Merge branch 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebieder...
[linux-2.6-block.git] / arch / powerpc / kernel / process.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
14cf11af 2/*
14cf11af
PM
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
8 *
9 * PowerPC version
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
14cf11af
PM
11 */
12
14cf11af
PM
13#include <linux/errno.h>
14#include <linux/sched.h>
b17b0153 15#include <linux/sched/debug.h>
29930025 16#include <linux/sched/task.h>
68db0cf1 17#include <linux/sched/task_stack.h>
14cf11af
PM
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/smp.h>
14cf11af
PM
21#include <linux/stddef.h>
22#include <linux/unistd.h>
23#include <linux/ptrace.h>
24#include <linux/slab.h>
25#include <linux/user.h>
26#include <linux/elf.h>
14cf11af
PM
27#include <linux/prctl.h>
28#include <linux/init_task.h>
4b16f8e2 29#include <linux/export.h>
14cf11af
PM
30#include <linux/kallsyms.h>
31#include <linux/mqueue.h>
32#include <linux/hardirq.h>
06d67d54 33#include <linux/utsname.h>
6794c782 34#include <linux/ftrace.h>
79741dd3 35#include <linux/kernel_stat.h>
d839088c
AB
36#include <linux/personality.h>
37#include <linux/random.h>
5aae8a53 38#include <linux/hw_breakpoint.h>
7b051f66 39#include <linux/uaccess.h>
7f92bc56 40#include <linux/elf-randomize.h>
06bb53b3 41#include <linux/pkeys.h>
fb2d9505 42#include <linux/seq_buf.h>
14cf11af
PM
43
44#include <asm/pgtable.h>
14cf11af
PM
45#include <asm/io.h>
46#include <asm/processor.h>
47#include <asm/mmu.h>
48#include <asm/prom.h>
76032de8 49#include <asm/machdep.h>
c6622f63 50#include <asm/time.h>
ae3a197e 51#include <asm/runlatch.h>
a7f31841 52#include <asm/syscalls.h>
ae3a197e 53#include <asm/switch_to.h>
fb09692e 54#include <asm/tm.h>
ae3a197e 55#include <asm/debug.h>
06d67d54
PM
56#ifdef CONFIG_PPC64
57#include <asm/firmware.h>
c2e480ba 58#include <asm/hw_irq.h>
06d67d54 59#endif
7cedd601 60#include <asm/code-patching.h>
7f92bc56 61#include <asm/exec.h>
5d31a96e 62#include <asm/livepatch.h>
b92a226e 63#include <asm/cpu_has_feature.h>
0545d543 64#include <asm/asm-prototypes.h>
c9386bfd 65#include <asm/stacktrace.h>
c1fe190c 66#include <asm/hw_breakpoint.h>
5d31a96e 67
d6a61bfc
LM
68#include <linux/kprobes.h>
69#include <linux/kdebug.h>
14cf11af 70
8b3c34cf
MN
71/* Transactional Memory debug */
72#ifdef TM_DEBUG_SW
73#define TM_DEBUG(x...) printk(KERN_INFO x)
74#else
75#define TM_DEBUG(x...) do { } while(0)
76#endif
77
14cf11af
PM
78extern unsigned long _get_SP(void);
79
d31626f7 80#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
54820530
ME
81/*
82 * Are we running in "Suspend disabled" mode? If so we have to block any
83 * sigreturn that would get us into suspended state, and we also warn in some
84 * other paths that we should never reach with suspend disabled.
85 */
86bool tm_suspend_disabled __ro_after_init = false;
87
b86fd2bd 88static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
89{
90 /*
91 * If we are saving the current thread's registers, and the
92 * thread is in a transactional state, set the TIF_RESTORE_TM
93 * bit so that we know to restore the registers before
94 * returning to userspace.
95 */
96 if (tsk == current && tsk->thread.regs &&
97 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 99 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
100 set_thread_flag(TIF_RESTORE_TM);
101 }
d31626f7 102}
dc16b553 103
a7771176
CB
104static bool tm_active_with_fp(struct task_struct *tsk)
105{
5c784c84 106 return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
a7771176
CB
107 (tsk->thread.ckpt_regs.msr & MSR_FP);
108}
109
110static bool tm_active_with_altivec(struct task_struct *tsk)
111{
5c784c84 112 return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
a7771176
CB
113 (tsk->thread.ckpt_regs.msr & MSR_VEC);
114}
d31626f7 115#else
b86fd2bd 116static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
a7771176
CB
117static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
118static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
d31626f7
PM
119#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
120
3eb5d588
AB
121bool strict_msr_control;
122EXPORT_SYMBOL(strict_msr_control);
123
124static int __init enable_strict_msr_control(char *str)
125{
126 strict_msr_control = true;
127 pr_info("Enabling strict facility control\n");
128
129 return 0;
130}
131early_param("ppc_strict_facility_enable", enable_strict_msr_control);
132
e2b36d59
NP
133/* notrace because it's called by restore_math */
134unsigned long notrace msr_check_and_set(unsigned long bits)
98da581e 135{
a0e72cf1
AB
136 unsigned long oldmsr = mfmsr();
137 unsigned long newmsr;
98da581e 138
a0e72cf1 139 newmsr = oldmsr | bits;
98da581e 140
98da581e 141#ifdef CONFIG_VSX
a0e72cf1 142 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e
AB
143 newmsr |= MSR_VSX;
144#endif
a0e72cf1 145
98da581e
AB
146 if (oldmsr != newmsr)
147 mtmsr_isync(newmsr);
3cee070a
CB
148
149 return newmsr;
a0e72cf1 150}
d1c72112 151EXPORT_SYMBOL_GPL(msr_check_and_set);
98da581e 152
e2b36d59
NP
153/* notrace because it's called by restore_math */
154void notrace __msr_check_and_clear(unsigned long bits)
a0e72cf1
AB
155{
156 unsigned long oldmsr = mfmsr();
157 unsigned long newmsr;
158
159 newmsr = oldmsr & ~bits;
160
161#ifdef CONFIG_VSX
162 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
163 newmsr &= ~MSR_VSX;
164#endif
165
166 if (oldmsr != newmsr)
167 mtmsr_isync(newmsr);
168}
3eb5d588 169EXPORT_SYMBOL(__msr_check_and_clear);
a0e72cf1
AB
170
171#ifdef CONFIG_PPC_FPU
1cdf039b 172static void __giveup_fpu(struct task_struct *tsk)
8792468d 173{
8eb98037
AB
174 unsigned long msr;
175
8792468d 176 save_fpu(tsk);
8eb98037 177 msr = tsk->thread.regs->msr;
fe1ef6bc 178 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
8792468d
CB
179#ifdef CONFIG_VSX
180 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 181 msr &= ~MSR_VSX;
8792468d 182#endif
8eb98037 183 tsk->thread.regs->msr = msr;
8792468d
CB
184}
185
a0e72cf1
AB
186void giveup_fpu(struct task_struct *tsk)
187{
188 check_if_tm_restore_required(tsk);
189
190 msr_check_and_set(MSR_FP);
98da581e 191 __giveup_fpu(tsk);
a0e72cf1 192 msr_check_and_clear(MSR_FP);
98da581e
AB
193}
194EXPORT_SYMBOL(giveup_fpu);
195
14cf11af
PM
196/*
197 * Make sure the floating-point register state in the
198 * the thread_struct is up to date for task tsk.
199 */
200void flush_fp_to_thread(struct task_struct *tsk)
201{
202 if (tsk->thread.regs) {
203 /*
204 * We need to disable preemption here because if we didn't,
205 * another process could get scheduled after the regs->msr
206 * test but before we have finished saving the FP registers
207 * to the thread_struct. That process could take over the
208 * FPU, and then when we get scheduled again we would store
209 * bogus values for the remaining FP registers.
210 */
211 preempt_disable();
212 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
213 /*
214 * This should only ever be called for current or
215 * for a stopped child process. Since we save away
af1bbc3d 216 * the FP register state on context switch,
14cf11af
PM
217 * there is something wrong if a stopped child appears
218 * to still have its FP state in the CPU registers.
219 */
220 BUG_ON(tsk != current);
b86fd2bd 221 giveup_fpu(tsk);
14cf11af
PM
222 }
223 preempt_enable();
224 }
225}
de56a948 226EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
227
228void enable_kernel_fp(void)
229{
e909fb83
CB
230 unsigned long cpumsr;
231
14cf11af
PM
232 WARN_ON(preemptible());
233
e909fb83 234 cpumsr = msr_check_and_set(MSR_FP);
611b0e5c 235
d64d02ce
AB
236 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
237 check_if_tm_restore_required(current);
e909fb83
CB
238 /*
239 * If a thread has already been reclaimed then the
240 * checkpointed registers are on the CPU but have definitely
241 * been saved by the reclaim code. Don't need to and *cannot*
242 * giveup as this would save to the 'live' structure not the
243 * checkpointed structure.
244 */
5c784c84
BL
245 if (!MSR_TM_ACTIVE(cpumsr) &&
246 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 247 return;
a0e72cf1 248 __giveup_fpu(current);
d64d02ce 249 }
14cf11af
PM
250}
251EXPORT_SYMBOL(enable_kernel_fp);
70fe3d98 252
6a303833
BH
253static int restore_fp(struct task_struct *tsk)
254{
a7771176 255 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
70fe3d98
CB
256 load_fp_state(&current->thread.fp_state);
257 current->thread.load_fp++;
258 return 1;
259 }
260 return 0;
261}
262#else
263static int restore_fp(struct task_struct *tsk) { return 0; }
d1e1cf2e 264#endif /* CONFIG_PPC_FPU */
14cf11af 265
14cf11af 266#ifdef CONFIG_ALTIVEC
70fe3d98
CB
267#define loadvec(thr) ((thr).load_vec)
268
6f515d84
CB
269static void __giveup_altivec(struct task_struct *tsk)
270{
8eb98037
AB
271 unsigned long msr;
272
6f515d84 273 save_altivec(tsk);
8eb98037
AB
274 msr = tsk->thread.regs->msr;
275 msr &= ~MSR_VEC;
6f515d84
CB
276#ifdef CONFIG_VSX
277 if (cpu_has_feature(CPU_FTR_VSX))
8eb98037 278 msr &= ~MSR_VSX;
6f515d84 279#endif
8eb98037 280 tsk->thread.regs->msr = msr;
6f515d84
CB
281}
282
98da581e
AB
283void giveup_altivec(struct task_struct *tsk)
284{
98da581e
AB
285 check_if_tm_restore_required(tsk);
286
a0e72cf1 287 msr_check_and_set(MSR_VEC);
98da581e 288 __giveup_altivec(tsk);
a0e72cf1 289 msr_check_and_clear(MSR_VEC);
98da581e
AB
290}
291EXPORT_SYMBOL(giveup_altivec);
292
14cf11af
PM
293void enable_kernel_altivec(void)
294{
e909fb83
CB
295 unsigned long cpumsr;
296
14cf11af
PM
297 WARN_ON(preemptible());
298
e909fb83 299 cpumsr = msr_check_and_set(MSR_VEC);
611b0e5c 300
d64d02ce
AB
301 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
302 check_if_tm_restore_required(current);
e909fb83
CB
303 /*
304 * If a thread has already been reclaimed then the
305 * checkpointed registers are on the CPU but have definitely
306 * been saved by the reclaim code. Don't need to and *cannot*
307 * giveup as this would save to the 'live' structure not the
308 * checkpointed structure.
309 */
5c784c84
BL
310 if (!MSR_TM_ACTIVE(cpumsr) &&
311 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 312 return;
a0e72cf1 313 __giveup_altivec(current);
d64d02ce 314 }
14cf11af
PM
315}
316EXPORT_SYMBOL(enable_kernel_altivec);
317
318/*
319 * Make sure the VMX/Altivec register state in the
320 * the thread_struct is up to date for task tsk.
321 */
322void flush_altivec_to_thread(struct task_struct *tsk)
323{
324 if (tsk->thread.regs) {
325 preempt_disable();
326 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 327 BUG_ON(tsk != current);
b86fd2bd 328 giveup_altivec(tsk);
14cf11af
PM
329 }
330 preempt_enable();
331 }
332}
de56a948 333EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
70fe3d98
CB
334
335static int restore_altivec(struct task_struct *tsk)
336{
dc16b553 337 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
a7771176 338 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
70fe3d98
CB
339 load_vr_state(&tsk->thread.vr_state);
340 tsk->thread.used_vr = 1;
341 tsk->thread.load_vec++;
342
343 return 1;
344 }
345 return 0;
346}
347#else
348#define loadvec(thr) 0
349static inline int restore_altivec(struct task_struct *tsk) { return 0; }
14cf11af
PM
350#endif /* CONFIG_ALTIVEC */
351
ce48b210 352#ifdef CONFIG_VSX
bf6a4d5b 353static void __giveup_vsx(struct task_struct *tsk)
a7d623d4 354{
dc801081
BH
355 unsigned long msr = tsk->thread.regs->msr;
356
357 /*
358 * We should never be ssetting MSR_VSX without also setting
359 * MSR_FP and MSR_VEC
360 */
361 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
362
363 /* __giveup_fpu will clear MSR_VSX */
364 if (msr & MSR_FP)
a7d623d4 365 __giveup_fpu(tsk);
dc801081 366 if (msr & MSR_VEC)
a7d623d4 367 __giveup_altivec(tsk);
bf6a4d5b
CB
368}
369
370static void giveup_vsx(struct task_struct *tsk)
371{
372 check_if_tm_restore_required(tsk);
373
374 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 375 __giveup_vsx(tsk);
a0e72cf1 376 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 377}
bf6a4d5b 378
ce48b210
MN
379void enable_kernel_vsx(void)
380{
e909fb83
CB
381 unsigned long cpumsr;
382
ce48b210
MN
383 WARN_ON(preemptible());
384
e909fb83 385 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 386
5a69aec9
BH
387 if (current->thread.regs &&
388 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
d64d02ce 389 check_if_tm_restore_required(current);
e909fb83
CB
390 /*
391 * If a thread has already been reclaimed then the
392 * checkpointed registers are on the CPU but have definitely
393 * been saved by the reclaim code. Don't need to and *cannot*
394 * giveup as this would save to the 'live' structure not the
395 * checkpointed structure.
396 */
5c784c84
BL
397 if (!MSR_TM_ACTIVE(cpumsr) &&
398 MSR_TM_ACTIVE(current->thread.regs->msr))
e909fb83 399 return;
a0e72cf1 400 __giveup_vsx(current);
611b0e5c 401 }
ce48b210
MN
402}
403EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
404
405void flush_vsx_to_thread(struct task_struct *tsk)
406{
407 if (tsk->thread.regs) {
408 preempt_disable();
5a69aec9 409 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
ce48b210 410 BUG_ON(tsk != current);
ce48b210
MN
411 giveup_vsx(tsk);
412 }
413 preempt_enable();
414 }
415}
de56a948 416EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
70fe3d98
CB
417
418static int restore_vsx(struct task_struct *tsk)
419{
420 if (cpu_has_feature(CPU_FTR_VSX)) {
421 tsk->thread.used_vsr = 1;
422 return 1;
423 }
424
425 return 0;
426}
427#else
428static inline int restore_vsx(struct task_struct *tsk) { return 0; }
ce48b210
MN
429#endif /* CONFIG_VSX */
430
14cf11af 431#ifdef CONFIG_SPE
98da581e
AB
432void giveup_spe(struct task_struct *tsk)
433{
98da581e
AB
434 check_if_tm_restore_required(tsk);
435
a0e72cf1 436 msr_check_and_set(MSR_SPE);
98da581e 437 __giveup_spe(tsk);
a0e72cf1 438 msr_check_and_clear(MSR_SPE);
98da581e
AB
439}
440EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
441
442void enable_kernel_spe(void)
443{
444 WARN_ON(preemptible());
445
a0e72cf1 446 msr_check_and_set(MSR_SPE);
611b0e5c 447
d64d02ce
AB
448 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
449 check_if_tm_restore_required(current);
a0e72cf1 450 __giveup_spe(current);
d64d02ce 451 }
14cf11af
PM
452}
453EXPORT_SYMBOL(enable_kernel_spe);
454
455void flush_spe_to_thread(struct task_struct *tsk)
456{
457 if (tsk->thread.regs) {
458 preempt_disable();
459 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 460 BUG_ON(tsk != current);
685659ee 461 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 462 giveup_spe(tsk);
14cf11af
PM
463 }
464 preempt_enable();
465 }
466}
14cf11af
PM
467#endif /* CONFIG_SPE */
468
c2085059
AB
469static unsigned long msr_all_available;
470
471static int __init init_msr_all_available(void)
472{
473#ifdef CONFIG_PPC_FPU
474 msr_all_available |= MSR_FP;
475#endif
476#ifdef CONFIG_ALTIVEC
477 if (cpu_has_feature(CPU_FTR_ALTIVEC))
478 msr_all_available |= MSR_VEC;
479#endif
480#ifdef CONFIG_VSX
481 if (cpu_has_feature(CPU_FTR_VSX))
482 msr_all_available |= MSR_VSX;
483#endif
484#ifdef CONFIG_SPE
485 if (cpu_has_feature(CPU_FTR_SPE))
486 msr_all_available |= MSR_SPE;
487#endif
488
489 return 0;
490}
491early_initcall(init_msr_all_available);
492
493void giveup_all(struct task_struct *tsk)
494{
495 unsigned long usermsr;
496
497 if (!tsk->thread.regs)
498 return;
499
500 usermsr = tsk->thread.regs->msr;
501
502 if ((usermsr & msr_all_available) == 0)
503 return;
504
505 msr_check_and_set(msr_all_available);
b0f16b46 506 check_if_tm_restore_required(tsk);
c2085059 507
96c79b6b
BH
508 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
509
c2085059
AB
510#ifdef CONFIG_PPC_FPU
511 if (usermsr & MSR_FP)
512 __giveup_fpu(tsk);
513#endif
514#ifdef CONFIG_ALTIVEC
515 if (usermsr & MSR_VEC)
516 __giveup_altivec(tsk);
517#endif
c2085059
AB
518#ifdef CONFIG_SPE
519 if (usermsr & MSR_SPE)
520 __giveup_spe(tsk);
521#endif
522
523 msr_check_and_clear(msr_all_available);
524}
525EXPORT_SYMBOL(giveup_all);
526
e2b36d59
NP
527/*
528 * The exception exit path calls restore_math() with interrupts hard disabled
529 * but the soft irq state not "reconciled". ftrace code that calls
530 * local_irq_save/restore causes warnings.
531 *
532 * Rather than complicate the exit path, just don't trace restore_math. This
533 * could be done by having ftrace entry code check for this un-reconciled
534 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
535 * temporarily fix it up for the duration of the ftrace call.
536 */
537void notrace restore_math(struct pt_regs *regs)
70fe3d98
CB
538{
539 unsigned long msr;
540
5c784c84 541 if (!MSR_TM_ACTIVE(regs->msr) &&
dc16b553 542 !current->thread.load_fp && !loadvec(current->thread))
70fe3d98
CB
543 return;
544
545 msr = regs->msr;
546 msr_check_and_set(msr_all_available);
547
548 /*
549 * Only reload if the bit is not set in the user MSR, the bit BEING set
550 * indicates that the registers are hot
551 */
552 if ((!(msr & MSR_FP)) && restore_fp(current))
553 msr |= MSR_FP | current->thread.fpexc_mode;
554
555 if ((!(msr & MSR_VEC)) && restore_altivec(current))
556 msr |= MSR_VEC;
557
558 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
559 restore_vsx(current)) {
560 msr |= MSR_VSX;
561 }
562
563 msr_check_and_clear(msr_all_available);
564
565 regs->msr = msr;
566}
567
1cdf039b 568static void save_all(struct task_struct *tsk)
de2a20aa
CB
569{
570 unsigned long usermsr;
571
572 if (!tsk->thread.regs)
573 return;
574
575 usermsr = tsk->thread.regs->msr;
576
577 if ((usermsr & msr_all_available) == 0)
578 return;
579
580 msr_check_and_set(msr_all_available);
581
96c79b6b
BH
582 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
583
584 if (usermsr & MSR_FP)
585 save_fpu(tsk);
586
587 if (usermsr & MSR_VEC)
588 save_altivec(tsk);
de2a20aa
CB
589
590 if (usermsr & MSR_SPE)
591 __giveup_spe(tsk);
592
593 msr_check_and_clear(msr_all_available);
c76662e8 594 thread_pkey_regs_save(&tsk->thread);
de2a20aa
CB
595}
596
579e633e
AB
597void flush_all_to_thread(struct task_struct *tsk)
598{
599 if (tsk->thread.regs) {
600 preempt_disable();
601 BUG_ON(tsk != current);
579e633e
AB
602#ifdef CONFIG_SPE
603 if (tsk->thread.regs->msr & MSR_SPE)
604 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
605#endif
e9013785 606 save_all(tsk);
579e633e
AB
607
608 preempt_enable();
609 }
610}
611EXPORT_SYMBOL(flush_all_to_thread);
612
3bffb652
DK
613#ifdef CONFIG_PPC_ADV_DEBUG_REGS
614void do_send_trap(struct pt_regs *regs, unsigned long address,
47355040 615 unsigned long error_code, int breakpt)
3bffb652 616{
47355040 617 current->thread.trap_nr = TRAP_HWBKPT;
3bffb652
DK
618 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
619 11, SIGSEGV) == NOTIFY_STOP)
620 return;
621
622 /* Deliver the signal to userspace */
f71dd7dc
EB
623 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
624 (void __user *)address);
3bffb652
DK
625}
626#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 627void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
628 unsigned long error_code)
629{
41ab5266 630 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
631 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
632 11, SIGSEGV) == NOTIFY_STOP)
633 return;
634
9422de3e 635 if (debugger_break_match(regs))
d6a61bfc
LM
636 return;
637
9422de3e
MN
638 /* Clear the breakpoint */
639 hw_breakpoint_disable();
d6a61bfc
LM
640
641 /* Deliver the signal to userspace */
2e1661d2 642 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
d6a61bfc 643}
3bffb652 644#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 645
9422de3e 646static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 647
3bffb652
DK
648#ifdef CONFIG_PPC_ADV_DEBUG_REGS
649/*
650 * Set the debug registers back to their default "safe" values.
651 */
652static void set_debug_reg_defaults(struct thread_struct *thread)
653{
51ae8d4a 654 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 655#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 656 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 657#endif
51ae8d4a 658 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 659#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 660 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 661#endif
51ae8d4a 662 thread->debug.dbcr0 = 0;
3bffb652
DK
663#ifdef CONFIG_BOOKE
664 /*
665 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
666 */
51ae8d4a 667 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
668 DBCR1_IAC3US | DBCR1_IAC4US;
669 /*
670 * Force Data Address Compare User/Supervisor bits to be User-only
671 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
672 */
51ae8d4a 673 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 674#else
51ae8d4a 675 thread->debug.dbcr1 = 0;
3bffb652
DK
676#endif
677}
678
f5f97210 679static void prime_debug_regs(struct debug_reg *debug)
3bffb652 680{
6cecf76b
SW
681 /*
682 * We could have inherited MSR_DE from userspace, since
683 * it doesn't get cleared on exception entry. Make sure
684 * MSR_DE is clear before we enable any debug events.
685 */
686 mtmsr(mfmsr() & ~MSR_DE);
687
f5f97210
SW
688 mtspr(SPRN_IAC1, debug->iac1);
689 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 690#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
691 mtspr(SPRN_IAC3, debug->iac3);
692 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 693#endif
f5f97210
SW
694 mtspr(SPRN_DAC1, debug->dac1);
695 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 696#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
697 mtspr(SPRN_DVC1, debug->dvc1);
698 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 699#endif
f5f97210
SW
700 mtspr(SPRN_DBCR0, debug->dbcr0);
701 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 702#ifdef CONFIG_BOOKE
f5f97210 703 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
704#endif
705}
706/*
707 * Unless neither the old or new thread are making use of the
708 * debug registers, set the debug registers from the values
709 * stored in the new thread.
710 */
f5f97210 711void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 712{
51ae8d4a 713 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
714 || (new_debug->dbcr0 & DBCR0_IDM))
715 prime_debug_regs(new_debug);
3bffb652 716}
3743c9b8 717EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 718#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 719#ifndef CONFIG_HAVE_HW_BREAKPOINT
b5ac51d7
CL
720static void set_breakpoint(struct arch_hw_breakpoint *brk)
721{
722 preempt_disable();
723 __set_breakpoint(brk);
724 preempt_enable();
725}
726
3bffb652
DK
727static void set_debug_reg_defaults(struct thread_struct *thread)
728{
9422de3e
MN
729 thread->hw_brk.address = 0;
730 thread->hw_brk.type = 0;
252988cb
NP
731 if (ppc_breakpoint_available())
732 set_breakpoint(&thread->hw_brk);
3bffb652 733}
e0780b72 734#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
735#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
736
172ae2e7 737#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
738static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
739{
d6a61bfc 740 mtspr(SPRN_DAC1, dabr);
221c185d
DK
741#ifdef CONFIG_PPC_47x
742 isync();
743#endif
9422de3e
MN
744 return 0;
745}
c6c9eace 746#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
747static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
748{
c6c9eace 749 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
750 if (cpu_has_feature(CPU_FTR_DABRX))
751 mtspr(SPRN_DABRX, dabrx);
cab0af98 752 return 0;
14cf11af 753}
4ad8622d
CL
754#elif defined(CONFIG_PPC_8xx)
755static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
756{
757 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
758 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
759 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
760
761 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
762 lctrl1 |= 0xa0000;
763 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
764 lctrl1 |= 0xf0000;
765 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
766 lctrl2 = 0;
767
768 mtspr(SPRN_LCTRL2, 0);
769 mtspr(SPRN_CMPE, addr);
770 mtspr(SPRN_CMPF, addr + 4);
771 mtspr(SPRN_LCTRL1, lctrl1);
772 mtspr(SPRN_LCTRL2, lctrl2);
773
774 return 0;
775}
9422de3e
MN
776#else
777static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
778{
779 return -EINVAL;
780}
781#endif
782
783static inline int set_dabr(struct arch_hw_breakpoint *brk)
784{
785 unsigned long dabr, dabrx;
786
787 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
788 dabrx = ((brk->type >> 3) & 0x7);
789
790 if (ppc_md.set_dabr)
791 return ppc_md.set_dabr(dabr, dabrx);
792
793 return __set_dabr(dabr, dabrx);
794}
795
c1fe190c 796int set_dawr(struct arch_hw_breakpoint *brk)
bf99de36 797{
05d694ea 798 unsigned long dawr, dawrx, mrd;
bf99de36
MN
799
800 dawr = brk->address;
801
802 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
803 << (63 - 58); //* read/write bits */
804 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
805 << (63 - 59); //* translate */
806 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
807 >> 3; //* PRIM bits */
05d694ea
MN
808 /* dawr length is stored in field MDR bits 48:53. Matches range in
809 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
810 0b111111=64DW.
811 brk->len is in bytes.
812 This aligns up to double word size, shifts and does the bias.
813 */
814 mrd = ((brk->len + 7) >> 3) - 1;
815 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
816
817 if (ppc_md.set_dawr)
818 return ppc_md.set_dawr(dawr, dawrx);
819 mtspr(SPRN_DAWR, dawr);
820 mtspr(SPRN_DAWRX, dawrx);
821 return 0;
822}
823
21f58507 824void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e 825{
69111bac 826 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
9422de3e 827
c1fe190c 828 if (dawr_enabled())
252988cb 829 // Power8 or later
04c32a51 830 set_dawr(brk);
252988cb
NP
831 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
832 // Power7 or earlier
04c32a51 833 set_dabr(brk);
252988cb
NP
834 else
835 // Shouldn't happen due to higher level checks
836 WARN_ON_ONCE(1);
9422de3e 837}
14cf11af 838
404b27d6
MN
839/* Check if we have DAWR or DABR hardware */
840bool ppc_breakpoint_available(void)
841{
c1fe190c
MN
842 if (dawr_enabled())
843 return true; /* POWER8 DAWR or POWER9 forced DAWR */
404b27d6
MN
844 if (cpu_has_feature(CPU_FTR_ARCH_207S))
845 return false; /* POWER9 with DAWR disabled */
846 /* DABR: Everything but POWER8 and POWER9 */
847 return true;
848}
849EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
850
9422de3e
MN
851static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
852 struct arch_hw_breakpoint *b)
853{
854 if (a->address != b->address)
855 return false;
856 if (a->type != b->type)
857 return false;
858 if (a->len != b->len)
859 return false;
860 return true;
861}
d31626f7 862
fb09692e 863#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
5d176f75
CB
864
865static inline bool tm_enabled(struct task_struct *tsk)
866{
867 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
868}
869
edd00b83 870static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
d31626f7 871{
7f821fc9
MN
872 /*
873 * Use the current MSR TM suspended bit to track if we have
874 * checkpointed state outstanding.
875 * On signal delivery, we'd normally reclaim the checkpointed
876 * state to obtain stack pointer (see:get_tm_stackpointer()).
877 * This will then directly return to userspace without going
878 * through __switch_to(). However, if the stack frame is bad,
879 * we need to exit this thread which calls __switch_to() which
880 * will again attempt to reclaim the already saved tm state.
881 * Hence we need to check that we've not already reclaimed
882 * this state.
883 * We do this using the current MSR, rather tracking it in
884 * some specific thread_struct bit, as it has the additional
027dfac6 885 * benefit of checking for a potential TM bad thing exception.
7f821fc9
MN
886 */
887 if (!MSR_TM_SUSPENDED(mfmsr()))
888 return;
889
91381b9c
CB
890 giveup_all(container_of(thr, struct task_struct, thread));
891
eb5c3f1c
CB
892 tm_reclaim(thr, cause);
893
f48e91e8
MN
894 /*
895 * If we are in a transaction and FP is off then we can't have
896 * used FP inside that transaction. Hence the checkpointed
897 * state is the same as the live state. We need to copy the
898 * live state to the checkpointed state so that when the
899 * transaction is restored, the checkpointed state is correct
900 * and the aborted transaction sees the correct state. We use
901 * ckpt_regs.msr here as that's what tm_reclaim will use to
902 * determine if it's going to write the checkpointed state or
903 * not. So either this will write the checkpointed registers,
904 * or reclaim will. Similarly for VMX.
905 */
906 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
907 memcpy(&thr->ckfp_state, &thr->fp_state,
908 sizeof(struct thread_fp_state));
909 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
910 memcpy(&thr->ckvr_state, &thr->vr_state,
911 sizeof(struct thread_vr_state));
d31626f7
PM
912}
913
914void tm_reclaim_current(uint8_t cause)
915{
916 tm_enable();
edd00b83 917 tm_reclaim_thread(&current->thread, cause);
d31626f7
PM
918}
919
fb09692e
MN
920static inline void tm_reclaim_task(struct task_struct *tsk)
921{
922 /* We have to work out if we're switching from/to a task that's in the
923 * middle of a transaction.
924 *
925 * In switching we need to maintain a 2nd register state as
926 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
000ec280
CB
927 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
928 * ckvr_state
fb09692e
MN
929 *
930 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
931 */
932 struct thread_struct *thr = &tsk->thread;
933
934 if (!thr->regs)
935 return;
936
937 if (!MSR_TM_ACTIVE(thr->regs->msr))
938 goto out_and_saveregs;
939
92fb8690
MN
940 WARN_ON(tm_suspend_disabled);
941
fb09692e
MN
942 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
943 "ccr=%lx, msr=%lx, trap=%lx)\n",
944 tsk->pid, thr->regs->nip,
945 thr->regs->ccr, thr->regs->msr,
946 thr->regs->trap);
947
edd00b83 948 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
fb09692e
MN
949
950 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
951 tsk->pid);
952
953out_and_saveregs:
954 /* Always save the regs here, even if a transaction's not active.
955 * This context-switches a thread's TM info SPRs. We do it here to
956 * be consistent with the restore path (in recheckpoint) which
957 * cannot happen later in _switch().
958 */
959 tm_save_sprs(thr);
960}
961
eb5c3f1c 962extern void __tm_recheckpoint(struct thread_struct *thread);
e6b8fd02 963
eb5c3f1c 964void tm_recheckpoint(struct thread_struct *thread)
e6b8fd02
MN
965{
966 unsigned long flags;
967
5d176f75
CB
968 if (!(thread->regs->msr & MSR_TM))
969 return;
970
e6b8fd02
MN
971 /* We really can't be interrupted here as the TEXASR registers can't
972 * change and later in the trecheckpoint code, we have a userspace R1.
973 * So let's hard disable over this region.
974 */
975 local_irq_save(flags);
976 hard_irq_disable();
977
978 /* The TM SPRs are restored here, so that TEXASR.FS can be set
979 * before the trecheckpoint and no explosion occurs.
980 */
981 tm_restore_sprs(thread);
982
eb5c3f1c 983 __tm_recheckpoint(thread);
e6b8fd02
MN
984
985 local_irq_restore(flags);
986}
987
bc2a9408 988static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e 989{
fb09692e
MN
990 if (!cpu_has_feature(CPU_FTR_TM))
991 return;
992
993 /* Recheckpoint the registers of the thread we're about to switch to.
994 *
995 * If the task was using FP, we non-lazily reload both the original and
996 * the speculative FP register states. This is because the kernel
997 * doesn't see if/when a TM rollback occurs, so if we take an FP
dc310669 998 * unavailable later, we are unable to determine which set of FP regs
fb09692e
MN
999 * need to be restored.
1000 */
5d176f75 1001 if (!tm_enabled(new))
fb09692e
MN
1002 return;
1003
e6b8fd02
MN
1004 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1005 tm_restore_sprs(&new->thread);
fb09692e 1006 return;
e6b8fd02 1007 }
fb09692e 1008 /* Recheckpoint to restore original checkpointed register state. */
eb5c3f1c
CB
1009 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1010 new->pid, new->thread.regs->msr);
fb09692e 1011
eb5c3f1c 1012 tm_recheckpoint(&new->thread);
fb09692e 1013
dc310669
CB
1014 /*
1015 * The checkpointed state has been restored but the live state has
1016 * not, ensure all the math functionality is turned off to trigger
1017 * restore_math() to reload.
1018 */
1019 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
fb09692e
MN
1020
1021 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1022 "(kernel msr 0x%lx)\n",
1023 new->pid, mfmsr());
1024}
1025
dc310669
CB
1026static inline void __switch_to_tm(struct task_struct *prev,
1027 struct task_struct *new)
fb09692e
MN
1028{
1029 if (cpu_has_feature(CPU_FTR_TM)) {
5d176f75
CB
1030 if (tm_enabled(prev) || tm_enabled(new))
1031 tm_enable();
1032
1033 if (tm_enabled(prev)) {
1034 prev->thread.load_tm++;
1035 tm_reclaim_task(prev);
1036 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1037 prev->thread.regs->msr &= ~MSR_TM;
1038 }
1039
dc310669 1040 tm_recheckpoint_new_task(new);
fb09692e
MN
1041 }
1042}
d31626f7
PM
1043
1044/*
1045 * This is called if we are on the way out to userspace and the
1046 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1047 * FP and/or vector state and does so if necessary.
1048 * If userspace is inside a transaction (whether active or
1049 * suspended) and FP/VMX/VSX instructions have ever been enabled
1050 * inside that transaction, then we have to keep them enabled
1051 * and keep the FP/VMX/VSX state loaded while ever the transaction
1052 * continues. The reason is that if we didn't, and subsequently
1053 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1054 * we don't know whether it's the same transaction, and thus we
1055 * don't know which of the checkpointed state and the transactional
1056 * state to use.
1057 */
1058void restore_tm_state(struct pt_regs *regs)
1059{
1060 unsigned long msr_diff;
1061
dc310669
CB
1062 /*
1063 * This is the only moment we should clear TIF_RESTORE_TM as
1064 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1065 * again, anything else could lead to an incorrect ckpt_msr being
1066 * saved and therefore incorrect signal contexts.
1067 */
d31626f7
PM
1068 clear_thread_flag(TIF_RESTORE_TM);
1069 if (!MSR_TM_ACTIVE(regs->msr))
1070 return;
1071
829023df 1072 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7 1073 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
70fe3d98 1074
dc16b553
CB
1075 /* Ensure that restore_math() will restore */
1076 if (msr_diff & MSR_FP)
1077 current->thread.load_fp = 1;
39715bf9 1078#ifdef CONFIG_ALTIVEC
dc16b553
CB
1079 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1080 current->thread.load_vec = 1;
1081#endif
70fe3d98
CB
1082 restore_math(regs);
1083
d31626f7
PM
1084 regs->msr |= msr_diff;
1085}
1086
fb09692e
MN
1087#else
1088#define tm_recheckpoint_new_task(new)
dc310669 1089#define __switch_to_tm(prev, new)
fb09692e 1090#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 1091
152d523e
AB
1092static inline void save_sprs(struct thread_struct *t)
1093{
1094#ifdef CONFIG_ALTIVEC
01d7c2a2 1095 if (cpu_has_feature(CPU_FTR_ALTIVEC))
152d523e
AB
1096 t->vrsave = mfspr(SPRN_VRSAVE);
1097#endif
1098#ifdef CONFIG_PPC_BOOK3S_64
1099 if (cpu_has_feature(CPU_FTR_DSCR))
1100 t->dscr = mfspr(SPRN_DSCR);
1101
1102 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1103 t->bescr = mfspr(SPRN_BESCR);
1104 t->ebbhr = mfspr(SPRN_EBBHR);
1105 t->ebbrr = mfspr(SPRN_EBBRR);
1106
1107 t->fscr = mfspr(SPRN_FSCR);
1108
1109 /*
1110 * Note that the TAR is not available for use in the kernel.
1111 * (To provide this, the TAR should be backed up/restored on
1112 * exception entry/exit instead, and be in pt_regs. FIXME,
1113 * this should be in pt_regs anyway (for debug).)
1114 */
1115 t->tar = mfspr(SPRN_TAR);
1116 }
1117#endif
06bb53b3
RP
1118
1119 thread_pkey_regs_save(t);
152d523e
AB
1120}
1121
1122static inline void restore_sprs(struct thread_struct *old_thread,
1123 struct thread_struct *new_thread)
1124{
1125#ifdef CONFIG_ALTIVEC
1126 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1127 old_thread->vrsave != new_thread->vrsave)
1128 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1129#endif
1130#ifdef CONFIG_PPC_BOOK3S_64
1131 if (cpu_has_feature(CPU_FTR_DSCR)) {
1132 u64 dscr = get_paca()->dscr_default;
b57bd2de 1133 if (new_thread->dscr_inherit)
152d523e 1134 dscr = new_thread->dscr;
152d523e
AB
1135
1136 if (old_thread->dscr != dscr)
1137 mtspr(SPRN_DSCR, dscr);
152d523e
AB
1138 }
1139
1140 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1141 if (old_thread->bescr != new_thread->bescr)
1142 mtspr(SPRN_BESCR, new_thread->bescr);
1143 if (old_thread->ebbhr != new_thread->ebbhr)
1144 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1145 if (old_thread->ebbrr != new_thread->ebbrr)
1146 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1147
b57bd2de
MN
1148 if (old_thread->fscr != new_thread->fscr)
1149 mtspr(SPRN_FSCR, new_thread->fscr);
1150
152d523e
AB
1151 if (old_thread->tar != new_thread->tar)
1152 mtspr(SPRN_TAR, new_thread->tar);
1153 }
ec233ede 1154
3449f191 1155 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
ec233ede
SB
1156 old_thread->tidr != new_thread->tidr)
1157 mtspr(SPRN_TIDR, new_thread->tidr);
152d523e 1158#endif
06bb53b3
RP
1159
1160 thread_pkey_regs_restore(new_thread, old_thread);
152d523e
AB
1161}
1162
14cf11af
PM
1163struct task_struct *__switch_to(struct task_struct *prev,
1164 struct task_struct *new)
1165{
1166 struct thread_struct *new_thread, *old_thread;
14cf11af 1167 struct task_struct *last;
d6bf29b4
PZ
1168#ifdef CONFIG_PPC_BOOK3S_64
1169 struct ppc64_tlb_batch *batch;
1170#endif
14cf11af 1171
152d523e
AB
1172 new_thread = &new->thread;
1173 old_thread = &current->thread;
1174
7ba5fef7
MN
1175 WARN_ON(!irqs_disabled());
1176
4e003747 1177#ifdef CONFIG_PPC_BOOK3S_64
69111bac 1178 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1179 if (batch->active) {
1180 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1181 if (batch->index)
1182 __flush_tlb_pending(batch);
1183 batch->active = 0;
1184 }
4e003747 1185#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 1186
f3d885cc
AB
1187#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1188 switch_booke_debug_regs(&new->thread.debug);
1189#else
1190/*
1191 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1192 * schedule DABR
1193 */
1194#ifndef CONFIG_HAVE_HW_BREAKPOINT
1195 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1196 __set_breakpoint(&new->thread.hw_brk);
1197#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1198#endif
1199
1200 /*
1201 * We need to save SPRs before treclaim/trecheckpoint as these will
1202 * change a number of them.
1203 */
1204 save_sprs(&prev->thread);
1205
f3d885cc
AB
1206 /* Save FPU, Altivec, VSX and SPE state */
1207 giveup_all(prev);
1208
dc310669
CB
1209 __switch_to_tm(prev, new);
1210
e4c0fc5f
NP
1211 if (!radix_enabled()) {
1212 /*
1213 * We can't take a PMU exception inside _switch() since there
1214 * is a window where the kernel stack SLB and the kernel stack
1215 * are out of sync. Hard disable here.
1216 */
1217 hard_irq_disable();
1218 }
bc2a9408 1219
20dbe670
AB
1220 /*
1221 * Call restore_sprs() before calling _switch(). If we move it after
1222 * _switch() then we miss out on calling it for new tasks. The reason
1223 * for this is we manually create a stack frame for new tasks that
1224 * directly returns through ret_from_fork() or
1225 * ret_from_kernel_thread(). See copy_thread() for details.
1226 */
f3d885cc
AB
1227 restore_sprs(old_thread, new_thread);
1228
20dbe670
AB
1229 last = _switch(old_thread, new_thread);
1230
4e003747 1231#ifdef CONFIG_PPC_BOOK3S_64
d6bf29b4
PZ
1232 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1233 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 1234 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1235 batch->active = 1;
1236 }
70fe3d98 1237
05b98791
CL
1238 if (current->thread.regs) {
1239 restore_math(current->thread.regs);
07d2a628
NP
1240
1241 /*
1242 * The copy-paste buffer can only store into foreign real
1243 * addresses, so unprivileged processes can not see the
1244 * data or use it in any way unless they have foreign real
9d2a4d71
SB
1245 * mappings. If the new process has the foreign real address
1246 * mappings, we must issue a cp_abort to clear any state and
1247 * prevent snooping, corruption or a covert channel.
07d2a628 1248 */
05b98791 1249 if (current->thread.used_vas)
9d2a4d71 1250 asm volatile(PPC_CP_ABORT);
07d2a628 1251 }
4e003747 1252#endif /* CONFIG_PPC_BOOK3S_64 */
d6bf29b4 1253
14cf11af
PM
1254 return last;
1255}
1256
df13102f 1257#define NR_INSN_TO_PRINT 16
06d67d54 1258
06d67d54
PM
1259static void show_instructions(struct pt_regs *regs)
1260{
1261 int i;
df13102f 1262 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
06d67d54
PM
1263
1264 printk("Instruction dump:");
1265
df13102f 1266 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
06d67d54
PM
1267 int instr;
1268
1269 if (!(i % 8))
2ffd04de 1270 pr_cont("\n");
06d67d54 1271
0de2d820
SW
1272#if !defined(CONFIG_BOOKE)
1273 /* If executing with the IMMU off, adjust pc rather
1274 * than print XXXXXXXX.
1275 */
1276 if (!(regs->msr & MSR_IR))
1277 pc = (unsigned long)phys_to_virt(pc);
1278#endif
1279
00ae36de 1280 if (!__kernel_text_address(pc) ||
3b35bd48 1281 probe_kernel_address((const void *)pc, instr)) {
2ffd04de 1282 pr_cont("XXXXXXXX ");
06d67d54
PM
1283 } else {
1284 if (regs->nip == pc)
2ffd04de 1285 pr_cont("<%08x> ", instr);
06d67d54 1286 else
2ffd04de 1287 pr_cont("%08x ", instr);
06d67d54
PM
1288 }
1289
1290 pc += sizeof(int);
1291 }
1292
2ffd04de 1293 pr_cont("\n");
06d67d54
PM
1294}
1295
88b0fe17
MOA
1296void show_user_instructions(struct pt_regs *regs)
1297{
1298 unsigned long pc;
df13102f 1299 int n = NR_INSN_TO_PRINT;
fb2d9505
CL
1300 struct seq_buf s;
1301 char buf[96]; /* enough for 8 times 9 + 2 chars */
88b0fe17 1302
df13102f 1303 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
88b0fe17 1304
a932ed3b
ME
1305 /*
1306 * Make sure the NIP points at userspace, not kernel text/data or
1307 * elsewhere.
1308 */
df13102f 1309 if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
a932ed3b
ME
1310 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1311 current->comm, current->pid);
1312 return;
1313 }
1314
fb2d9505 1315 seq_buf_init(&s, buf, sizeof(buf));
88b0fe17 1316
fb2d9505
CL
1317 while (n) {
1318 int i;
88b0fe17 1319
fb2d9505 1320 seq_buf_clear(&s);
88b0fe17 1321
fb2d9505
CL
1322 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1323 int instr;
1324
1325 if (probe_kernel_address((const void *)pc, instr)) {
1326 seq_buf_printf(&s, "XXXXXXXX ");
1327 continue;
1328 }
1329 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
88b0fe17
MOA
1330 }
1331
fb2d9505
CL
1332 if (!seq_buf_has_overflowed(&s))
1333 pr_info("%s[%d]: code: %s\n", current->comm,
1334 current->pid, s.buffer);
88b0fe17 1335 }
88b0fe17
MOA
1336}
1337
801c0b2c 1338struct regbit {
06d67d54
PM
1339 unsigned long bit;
1340 const char *name;
801c0b2c
MN
1341};
1342
1343static struct regbit msr_bits[] = {
3bfd0c9c
AB
1344#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1345 {MSR_SF, "SF"},
1346 {MSR_HV, "HV"},
1347#endif
1348 {MSR_VEC, "VEC"},
1349 {MSR_VSX, "VSX"},
1350#ifdef CONFIG_BOOKE
1351 {MSR_CE, "CE"},
1352#endif
06d67d54
PM
1353 {MSR_EE, "EE"},
1354 {MSR_PR, "PR"},
1355 {MSR_FP, "FP"},
1356 {MSR_ME, "ME"},
3bfd0c9c 1357#ifdef CONFIG_BOOKE
1b98326b 1358 {MSR_DE, "DE"},
3bfd0c9c
AB
1359#else
1360 {MSR_SE, "SE"},
1361 {MSR_BE, "BE"},
1362#endif
06d67d54
PM
1363 {MSR_IR, "IR"},
1364 {MSR_DR, "DR"},
3bfd0c9c
AB
1365 {MSR_PMM, "PMM"},
1366#ifndef CONFIG_BOOKE
1367 {MSR_RI, "RI"},
1368 {MSR_LE, "LE"},
1369#endif
06d67d54
PM
1370 {0, NULL}
1371};
1372
801c0b2c 1373static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
06d67d54 1374{
801c0b2c 1375 const char *s = "";
06d67d54 1376
06d67d54
PM
1377 for (; bits->bit; ++bits)
1378 if (val & bits->bit) {
db5ba5ae 1379 pr_cont("%s%s", s, bits->name);
801c0b2c 1380 s = sep;
06d67d54 1381 }
801c0b2c
MN
1382}
1383
1384#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1385static struct regbit msr_tm_bits[] = {
1386 {MSR_TS_T, "T"},
1387 {MSR_TS_S, "S"},
1388 {MSR_TM, "E"},
1389 {0, NULL}
1390};
1391
1392static void print_tm_bits(unsigned long val)
1393{
1394/*
1395 * This only prints something if at least one of the TM bit is set.
1396 * Inside the TM[], the output means:
1397 * E: Enabled (bit 32)
1398 * S: Suspended (bit 33)
1399 * T: Transactional (bit 34)
1400 */
1401 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
db5ba5ae 1402 pr_cont(",TM[");
801c0b2c 1403 print_bits(val, msr_tm_bits, "");
db5ba5ae 1404 pr_cont("]");
801c0b2c
MN
1405 }
1406}
1407#else
1408static void print_tm_bits(unsigned long val) {}
1409#endif
1410
1411static void print_msr_bits(unsigned long val)
1412{
db5ba5ae 1413 pr_cont("<");
801c0b2c
MN
1414 print_bits(val, msr_bits, ",");
1415 print_tm_bits(val);
db5ba5ae 1416 pr_cont(">");
06d67d54
PM
1417}
1418
1419#ifdef CONFIG_PPC64
f6f7dde3 1420#define REG "%016lx"
06d67d54
PM
1421#define REGS_PER_LINE 4
1422#define LAST_VOLATILE 13
1423#else
f6f7dde3 1424#define REG "%08lx"
06d67d54
PM
1425#define REGS_PER_LINE 8
1426#define LAST_VOLATILE 12
1427#endif
1428
14cf11af
PM
1429void show_regs(struct pt_regs * regs)
1430{
1431 int i, trap;
1432
a43cb95d
TH
1433 show_regs_print_info(KERN_DEFAULT);
1434
a6036100 1435 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
06d67d54 1436 regs->nip, regs->link, regs->ctr);
182dc9c7 1437 printk("REGS: %px TRAP: %04lx %s (%s)\n",
96b644bd 1438 regs, regs->trap, print_tainted(), init_utsname()->release);
a6036100 1439 printk("MSR: "REG" ", regs->msr);
801c0b2c 1440 print_msr_bits(regs->msr);
f6fc73fb 1441 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1442 trap = TRAP(regs);
2271db20 1443 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
7dae865f 1444 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1445 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1446#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
7dae865f 1447 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1448#else
7dae865f 1449 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
9db8bcfd
AB
1450#endif
1451#ifdef CONFIG_PPC64
3130a7bb 1452 pr_cont("IRQMASK: %lx ", regs->softe);
9db8bcfd
AB
1453#endif
1454#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a 1455 if (MSR_TM_ACTIVE(regs->msr))
7dae865f 1456 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1457#endif
14cf11af
PM
1458
1459 for (i = 0; i < 32; i++) {
06d67d54 1460 if ((i % REGS_PER_LINE) == 0)
7dae865f
ME
1461 pr_cont("\nGPR%02d: ", i);
1462 pr_cont(REG " ", regs->gpr[i]);
06d67d54 1463 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1464 break;
1465 }
7dae865f 1466 pr_cont("\n");
14cf11af
PM
1467#ifdef CONFIG_KALLSYMS
1468 /*
1469 * Lookup NIP late so we have the best change of getting the
1470 * above info out without failing
1471 */
058c78f4
BH
1472 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1473 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1474#endif
14cf11af 1475 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1476 if (!user_mode(regs))
1477 show_instructions(regs);
14cf11af
PM
1478}
1479
14cf11af
PM
1480void flush_thread(void)
1481{
e0780b72 1482#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1483 flush_ptrace_hw_breakpoint(current);
e0780b72 1484#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1485 set_debug_reg_defaults(&current->thread);
e0780b72 1486#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1487}
1488
425d3314
NP
1489#ifdef CONFIG_PPC_BOOK3S_64
1490void arch_setup_new_exec(void)
1491{
1492 if (radix_enabled())
1493 return;
1494 hash__setup_new_exec();
1495}
1496#endif
1497
9d2a4d71
SB
1498int set_thread_uses_vas(void)
1499{
1500#ifdef CONFIG_PPC_BOOK3S_64
1501 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1502 return -EINVAL;
1503
1504 current->thread.used_vas = 1;
1505
1506 /*
1507 * Even a process that has no foreign real address mapping can use
1508 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1509 * to clear any pending COPY and prevent a covert channel.
1510 *
1511 * __switch_to() will issue CP_ABORT on future context switches.
1512 */
1513 asm volatile(PPC_CP_ABORT);
1514
1515#endif /* CONFIG_PPC_BOOK3S_64 */
1516 return 0;
1517}
1518
ec233ede 1519#ifdef CONFIG_PPC64
71cc64a8
AS
1520/**
1521 * Assign a TIDR (thread ID) for task @t and set it in the thread
1522 * structure. For now, we only support setting TIDR for 'current' task.
ec233ede 1523 *
71cc64a8
AS
1524 * Since the TID value is a truncated form of it PID, it is possible
1525 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1526 * that 2 threads share the same TID and are waiting, one of the following
1527 * cases will happen:
ec233ede 1528 *
71cc64a8
AS
1529 * 1. The correct thread is running, the wrong thread is not
1530 * In this situation, the correct thread is woken and proceeds to pass it's
1531 * condition check.
ec233ede 1532 *
71cc64a8
AS
1533 * 2. Neither threads are running
1534 * In this situation, neither thread will be woken. When scheduled, the waiting
1535 * threads will execute either a wait, which will return immediately, followed
1536 * by a condition check, which will pass for the correct thread and fail
1537 * for the wrong thread, or they will execute the condition check immediately.
ec233ede 1538 *
71cc64a8
AS
1539 * 3. The wrong thread is running, the correct thread is not
1540 * The wrong thread will be woken, but will fail it's condition check and
1541 * re-execute wait. The correct thread, when scheduled, will execute either
1542 * it's condition check (which will pass), or wait, which returns immediately
1543 * when called the first time after the thread is scheduled, followed by it's
1544 * condition check (which will pass).
ec233ede 1545 *
71cc64a8
AS
1546 * 4. Both threads are running
1547 * Both threads will be woken. The wrong thread will fail it's condition check
1548 * and execute another wait, while the correct thread will pass it's condition
1549 * check.
1550 *
1551 * @t: the task to set the thread ID for
ec233ede
SB
1552 */
1553int set_thread_tidr(struct task_struct *t)
1554{
3449f191 1555 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
ec233ede
SB
1556 return -EINVAL;
1557
1558 if (t != current)
1559 return -EINVAL;
1560
7e4d4233
VJ
1561 if (t->thread.tidr)
1562 return 0;
1563
71cc64a8 1564 t->thread.tidr = (u16)task_pid_nr(t);
ec233ede
SB
1565 mtspr(SPRN_TIDR, t->thread.tidr);
1566
1567 return 0;
1568}
b1db5513 1569EXPORT_SYMBOL_GPL(set_thread_tidr);
ec233ede
SB
1570
1571#endif /* CONFIG_PPC64 */
1572
14cf11af
PM
1573void
1574release_thread(struct task_struct *t)
1575{
1576}
1577
1578/*
55ccf3fe
SS
1579 * this gets called so that we can store coprocessor state into memory and
1580 * copy the current task into the new thread.
14cf11af 1581 */
55ccf3fe 1582int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1583{
579e633e 1584 flush_all_to_thread(src);
621b5060
MN
1585 /*
1586 * Flush TM state out so we can copy it. __switch_to_tm() does this
1587 * flush but it removes the checkpointed state from the current CPU and
1588 * transitions the CPU out of TM mode. Hence we need to call
1589 * tm_recheckpoint_new_task() (on the same task) to restore the
1590 * checkpointed state back and the TM mode.
5d176f75
CB
1591 *
1592 * Can't pass dst because it isn't ready. Doesn't matter, passing
1593 * dst is only important for __switch_to()
621b5060 1594 */
dc310669 1595 __switch_to_tm(src, src);
330a1eb7 1596
55ccf3fe 1597 *dst = *src;
330a1eb7
ME
1598
1599 clear_task_ebb(dst);
1600
55ccf3fe 1601 return 0;
14cf11af
PM
1602}
1603
cec15488
ME
1604static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1605{
4e003747 1606#ifdef CONFIG_PPC_BOOK3S_64
cec15488
ME
1607 unsigned long sp_vsid;
1608 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1609
caca285e
AK
1610 if (radix_enabled())
1611 return;
1612
cec15488
ME
1613 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1614 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1615 << SLB_VSID_SHIFT_1T;
1616 else
1617 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1618 << SLB_VSID_SHIFT;
1619 sp_vsid |= SLB_VSID_KERNEL | llp;
1620 p->thread.ksp_vsid = sp_vsid;
1621#endif
1622}
1623
14cf11af
PM
1624/*
1625 * Copy a thread..
1626 */
efcac658 1627
6eca8933
AD
1628/*
1629 * Copy architecture-specific thread state
1630 */
6f2c55b8 1631int copy_thread(unsigned long clone_flags, unsigned long usp,
6eca8933 1632 unsigned long kthread_arg, struct task_struct *p)
14cf11af
PM
1633{
1634 struct pt_regs *childregs, *kregs;
1635 extern void ret_from_fork(void);
58254e10
AV
1636 extern void ret_from_kernel_thread(void);
1637 void (*f)(void);
0cec6fd1 1638 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
5d31a96e
ME
1639 struct thread_info *ti = task_thread_info(p);
1640
ed1cd6de 1641 klp_init_thread_info(p);
14cf11af 1642
14cf11af
PM
1643 /* Copy registers */
1644 sp -= sizeof(struct pt_regs);
1645 childregs = (struct pt_regs *) sp;
ab75819d 1646 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1647 /* kernel thread */
58254e10 1648 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1649 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1650 /* function */
1651 if (usp)
1652 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1653#ifdef CONFIG_PPC64
b5e2fc1c 1654 clear_tsk_thread_flag(p, TIF_32BIT);
c2e480ba 1655 childregs->softe = IRQS_ENABLED;
06d67d54 1656#endif
6eca8933 1657 childregs->gpr[15] = kthread_arg;
14cf11af 1658 p->thread.regs = NULL; /* no user register state */
138d1ce8 1659 ti->flags |= _TIF_RESTOREALL;
58254e10 1660 f = ret_from_kernel_thread;
14cf11af 1661 } else {
6eca8933 1662 /* user thread */
afa86fc4 1663 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1664 CHECK_FULL_REGS(regs);
1665 *childregs = *regs;
ea516b11
AV
1666 if (usp)
1667 childregs->gpr[1] = usp;
14cf11af 1668 p->thread.regs = childregs;
58254e10 1669 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1670 if (clone_flags & CLONE_SETTLS) {
1671#ifdef CONFIG_PPC64
9904b005 1672 if (!is_32bit_task())
06d67d54
PM
1673 childregs->gpr[13] = childregs->gpr[6];
1674 else
1675#endif
1676 childregs->gpr[2] = childregs->gpr[6];
1677 }
58254e10
AV
1678
1679 f = ret_from_fork;
14cf11af 1680 }
d272f667 1681 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
14cf11af 1682 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1683
1684 /*
1685 * The way this works is that at some point in the future
1686 * some task will call _switch to switch to the new task.
1687 * That will pop off the stack frame created below and start
1688 * the new task running at ret_from_fork. The new task will
1689 * do some house keeping and then return from the fork or clone
1690 * system call, using the stack frame created above.
1691 */
af945cf4 1692 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1693 sp -= sizeof(struct pt_regs);
1694 kregs = (struct pt_regs *) sp;
1695 sp -= STACK_FRAME_OVERHEAD;
1696 p->thread.ksp = sp;
cbc9565e 1697#ifdef CONFIG_PPC32
a7916a1d 1698 p->thread.ksp_limit = (unsigned long)end_of_stack(p);
cbc9565e 1699#endif
28d170ab
ON
1700#ifdef CONFIG_HAVE_HW_BREAKPOINT
1701 p->thread.ptrace_bps[0] = NULL;
1702#endif
1703
18461960
PM
1704 p->thread.fp_save_area = NULL;
1705#ifdef CONFIG_ALTIVEC
1706 p->thread.vr_save_area = NULL;
1707#endif
1708
cec15488
ME
1709 setup_ksp_vsid(p, sp);
1710
efcac658
AK
1711#ifdef CONFIG_PPC64
1712 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26 1713 p->thread.dscr_inherit = current->thread.dscr_inherit;
db1231dc 1714 p->thread.dscr = mfspr(SPRN_DSCR);
efcac658 1715 }
92779245 1716 if (cpu_has_feature(CPU_FTR_HAS_PPR))
4c2de74c 1717 childregs->ppr = DEFAULT_PPR;
ec233ede
SB
1718
1719 p->thread.tidr = 0;
efcac658 1720#endif
7cedd601 1721 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1722 return 0;
1723}
1724
5434ae74
NP
1725void preload_new_slb_context(unsigned long start, unsigned long sp);
1726
14cf11af
PM
1727/*
1728 * Set up a thread for executing a new program
1729 */
06d67d54 1730void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1731{
90eac727
ME
1732#ifdef CONFIG_PPC64
1733 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
5434ae74
NP
1734
1735#ifdef CONFIG_PPC_BOOK3S_64
f89bd8ba
AK
1736 if (!radix_enabled())
1737 preload_new_slb_context(start, sp);
5434ae74 1738#endif
90eac727
ME
1739#endif
1740
06d67d54
PM
1741 /*
1742 * If we exec out of a kernel thread then thread.regs will not be
1743 * set. Do it now.
1744 */
1745 if (!current->thread.regs) {
0cec6fd1
AV
1746 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1747 current->thread.regs = regs - 1;
06d67d54
PM
1748 }
1749
8e96a87c
CB
1750#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1751 /*
1752 * Clear any transactional state, we're exec()ing. The cause is
1753 * not important as there will never be a recheckpoint so it's not
1754 * user visible.
1755 */
1756 if (MSR_TM_SUSPENDED(mfmsr()))
1757 tm_reclaim_current(0);
1758#endif
1759
14cf11af
PM
1760 memset(regs->gpr, 0, sizeof(regs->gpr));
1761 regs->ctr = 0;
1762 regs->link = 0;
1763 regs->xer = 0;
1764 regs->ccr = 0;
14cf11af 1765 regs->gpr[1] = sp;
06d67d54 1766
474f8196
RM
1767 /*
1768 * We have just cleared all the nonvolatile GPRs, so make
1769 * FULL_REGS(regs) return true. This is necessary to allow
1770 * ptrace to examine the thread immediately after exec.
1771 */
1772 regs->trap &= ~1UL;
1773
06d67d54
PM
1774#ifdef CONFIG_PPC32
1775 regs->mq = 0;
1776 regs->nip = start;
14cf11af 1777 regs->msr = MSR_USER;
06d67d54 1778#else
9904b005 1779 if (!is_32bit_task()) {
94af3abf 1780 unsigned long entry;
06d67d54 1781
94af3abf
RR
1782 if (is_elf2_task()) {
1783 /* Look ma, no function descriptors! */
1784 entry = start;
06d67d54 1785
94af3abf
RR
1786 /*
1787 * Ulrich says:
1788 * The latest iteration of the ABI requires that when
1789 * calling a function (at its global entry point),
1790 * the caller must ensure r12 holds the entry point
1791 * address (so that the function can quickly
1792 * establish addressability).
1793 */
1794 regs->gpr[12] = start;
1795 /* Make sure that's restored on entry to userspace. */
1796 set_thread_flag(TIF_RESTOREALL);
1797 } else {
1798 unsigned long toc;
1799
1800 /* start is a relocated pointer to the function
1801 * descriptor for the elf _start routine. The first
1802 * entry in the function descriptor is the entry
1803 * address of _start and the second entry is the TOC
1804 * value we need to use.
1805 */
1806 __get_user(entry, (unsigned long __user *)start);
1807 __get_user(toc, (unsigned long __user *)start+1);
1808
1809 /* Check whether the e_entry function descriptor entries
1810 * need to be relocated before we can use them.
1811 */
1812 if (load_addr != 0) {
1813 entry += load_addr;
1814 toc += load_addr;
1815 }
1816 regs->gpr[2] = toc;
06d67d54
PM
1817 }
1818 regs->nip = entry;
06d67d54 1819 regs->msr = MSR_USER64;
d4bf9a78
SR
1820 } else {
1821 regs->nip = start;
1822 regs->gpr[2] = 0;
1823 regs->msr = MSR_USER32;
06d67d54
PM
1824 }
1825#endif
ce48b210
MN
1826#ifdef CONFIG_VSX
1827 current->thread.used_vsr = 0;
1828#endif
5434ae74 1829 current->thread.load_slb = 0;
1195892c 1830 current->thread.load_fp = 0;
de79f7b9 1831 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1832 current->thread.fp_save_area = NULL;
14cf11af 1833#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1834 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1835 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1836 current->thread.vr_save_area = NULL;
14cf11af
PM
1837 current->thread.vrsave = 0;
1838 current->thread.used_vr = 0;
1195892c 1839 current->thread.load_vec = 0;
14cf11af
PM
1840#endif /* CONFIG_ALTIVEC */
1841#ifdef CONFIG_SPE
1842 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1843 current->thread.acc = 0;
1844 current->thread.spefscr = 0;
1845 current->thread.used_spe = 0;
1846#endif /* CONFIG_SPE */
bc2a9408 1847#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
bc2a9408
MN
1848 current->thread.tm_tfhar = 0;
1849 current->thread.tm_texasr = 0;
1850 current->thread.tm_tfiar = 0;
7f22ced4 1851 current->thread.load_tm = 0;
bc2a9408 1852#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
06bb53b3
RP
1853
1854 thread_pkey_regs_init(&current->thread);
14cf11af 1855}
e1802b06 1856EXPORT_SYMBOL(start_thread);
14cf11af
PM
1857
1858#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1859 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1860
1861int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1862{
1863 struct pt_regs *regs = tsk->thread.regs;
1864
1865 /* This is a bit hairy. If we are an SPE enabled processor
1866 * (have embedded fp) we store the IEEE exception enable flags in
1867 * fpexc_mode. fpexc_mode is also used for setting FP exception
1868 * mode (asyn, precise, disabled) for 'Classic' FP. */
1869 if (val & PR_FP_EXC_SW_ENABLE) {
1870#ifdef CONFIG_SPE
5e14d21e 1871 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1872 /*
1873 * When the sticky exception bits are set
1874 * directly by userspace, it must call prctl
1875 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1876 * in the existing prctl settings) or
1877 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1878 * the bits being set). <fenv.h> functions
1879 * saving and restoring the whole
1880 * floating-point environment need to do so
1881 * anyway to restore the prctl settings from
1882 * the saved environment.
1883 */
1884 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1885 tsk->thread.fpexc_mode = val &
1886 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1887 return 0;
1888 } else {
1889 return -EINVAL;
1890 }
14cf11af
PM
1891#else
1892 return -EINVAL;
1893#endif
14cf11af 1894 }
06d67d54
PM
1895
1896 /* on a CONFIG_SPE this does not hurt us. The bits that
1897 * __pack_fe01 use do not overlap with bits used for
1898 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1899 * on CONFIG_SPE implementations are reserved so writing to
1900 * them does not change anything */
1901 if (val > PR_FP_EXC_PRECISE)
1902 return -EINVAL;
1903 tsk->thread.fpexc_mode = __pack_fe01(val);
1904 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1905 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1906 | tsk->thread.fpexc_mode;
14cf11af
PM
1907 return 0;
1908}
1909
1910int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1911{
1912 unsigned int val;
1913
1914 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1915#ifdef CONFIG_SPE
640e9225
JM
1916 if (cpu_has_feature(CPU_FTR_SPE)) {
1917 /*
1918 * When the sticky exception bits are set
1919 * directly by userspace, it must call prctl
1920 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1921 * in the existing prctl settings) or
1922 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1923 * the bits being set). <fenv.h> functions
1924 * saving and restoring the whole
1925 * floating-point environment need to do so
1926 * anyway to restore the prctl settings from
1927 * the saved environment.
1928 */
1929 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1930 val = tsk->thread.fpexc_mode;
640e9225 1931 } else
5e14d21e 1932 return -EINVAL;
14cf11af
PM
1933#else
1934 return -EINVAL;
1935#endif
1936 else
1937 val = __unpack_fe01(tsk->thread.fpexc_mode);
1938 return put_user(val, (unsigned int __user *) adr);
1939}
1940
fab5db97
PM
1941int set_endian(struct task_struct *tsk, unsigned int val)
1942{
1943 struct pt_regs *regs = tsk->thread.regs;
1944
1945 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1946 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1947 return -EINVAL;
1948
1949 if (regs == NULL)
1950 return -EINVAL;
1951
1952 if (val == PR_ENDIAN_BIG)
1953 regs->msr &= ~MSR_LE;
1954 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1955 regs->msr |= MSR_LE;
1956 else
1957 return -EINVAL;
1958
1959 return 0;
1960}
1961
1962int get_endian(struct task_struct *tsk, unsigned long adr)
1963{
1964 struct pt_regs *regs = tsk->thread.regs;
1965 unsigned int val;
1966
1967 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1968 !cpu_has_feature(CPU_FTR_REAL_LE))
1969 return -EINVAL;
1970
1971 if (regs == NULL)
1972 return -EINVAL;
1973
1974 if (regs->msr & MSR_LE) {
1975 if (cpu_has_feature(CPU_FTR_REAL_LE))
1976 val = PR_ENDIAN_LITTLE;
1977 else
1978 val = PR_ENDIAN_PPC_LITTLE;
1979 } else
1980 val = PR_ENDIAN_BIG;
1981
1982 return put_user(val, (unsigned int __user *)adr);
1983}
1984
e9370ae1
PM
1985int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1986{
1987 tsk->thread.align_ctl = val;
1988 return 0;
1989}
1990
1991int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1992{
1993 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1994}
1995
bb72c481
PM
1996static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1997 unsigned long nbytes)
1998{
1999 unsigned long stack_page;
2000 unsigned long cpu = task_cpu(p);
2001
a7916a1d
CL
2002 stack_page = (unsigned long)hardirq_ctx[cpu];
2003 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2004 return 1;
2005
2006 stack_page = (unsigned long)softirq_ctx[cpu];
2007 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2008 return 1;
2009
bb72c481
PM
2010 return 0;
2011}
2012
2f25194d 2013int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
2014 unsigned long nbytes)
2015{
0cec6fd1 2016 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af 2017
a7916a1d
CL
2018 if (sp < THREAD_SIZE)
2019 return 0;
2020
2021 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
14cf11af
PM
2022 return 1;
2023
bb72c481 2024 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
2025}
2026
2f25194d
AB
2027EXPORT_SYMBOL(validate_sp);
2028
018cce33 2029static unsigned long __get_wchan(struct task_struct *p)
14cf11af
PM
2030{
2031 unsigned long ip, sp;
2032 int count = 0;
2033
2034 if (!p || p == current || p->state == TASK_RUNNING)
2035 return 0;
2036
2037 sp = p->thread.ksp;
ec2b36b9 2038 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
2039 return 0;
2040
2041 do {
2042 sp = *(unsigned long *)sp;
4ca360f3
KC
2043 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2044 p->state == TASK_RUNNING)
14cf11af
PM
2045 return 0;
2046 if (count > 0) {
ec2b36b9 2047 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
2048 if (!in_sched_functions(ip))
2049 return ip;
2050 }
2051 } while (count++ < 16);
2052 return 0;
2053}
06d67d54 2054
018cce33
CL
2055unsigned long get_wchan(struct task_struct *p)
2056{
2057 unsigned long ret;
2058
2059 if (!try_get_task_stack(p))
2060 return 0;
2061
2062 ret = __get_wchan(p);
2063
2064 put_task_stack(p);
2065
2066 return ret;
2067}
2068
c4d04be1 2069static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
2070
2071void show_stack(struct task_struct *tsk, unsigned long *stack)
2072{
2073 unsigned long sp, ip, lr, newsp;
2074 int count = 0;
2075 int firstframe = 1;
6794c782 2076#ifdef CONFIG_FUNCTION_GRAPH_TRACER
0fad8bfe 2077 struct ftrace_ret_stack *ret_stack;
6794c782 2078 extern void return_to_handler(void);
9135c3cc 2079 unsigned long rth = (unsigned long)return_to_handler;
0fad8bfe 2080 int curr_frame = 0;
6794c782 2081#endif
06d67d54 2082
06d67d54
PM
2083 if (tsk == NULL)
2084 tsk = current;
018cce33
CL
2085
2086 if (!try_get_task_stack(tsk))
2087 return;
2088
2089 sp = (unsigned long) stack;
06d67d54
PM
2090 if (sp == 0) {
2091 if (tsk == current)
acf620ec 2092 sp = current_stack_pointer();
06d67d54
PM
2093 else
2094 sp = tsk->thread.ksp;
2095 }
2096
2097 lr = 0;
2098 printk("Call Trace:\n");
2099 do {
ec2b36b9 2100 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
018cce33 2101 break;
06d67d54
PM
2102
2103 stack = (unsigned long *) sp;
2104 newsp = stack[0];
ec2b36b9 2105 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 2106 if (!firstframe || ip != lr) {
058c78f4 2107 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 2108#ifdef CONFIG_FUNCTION_GRAPH_TRACER
7d56c65a 2109 if ((ip == rth) && curr_frame >= 0) {
0fad8bfe
SRV
2110 ret_stack = ftrace_graph_get_ret_stack(current,
2111 curr_frame++);
2112 if (ret_stack)
2113 pr_cont(" (%pS)",
2114 (void *)ret_stack->ret);
2115 else
2116 curr_frame = -1;
6794c782
SR
2117 }
2118#endif
06d67d54 2119 if (firstframe)
9a1f490f
ME
2120 pr_cont(" (unreliable)");
2121 pr_cont("\n");
06d67d54
PM
2122 }
2123 firstframe = 0;
2124
2125 /*
2126 * See if this is an exception frame.
2127 * We look for the "regshere" marker in the current frame.
2128 */
ec2b36b9
BH
2129 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2130 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
2131 struct pt_regs *regs = (struct pt_regs *)
2132 (sp + STACK_FRAME_OVERHEAD);
06d67d54 2133 lr = regs->link;
9be9be2e 2134 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 2135 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
2136 firstframe = 1;
2137 }
2138
2139 sp = newsp;
2140 } while (count++ < kstack_depth_to_print);
018cce33
CL
2141
2142 put_task_stack(tsk);
06d67d54
PM
2143}
2144
cb2c9b27 2145#ifdef CONFIG_PPC64
fe1952fc 2146/* Called with hard IRQs off */
0e37739b 2147void notrace __ppc64_runlatch_on(void)
cb2c9b27 2148{
fe1952fc 2149 struct thread_info *ti = current_thread_info();
cb2c9b27 2150
d1d0d5ff
NP
2151 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2152 /*
2153 * Least significant bit (RUN) is the only writable bit of
2154 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2155 * earliest ISA where this is the case, but it's convenient.
2156 */
2157 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2158 } else {
2159 unsigned long ctrl;
2160
2161 /*
2162 * Some architectures (e.g., Cell) have writable fields other
2163 * than RUN, so do the read-modify-write.
2164 */
2165 ctrl = mfspr(SPRN_CTRLF);
2166 ctrl |= CTRL_RUNLATCH;
2167 mtspr(SPRN_CTRLT, ctrl);
2168 }
cb2c9b27 2169
fae2e0fb 2170 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
2171}
2172
fe1952fc 2173/* Called with hard IRQs off */
0e37739b 2174void notrace __ppc64_runlatch_off(void)
cb2c9b27 2175{
fe1952fc 2176 struct thread_info *ti = current_thread_info();
cb2c9b27 2177
fae2e0fb 2178 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 2179
d1d0d5ff
NP
2180 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2181 mtspr(SPRN_CTRLT, 0);
2182 } else {
2183 unsigned long ctrl;
2184
2185 ctrl = mfspr(SPRN_CTRLF);
2186 ctrl &= ~CTRL_RUNLATCH;
2187 mtspr(SPRN_CTRLT, ctrl);
2188 }
cb2c9b27 2189}
fe1952fc 2190#endif /* CONFIG_PPC64 */
f6a61680 2191
d839088c
AB
2192unsigned long arch_align_stack(unsigned long sp)
2193{
2194 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2195 sp -= get_random_int() & ~PAGE_MASK;
2196 return sp & ~0xf;
2197}
912f9ee2
AB
2198
2199static inline unsigned long brk_rnd(void)
2200{
2201 unsigned long rnd = 0;
2202
2203 /* 8MB for 32bit, 1GB for 64bit */
2204 if (is_32bit_task())
5ef11c35 2205 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
912f9ee2 2206 else
5ef11c35 2207 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
912f9ee2
AB
2208
2209 return rnd << PAGE_SHIFT;
2210}
2211
2212unsigned long arch_randomize_brk(struct mm_struct *mm)
2213{
8bbde7a7
AB
2214 unsigned long base = mm->brk;
2215 unsigned long ret;
2216
4e003747 2217#ifdef CONFIG_PPC_BOOK3S_64
8bbde7a7
AB
2218 /*
2219 * If we are using 1TB segments and we are allowed to randomise
2220 * the heap, we can put it above 1TB so it is backed by a 1TB
2221 * segment. Otherwise the heap will be in the bottom 1TB
2222 * which always uses 256MB segments and this may result in a
caca285e
AK
2223 * performance penalty. We don't need to worry about radix. For
2224 * radix, mmu_highuser_ssize remains unchanged from 256MB.
8bbde7a7
AB
2225 */
2226 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2227 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2228#endif
2229
2230 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
2231
2232 if (ret < mm->brk)
2233 return mm->brk;
2234
2235 return ret;
2236}
501cb16d 2237