perf_counter: x86: Fix up the amd NMI/INT throttle
[linux-2.6-block.git] / arch / powerpc / kernel / perf_counter.c
CommitLineData
4574910e
PM
1/*
2 * Performance counter support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/kernel.h>
12#include <linux/sched.h>
13#include <linux/perf_counter.h>
14#include <linux/percpu.h>
15#include <linux/hardirq.h>
16#include <asm/reg.h>
17#include <asm/pmc.h>
01d0287f 18#include <asm/machdep.h>
0475f9ea 19#include <asm/firmware.h>
4574910e
PM
20
21struct cpu_hw_counters {
22 int n_counters;
23 int n_percpu;
24 int disabled;
25 int n_added;
ab7ef2e5
PM
26 int n_limited;
27 u8 pmcs_enabled;
4574910e
PM
28 struct perf_counter *counter[MAX_HWCOUNTERS];
29 unsigned int events[MAX_HWCOUNTERS];
ab7ef2e5 30 unsigned int flags[MAX_HWCOUNTERS];
4574910e 31 u64 mmcr[3];
ab7ef2e5
PM
32 struct perf_counter *limited_counter[MAX_LIMITED_HWCOUNTERS];
33 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
4574910e
PM
34};
35DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
36
37struct power_pmu *ppmu;
38
d095cd46
PM
39/*
40 * Normally, to ignore kernel events we set the FCS (freeze counters
41 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
42 * hypervisor bit set in the MSR, or if we are running on a processor
43 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
44 * then we need to use the FCHV bit to ignore kernel events.
45 */
46static unsigned int freeze_counters_kernel = MMCR0_FCS;
47
7595d63b
PM
48static void perf_counter_interrupt(struct pt_regs *regs);
49
4574910e
PM
50void perf_counter_print_debug(void)
51{
52}
53
4574910e
PM
54/*
55 * Read one performance monitor counter (PMC).
56 */
57static unsigned long read_pmc(int idx)
58{
59 unsigned long val;
60
61 switch (idx) {
62 case 1:
63 val = mfspr(SPRN_PMC1);
64 break;
65 case 2:
66 val = mfspr(SPRN_PMC2);
67 break;
68 case 3:
69 val = mfspr(SPRN_PMC3);
70 break;
71 case 4:
72 val = mfspr(SPRN_PMC4);
73 break;
74 case 5:
75 val = mfspr(SPRN_PMC5);
76 break;
77 case 6:
78 val = mfspr(SPRN_PMC6);
79 break;
80 case 7:
81 val = mfspr(SPRN_PMC7);
82 break;
83 case 8:
84 val = mfspr(SPRN_PMC8);
85 break;
86 default:
87 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
88 val = 0;
89 }
90 return val;
91}
92
93/*
94 * Write one PMC.
95 */
96static void write_pmc(int idx, unsigned long val)
97{
98 switch (idx) {
99 case 1:
100 mtspr(SPRN_PMC1, val);
101 break;
102 case 2:
103 mtspr(SPRN_PMC2, val);
104 break;
105 case 3:
106 mtspr(SPRN_PMC3, val);
107 break;
108 case 4:
109 mtspr(SPRN_PMC4, val);
110 break;
111 case 5:
112 mtspr(SPRN_PMC5, val);
113 break;
114 case 6:
115 mtspr(SPRN_PMC6, val);
116 break;
117 case 7:
118 mtspr(SPRN_PMC7, val);
119 break;
120 case 8:
121 mtspr(SPRN_PMC8, val);
122 break;
123 default:
124 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
125 }
126}
127
128/*
129 * Check if a set of events can all go on the PMU at once.
130 * If they can't, this will look at alternative codes for the events
131 * and see if any combination of alternative codes is feasible.
132 * The feasible set is returned in event[].
133 */
ab7ef2e5
PM
134static int power_check_constraints(unsigned int event[], unsigned int cflags[],
135 int n_ev)
4574910e
PM
136{
137 u64 mask, value, nv;
138 unsigned int alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
139 u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
140 u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
141 u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
142 int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
143 int i, j;
144 u64 addf = ppmu->add_fields;
145 u64 tadd = ppmu->test_adder;
146
147 if (n_ev > ppmu->n_counter)
148 return -1;
149
150 /* First see if the events will go on as-is */
151 for (i = 0; i < n_ev; ++i) {
ab7ef2e5
PM
152 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
153 && !ppmu->limited_pmc_event(event[i])) {
154 ppmu->get_alternatives(event[i], cflags[i],
155 alternatives[i]);
156 event[i] = alternatives[i][0];
157 }
4574910e
PM
158 if (ppmu->get_constraint(event[i], &amasks[i][0],
159 &avalues[i][0]))
160 return -1;
4574910e
PM
161 }
162 value = mask = 0;
163 for (i = 0; i < n_ev; ++i) {
164 nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
165 if ((((nv + tadd) ^ value) & mask) != 0 ||
166 (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
167 break;
168 value = nv;
169 mask |= amasks[i][0];
170 }
171 if (i == n_ev)
172 return 0; /* all OK */
173
174 /* doesn't work, gather alternatives... */
175 if (!ppmu->get_alternatives)
176 return -1;
177 for (i = 0; i < n_ev; ++i) {
ab7ef2e5
PM
178 choice[i] = 0;
179 n_alt[i] = ppmu->get_alternatives(event[i], cflags[i],
180 alternatives[i]);
4574910e
PM
181 for (j = 1; j < n_alt[i]; ++j)
182 ppmu->get_constraint(alternatives[i][j],
183 &amasks[i][j], &avalues[i][j]);
184 }
185
186 /* enumerate all possibilities and see if any will work */
187 i = 0;
188 j = -1;
189 value = mask = nv = 0;
190 while (i < n_ev) {
191 if (j >= 0) {
192 /* we're backtracking, restore context */
193 value = svalues[i];
194 mask = smasks[i];
195 j = choice[i];
196 }
197 /*
198 * See if any alternative k for event i,
199 * where k > j, will satisfy the constraints.
200 */
201 while (++j < n_alt[i]) {
202 nv = (value | avalues[i][j]) +
203 (value & avalues[i][j] & addf);
204 if ((((nv + tadd) ^ value) & mask) == 0 &&
205 (((nv + tadd) ^ avalues[i][j])
206 & amasks[i][j]) == 0)
207 break;
208 }
209 if (j >= n_alt[i]) {
210 /*
211 * No feasible alternative, backtrack
212 * to event i-1 and continue enumerating its
213 * alternatives from where we got up to.
214 */
215 if (--i < 0)
216 return -1;
217 } else {
218 /*
219 * Found a feasible alternative for event i,
220 * remember where we got up to with this event,
221 * go on to the next event, and start with
222 * the first alternative for it.
223 */
224 choice[i] = j;
225 svalues[i] = value;
226 smasks[i] = mask;
227 value = nv;
228 mask |= amasks[i][j];
229 ++i;
230 j = -1;
231 }
232 }
233
234 /* OK, we have a feasible combination, tell the caller the solution */
235 for (i = 0; i < n_ev; ++i)
236 event[i] = alternatives[i][choice[i]];
237 return 0;
238}
239
0475f9ea
PM
240/*
241 * Check if newly-added counters have consistent settings for
242 * exclude_{user,kernel,hv} with each other and any previously
243 * added counters.
244 */
ab7ef2e5
PM
245static int check_excludes(struct perf_counter **ctrs, unsigned int cflags[],
246 int n_prev, int n_new)
0475f9ea 247{
ab7ef2e5
PM
248 int eu = 0, ek = 0, eh = 0;
249 int i, n, first;
0475f9ea
PM
250 struct perf_counter *counter;
251
252 n = n_prev + n_new;
253 if (n <= 1)
254 return 0;
255
ab7ef2e5
PM
256 first = 1;
257 for (i = 0; i < n; ++i) {
258 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
259 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
260 continue;
261 }
0475f9ea 262 counter = ctrs[i];
ab7ef2e5
PM
263 if (first) {
264 eu = counter->hw_event.exclude_user;
265 ek = counter->hw_event.exclude_kernel;
266 eh = counter->hw_event.exclude_hv;
267 first = 0;
268 } else if (counter->hw_event.exclude_user != eu ||
269 counter->hw_event.exclude_kernel != ek ||
270 counter->hw_event.exclude_hv != eh) {
0475f9ea 271 return -EAGAIN;
ab7ef2e5 272 }
0475f9ea 273 }
ab7ef2e5
PM
274
275 if (eu || ek || eh)
276 for (i = 0; i < n; ++i)
277 if (cflags[i] & PPMU_LIMITED_PMC_OK)
278 cflags[i] |= PPMU_LIMITED_PMC_REQD;
279
0475f9ea
PM
280 return 0;
281}
282
4aeb0b42 283static void power_pmu_read(struct perf_counter *counter)
4574910e
PM
284{
285 long val, delta, prev;
286
287 if (!counter->hw.idx)
288 return;
289 /*
290 * Performance monitor interrupts come even when interrupts
291 * are soft-disabled, as long as interrupts are hard-enabled.
292 * Therefore we treat them like NMIs.
293 */
294 do {
295 prev = atomic64_read(&counter->hw.prev_count);
296 barrier();
297 val = read_pmc(counter->hw.idx);
298 } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
299
300 /* The counters are only 32 bits wide */
301 delta = (val - prev) & 0xfffffffful;
302 atomic64_add(delta, &counter->count);
303 atomic64_sub(delta, &counter->hw.period_left);
304}
305
ab7ef2e5
PM
306/*
307 * On some machines, PMC5 and PMC6 can't be written, don't respect
308 * the freeze conditions, and don't generate interrupts. This tells
309 * us if `counter' is using such a PMC.
310 */
311static int is_limited_pmc(int pmcnum)
312{
313 return ppmu->limited_pmc5_6 && (pmcnum == 5 || pmcnum == 6);
314}
315
316static void freeze_limited_counters(struct cpu_hw_counters *cpuhw,
317 unsigned long pmc5, unsigned long pmc6)
318{
319 struct perf_counter *counter;
320 u64 val, prev, delta;
321 int i;
322
323 for (i = 0; i < cpuhw->n_limited; ++i) {
324 counter = cpuhw->limited_counter[i];
325 if (!counter->hw.idx)
326 continue;
327 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
328 prev = atomic64_read(&counter->hw.prev_count);
329 counter->hw.idx = 0;
330 delta = (val - prev) & 0xfffffffful;
331 atomic64_add(delta, &counter->count);
332 }
333}
334
335static void thaw_limited_counters(struct cpu_hw_counters *cpuhw,
336 unsigned long pmc5, unsigned long pmc6)
337{
338 struct perf_counter *counter;
339 u64 val;
340 int i;
341
342 for (i = 0; i < cpuhw->n_limited; ++i) {
343 counter = cpuhw->limited_counter[i];
344 counter->hw.idx = cpuhw->limited_hwidx[i];
345 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
346 atomic64_set(&counter->hw.prev_count, val);
347 perf_counter_update_userpage(counter);
348 }
349}
350
351/*
352 * Since limited counters don't respect the freeze conditions, we
353 * have to read them immediately after freezing or unfreezing the
354 * other counters. We try to keep the values from the limited
355 * counters as consistent as possible by keeping the delay (in
356 * cycles and instructions) between freezing/unfreezing and reading
357 * the limited counters as small and consistent as possible.
358 * Therefore, if any limited counters are in use, we read them
359 * both, and always in the same order, to minimize variability,
360 * and do it inside the same asm that writes MMCR0.
361 */
362static void write_mmcr0(struct cpu_hw_counters *cpuhw, unsigned long mmcr0)
363{
364 unsigned long pmc5, pmc6;
365
366 if (!cpuhw->n_limited) {
367 mtspr(SPRN_MMCR0, mmcr0);
368 return;
369 }
370
371 /*
372 * Write MMCR0, then read PMC5 and PMC6 immediately.
373 */
374 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
375 : "=&r" (pmc5), "=&r" (pmc6)
376 : "r" (mmcr0), "i" (SPRN_MMCR0),
377 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
378
379 if (mmcr0 & MMCR0_FC)
380 freeze_limited_counters(cpuhw, pmc5, pmc6);
381 else
382 thaw_limited_counters(cpuhw, pmc5, pmc6);
383}
384
4574910e
PM
385/*
386 * Disable all counters to prevent PMU interrupts and to allow
387 * counters to be added or removed.
388 */
389u64 hw_perf_save_disable(void)
390{
391 struct cpu_hw_counters *cpuhw;
392 unsigned long ret;
393 unsigned long flags;
394
395 local_irq_save(flags);
396 cpuhw = &__get_cpu_var(cpu_hw_counters);
397
398 ret = cpuhw->disabled;
399 if (!ret) {
400 cpuhw->disabled = 1;
401 cpuhw->n_added = 0;
402
01d0287f
PM
403 /*
404 * Check if we ever enabled the PMU on this cpu.
405 */
406 if (!cpuhw->pmcs_enabled) {
407 if (ppc_md.enable_pmcs)
408 ppc_md.enable_pmcs();
409 cpuhw->pmcs_enabled = 1;
410 }
411
f708223d
PM
412 /*
413 * Disable instruction sampling if it was enabled
414 */
415 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
416 mtspr(SPRN_MMCRA,
417 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
418 mb();
419 }
420
4574910e
PM
421 /*
422 * Set the 'freeze counters' bit.
423 * The barrier is to make sure the mtspr has been
424 * executed and the PMU has frozen the counters
425 * before we return.
426 */
ab7ef2e5 427 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
4574910e
PM
428 mb();
429 }
430 local_irq_restore(flags);
431 return ret;
432}
433
434/*
435 * Re-enable all counters if disable == 0.
436 * If we were previously disabled and counters were added, then
437 * put the new config on the PMU.
438 */
439void hw_perf_restore(u64 disable)
440{
441 struct perf_counter *counter;
442 struct cpu_hw_counters *cpuhw;
443 unsigned long flags;
444 long i;
445 unsigned long val;
446 s64 left;
447 unsigned int hwc_index[MAX_HWCOUNTERS];
ab7ef2e5
PM
448 int n_lim;
449 int idx;
4574910e
PM
450
451 if (disable)
452 return;
453 local_irq_save(flags);
454 cpuhw = &__get_cpu_var(cpu_hw_counters);
455 cpuhw->disabled = 0;
456
457 /*
458 * If we didn't change anything, or only removed counters,
459 * no need to recalculate MMCR* settings and reset the PMCs.
460 * Just reenable the PMU with the current MMCR* settings
461 * (possibly updated for removal of counters).
462 */
463 if (!cpuhw->n_added) {
f708223d 464 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e 465 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
01d0287f
PM
466 if (cpuhw->n_counters == 0)
467 get_lppaca()->pmcregs_in_use = 0;
f708223d 468 goto out_enable;
4574910e
PM
469 }
470
471 /*
472 * Compute MMCR* values for the new set of counters
473 */
474 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
475 cpuhw->mmcr)) {
476 /* shouldn't ever get here */
477 printk(KERN_ERR "oops compute_mmcr failed\n");
478 goto out;
479 }
480
0475f9ea
PM
481 /*
482 * Add in MMCR0 freeze bits corresponding to the
483 * hw_event.exclude_* bits for the first counter.
484 * We have already checked that all counters have the
485 * same values for these bits as the first counter.
486 */
487 counter = cpuhw->counter[0];
488 if (counter->hw_event.exclude_user)
489 cpuhw->mmcr[0] |= MMCR0_FCP;
490 if (counter->hw_event.exclude_kernel)
d095cd46 491 cpuhw->mmcr[0] |= freeze_counters_kernel;
0475f9ea
PM
492 if (counter->hw_event.exclude_hv)
493 cpuhw->mmcr[0] |= MMCR0_FCHV;
494
4574910e
PM
495 /*
496 * Write the new configuration to MMCR* with the freeze
497 * bit set and set the hardware counters to their initial values.
498 * Then unfreeze the counters.
499 */
01d0287f 500 get_lppaca()->pmcregs_in_use = 1;
f708223d 501 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e
PM
502 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
503 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
504 | MMCR0_FC);
505
506 /*
507 * Read off any pre-existing counters that need to move
508 * to another PMC.
509 */
510 for (i = 0; i < cpuhw->n_counters; ++i) {
511 counter = cpuhw->counter[i];
512 if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
4aeb0b42 513 power_pmu_read(counter);
4574910e
PM
514 write_pmc(counter->hw.idx, 0);
515 counter->hw.idx = 0;
516 }
517 }
518
519 /*
520 * Initialize the PMCs for all the new and moved counters.
521 */
ab7ef2e5 522 cpuhw->n_limited = n_lim = 0;
4574910e
PM
523 for (i = 0; i < cpuhw->n_counters; ++i) {
524 counter = cpuhw->counter[i];
525 if (counter->hw.idx)
526 continue;
ab7ef2e5
PM
527 idx = hwc_index[i] + 1;
528 if (is_limited_pmc(idx)) {
529 cpuhw->limited_counter[n_lim] = counter;
530 cpuhw->limited_hwidx[n_lim] = idx;
531 ++n_lim;
532 continue;
533 }
4574910e
PM
534 val = 0;
535 if (counter->hw_event.irq_period) {
536 left = atomic64_read(&counter->hw.period_left);
537 if (left < 0x80000000L)
538 val = 0x80000000L - left;
539 }
540 atomic64_set(&counter->hw.prev_count, val);
ab7ef2e5
PM
541 counter->hw.idx = idx;
542 write_pmc(idx, val);
7b732a75 543 perf_counter_update_userpage(counter);
4574910e 544 }
ab7ef2e5 545 cpuhw->n_limited = n_lim;
4574910e 546 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
f708223d
PM
547
548 out_enable:
549 mb();
ab7ef2e5 550 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
4574910e 551
f708223d
PM
552 /*
553 * Enable instruction sampling if necessary
554 */
555 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
556 mb();
557 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
558 }
559
4574910e
PM
560 out:
561 local_irq_restore(flags);
562}
563
564static int collect_events(struct perf_counter *group, int max_count,
ab7ef2e5
PM
565 struct perf_counter *ctrs[], unsigned int *events,
566 unsigned int *flags)
4574910e
PM
567{
568 int n = 0;
569 struct perf_counter *counter;
570
571 if (!is_software_counter(group)) {
572 if (n >= max_count)
573 return -1;
574 ctrs[n] = group;
ab7ef2e5 575 flags[n] = group->hw.counter_base;
4574910e
PM
576 events[n++] = group->hw.config;
577 }
578 list_for_each_entry(counter, &group->sibling_list, list_entry) {
579 if (!is_software_counter(counter) &&
580 counter->state != PERF_COUNTER_STATE_OFF) {
581 if (n >= max_count)
582 return -1;
583 ctrs[n] = counter;
ab7ef2e5 584 flags[n] = counter->hw.counter_base;
4574910e
PM
585 events[n++] = counter->hw.config;
586 }
587 }
588 return n;
589}
590
591static void counter_sched_in(struct perf_counter *counter, int cpu)
592{
593 counter->state = PERF_COUNTER_STATE_ACTIVE;
594 counter->oncpu = cpu;
dc66270b 595 counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
4574910e 596 if (is_software_counter(counter))
4aeb0b42 597 counter->pmu->enable(counter);
4574910e
PM
598}
599
600/*
601 * Called to enable a whole group of counters.
602 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
603 * Assumes the caller has disabled interrupts and has
604 * frozen the PMU with hw_perf_save_disable.
605 */
606int hw_perf_group_sched_in(struct perf_counter *group_leader,
607 struct perf_cpu_context *cpuctx,
608 struct perf_counter_context *ctx, int cpu)
609{
610 struct cpu_hw_counters *cpuhw;
611 long i, n, n0;
612 struct perf_counter *sub;
613
614 cpuhw = &__get_cpu_var(cpu_hw_counters);
615 n0 = cpuhw->n_counters;
616 n = collect_events(group_leader, ppmu->n_counter - n0,
ab7ef2e5
PM
617 &cpuhw->counter[n0], &cpuhw->events[n0],
618 &cpuhw->flags[n0]);
4574910e
PM
619 if (n < 0)
620 return -EAGAIN;
ab7ef2e5 621 if (check_excludes(cpuhw->counter, cpuhw->flags, n0, n))
0475f9ea 622 return -EAGAIN;
ab7ef2e5
PM
623 i = power_check_constraints(cpuhw->events, cpuhw->flags, n + n0);
624 if (i < 0)
4574910e
PM
625 return -EAGAIN;
626 cpuhw->n_counters = n0 + n;
627 cpuhw->n_added += n;
628
629 /*
630 * OK, this group can go on; update counter states etc.,
631 * and enable any software counters
632 */
633 for (i = n0; i < n0 + n; ++i)
634 cpuhw->counter[i]->hw.config = cpuhw->events[i];
3b6f9e5c 635 cpuctx->active_oncpu += n;
4574910e
PM
636 n = 1;
637 counter_sched_in(group_leader, cpu);
638 list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
639 if (sub->state != PERF_COUNTER_STATE_OFF) {
640 counter_sched_in(sub, cpu);
641 ++n;
642 }
643 }
4574910e
PM
644 ctx->nr_active += n;
645
646 return 1;
647}
648
649/*
650 * Add a counter to the PMU.
651 * If all counters are not already frozen, then we disable and
652 * re-enable the PMU in order to get hw_perf_restore to do the
653 * actual work of reconfiguring the PMU.
654 */
4aeb0b42 655static int power_pmu_enable(struct perf_counter *counter)
4574910e
PM
656{
657 struct cpu_hw_counters *cpuhw;
658 unsigned long flags;
659 u64 pmudis;
660 int n0;
661 int ret = -EAGAIN;
662
663 local_irq_save(flags);
664 pmudis = hw_perf_save_disable();
665
666 /*
667 * Add the counter to the list (if there is room)
668 * and check whether the total set is still feasible.
669 */
670 cpuhw = &__get_cpu_var(cpu_hw_counters);
671 n0 = cpuhw->n_counters;
672 if (n0 >= ppmu->n_counter)
673 goto out;
674 cpuhw->counter[n0] = counter;
675 cpuhw->events[n0] = counter->hw.config;
ab7ef2e5
PM
676 cpuhw->flags[n0] = counter->hw.counter_base;
677 if (check_excludes(cpuhw->counter, cpuhw->flags, n0, 1))
0475f9ea 678 goto out;
ab7ef2e5 679 if (power_check_constraints(cpuhw->events, cpuhw->flags, n0 + 1))
4574910e
PM
680 goto out;
681
682 counter->hw.config = cpuhw->events[n0];
683 ++cpuhw->n_counters;
684 ++cpuhw->n_added;
685
686 ret = 0;
687 out:
688 hw_perf_restore(pmudis);
689 local_irq_restore(flags);
690 return ret;
691}
692
693/*
694 * Remove a counter from the PMU.
695 */
4aeb0b42 696static void power_pmu_disable(struct perf_counter *counter)
4574910e
PM
697{
698 struct cpu_hw_counters *cpuhw;
699 long i;
700 u64 pmudis;
701 unsigned long flags;
702
703 local_irq_save(flags);
704 pmudis = hw_perf_save_disable();
705
4aeb0b42 706 power_pmu_read(counter);
4574910e
PM
707
708 cpuhw = &__get_cpu_var(cpu_hw_counters);
709 for (i = 0; i < cpuhw->n_counters; ++i) {
710 if (counter == cpuhw->counter[i]) {
711 while (++i < cpuhw->n_counters)
712 cpuhw->counter[i-1] = cpuhw->counter[i];
713 --cpuhw->n_counters;
714 ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
ab7ef2e5
PM
715 if (counter->hw.idx) {
716 write_pmc(counter->hw.idx, 0);
717 counter->hw.idx = 0;
718 }
7b732a75 719 perf_counter_update_userpage(counter);
4574910e
PM
720 break;
721 }
722 }
ab7ef2e5
PM
723 for (i = 0; i < cpuhw->n_limited; ++i)
724 if (counter == cpuhw->limited_counter[i])
725 break;
726 if (i < cpuhw->n_limited) {
727 while (++i < cpuhw->n_limited) {
728 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
729 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
730 }
731 --cpuhw->n_limited;
732 }
4574910e
PM
733 if (cpuhw->n_counters == 0) {
734 /* disable exceptions if no counters are running */
735 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
736 }
737
738 hw_perf_restore(pmudis);
739 local_irq_restore(flags);
740}
741
4aeb0b42
RR
742struct pmu power_pmu = {
743 .enable = power_pmu_enable,
744 .disable = power_pmu_disable,
745 .read = power_pmu_read,
4574910e
PM
746};
747
ab7ef2e5
PM
748/*
749 * Return 1 if we might be able to put counter on a limited PMC,
750 * or 0 if not.
751 * A counter can only go on a limited PMC if it counts something
752 * that a limited PMC can count, doesn't require interrupts, and
753 * doesn't exclude any processor mode.
754 */
755static int can_go_on_limited_pmc(struct perf_counter *counter, unsigned int ev,
756 unsigned int flags)
757{
758 int n;
759 unsigned int alt[MAX_EVENT_ALTERNATIVES];
760
761 if (counter->hw_event.exclude_user
762 || counter->hw_event.exclude_kernel
763 || counter->hw_event.exclude_hv
764 || counter->hw_event.irq_period)
765 return 0;
766
767 if (ppmu->limited_pmc_event(ev))
768 return 1;
769
770 /*
771 * The requested event isn't on a limited PMC already;
772 * see if any alternative code goes on a limited PMC.
773 */
774 if (!ppmu->get_alternatives)
775 return 0;
776
777 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
778 n = ppmu->get_alternatives(ev, flags, alt);
779 if (n)
780 return alt[0];
781
782 return 0;
783}
784
785/*
786 * Find an alternative event that goes on a normal PMC, if possible,
787 * and return the event code, or 0 if there is no such alternative.
788 * (Note: event code 0 is "don't count" on all machines.)
789 */
790static unsigned long normal_pmc_alternative(unsigned long ev,
791 unsigned long flags)
792{
793 unsigned int alt[MAX_EVENT_ALTERNATIVES];
794 int n;
795
796 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
797 n = ppmu->get_alternatives(ev, flags, alt);
798 if (!n)
799 return 0;
800 return alt[0];
801}
802
7595d63b
PM
803/* Number of perf_counters counting hardware events */
804static atomic_t num_counters;
805/* Used to avoid races in calling reserve/release_pmc_hardware */
806static DEFINE_MUTEX(pmc_reserve_mutex);
807
808/*
809 * Release the PMU if this is the last perf_counter.
810 */
811static void hw_perf_counter_destroy(struct perf_counter *counter)
812{
813 if (!atomic_add_unless(&num_counters, -1, 1)) {
814 mutex_lock(&pmc_reserve_mutex);
815 if (atomic_dec_return(&num_counters) == 0)
816 release_pmc_hardware();
817 mutex_unlock(&pmc_reserve_mutex);
818 }
819}
820
4aeb0b42 821const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
4574910e 822{
ab7ef2e5 823 unsigned long ev, flags;
4574910e
PM
824 struct perf_counter *ctrs[MAX_HWCOUNTERS];
825 unsigned int events[MAX_HWCOUNTERS];
ab7ef2e5 826 unsigned int cflags[MAX_HWCOUNTERS];
4574910e 827 int n;
7595d63b 828 int err;
4574910e
PM
829
830 if (!ppmu)
d5d2bc0d 831 return ERR_PTR(-ENXIO);
4574910e 832 if ((s64)counter->hw_event.irq_period < 0)
d5d2bc0d 833 return ERR_PTR(-EINVAL);
f4a2deb4
PZ
834 if (!perf_event_raw(&counter->hw_event)) {
835 ev = perf_event_id(&counter->hw_event);
9aaa131a 836 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
d5d2bc0d 837 return ERR_PTR(-EOPNOTSUPP);
4574910e 838 ev = ppmu->generic_events[ev];
9aaa131a 839 } else {
f4a2deb4 840 ev = perf_event_config(&counter->hw_event);
4574910e
PM
841 }
842 counter->hw.config_base = ev;
843 counter->hw.idx = 0;
844
0475f9ea
PM
845 /*
846 * If we are not running on a hypervisor, force the
847 * exclude_hv bit to 0 so that we don't care what
d095cd46 848 * the user set it to.
0475f9ea
PM
849 */
850 if (!firmware_has_feature(FW_FEATURE_LPAR))
851 counter->hw_event.exclude_hv = 0;
ab7ef2e5
PM
852
853 /*
854 * If this is a per-task counter, then we can use
855 * PM_RUN_* events interchangeably with their non RUN_*
856 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
857 * XXX we should check if the task is an idle task.
858 */
859 flags = 0;
860 if (counter->ctx->task)
861 flags |= PPMU_ONLY_COUNT_RUN;
862
863 /*
864 * If this machine has limited counters, check whether this
865 * event could go on a limited counter.
866 */
867 if (ppmu->limited_pmc5_6) {
868 if (can_go_on_limited_pmc(counter, ev, flags)) {
869 flags |= PPMU_LIMITED_PMC_OK;
870 } else if (ppmu->limited_pmc_event(ev)) {
871 /*
872 * The requested event is on a limited PMC,
873 * but we can't use a limited PMC; see if any
874 * alternative goes on a normal PMC.
875 */
876 ev = normal_pmc_alternative(ev, flags);
877 if (!ev)
878 return ERR_PTR(-EINVAL);
879 }
880 }
881
4574910e
PM
882 /*
883 * If this is in a group, check if it can go on with all the
884 * other hardware counters in the group. We assume the counter
885 * hasn't been linked into its leader's sibling list at this point.
886 */
887 n = 0;
888 if (counter->group_leader != counter) {
889 n = collect_events(counter->group_leader, ppmu->n_counter - 1,
ab7ef2e5 890 ctrs, events, cflags);
4574910e 891 if (n < 0)
d5d2bc0d 892 return ERR_PTR(-EINVAL);
4574910e 893 }
0475f9ea 894 events[n] = ev;
86028598 895 ctrs[n] = counter;
ab7ef2e5
PM
896 cflags[n] = flags;
897 if (check_excludes(ctrs, cflags, n, 1))
d5d2bc0d 898 return ERR_PTR(-EINVAL);
ab7ef2e5 899 if (power_check_constraints(events, cflags, n + 1))
d5d2bc0d 900 return ERR_PTR(-EINVAL);
4574910e 901
0475f9ea 902 counter->hw.config = events[n];
ab7ef2e5 903 counter->hw.counter_base = cflags[n];
4574910e 904 atomic64_set(&counter->hw.period_left, counter->hw_event.irq_period);
7595d63b
PM
905
906 /*
907 * See if we need to reserve the PMU.
908 * If no counters are currently in use, then we have to take a
909 * mutex to ensure that we don't race with another task doing
910 * reserve_pmc_hardware or release_pmc_hardware.
911 */
912 err = 0;
913 if (!atomic_inc_not_zero(&num_counters)) {
914 mutex_lock(&pmc_reserve_mutex);
915 if (atomic_read(&num_counters) == 0 &&
916 reserve_pmc_hardware(perf_counter_interrupt))
917 err = -EBUSY;
918 else
919 atomic_inc(&num_counters);
920 mutex_unlock(&pmc_reserve_mutex);
921 }
922 counter->destroy = hw_perf_counter_destroy;
923
924 if (err)
d5d2bc0d 925 return ERR_PTR(err);
4aeb0b42 926 return &power_pmu;
4574910e
PM
927}
928
4574910e
PM
929/*
930 * A counter has overflowed; update its count and record
931 * things if requested. Note that interrupts are hard-disabled
932 * here so there is no possibility of being interrupted.
933 */
934static void record_and_restart(struct perf_counter *counter, long val,
ca8f2d7f 935 struct pt_regs *regs, int nmi)
4574910e
PM
936{
937 s64 prev, delta, left;
938 int record = 0;
939
940 /* we don't have to worry about interrupts here */
941 prev = atomic64_read(&counter->hw.prev_count);
942 delta = (val - prev) & 0xfffffffful;
943 atomic64_add(delta, &counter->count);
944
945 /*
946 * See if the total period for this counter has expired,
947 * and update for the next period.
948 */
949 val = 0;
950 left = atomic64_read(&counter->hw.period_left) - delta;
951 if (counter->hw_event.irq_period) {
952 if (left <= 0) {
953 left += counter->hw_event.irq_period;
954 if (left <= 0)
955 left = counter->hw_event.irq_period;
956 record = 1;
957 }
958 if (left < 0x80000000L)
959 val = 0x80000000L - left;
960 }
961 write_pmc(counter->hw.idx, val);
962 atomic64_set(&counter->hw.prev_count, val);
963 atomic64_set(&counter->hw.period_left, left);
7b732a75 964 perf_counter_update_userpage(counter);
4574910e
PM
965
966 /*
967 * Finally record data if requested.
968 */
0322cd6e 969 if (record)
ca8f2d7f 970 perf_counter_overflow(counter, nmi, regs, 0);
4574910e
PM
971}
972
973/*
974 * Performance monitor interrupt stuff
975 */
976static void perf_counter_interrupt(struct pt_regs *regs)
977{
978 int i;
979 struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
980 struct perf_counter *counter;
981 long val;
925d519a 982 int found = 0;
ca8f2d7f
PM
983 int nmi;
984
ab7ef2e5
PM
985 if (cpuhw->n_limited)
986 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
987 mfspr(SPRN_PMC6));
988
ca8f2d7f
PM
989 /*
990 * If interrupts were soft-disabled when this PMU interrupt
991 * occurred, treat it as an NMI.
992 */
993 nmi = !regs->softe;
994 if (nmi)
995 nmi_enter();
996 else
997 irq_enter();
4574910e
PM
998
999 for (i = 0; i < cpuhw->n_counters; ++i) {
1000 counter = cpuhw->counter[i];
ab7ef2e5
PM
1001 if (is_limited_pmc(counter->hw.idx))
1002 continue;
4574910e
PM
1003 val = read_pmc(counter->hw.idx);
1004 if ((int)val < 0) {
1005 /* counter has overflowed */
1006 found = 1;
ca8f2d7f 1007 record_and_restart(counter, val, regs, nmi);
4574910e
PM
1008 }
1009 }
1010
1011 /*
1012 * In case we didn't find and reset the counter that caused
1013 * the interrupt, scan all counters and reset any that are
1014 * negative, to avoid getting continual interrupts.
1015 * Any that we processed in the previous loop will not be negative.
1016 */
1017 if (!found) {
1018 for (i = 0; i < ppmu->n_counter; ++i) {
ab7ef2e5
PM
1019 if (is_limited_pmc(i + 1))
1020 continue;
4574910e
PM
1021 val = read_pmc(i + 1);
1022 if ((int)val < 0)
1023 write_pmc(i + 1, 0);
1024 }
1025 }
1026
1027 /*
1028 * Reset MMCR0 to its normal value. This will set PMXE and
1029 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1030 * and thus allow interrupts to occur again.
1031 * XXX might want to use MSR.PM to keep the counters frozen until
1032 * we get back out of this interrupt.
1033 */
ab7ef2e5 1034 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
4574910e 1035
ca8f2d7f
PM
1036 if (nmi)
1037 nmi_exit();
1038 else
db4fb5ac 1039 irq_exit();
4574910e
PM
1040}
1041
01d0287f
PM
1042void hw_perf_counter_setup(int cpu)
1043{
1044 struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
1045
1046 memset(cpuhw, 0, sizeof(*cpuhw));
1047 cpuhw->mmcr[0] = MMCR0_FC;
1048}
1049
880860e3 1050extern struct power_pmu power4_pmu;
16b06799 1051extern struct power_pmu ppc970_pmu;
742bd95b 1052extern struct power_pmu power5_pmu;
aabbaa60 1053extern struct power_pmu power5p_pmu;
f7862837 1054extern struct power_pmu power6_pmu;
16b06799 1055
4574910e
PM
1056static int init_perf_counters(void)
1057{
16b06799
PM
1058 unsigned long pvr;
1059
16b06799
PM
1060 /* XXX should get this from cputable */
1061 pvr = mfspr(SPRN_PVR);
1062 switch (PVR_VER(pvr)) {
880860e3
PM
1063 case PV_POWER4:
1064 case PV_POWER4p:
1065 ppmu = &power4_pmu;
1066 break;
16b06799
PM
1067 case PV_970:
1068 case PV_970FX:
1069 case PV_970MP:
1070 ppmu = &ppc970_pmu;
1071 break;
742bd95b
PM
1072 case PV_POWER5:
1073 ppmu = &power5_pmu;
1074 break;
aabbaa60
PM
1075 case PV_POWER5p:
1076 ppmu = &power5p_pmu;
1077 break;
f7862837
PM
1078 case 0x3e:
1079 ppmu = &power6_pmu;
1080 break;
16b06799 1081 }
d095cd46
PM
1082
1083 /*
1084 * Use FCHV to ignore kernel events if MSR.HV is set.
1085 */
1086 if (mfmsr() & MSR_HV)
1087 freeze_counters_kernel = MMCR0_FCHV;
1088
4574910e
PM
1089 return 0;
1090}
1091
1092arch_initcall(init_perf_counters);