfmsr() & ~MSR_DE);
678
f5f97210
SW
679 mtspr(SPRN_IAC1, debug->iac1);
680 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 681#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
682 mtspr(SPRN_IAC3, debug->iac3);
683 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 684#endif
f5f97210
SW
685 mtspr(SPRN_DAC1, debug->dac1);
686 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 687#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
688 mtspr(SPRN_DVC1, debug->dvc1);
689 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 690#endif
f5f97210
SW
691 mtspr(SPRN_DBCR0, debug->dbcr0);
692 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 693#ifdef CONFIG_BOOKE
f5f97210 694 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
695#endif
696}
697/*
698 * Unless neither the old or new thread are making use of the
699 * debug registers, set the debug registers from the values
700 * stored in the new thread.
701 */
f5f97210 702void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 703{
51ae8d4a 704 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
705 || (new_debug->dbcr0 & DBCR0_IDM))
706 prime_debug_regs(new_debug);
3bffb652 707}
3743c9b8 708EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 709#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 710#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
711static void set_debug_reg_defaults(struct thread_struct *thread)
712{
9422de3e
MN
713 thread->hw_brk.address = 0;
714 thread->hw_brk.type = 0;
b9818c33 715 set_breakpoint(&thread->hw_brk);
3bffb652 716}
e0780b72 717#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
718#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
719
172ae2e7 720#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
721static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
722{
d6a61bfc 723 mtspr(SPRN_DAC1, dabr);
221c185d
DK
724#ifdef CONFIG_PPC_47x
725 isync();
726#endif
9422de3e
MN
727 return 0;
728}
c6c9eace 729#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
730static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
731{
c6c9eace 732 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
733 if (cpu_has_feature(CPU_FTR_DABRX))
734 mtspr(SPRN_DABRX, dabrx);
cab0af98 735 return 0;
14cf11af 736}
4ad8622d
CL
737#elif defined(CONFIG_PPC_8xx)
738static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
739{
740 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
741 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
742 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
743
744 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
745 lctrl1 |= 0xa0000;
746 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
747 lctrl1 |= 0xf0000;
748 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
749 lctrl2 = 0;
750
751 mtspr(SPRN_LCTRL2, 0);
752 mtspr(SPRN_CMPE, addr);
753 mtspr(SPRN_CMPF, addr + 4);
754 mtspr(SPRN_LCTRL1, lctrl1);
755 mtspr(SPRN_LCTRL2, lctrl2);
756
757 return 0;
758}
9422de3e
MN
759#else
760static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
761{
762 return -EINVAL;
763}
764#endif
765
766static inline int set_dabr(struct arch_hw_breakpoint *brk)
767{
768 unsigned long dabr, dabrx;
769
770 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
771 dabrx = ((brk->type >> 3) & 0x7);
772
773 if (ppc_md.set_dabr)
774 return ppc_md.set_dabr(dabr, dabrx);
775
776 return __set_dabr(dabr, dabrx);
777}
778
bf99de36
MN
779static inline int set_dawr(struct arch_hw_breakpoint *brk)
780{
05d694ea 781 unsigned long dawr, dawrx, mrd;
bf99de36
MN
782
783 dawr = brk->address;
784
785 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
786 << (63 - 58); //* read/write bits */
787 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
788 << (63 - 59); //* translate */
789 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
790 >> 3; //* PRIM bits */
05d694ea
MN
791 /* dawr length is stored in field MDR bits 48:53. Matches range in
792 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
793 0b111111=64DW.
794 brk->len is in bytes.
795 This aligns up to double word size, shifts and does the bias.
796 */
797 mrd = ((brk->len + 7) >> 3) - 1;
798 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
799
800 if (ppc_md.set_dawr)
801 return ppc_md.set_dawr(dawr, dawrx);
802 mtspr(SPRN_DAWR, dawr);
803 mtspr(SPRN_DAWRX, dawrx);
804 return 0;
805}
806
21f58507 807void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e 808{
69111bac 809 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
9422de3e 810
bf99de36 811 if (cpu_has_feature(CPU_FTR_DAWR))
04c32a51
PG
812 set_dawr(brk);
813 else
814 set_dabr(brk);
9422de3e 815}
14cf11af 816
21f58507
PG
817void set_breakpoint(struct arch_hw_breakpoint *brk)
818{
819 preempt_disable();
820 __set_breakpoint(brk);
821 preempt_enable();
822}
823
06d67d54
PM
824#ifdef CONFIG_PPC64
825DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 826#endif
14cf11af 827
9422de3e
MN
828static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
829 struct arch_hw_breakpoint *b)
830{
831 if (a->address != b->address)
832 return false;
833 if (a->type != b->type)
834 return false;
835 if (a->len != b->len)
836 return false;
837 return true;
838}
d31626f7 839
fb09692e 840#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
5d176f75
CB
841
842static inline bool tm_enabled(struct task_struct *tsk)
843{
844 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
845}
846
d31626f7
PM
847static void tm_reclaim_thread(struct thread_struct *thr,
848 struct thread_info *ti, uint8_t cause)
849{
7f821fc9
MN
850 /*
851 * Use the current MSR TM suspended bit to track if we have
852 * checkpointed state outstanding.
853 * On signal delivery, we'd normally reclaim the checkpointed
854 * state to obtain stack pointer (see:get_tm_stackpointer()).
855 * This will then directly return to userspace without going
856 * through __switch_to(). However, if the stack frame is bad,
857 * we need to exit this thread which calls __switch_to() which
858 * will again attempt to reclaim the already saved tm state.
859 * Hence we need to check that we've not already reclaimed
860 * this state.
861 * We do this using the current MSR, rather tracking it in
862 * some specific thread_struct bit, as it has the additional
027dfac6 863 * benefit of checking for a potential TM bad thing exception.
7f821fc9
MN
864 */
865 if (!MSR_TM_SUSPENDED(mfmsr()))
866 return;
867
f48e91e8
MN
868 /*
869 * If we are in a transaction and FP is off then we can't have
870 * used FP inside that transaction. Hence the checkpointed
871 * state is the same as the live state. We need to copy the
872 * live state to the checkpointed state so that when the
873 * transaction is restored, the checkpointed state is correct
874 * and the aborted transaction sees the correct state. We use
875 * ckpt_regs.msr here as that's what tm_reclaim will use to
876 * determine if it's going to write the checkpointed state or
877 * not. So either this will write the checkpointed registers,
878 * or reclaim will. Similarly for VMX.
879 */
880 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
881 memcpy(&thr->ckfp_state, &thr->fp_state,
882 sizeof(struct thread_fp_state));
883 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
884 memcpy(&thr->ckvr_state, &thr->vr_state,
885 sizeof(struct thread_vr_state));
886
dc310669 887 giveup_all(container_of(thr, struct task_struct, thread));
d31626f7 888
dc310669 889 tm_reclaim(thr, thr->ckpt_regs.msr, cause);
d31626f7
PM
890}
891
892void tm_reclaim_current(uint8_t cause)
893{
894 tm_enable();
895 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
896}
897
fb09692e
MN
898static inline void tm_reclaim_task(struct task_struct *tsk)
899{
900 /* We have to work out if we're switching from/to a task that's in the
901 * middle of a transaction.
902 *
903 * In switching we need to maintain a 2nd register state as
904 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
000ec280
CB
905 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
906 * ckvr_state
fb09692e
MN
907 *
908 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
909 */
910 struct thread_struct *thr = &tsk->thread;
911
912 if (!thr->regs)
913 return;
914
915 if (!MSR_TM_ACTIVE(thr->regs->msr))
916 goto out_and_saveregs;
917
fb09692e
MN
918 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
919 "ccr=%lx, msr=%lx, trap=%lx)\n",
920 tsk->pid, thr->regs->nip,
921 thr->regs->ccr, thr->regs->msr,
922 thr->regs->trap);
923
d31626f7 924 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
fb09692e
MN
925
926 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
927 tsk->pid);
928
929out_and_saveregs:
930 /* Always save the regs here, even if a transaction's not active.
931 * This context-switches a thread's TM info SPRs. We do it here to
932 * be consistent with the restore path (in recheckpoint) which
933 * cannot happen later in _switch().
934 */
935 tm_save_sprs(thr);
936}
937
e6b8fd02
MN
938extern void __tm_recheckpoint(struct thread_struct *thread,
939 unsigned long orig_msr);
940
941void tm_recheckpoint(struct thread_struct *thread,
942 unsigned long orig_msr)
943{
944 unsigned long flags;
945
5d176f75
CB
946 if (!(thread->regs->msr & MSR_TM))
947 return;
948
e6b8fd02
MN
949 /* We really can't be interrupted here as the TEXASR registers can't
950 * change and later in the trecheckpoint code, we have a userspace R1.
951 * So let's hard disable over this region.
952 */
953 local_irq_save(flags);
954 hard_irq_disable();
955
956 /* The TM SPRs are restored here, so that TEXASR.FS can be set
957 * before the trecheckpoint and no explosion occurs.
958 */
959 tm_restore_sprs(thread);
960
961 __tm_recheckpoint(thread, orig_msr);
962
963 local_irq_restore(flags);
964}
965
bc2a9408 966static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
967{
968 unsigned long msr;
969
970 if (!cpu_has_feature(CPU_FTR_TM))
971 return;
972
973 /* Recheckpoint the registers of the thread we're about to switch to.
974 *
975 * If the task was using FP, we non-lazily reload both the original and
976 * the speculative FP register states. This is because the kernel
977 * doesn't see if/when a TM rollback occurs, so if we take an FP
dc310669 978 * unavailable later, we are unable to determine which set of FP regs
fb09692e
MN
979 * need to be restored.
980 */
5d176f75 981 if (!tm_enabled(new))
fb09692e
MN
982 return;
983
e6b8fd02
MN
984 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
985 tm_restore_sprs(&new->thread);
fb09692e 986 return;
e6b8fd02 987 }
829023df 988 msr = new->thread.ckpt_regs.msr;
fb09692e
MN
989 /* Recheckpoint to restore original checkpointed register state. */
990 TM_DEBUG("*** tm_recheckpoint of pid %d "
991 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
992 new->pid, new->thread.regs->msr, msr);
993
fb09692e
MN
994 tm_recheckpoint(&new->thread, msr);
995
dc310669
CB
996 /*
997 * The checkpointed state has been restored but the live state has
998 * not, ensure all the math functionality is turned off to trigger
999 * restore_math() to reload.
1000 */
1001 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
fb09692e
MN
1002
1003 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1004 "(kernel msr 0x%lx)\n",
1005 new->pid, mfmsr());
1006}
1007
dc310669
CB
1008static inline void __switch_to_tm(struct task_struct *prev,
1009 struct task_struct *new)
fb09692e
MN
1010{
1011 if (cpu_has_feature(CPU_FTR_TM)) {
5d176f75
CB
1012 if (tm_enabled(prev) || tm_enabled(new))
1013 tm_enable();
1014
1015 if (tm_enabled(prev)) {
1016 prev->thread.load_tm++;
1017 tm_reclaim_task(prev);
1018 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1019 prev->thread.regs->msr &= ~MSR_TM;
1020 }
1021
dc310669 1022 tm_recheckpoint_new_task(new);
fb09692e
MN
1023 }
1024}
d31626f7
PM
1025
1026/*
1027 * This is called if we are on the way out to userspace and the
1028 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1029 * FP and/or vector state and does so if necessary.
1030 * If userspace is inside a transaction (whether active or
1031 * suspended) and FP/VMX/VSX instructions have ever been enabled
1032 * inside that transaction, then we have to keep them enabled
1033 * and keep the FP/VMX/VSX state loaded while ever the transaction
1034 * continues. The reason is that if we didn't, and subsequently
1035 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1036 * we don't know whether it's the same transaction, and thus we
1037 * don't know which of the checkpointed state and the transactional
1038 * state to use.
1039 */
1040void restore_tm_state(struct pt_regs *regs)
1041{
1042 unsigned long msr_diff;
1043
dc310669
CB
1044 /*
1045 * This is the only moment we should clear TIF_RESTORE_TM as
1046 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1047 * again, anything else could lead to an incorrect ckpt_msr being
1048 * saved and therefore incorrect signal contexts.
1049 */
d31626f7
PM
1050 clear_thread_flag(TIF_RESTORE_TM);
1051 if (!MSR_TM_ACTIVE(regs->msr))
1052 return;
1053
829023df 1054 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7 1055 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
70fe3d98 1056
dc16b553
CB
1057 /* Ensure that restore_math() will restore */
1058 if (msr_diff & MSR_FP)
1059 current->thread.load_fp = 1;
39715bf9 1060#ifdef CONFIG_ALTIVEC
dc16b553
CB
1061 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1062 current->thread.load_vec = 1;
1063#endif
70fe3d98
CB
1064 restore_math(regs);
1065
d31626f7
PM
1066 regs->msr |= msr_diff;
1067}
1068
fb09692e
MN
1069#else
1070#define tm_recheckpoint_new_task(new)
dc310669 1071#define __switch_to_tm(prev, new)
fb09692e 1072#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 1073
152d523e
AB
1074static inline void save_sprs(struct thread_struct *t)
1075{
1076#ifdef CONFIG_ALTIVEC
01d7c2a2 1077 if (cpu_has_feature(CPU_FTR_ALTIVEC))
152d523e
AB
1078 t->vrsave = mfspr(SPRN_VRSAVE);
1079#endif
1080#ifdef CONFIG_PPC_BOOK3S_64
1081 if (cpu_has_feature(CPU_FTR_DSCR))
1082 t->dscr = mfspr(SPRN_DSCR);
1083
1084 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1085 t->bescr = mfspr(SPRN_BESCR);
1086 t->ebbhr = mfspr(SPRN_EBBHR);
1087 t->ebbrr = mfspr(SPRN_EBBRR);
1088
1089 t->fscr = mfspr(SPRN_FSCR);
1090
1091 /*
1092 * Note that the TAR is not available for use in the kernel.
1093 * (To provide this, the TAR should be backed up/restored on
1094 * exception entry/exit instead, and be in pt_regs. FIXME,
1095 * this should be in pt_regs anyway (for debug).)
1096 */
1097 t->tar = mfspr(SPRN_TAR);
1098 }
1099#endif
1100}
1101
1102static inline void restore_sprs(struct thread_struct *old_thread,
1103 struct thread_struct *new_thread)
1104{
1105#ifdef CONFIG_ALTIVEC
1106 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1107 old_thread->vrsave != new_thread->vrsave)
1108 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1109#endif
1110#ifdef CONFIG_PPC_BOOK3S_64
1111 if (cpu_has_feature(CPU_FTR_DSCR)) {
1112 u64 dscr = get_paca()->dscr_default;
b57bd2de 1113 if (new_thread->dscr_inherit)
152d523e 1114 dscr = new_thread->dscr;
152d523e
AB
1115
1116 if (old_thread->dscr != dscr)
1117 mtspr(SPRN_DSCR, dscr);
152d523e
AB
1118 }
1119
1120 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1121 if (old_thread->bescr != new_thread->bescr)
1122 mtspr(SPRN_BESCR, new_thread->bescr);
1123 if (old_thread->ebbhr != new_thread->ebbhr)
1124 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1125 if (old_thread->ebbrr != new_thread->ebbrr)
1126 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1127
b57bd2de
MN
1128 if (old_thread->fscr != new_thread->fscr)
1129 mtspr(SPRN_FSCR, new_thread->fscr);
1130
152d523e
AB
1131 if (old_thread->tar != new_thread->tar)
1132 mtspr(SPRN_TAR, new_thread->tar);
1133 }
1134#endif
1135}
1136
07d2a628
NP
1137#ifdef CONFIG_PPC_BOOK3S_64
1138#define CP_SIZE 128
1139static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1140#endif
1141
14cf11af
PM
1142struct task_struct *__switch_to(struct task_struct *prev,
1143 struct task_struct *new)
1144{
1145 struct thread_struct *new_thread, *old_thread;
14cf11af 1146 struct task_struct *last;
d6bf29b4
PZ
1147#ifdef CONFIG_PPC_BOOK3S_64
1148 struct ppc64_tlb_batch *batch;
1149#endif
14cf11af 1150
152d523e
AB
1151 new_thread = &new->thread;
1152 old_thread = &current->thread;
1153
7ba5fef7
MN
1154 WARN_ON(!irqs_disabled());
1155
06d67d54
PM
1156#ifdef CONFIG_PPC64
1157 /*
1158 * Collect processor utilization data per process
1159 */
1160 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
69111bac 1161 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
06d67d54
PM
1162 long unsigned start_tb, current_tb;
1163 start_tb = old_thread->start_tb;
1164 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1165 old_thread->accum_tb += (current_tb - start_tb);
1166 new_thread->start_tb = current_tb;
1167 }
d6bf29b4
PZ
1168#endif /* CONFIG_PPC64 */
1169
caca285e 1170#ifdef CONFIG_PPC_STD_MMU_64
69111bac 1171 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1172 if (batch->active) {
1173 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1174 if (batch->index)
1175 __flush_tlb_pending(batch);
1176 batch->active = 0;
1177 }
caca285e 1178#endif /* CONFIG_PPC_STD_MMU_64 */
06d67d54 1179
f3d885cc
AB
1180#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1181 switch_booke_debug_regs(&new->thread.debug);
1182#else
1183/*
1184 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1185 * schedule DABR
1186 */
1187#ifndef CONFIG_HAVE_HW_BREAKPOINT
1188 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1189 __set_breakpoint(&new->thread.hw_brk);
1190#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1191#endif
1192
1193 /*
1194 * We need to save SPRs before treclaim/trecheckpoint as these will
1195 * change a number of them.
1196 */
1197 save_sprs(&prev->thread);
1198
f3d885cc
AB
1199 /* Save FPU, Altivec, VSX and SPE state */
1200 giveup_all(prev);
1201
dc310669
CB
1202 __switch_to_tm(prev, new);
1203
e4c0fc5f
NP
1204 if (!radix_enabled()) {
1205 /*
1206 * We can't take a PMU exception inside _switch() since there
1207 * is a window where the kernel stack SLB and the kernel stack
1208 * are out of sync. Hard disable here.
1209 */
1210 hard_irq_disable();
1211 }
bc2a9408 1212
20dbe670
AB
1213 /*
1214 * Call restore_sprs() before calling _switch(). If we move it after
1215 * _switch() then we miss out on calling it for new tasks. The reason
1216 * for this is we manually create a stack frame for new tasks that
1217 * directly returns through ret_from_fork() or
1218 * ret_from_kernel_thread(). See copy_thread() for details.
1219 */
f3d885cc
AB
1220 restore_sprs(old_thread, new_thread);
1221
20dbe670
AB
1222 last = _switch(old_thread, new_thread);
1223
caca285e 1224#ifdef CONFIG_PPC_STD_MMU_64
d6bf29b4
PZ
1225 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1226 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 1227 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1228 batch->active = 1;
1229 }
70fe3d98 1230
07d2a628 1231 if (current_thread_info()->task->thread.regs) {
70fe3d98 1232 restore_math(current_thread_info()->task->thread.regs);
07d2a628
NP
1233
1234 /*
1235 * The copy-paste buffer can only store into foreign real
1236 * addresses, so unprivileged processes can not see the
1237 * data or use it in any way unless they have foreign real
1238 * mappings. We don't have a VAS driver that allocates those
1239 * yet, so no cpabort is required.
1240 */
1241 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1242 /*
1243 * DD1 allows paste into normal system memory, so we
1244 * do an unpaired copy here to clear the buffer and
1245 * prevent a covert channel being set up.
1246 *
1247 * cpabort is not used because it is quite expensive.
1248 */
1249 asm volatile(PPC_COPY(%0, %1)
1250 : : "r"(dummy_copy_buffer), "r"(0));
1251 }
1252 }
caca285e 1253#endif /* CONFIG_PPC_STD_MMU_64 */
d6bf29b4 1254
14cf11af
PM
1255 return last;
1256}
1257
06d67d54
PM
1258static int instructions_to_print = 16;
1259
06d67d54
PM
1260static void show_instructions(struct pt_regs *regs)
1261{
1262 int i;
1263 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1264 sizeof(int));
1265
1266 printk("Instruction dump:");
1267
1268 for (i = 0; i < instructions_to_print; i++) {
1269 int instr;
1270
1271 if (!(i % 8))
2ffd04de 1272 pr_cont("\n");
06d67d54 1273
0de2d820
SW
1274#if !defined(CONFIG_BOOKE)
1275 /* If executing with the IMMU off, adjust pc rather
1276 * than print XXXXXXXX.
1277 */
1278 if (!(regs->msr & MSR_IR))
1279 pc = (unsigned long)phys_to_virt(pc);
1280#endif
1281
00ae36de 1282 if (!__kernel_text_address(pc) ||
7b051f66 1283 probe_kernel_address((unsigned int __user *)pc, instr)) {
2ffd04de 1284 pr_cont("XXXXXXXX ");
06d67d54
PM
1285 } else {
1286 if (regs->nip == pc)
2ffd04de 1287 pr_cont("<%08x> ", instr);
06d67d54 1288 else
2ffd04de 1289 pr_cont("%08x ", instr);
06d67d54
PM
1290 }
1291
1292 pc += sizeof(int);
1293 }
1294
2ffd04de 1295 pr_cont("\n");
06d67d54
PM
1296}
1297
801c0b2c 1298struct regbit {
06d67d54
PM
1299 unsigned long bit;
1300 const char *name;
801c0b2c
MN
1301};
1302
1303static struct regbit msr_bits[] = {
3bfd0c9c
AB
1304#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1305 {MSR_SF, "SF"},
1306 {MSR_HV, "HV"},
1307#endif
1308 {MSR_VEC, "VEC"},
1309 {MSR_VSX, "VSX"},
1310#ifdef CONFIG_BOOKE
1311 {MSR_CE, "CE"},
1312#endif
06d67d54
PM
1313 {MSR_EE, "EE"},
1314 {MSR_PR, "PR"},
1315 {MSR_FP, "FP"},
1316 {MSR_ME, "ME"},
3bfd0c9c 1317#ifdef CONFIG_BOOKE
1b98326b 1318 {MSR_DE, "DE"},
3bfd0c9c
AB
1319#else
1320 {MSR_SE, "SE"},
1321 {MSR_BE, "BE"},
1322#endif
06d67d54
PM
1323 {MSR_IR, "IR"},
1324 {MSR_DR, "DR"},
3bfd0c9c
AB
1325 {MSR_PMM, "PMM"},
1326#ifndef CONFIG_BOOKE
1327 {MSR_RI, "RI"},
1328 {MSR_LE, "LE"},
1329#endif
06d67d54
PM
1330 {0, NULL}
1331};
1332
801c0b2c 1333static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
06d67d54 1334{
801c0b2c 1335 const char *s = "";
06d67d54 1336
06d67d54
PM
1337 for (; bits->bit; ++bits)
1338 if (val & bits->bit) {
db5ba5ae 1339 pr_cont("%s%s", s, bits->name);
801c0b2c 1340 s = sep;
06d67d54 1341 }
801c0b2c
MN
1342}
1343
1344#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1345static struct regbit msr_tm_bits[] = {
1346 {MSR_TS_T, "T"},
1347 {MSR_TS_S, "S"},
1348 {MSR_TM, "E"},
1349 {0, NULL}
1350};
1351
1352static void print_tm_bits(unsigned long val)
1353{
1354/*
1355 * This only prints something if at least one of the TM bit is set.
1356 * Inside the TM[], the output means:
1357 * E: Enabled (bit 32)
1358 * S: Suspended (bit 33)
1359 * T: Transactional (bit 34)
1360 */
1361 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
db5ba5ae 1362 pr_cont(",TM[");
801c0b2c 1363 print_bits(val, msr_tm_bits, "");
db5ba5ae 1364 pr_cont("]");
801c0b2c
MN
1365 }
1366}
1367#else
1368static void print_tm_bits(unsigned long val) {}
1369#endif
1370
1371static void print_msr_bits(unsigned long val)
1372{
db5ba5ae 1373 pr_cont("<");
801c0b2c
MN
1374 print_bits(val, msr_bits, ",");
1375 print_tm_bits(val);
db5ba5ae 1376 pr_cont(">");
06d67d54
PM
1377}
1378
1379#ifdef CONFIG_PPC64
f6f7dde3 1380#define REG "%016lx"
06d67d54
PM
1381#define REGS_PER_LINE 4
1382#define LAST_VOLATILE 13
1383#else
f6f7dde3 1384#define REG "%08lx"
06d67d54
PM
1385#define REGS_PER_LINE 8
1386#define LAST_VOLATILE 12
1387#endif
1388
14cf11af
PM
1389void show_regs(struct pt_regs * regs)
1390{
1391 int i, trap;
1392
a43cb95d
TH
1393 show_regs_print_info(KERN_DEFAULT);
1394
06d67d54
PM
1395 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1396 regs->nip, regs->link, regs->ctr);
1397 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 1398 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54 1399 printk("MSR: "REG" ", regs->msr);
801c0b2c 1400 print_msr_bits(regs->msr);
f6f7dde3 1401 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1402 trap = TRAP(regs);
5115a026 1403 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
7dae865f 1404 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1405 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1406#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
7dae865f 1407 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1408#else
7dae865f 1409 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
9db8bcfd
AB
1410#endif
1411#ifdef CONFIG_PPC64
7dae865f 1412 pr_cont("SOFTE: %ld ", regs->softe);
9db8bcfd
AB
1413#endif
1414#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a 1415 if (MSR_TM_ACTIVE(regs->msr))
7dae865f 1416 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1417#endif
14cf11af
PM
1418
1419 for (i = 0; i < 32; i++) {
06d67d54 1420 if ((i % REGS_PER_LINE) == 0)
7dae865f
ME
1421 pr_cont("\nGPR%02d: ", i);
1422 pr_cont(REG " ", regs->gpr[i]);
06d67d54 1423 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1424 break;
1425 }
7dae865f 1426 pr_cont("\n");
14cf11af
PM
1427#ifdef CONFIG_KALLSYMS
1428 /*
1429 * Lookup NIP late so we have the best change of getting the
1430 * above info out without failing
1431 */
058c78f4
BH
1432 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1433 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1434#endif
14cf11af 1435 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1436 if (!user_mode(regs))
1437 show_instructions(regs);
14cf11af
PM
1438}
1439
14cf11af
PM
1440void flush_thread(void)
1441{
e0780b72 1442#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1443 flush_ptrace_hw_breakpoint(current);
e0780b72 1444#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1445 set_debug_reg_defaults(&current->thread);
e0780b72 1446#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1447}
1448
1449void
1450release_thread(struct task_struct *t)
1451{
1452}
1453
1454/*
55ccf3fe
SS
1455 * this gets called so that we can store coprocessor state into memory and
1456 * copy the current task into the new thread.
14cf11af 1457 */
55ccf3fe 1458int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1459{
579e633e 1460 flush_all_to_thread(src);
621b5060
MN
1461 /*
1462 * Flush TM state out so we can copy it. __switch_to_tm() does this
1463 * flush but it removes the checkpointed state from the current CPU and
1464 * transitions the CPU out of TM mode. Hence we need to call
1465 * tm_recheckpoint_new_task() (on the same task) to restore the
1466 * checkpointed state back and the TM mode.
5d176f75
CB
1467 *
1468 * Can't pass dst because it isn't ready. Doesn't matter, passing
1469 * dst is only important for __switch_to()
621b5060 1470 */
dc310669 1471 __switch_to_tm(src, src);
330a1eb7 1472
55ccf3fe 1473 *dst = *src;
330a1eb7
ME
1474
1475 clear_task_ebb(dst);
1476
55ccf3fe 1477 return 0;
14cf11af
PM
1478}
1479
cec15488
ME
1480static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1481{
1482#ifdef CONFIG_PPC_STD_MMU_64
1483 unsigned long sp_vsid;
1484 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1485
caca285e
AK
1486 if (radix_enabled())
1487 return;
1488
cec15488
ME
1489 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1490 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1491 << SLB_VSID_SHIFT_1T;
1492 else
1493 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1494 << SLB_VSID_SHIFT;
1495 sp_vsid |= SLB_VSID_KERNEL | llp;
1496 p->thread.ksp_vsid = sp_vsid;
1497#endif
1498}
1499
14cf11af
PM
1500/*
1501 * Copy a thread..
1502 */
efcac658 1503
6eca8933
AD
1504/*
1505 * Copy architecture-specific thread state
1506 */
6f2c55b8 1507int copy_thread(unsigned long clone_flags, unsigned long usp,
6eca8933 1508 unsigned long kthread_arg, struct task_struct *p)
14cf11af
PM
1509{
1510 struct pt_regs *childregs, *kregs;
1511 extern void ret_from_fork(void);
58254e10
AV
1512 extern void ret_from_kernel_thread(void);
1513 void (*f)(void);
0cec6fd1 1514 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
5d31a96e
ME
1515 struct thread_info *ti = task_thread_info(p);
1516
1517 klp_init_thread_info(ti);
14cf11af 1518
14cf11af
PM
1519 /* Copy registers */
1520 sp -= sizeof(struct pt_regs);
1521 childregs = (struct pt_regs *) sp;
ab75819d 1522 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1523 /* kernel thread */
58254e10 1524 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1525 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1526 /* function */
1527 if (usp)
1528 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1529#ifdef CONFIG_PPC64
b5e2fc1c 1530 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 1531 childregs->softe = 1;
06d67d54 1532#endif
6eca8933 1533 childregs->gpr[15] = kthread_arg;
14cf11af 1534 p->thread.regs = NULL; /* no user register state */
138d1ce8 1535 ti->flags |= _TIF_RESTOREALL;
58254e10 1536 f = ret_from_kernel_thread;
14cf11af 1537 } else {
6eca8933 1538 /* user thread */
afa86fc4 1539 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1540 CHECK_FULL_REGS(regs);
1541 *childregs = *regs;
ea516b11
AV
1542 if (usp)
1543 childregs->gpr[1] = usp;
14cf11af 1544 p->thread.regs = childregs;
58254e10 1545 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1546 if (clone_flags & CLONE_SETTLS) {
1547#ifdef CONFIG_PPC64
9904b005 1548 if (!is_32bit_task())
06d67d54
PM
1549 childregs->gpr[13] = childregs->gpr[6];
1550 else
1551#endif
1552 childregs->gpr[2] = childregs->gpr[6];
1553 }
58254e10
AV
1554
1555 f = ret_from_fork;
14cf11af 1556 }
d272f667 1557 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
14cf11af 1558 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1559
1560 /*
1561 * The way this works is that at some point in the future
1562 * some task will call _switch to switch to the new task.
1563 * That will pop off the stack frame created below and start
1564 * the new task running at ret_from_fork. The new task will
1565 * do some house keeping and then return from the fork or clone
1566 * system call, using the stack frame created above.
1567 */
af945cf4 1568 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1569 sp -= sizeof(struct pt_regs);
1570 kregs = (struct pt_regs *) sp;
1571 sp -= STACK_FRAME_OVERHEAD;
1572 p->thread.ksp = sp;
cbc9565e 1573#ifdef CONFIG_PPC32
85218827
KG
1574 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1575 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1576#endif
28d170ab
ON
1577#ifdef CONFIG_HAVE_HW_BREAKPOINT
1578 p->thread.ptrace_bps[0] = NULL;
1579#endif
1580
18461960
PM
1581 p->thread.fp_save_area = NULL;
1582#ifdef CONFIG_ALTIVEC
1583 p->thread.vr_save_area = NULL;
1584#endif
1585
cec15488
ME
1586 setup_ksp_vsid(p, sp);
1587
efcac658
AK
1588#ifdef CONFIG_PPC64
1589 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26 1590 p->thread.dscr_inherit = current->thread.dscr_inherit;
db1231dc 1591 p->thread.dscr = mfspr(SPRN_DSCR);
efcac658 1592 }
92779245
HM
1593 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1594 p->thread.ppr = INIT_PPR;
efcac658 1595#endif
7cedd601 1596 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1597 return 0;
1598}
1599
1600/*
1601 * Set up a thread for executing a new program
1602 */
06d67d54 1603void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1604{
90eac727
ME
1605#ifdef CONFIG_PPC64
1606 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1607#endif
1608
06d67d54
PM
1609 /*
1610 * If we exec out of a kernel thread then thread.regs will not be
1611 * set. Do it now.
1612 */
1613 if (!current->thread.regs) {
0cec6fd1
AV
1614 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1615 current->thread.regs = regs - 1;
06d67d54
PM
1616 }
1617
8e96a87c
CB
1618#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1619 /*
1620 * Clear any transactional state, we're exec()ing. The cause is
1621 * not important as there will never be a recheckpoint so it's not
1622 * user visible.
1623 */
1624 if (MSR_TM_SUSPENDED(mfmsr()))
1625 tm_reclaim_current(0);
1626#endif
1627
14cf11af
PM
1628 memset(regs->gpr, 0, sizeof(regs->gpr));
1629 regs->ctr = 0;
1630 regs->link = 0;
1631 regs->xer = 0;
1632 regs->ccr = 0;
14cf11af 1633 regs->gpr[1] = sp;
06d67d54 1634
474f8196
RM
1635 /*
1636 * We have just cleared all the nonvolatile GPRs, so make
1637 * FULL_REGS(regs) return true. This is necessary to allow
1638 * ptrace to examine the thread immediately after exec.
1639 */
1640 regs->trap &= ~1UL;
1641
06d67d54
PM
1642#ifdef CONFIG_PPC32
1643 regs->mq = 0;
1644 regs->nip = start;
14cf11af 1645 regs->msr = MSR_USER;
06d67d54 1646#else
9904b005 1647 if (!is_32bit_task()) {
94af3abf 1648 unsigned long entry;
06d67d54 1649
94af3abf
RR
1650 if (is_elf2_task()) {
1651 /* Look ma, no function descriptors! */
1652 entry = start;
06d67d54 1653
94af3abf
RR
1654 /*
1655 * Ulrich says:
1656 * The latest iteration of the ABI requires that when
1657 * calling a function (at its global entry point),
1658 * the caller must ensure r12 holds the entry point
1659 * address (so that the function can quickly
1660 * establish addressability).
1661 */
1662 regs->gpr[12] = start;
1663 /* Make sure that's restored on entry to userspace. */
1664 set_thread_flag(TIF_RESTOREALL);
1665 } else {
1666 unsigned long toc;
1667
1668 /* start is a relocated pointer to the function
1669 * descriptor for the elf _start routine. The first
1670 * entry in the function descriptor is the entry
1671 * address of _start and the second entry is the TOC
1672 * value we need to use.
1673 */
1674 __get_user(entry, (unsigned long __user *)start);
1675 __get_user(toc, (unsigned long __user *)start+1);
1676
1677 /* Check whether the e_entry function descriptor entries
1678 * need to be relocated before we can use them.
1679 */
1680 if (load_addr != 0) {
1681 entry += load_addr;
1682 toc += load_addr;
1683 }
1684 regs->gpr[2] = toc;
06d67d54
PM
1685 }
1686 regs->nip = entry;
06d67d54 1687 regs->msr = MSR_USER64;
d4bf9a78
SR
1688 } else {
1689 regs->nip = start;
1690 regs->gpr[2] = 0;
1691 regs->msr = MSR_USER32;
06d67d54
PM
1692 }
1693#endif
ce48b210
MN
1694#ifdef CONFIG_VSX
1695 current->thread.used_vsr = 0;
1696#endif
1195892c 1697 current->thread.load_fp = 0;
de79f7b9 1698 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1699 current->thread.fp_save_area = NULL;
14cf11af 1700#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1701 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1702 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1703 current->thread.vr_save_area = NULL;
14cf11af
PM
1704 current->thread.vrsave = 0;
1705 current->thread.used_vr = 0;
1195892c 1706 current->thread.load_vec = 0;
14cf11af
PM
1707#endif /* CONFIG_ALTIVEC */
1708#ifdef CONFIG_SPE
1709 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1710 current->thread.acc = 0;
1711 current->thread.spefscr = 0;
1712 current->thread.used_spe = 0;
1713#endif /* CONFIG_SPE */
bc2a9408 1714#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
bc2a9408
MN
1715 current->thread.tm_tfhar = 0;
1716 current->thread.tm_texasr = 0;
1717 current->thread.tm_tfiar = 0;
7f22ced4 1718 current->thread.load_tm = 0;
bc2a9408 1719#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af 1720}
e1802b06 1721EXPORT_SYMBOL(start_thread);
14cf11af
PM
1722
1723#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1724 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1725
1726int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1727{
1728 struct pt_regs *regs = tsk->thread.regs;
1729
1730 /* This is a bit hairy. If we are an SPE enabled processor
1731 * (have embedded fp) we store the IEEE exception enable flags in
1732 * fpexc_mode. fpexc_mode is also used for setting FP exception
1733 * mode (asyn, precise, disabled) for 'Classic' FP. */
1734 if (val & PR_FP_EXC_SW_ENABLE) {
1735#ifdef CONFIG_SPE
5e14d21e 1736 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1737 /*
1738 * When the sticky exception bits are set
1739 * directly by userspace, it must call prctl
1740 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1741 * in the existing prctl settings) or
1742 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1743 * the bits being set). <fenv.h> functions
1744 * saving and restoring the whole
1745 * floating-point environment need to do so
1746 * anyway to restore the prctl settings from
1747 * the saved environment.
1748 */
1749 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1750 tsk->thread.fpexc_mode = val &
1751 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1752 return 0;
1753 } else {
1754 return -EINVAL;
1755 }
14cf11af
PM
1756#else
1757 return -EINVAL;
1758#endif
14cf11af 1759 }
06d67d54
PM
1760
1761 /* on a CONFIG_SPE this does not hurt us. The bits that
1762 * __pack_fe01 use do not overlap with bits used for
1763 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1764 * on CONFIG_SPE implementations are reserved so writing to
1765 * them does not change anything */
1766 if (val > PR_FP_EXC_PRECISE)
1767 return -EINVAL;
1768 tsk->thread.fpexc_mode = __pack_fe01(val);
1769 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1770 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1771 | tsk->thread.fpexc_mode;
14cf11af
PM
1772 return 0;
1773}
1774
1775int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1776{
1777 unsigned int val;
1778
1779 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1780#ifdef CONFIG_SPE
640e9225
JM
1781 if (cpu_has_feature(CPU_FTR_SPE)) {
1782 /*
1783 * When the sticky exception bits are set
1784 * directly by userspace, it must call prctl
1785 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1786 * in the existing prctl settings) or
1787 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1788 * the bits being set). <fenv.h> functions
1789 * saving and restoring the whole
1790 * floating-point environment need to do so
1791 * anyway to restore the prctl settings from
1792 * the saved environment.
1793 */
1794 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1795 val = tsk->thread.fpexc_mode;
640e9225 1796 } else
5e14d21e 1797 return -EINVAL;
14cf11af
PM
1798#else
1799 return -EINVAL;
1800#endif
1801 else
1802 val = __unpack_fe01(tsk->thread.fpexc_mode);
1803 return put_user(val, (unsigned int __user *) adr);
1804}
1805
fab5db97
PM
1806int set_endian(struct task_struct *tsk, unsigned int val)
1807{
1808 struct pt_regs *regs = tsk->thread.regs;
1809
1810 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1811 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1812 return -EINVAL;
1813
1814 if (regs == NULL)
1815 return -EINVAL;
1816
1817 if (val == PR_ENDIAN_BIG)
1818 regs->msr &= ~MSR_LE;
1819 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1820 regs->msr |= MSR_LE;
1821 else
1822 return -EINVAL;
1823
1824 return 0;
1825}
1826
1827int get_endian(struct task_struct *tsk, unsigned long adr)
1828{
1829 struct pt_regs *regs = tsk->thread.regs;
1830 unsigned int val;
1831
1832 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1833 !cpu_has_feature(CPU_FTR_REAL_LE))
1834 return -EINVAL;
1835
1836 if (regs == NULL)
1837 return -EINVAL;
1838
1839 if (regs->msr & MSR_LE) {
1840 if (cpu_has_feature(CPU_FTR_REAL_LE))
1841 val = PR_ENDIAN_LITTLE;
1842 else
1843 val = PR_ENDIAN_PPC_LITTLE;
1844 } else
1845 val = PR_ENDIAN_BIG;
1846
1847 return put_user(val, (unsigned int __user *)adr);
1848}
1849
e9370ae1
PM
1850int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1851{
1852 tsk->thread.align_ctl = val;
1853 return 0;
1854}
1855
1856int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1857{
1858 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1859}
1860
bb72c481
PM
1861static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1862 unsigned long nbytes)
1863{
1864 unsigned long stack_page;
1865 unsigned long cpu = task_cpu(p);
1866
1867 /*
1868 * Avoid crashing if the stack has overflowed and corrupted
1869 * task_cpu(p), which is in the thread_info struct.
1870 */
1871 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1872 stack_page = (unsigned long) hardirq_ctx[cpu];
1873 if (sp >= stack_page + sizeof(struct thread_struct)
1874 && sp <= stack_page + THREAD_SIZE - nbytes)
1875 return 1;
1876
1877 stack_page = (unsigned long) softirq_ctx[cpu];
1878 if (sp >= stack_page + sizeof(struct thread_struct)
1879 && sp <= stack_page + THREAD_SIZE - nbytes)
1880 return 1;
1881 }
1882 return 0;
1883}
1884
2f25194d 1885int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1886 unsigned long nbytes)
1887{
0cec6fd1 1888 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1889
1890 if (sp >= stack_page + sizeof(struct thread_struct)
1891 && sp <= stack_page + THREAD_SIZE - nbytes)
1892 return 1;
1893
bb72c481 1894 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1895}
1896
2f25194d
AB
1897EXPORT_SYMBOL(validate_sp);
1898
14cf11af
PM
1899unsigned long get_wchan(struct task_struct *p)
1900{
1901 unsigned long ip, sp;
1902 int count = 0;
1903
1904 if (!p || p == current || p->state == TASK_RUNNING)
1905 return 0;
1906
1907 sp = p->thread.ksp;
ec2b36b9 1908 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1909 return 0;
1910
1911 do {
1912 sp = *(unsigned long *)sp;
ec2b36b9 1913 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1914 return 0;
1915 if (count > 0) {
ec2b36b9 1916 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1917 if (!in_sched_functions(ip))
1918 return ip;
1919 }
1920 } while (count++ < 16);
1921 return 0;
1922}
06d67d54 1923
c4d04be1 1924static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1925
1926void show_stack(struct task_struct *tsk, unsigned long *stack)
1927{
1928 unsigned long sp, ip, lr, newsp;
1929 int count = 0;
1930 int firstframe = 1;
6794c782
SR
1931#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1932 int curr_frame = current->curr_ret_stack;
1933 extern void return_to_handler(void);
9135c3cc 1934 unsigned long rth = (unsigned long)return_to_handler;
6794c782 1935#endif
06d67d54
PM
1936
1937 sp = (unsigned long) stack;
1938 if (tsk == NULL)
1939 tsk = current;
1940 if (sp == 0) {
1941 if (tsk == current)
acf620ec 1942 sp = current_stack_pointer();
06d67d54
PM
1943 else
1944 sp = tsk->thread.ksp;
1945 }
1946
1947 lr = 0;
1948 printk("Call Trace:\n");
1949 do {
ec2b36b9 1950 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1951 return;
1952
1953 stack = (unsigned long *) sp;
1954 newsp = stack[0];
ec2b36b9 1955 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1956 if (!firstframe || ip != lr) {
058c78f4 1957 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1958#ifdef CONFIG_FUNCTION_GRAPH_TRACER
7d56c65a 1959 if ((ip == rth) && curr_frame >= 0) {
9a1f490f 1960 pr_cont(" (%pS)",
6794c782
SR
1961 (void *)current->ret_stack[curr_frame].ret);
1962 curr_frame--;
1963 }
1964#endif
06d67d54 1965 if (firstframe)
9a1f490f
ME
1966 pr_cont(" (unreliable)");
1967 pr_cont("\n");
06d67d54
PM
1968 }
1969 firstframe = 0;
1970
1971 /*
1972 * See if this is an exception frame.
1973 * We look for the "regshere" marker in the current frame.
1974 */
ec2b36b9
BH
1975 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1976 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1977 struct pt_regs *regs = (struct pt_regs *)
1978 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1979 lr = regs->link;
9be9be2e 1980 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 1981 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1982 firstframe = 1;
1983 }
1984
1985 sp = newsp;
1986 } while (count++ < kstack_depth_to_print);
1987}
1988
cb2c9b27 1989#ifdef CONFIG_PPC64
fe1952fc 1990/* Called with hard IRQs off */
0e37739b 1991void notrace __ppc64_runlatch_on(void)
cb2c9b27 1992{
fe1952fc 1993 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1994 unsigned long ctrl;
1995
fe1952fc
BH
1996 ctrl = mfspr(SPRN_CTRLF);
1997 ctrl |= CTRL_RUNLATCH;
1998 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1999
fae2e0fb 2000 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
2001}
2002
fe1952fc 2003/* Called with hard IRQs off */
0e37739b 2004void notrace __ppc64_runlatch_off(void)
cb2c9b27 2005{
fe1952fc 2006 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
2007 unsigned long ctrl;
2008
fae2e0fb 2009 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 2010
4138d653
AB
2011 ctrl = mfspr(SPRN_CTRLF);
2012 ctrl &= ~CTRL_RUNLATCH;
2013 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 2014}
fe1952fc 2015#endif /* CONFIG_PPC64 */
f6a61680 2016
d839088c
AB
2017unsigned long arch_align_stack(unsigned long sp)
2018{
2019 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2020 sp -= get_random_int() & ~PAGE_MASK;
2021 return sp & ~0xf;
2022}
912f9ee2
AB
2023
2024static inline unsigned long brk_rnd(void)
2025{
2026 unsigned long rnd = 0;
2027
2028 /* 8MB for 32bit, 1GB for 64bit */
2029 if (is_32bit_task())
5ef11c35 2030 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
912f9ee2 2031 else
5ef11c35 2032 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
912f9ee2
AB
2033
2034 return rnd << PAGE_SHIFT;
2035}
2036
2037unsigned long arch_randomize_brk(struct mm_struct *mm)
2038{
8bbde7a7
AB
2039 unsigned long base = mm->brk;
2040 unsigned long ret;
2041
ce7a35c7 2042#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
2043 /*
2044 * If we are using 1TB segments and we are allowed to randomise
2045 * the heap, we can put it above 1TB so it is backed by a 1TB
2046 * segment. Otherwise the heap will be in the bottom 1TB
2047 * which always uses 256MB segments and this may result in a
caca285e
AK
2048 * performance penalty. We don't need to worry about radix. For
2049 * radix, mmu_highuser_ssize remains unchanged from 256MB.
8bbde7a7
AB
2050 */
2051 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2052 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2053#endif
2054
2055 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
2056
2057 if (ret < mm->brk)
2058 return mm->brk;
2059
2060 return ret;
2061}
501cb16d 2062