powerpc/fadump: Throw proper error message on fadump registration failure
[linux-2.6-block.git] / arch / powerpc / kernel / fadump.c
CommitLineData
eb39c880
MS
1/*
2 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3 * dump with assistance from firmware. This approach does not use kexec,
4 * instead firmware assists in booting the kdump kernel while preserving
5 * memory contents. The most of the code implementation has been adapted
6 * from phyp assisted dump implementation written by Linas Vepstas and
7 * Manish Ahuja
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 *
23 * Copyright 2011 IBM Corporation
24 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25 */
26
27#undef DEBUG
28#define pr_fmt(fmt) "fadump: " fmt
29
30#include <linux/string.h>
31#include <linux/memblock.h>
3ccc00a7 32#include <linux/delay.h>
3ccc00a7 33#include <linux/seq_file.h>
2df173d9 34#include <linux/crash_dump.h>
b500afff
MS
35#include <linux/kobject.h>
36#include <linux/sysfs.h>
a5818313 37#include <linux/slab.h>
a4e92ce8 38#include <linux/cma.h>
eb39c880 39
7644d581 40#include <asm/debugfs.h>
eb39c880
MS
41#include <asm/page.h>
42#include <asm/prom.h>
43#include <asm/rtas.h>
44#include <asm/fadump.h>
cad3c834 45#include <asm/setup.h>
eb39c880
MS
46
47static struct fw_dump fw_dump;
3ccc00a7
MS
48static struct fadump_mem_struct fdm;
49static const struct fadump_mem_struct *fdm_active;
a4e92ce8
MS
50#ifdef CONFIG_CMA
51static struct cma *fadump_cma;
52#endif
3ccc00a7
MS
53
54static DEFINE_MUTEX(fadump_mutex);
1bd6a1c4
HB
55struct fad_crash_memory_ranges *crash_memory_ranges;
56int crash_memory_ranges_size;
2df173d9 57int crash_mem_ranges;
1bd6a1c4 58int max_crash_mem_ranges;
eb39c880 59
a4e92ce8
MS
60#ifdef CONFIG_CMA
61/*
62 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
63 *
64 * This function initializes CMA area from fadump reserved memory.
65 * The total size of fadump reserved memory covers for boot memory size
66 * + cpu data size + hpte size and metadata.
67 * Initialize only the area equivalent to boot memory size for CMA use.
68 * The reamining portion of fadump reserved memory will be not given
69 * to CMA and pages for thoes will stay reserved. boot memory size is
70 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
71 * But for some reason even if it fails we still have the memory reservation
72 * with us and we can still continue doing fadump.
73 */
74int __init fadump_cma_init(void)
75{
76 unsigned long long base, size;
77 int rc;
78
79 if (!fw_dump.fadump_enabled)
80 return 0;
81
82 /*
83 * Do not use CMA if user has provided fadump=nocma kernel parameter.
84 * Return 1 to continue with fadump old behaviour.
85 */
86 if (fw_dump.nocma)
87 return 1;
88
89 base = fw_dump.reserve_dump_area_start;
90 size = fw_dump.boot_memory_size;
91
92 if (!size)
93 return 0;
94
95 rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
96 if (rc) {
97 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
98 /*
99 * Though the CMA init has failed we still have memory
100 * reservation with us. The reserved memory will be
101 * blocked from production system usage. Hence return 1,
102 * so that we can continue with fadump.
103 */
104 return 1;
105 }
106
107 /*
108 * So we now have successfully initialized cma area for fadump.
109 */
110 pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
111 "bytes of memory reserved for firmware-assisted dump\n",
112 cma_get_size(fadump_cma),
113 (unsigned long)cma_get_base(fadump_cma) >> 20,
114 fw_dump.reserve_dump_area_size);
115 return 1;
116}
117#else
118static int __init fadump_cma_init(void) { return 1; }
119#endif /* CONFIG_CMA */
120
eb39c880
MS
121/* Scan the Firmware Assisted dump configuration details. */
122int __init early_init_dt_scan_fw_dump(unsigned long node,
123 const char *uname, int depth, void *data)
124{
9d0c4dfe 125 const __be32 *sections;
eb39c880 126 int i, num_sections;
9d0c4dfe 127 int size;
408cddd9 128 const __be32 *token;
eb39c880
MS
129
130 if (depth != 1 || strcmp(uname, "rtas") != 0)
131 return 0;
132
133 /*
134 * Check if Firmware Assisted dump is supported. if yes, check
135 * if dump has been initiated on last reboot.
136 */
137 token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
138 if (!token)
a7d04317 139 return 1;
eb39c880
MS
140
141 fw_dump.fadump_supported = 1;
408cddd9 142 fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
eb39c880
MS
143
144 /*
145 * The 'ibm,kernel-dump' rtas node is present only if there is
146 * dump data waiting for us.
147 */
3ccc00a7
MS
148 fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
149 if (fdm_active)
eb39c880
MS
150 fw_dump.dump_active = 1;
151
152 /* Get the sizes required to store dump data for the firmware provided
153 * dump sections.
154 * For each dump section type supported, a 32bit cell which defines
155 * the ID of a supported section followed by two 32 bit cells which
156 * gives teh size of the section in bytes.
157 */
158 sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
159 &size);
160
161 if (!sections)
a7d04317 162 return 1;
eb39c880
MS
163
164 num_sections = size / (3 * sizeof(u32));
165
166 for (i = 0; i < num_sections; i++, sections += 3) {
167 u32 type = (u32)of_read_number(sections, 1);
168
169 switch (type) {
170 case FADUMP_CPU_STATE_DATA:
171 fw_dump.cpu_state_data_size =
172 of_read_ulong(&sections[1], 2);
173 break;
174 case FADUMP_HPTE_REGION:
175 fw_dump.hpte_region_size =
176 of_read_ulong(&sections[1], 2);
177 break;
178 }
179 }
a7d04317 180
eb39c880
MS
181 return 1;
182}
183
eae0dfcc
HB
184/*
185 * If fadump is registered, check if the memory provided
186 * falls within boot memory area.
187 */
188int is_fadump_boot_memory_area(u64 addr, ulong size)
189{
190 if (!fw_dump.dump_registered)
191 return 0;
192
193 return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size;
194}
195
6fcd6baa
NP
196int should_fadump_crash(void)
197{
198 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
199 return 0;
200 return 1;
201}
202
3ccc00a7
MS
203int is_fadump_active(void)
204{
205 return fw_dump.dump_active;
206}
207
a5a05b91
HB
208/*
209 * Returns 1, if there are no holes in boot memory area,
210 * 0 otherwise.
211 */
212static int is_boot_memory_area_contiguous(void)
213{
214 struct memblock_region *reg;
215 unsigned long tstart, tend;
216 unsigned long start_pfn = PHYS_PFN(RMA_START);
217 unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size);
218 unsigned int ret = 0;
219
220 for_each_memblock(memory, reg) {
221 tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
222 tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
223 if (tstart < tend) {
224 /* Memory hole from start_pfn to tstart */
225 if (tstart > start_pfn)
226 break;
227
228 if (tend == end_pfn) {
229 ret = 1;
230 break;
231 }
232
233 start_pfn = tend + 1;
234 }
235 }
236
237 return ret;
238}
239
f86593be
MS
240/*
241 * Returns true, if there are no holes in reserved memory area,
242 * false otherwise.
243 */
244static bool is_reserved_memory_area_contiguous(void)
245{
246 struct memblock_region *reg;
247 unsigned long start, end;
248 unsigned long d_start = fw_dump.reserve_dump_area_start;
249 unsigned long d_end = d_start + fw_dump.reserve_dump_area_size;
250
251 for_each_memblock(memory, reg) {
252 start = max(d_start, (unsigned long)reg->base);
253 end = min(d_end, (unsigned long)(reg->base + reg->size));
254 if (d_start < end) {
255 /* Memory hole from d_start to start */
256 if (start > d_start)
257 break;
258
259 if (end == d_end)
260 return true;
261
262 d_start = end + 1;
263 }
264 }
265
266 return false;
267}
268
3ccc00a7
MS
269/* Print firmware assisted dump configurations for debugging purpose. */
270static void fadump_show_config(void)
271{
272 pr_debug("Support for firmware-assisted dump (fadump): %s\n",
273 (fw_dump.fadump_supported ? "present" : "no support"));
274
275 if (!fw_dump.fadump_supported)
276 return;
277
278 pr_debug("Fadump enabled : %s\n",
279 (fw_dump.fadump_enabled ? "yes" : "no"));
280 pr_debug("Dump Active : %s\n",
281 (fw_dump.dump_active ? "yes" : "no"));
282 pr_debug("Dump section sizes:\n");
283 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
284 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size);
285 pr_debug("Boot memory size : %lx\n", fw_dump.boot_memory_size);
286}
287
288static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
289 unsigned long addr)
290{
291 if (!fdm)
292 return 0;
293
294 memset(fdm, 0, sizeof(struct fadump_mem_struct));
295 addr = addr & PAGE_MASK;
296
408cddd9
HB
297 fdm->header.dump_format_version = cpu_to_be32(0x00000001);
298 fdm->header.dump_num_sections = cpu_to_be16(3);
3ccc00a7
MS
299 fdm->header.dump_status_flag = 0;
300 fdm->header.offset_first_dump_section =
408cddd9 301 cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
3ccc00a7
MS
302
303 /*
304 * Fields for disk dump option.
305 * We are not using disk dump option, hence set these fields to 0.
306 */
307 fdm->header.dd_block_size = 0;
308 fdm->header.dd_block_offset = 0;
309 fdm->header.dd_num_blocks = 0;
310 fdm->header.dd_offset_disk_path = 0;
311
312 /* set 0 to disable an automatic dump-reboot. */
313 fdm->header.max_time_auto = 0;
314
315 /* Kernel dump sections */
316 /* cpu state data section. */
408cddd9
HB
317 fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
318 fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
3ccc00a7 319 fdm->cpu_state_data.source_address = 0;
408cddd9
HB
320 fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
321 fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
3ccc00a7
MS
322 addr += fw_dump.cpu_state_data_size;
323
324 /* hpte region section */
408cddd9
HB
325 fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
326 fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
3ccc00a7 327 fdm->hpte_region.source_address = 0;
408cddd9
HB
328 fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
329 fdm->hpte_region.destination_address = cpu_to_be64(addr);
3ccc00a7
MS
330 addr += fw_dump.hpte_region_size;
331
332 /* RMA region section */
408cddd9
HB
333 fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
334 fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
335 fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
336 fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
337 fdm->rmr_region.destination_address = cpu_to_be64(addr);
3ccc00a7
MS
338 addr += fw_dump.boot_memory_size;
339
340 return addr;
341}
342
eb39c880
MS
343/**
344 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
345 *
346 * Function to find the largest memory size we need to reserve during early
347 * boot process. This will be the size of the memory that is required for a
348 * kernel to boot successfully.
349 *
350 * This function has been taken from phyp-assisted dump feature implementation.
351 *
352 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
353 *
354 * TODO: Come up with better approach to find out more accurate memory size
355 * that is required for a kernel to boot successfully.
356 *
357 */
358static inline unsigned long fadump_calculate_reserve_size(void)
359{
11550dc0
HB
360 int ret;
361 unsigned long long base, size;
eb39c880 362
81d9eca5
HB
363 if (fw_dump.reserve_bootvar)
364 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
365
eb39c880 366 /*
11550dc0 367 * Check if the size is specified through crashkernel= cmdline
e7467dc6
HB
368 * option. If yes, then use that but ignore base as fadump reserves
369 * memory at a predefined offset.
eb39c880 370 */
11550dc0
HB
371 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
372 &size, &base);
373 if (ret == 0 && size > 0) {
48a316e3
HB
374 unsigned long max_size;
375
81d9eca5
HB
376 if (fw_dump.reserve_bootvar)
377 pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
378
11550dc0 379 fw_dump.reserve_bootvar = (unsigned long)size;
48a316e3
HB
380
381 /*
382 * Adjust if the boot memory size specified is above
383 * the upper limit.
384 */
385 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
386 if (fw_dump.reserve_bootvar > max_size) {
387 fw_dump.reserve_bootvar = max_size;
388 pr_info("Adjusted boot memory size to %luMB\n",
389 (fw_dump.reserve_bootvar >> 20));
390 }
391
eb39c880 392 return fw_dump.reserve_bootvar;
81d9eca5
HB
393 } else if (fw_dump.reserve_bootvar) {
394 /*
395 * 'fadump_reserve_mem=' is being used to reserve memory
396 * for firmware-assisted dump.
397 */
398 return fw_dump.reserve_bootvar;
11550dc0 399 }
eb39c880
MS
400
401 /* divide by 20 to get 5% of value */
48a316e3 402 size = memblock_phys_mem_size() / 20;
eb39c880
MS
403
404 /* round it down in multiples of 256 */
405 size = size & ~0x0FFFFFFFUL;
406
407 /* Truncate to memory_limit. We don't want to over reserve the memory.*/
408 if (memory_limit && size > memory_limit)
409 size = memory_limit;
410
411 return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
412}
413
414/*
415 * Calculate the total memory size required to be reserved for
416 * firmware-assisted dump registration.
417 */
418static unsigned long get_fadump_area_size(void)
419{
420 unsigned long size = 0;
421
422 size += fw_dump.cpu_state_data_size;
423 size += fw_dump.hpte_region_size;
424 size += fw_dump.boot_memory_size;
2df173d9
MS
425 size += sizeof(struct fadump_crash_info_header);
426 size += sizeof(struct elfhdr); /* ELF core header.*/
ebaeb5ae 427 size += sizeof(struct elf_phdr); /* place holder for cpu notes */
2df173d9
MS
428 /* Program headers for crash memory regions. */
429 size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
eb39c880
MS
430
431 size = PAGE_ALIGN(size);
432 return size;
433}
434
b71a693d
MS
435static void __init fadump_reserve_crash_area(unsigned long base,
436 unsigned long size)
437{
438 struct memblock_region *reg;
439 unsigned long mstart, mend, msize;
440
441 for_each_memblock(memory, reg) {
442 mstart = max_t(unsigned long, base, reg->base);
443 mend = reg->base + reg->size;
444 mend = min(base + size, mend);
445
446 if (mstart < mend) {
447 msize = mend - mstart;
448 memblock_reserve(mstart, msize);
449 pr_info("Reserved %ldMB of memory at %#016lx for saving crash dump\n",
450 (msize >> 20), mstart);
451 }
452 }
453}
454
eb39c880
MS
455int __init fadump_reserve_mem(void)
456{
457 unsigned long base, size, memory_boundary;
458
459 if (!fw_dump.fadump_enabled)
460 return 0;
461
462 if (!fw_dump.fadump_supported) {
463 printk(KERN_INFO "Firmware-assisted dump is not supported on"
464 " this hardware\n");
465 fw_dump.fadump_enabled = 0;
466 return 0;
467 }
3ccc00a7
MS
468 /*
469 * Initialize boot memory size
470 * If dump is active then we have already calculated the size during
471 * first kernel.
472 */
473 if (fdm_active)
408cddd9 474 fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
a4e92ce8 475 else {
3ccc00a7 476 fw_dump.boot_memory_size = fadump_calculate_reserve_size();
a4e92ce8
MS
477#ifdef CONFIG_CMA
478 if (!fw_dump.nocma)
479 fw_dump.boot_memory_size =
480 ALIGN(fw_dump.boot_memory_size,
481 FADUMP_CMA_ALIGNMENT);
482#endif
483 }
eb39c880
MS
484
485 /*
486 * Calculate the memory boundary.
487 * If memory_limit is less than actual memory boundary then reserve
488 * the memory for fadump beyond the memory_limit and adjust the
489 * memory_limit accordingly, so that the running kernel can run with
490 * specified memory_limit.
491 */
492 if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
493 size = get_fadump_area_size();
494 if ((memory_limit + size) < memblock_end_of_DRAM())
495 memory_limit += size;
496 else
497 memory_limit = memblock_end_of_DRAM();
498 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
a84fcd46 499 " dump, now %#016llx\n", memory_limit);
eb39c880
MS
500 }
501 if (memory_limit)
502 memory_boundary = memory_limit;
503 else
504 memory_boundary = memblock_end_of_DRAM();
505
506 if (fw_dump.dump_active) {
b71a693d
MS
507 pr_info("Firmware-assisted dump is active.\n");
508
85975387
HB
509#ifdef CONFIG_HUGETLB_PAGE
510 /*
511 * FADump capture kernel doesn't care much about hugepages.
512 * In fact, handling hugepages in capture kernel is asking for
513 * trouble. So, disable HugeTLB support when fadump is active.
514 */
515 hugetlb_disabled = true;
516#endif
eb39c880
MS
517 /*
518 * If last boot has crashed then reserve all the memory
519 * above boot_memory_size so that we don't touch it until
520 * dump is written to disk by userspace tool. This memory
521 * will be released for general use once the dump is saved.
522 */
523 base = fw_dump.boot_memory_size;
524 size = memory_boundary - base;
b71a693d 525 fadump_reserve_crash_area(base, size);
2df173d9
MS
526
527 fw_dump.fadumphdr_addr =
408cddd9
HB
528 be64_to_cpu(fdm_active->rmr_region.destination_address) +
529 be64_to_cpu(fdm_active->rmr_region.source_len);
a4e92ce8
MS
530 pr_debug("fadumphdr_addr = %pa\n", &fw_dump.fadumphdr_addr);
531 fw_dump.reserve_dump_area_start = base;
532 fw_dump.reserve_dump_area_size = size;
eb39c880 533 } else {
eb39c880 534 size = get_fadump_area_size();
f6e6bedb
HB
535
536 /*
537 * Reserve memory at an offset closer to bottom of the RAM to
538 * minimize the impact of memory hot-remove operation. We can't
539 * use memblock_find_in_range() here since it doesn't allocate
540 * from bottom to top.
541 */
542 for (base = fw_dump.boot_memory_size;
543 base <= (memory_boundary - size);
544 base += size) {
545 if (memblock_is_region_memory(base, size) &&
546 !memblock_is_region_reserved(base, size))
547 break;
548 }
549 if ((base > (memory_boundary - size)) ||
550 memblock_reserve(base, size)) {
551 pr_err("Failed to reserve memory\n");
552 return 0;
553 }
554
555 pr_info("Reserved %ldMB of memory at %ldMB for firmware-"
556 "assisted dump (System RAM: %ldMB)\n",
557 (unsigned long)(size >> 20),
558 (unsigned long)(base >> 20),
559 (unsigned long)(memblock_phys_mem_size() >> 20));
f6e6bedb 560
a4e92ce8
MS
561 fw_dump.reserve_dump_area_start = base;
562 fw_dump.reserve_dump_area_size = size;
563 return fadump_cma_init();
564 }
eb39c880
MS
565 return 1;
566}
567
1e76609c
SD
568unsigned long __init arch_reserved_kernel_pages(void)
569{
570 return memblock_reserved_size() / PAGE_SIZE;
571}
572
eb39c880
MS
573/* Look for fadump= cmdline option. */
574static int __init early_fadump_param(char *p)
575{
576 if (!p)
577 return 1;
578
579 if (strncmp(p, "on", 2) == 0)
580 fw_dump.fadump_enabled = 1;
581 else if (strncmp(p, "off", 3) == 0)
582 fw_dump.fadump_enabled = 0;
a4e92ce8
MS
583 else if (strncmp(p, "nocma", 5) == 0) {
584 fw_dump.fadump_enabled = 1;
585 fw_dump.nocma = 1;
586 }
eb39c880
MS
587
588 return 0;
589}
590early_param("fadump", early_fadump_param);
591
81d9eca5
HB
592/*
593 * Look for fadump_reserve_mem= cmdline option
594 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
595 * the sooner 'crashkernel=' parameter is accustomed to.
596 */
597static int __init early_fadump_reserve_mem(char *p)
598{
599 if (p)
600 fw_dump.reserve_bootvar = memparse(p, &p);
601 return 0;
602}
603early_param("fadump_reserve_mem", early_fadump_reserve_mem);
604
98b8cd7f 605static int register_fw_dump(struct fadump_mem_struct *fdm)
3ccc00a7 606{
98b8cd7f 607 int rc, err;
3ccc00a7
MS
608 unsigned int wait_time;
609
610 pr_debug("Registering for firmware-assisted kernel dump...\n");
611
612 /* TODO: Add upper time limit for the delay */
613 do {
614 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
615 FADUMP_REGISTER, fdm,
616 sizeof(struct fadump_mem_struct));
617
618 wait_time = rtas_busy_delay_time(rc);
619 if (wait_time)
620 mdelay(wait_time);
621
622 } while (wait_time);
623
98b8cd7f 624 err = -EIO;
3ccc00a7 625 switch (rc) {
98b8cd7f
MS
626 default:
627 pr_err("Failed to register. Unknown Error(%d).\n", rc);
628 break;
3ccc00a7
MS
629 case -1:
630 printk(KERN_ERR "Failed to register firmware-assisted kernel"
631 " dump. Hardware Error(%d).\n", rc);
632 break;
633 case -3:
a5a05b91 634 if (!is_boot_memory_area_contiguous())
f86593be
MS
635 pr_err("Can't have holes in boot memory area while registering fadump\n");
636 else if (!is_reserved_memory_area_contiguous())
637 pr_err("Can't have holes in reserved memory area while"
638 " registering fadump\n");
a5a05b91 639
3ccc00a7
MS
640 printk(KERN_ERR "Failed to register firmware-assisted kernel"
641 " dump. Parameter Error(%d).\n", rc);
98b8cd7f 642 err = -EINVAL;
3ccc00a7
MS
643 break;
644 case -9:
645 printk(KERN_ERR "firmware-assisted kernel dump is already "
646 " registered.");
647 fw_dump.dump_registered = 1;
98b8cd7f 648 err = -EEXIST;
3ccc00a7
MS
649 break;
650 case 0:
651 printk(KERN_INFO "firmware-assisted kernel dump registration"
652 " is successful\n");
653 fw_dump.dump_registered = 1;
98b8cd7f 654 err = 0;
3ccc00a7
MS
655 break;
656 }
98b8cd7f 657 return err;
3ccc00a7
MS
658}
659
ebaeb5ae
MS
660void crash_fadump(struct pt_regs *regs, const char *str)
661{
662 struct fadump_crash_info_header *fdh = NULL;
f2a5e8f0 663 int old_cpu, this_cpu;
ebaeb5ae 664
6fcd6baa 665 if (!should_fadump_crash())
ebaeb5ae
MS
666 return;
667
f2a5e8f0
MS
668 /*
669 * old_cpu == -1 means this is the first CPU which has come here,
670 * go ahead and trigger fadump.
671 *
672 * old_cpu != -1 means some other CPU has already on it's way
673 * to trigger fadump, just keep looping here.
674 */
675 this_cpu = smp_processor_id();
676 old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
677
678 if (old_cpu != -1) {
679 /*
680 * We can't loop here indefinitely. Wait as long as fadump
681 * is in force. If we race with fadump un-registration this
682 * loop will break and then we go down to normal panic path
683 * and reboot. If fadump is in force the first crashing
684 * cpu will definitely trigger fadump.
685 */
686 while (fw_dump.dump_registered)
687 cpu_relax();
688 return;
689 }
690
ebaeb5ae 691 fdh = __va(fw_dump.fadumphdr_addr);
ebaeb5ae
MS
692 fdh->crashing_cpu = crashing_cpu;
693 crash_save_vmcoreinfo();
694
695 if (regs)
696 fdh->regs = *regs;
697 else
698 ppc_save_regs(&fdh->regs);
699
a0512164 700 fdh->online_mask = *cpu_online_mask;
ebaeb5ae
MS
701
702 /* Call ibm,os-term rtas call to trigger firmware assisted dump */
703 rtas_os_term((char *)str);
704}
705
706#define GPR_MASK 0xffffff0000000000
707static inline int fadump_gpr_index(u64 id)
708{
709 int i = -1;
710 char str[3];
711
712 if ((id & GPR_MASK) == REG_ID("GPR")) {
713 /* get the digits at the end */
714 id &= ~GPR_MASK;
715 id >>= 24;
716 str[2] = '\0';
717 str[1] = id & 0xff;
718 str[0] = (id >> 8) & 0xff;
719 sscanf(str, "%d", &i);
720 if (i > 31)
721 i = -1;
722 }
723 return i;
724}
725
726static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
727 u64 reg_val)
728{
729 int i;
730
731 i = fadump_gpr_index(reg_id);
732 if (i >= 0)
733 regs->gpr[i] = (unsigned long)reg_val;
734 else if (reg_id == REG_ID("NIA"))
735 regs->nip = (unsigned long)reg_val;
736 else if (reg_id == REG_ID("MSR"))
737 regs->msr = (unsigned long)reg_val;
738 else if (reg_id == REG_ID("CTR"))
739 regs->ctr = (unsigned long)reg_val;
740 else if (reg_id == REG_ID("LR"))
741 regs->link = (unsigned long)reg_val;
742 else if (reg_id == REG_ID("XER"))
743 regs->xer = (unsigned long)reg_val;
744 else if (reg_id == REG_ID("CR"))
745 regs->ccr = (unsigned long)reg_val;
746 else if (reg_id == REG_ID("DAR"))
747 regs->dar = (unsigned long)reg_val;
748 else if (reg_id == REG_ID("DSISR"))
749 regs->dsisr = (unsigned long)reg_val;
750}
751
752static struct fadump_reg_entry*
753fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
754{
755 memset(regs, 0, sizeof(struct pt_regs));
756
408cddd9
HB
757 while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
758 fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
759 be64_to_cpu(reg_entry->reg_value));
ebaeb5ae
MS
760 reg_entry++;
761 }
762 reg_entry++;
763 return reg_entry;
764}
765
ebaeb5ae
MS
766static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
767{
768 struct elf_prstatus prstatus;
769
770 memset(&prstatus, 0, sizeof(prstatus));
771 /*
772 * FIXME: How do i get PID? Do I really need it?
773 * prstatus.pr_pid = ????
774 */
775 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
22bd0177
HB
776 buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
777 &prstatus, sizeof(prstatus));
ebaeb5ae
MS
778 return buf;
779}
780
781static void fadump_update_elfcore_header(char *bufp)
782{
783 struct elfhdr *elf;
784 struct elf_phdr *phdr;
785
786 elf = (struct elfhdr *)bufp;
787 bufp += sizeof(struct elfhdr);
788
789 /* First note is a place holder for cpu notes info. */
790 phdr = (struct elf_phdr *)bufp;
791
792 if (phdr->p_type == PT_NOTE) {
793 phdr->p_paddr = fw_dump.cpu_notes_buf;
794 phdr->p_offset = phdr->p_paddr;
795 phdr->p_filesz = fw_dump.cpu_notes_buf_size;
796 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
797 }
798 return;
799}
800
801static void *fadump_cpu_notes_buf_alloc(unsigned long size)
802{
803 void *vaddr;
804 struct page *page;
805 unsigned long order, count, i;
806
807 order = get_order(size);
808 vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
809 if (!vaddr)
810 return NULL;
811
812 count = 1 << order;
813 page = virt_to_page(vaddr);
814 for (i = 0; i < count; i++)
815 SetPageReserved(page + i);
816 return vaddr;
817}
818
819static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
820{
821 struct page *page;
822 unsigned long order, count, i;
823
824 order = get_order(size);
825 count = 1 << order;
826 page = virt_to_page(vaddr);
827 for (i = 0; i < count; i++)
828 ClearPageReserved(page + i);
829 __free_pages(page, order);
830}
831
832/*
833 * Read CPU state dump data and convert it into ELF notes.
834 * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
835 * used to access the data to allow for additional fields to be added without
836 * affecting compatibility. Each list of registers for a CPU starts with
837 * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
838 * 8 Byte ASCII identifier and 8 Byte register value. The register entry
839 * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
840 * of register value. For more details refer to PAPR document.
841 *
842 * Only for the crashing cpu we ignore the CPU dump data and get exact
843 * state from fadump crash info structure populated by first kernel at the
844 * time of crash.
845 */
846static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
847{
848 struct fadump_reg_save_area_header *reg_header;
849 struct fadump_reg_entry *reg_entry;
850 struct fadump_crash_info_header *fdh = NULL;
851 void *vaddr;
852 unsigned long addr;
853 u32 num_cpus, *note_buf;
854 struct pt_regs regs;
855 int i, rc = 0, cpu = 0;
856
857 if (!fdm->cpu_state_data.bytes_dumped)
858 return -EINVAL;
859
408cddd9 860 addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
ebaeb5ae
MS
861 vaddr = __va(addr);
862
863 reg_header = vaddr;
408cddd9 864 if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
ebaeb5ae
MS
865 printk(KERN_ERR "Unable to read register save area.\n");
866 return -ENOENT;
867 }
868 pr_debug("--------CPU State Data------------\n");
408cddd9
HB
869 pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
870 pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
ebaeb5ae 871
408cddd9
HB
872 vaddr += be32_to_cpu(reg_header->num_cpu_offset);
873 num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
ebaeb5ae
MS
874 pr_debug("NumCpus : %u\n", num_cpus);
875 vaddr += sizeof(u32);
876 reg_entry = (struct fadump_reg_entry *)vaddr;
877
878 /* Allocate buffer to hold cpu crash notes. */
879 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
880 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
881 note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
882 if (!note_buf) {
883 printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
884 "cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
885 return -ENOMEM;
886 }
887 fw_dump.cpu_notes_buf = __pa(note_buf);
888
889 pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
890 (num_cpus * sizeof(note_buf_t)), note_buf);
891
892 if (fw_dump.fadumphdr_addr)
893 fdh = __va(fw_dump.fadumphdr_addr);
894
895 for (i = 0; i < num_cpus; i++) {
408cddd9 896 if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
ebaeb5ae
MS
897 printk(KERN_ERR "Unable to read CPU state data\n");
898 rc = -ENOENT;
899 goto error_out;
900 }
901 /* Lower 4 bytes of reg_value contains logical cpu id */
408cddd9 902 cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
a0512164 903 if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
ebaeb5ae
MS
904 SKIP_TO_NEXT_CPU(reg_entry);
905 continue;
906 }
907 pr_debug("Reading register data for cpu %d...\n", cpu);
908 if (fdh && fdh->crashing_cpu == cpu) {
909 regs = fdh->regs;
910 note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
911 SKIP_TO_NEXT_CPU(reg_entry);
912 } else {
913 reg_entry++;
914 reg_entry = fadump_read_registers(reg_entry, &regs);
915 note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
916 }
917 }
22bd0177 918 final_note(note_buf);
ebaeb5ae 919
b717d985
RS
920 if (fdh) {
921 pr_debug("Updating elfcore header (%llx) with cpu notes\n",
ebaeb5ae 922 fdh->elfcorehdr_addr);
b717d985
RS
923 fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
924 }
ebaeb5ae
MS
925 return 0;
926
927error_out:
928 fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
929 fw_dump.cpu_notes_buf_size);
930 fw_dump.cpu_notes_buf = 0;
931 fw_dump.cpu_notes_buf_size = 0;
932 return rc;
933
934}
935
2df173d9
MS
936/*
937 * Validate and process the dump data stored by firmware before exporting
938 * it through '/proc/vmcore'.
939 */
940static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
941{
942 struct fadump_crash_info_header *fdh;
ebaeb5ae 943 int rc = 0;
2df173d9
MS
944
945 if (!fdm_active || !fw_dump.fadumphdr_addr)
946 return -EINVAL;
947
948 /* Check if the dump data is valid. */
408cddd9 949 if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
ebaeb5ae 950 (fdm_active->cpu_state_data.error_flags != 0) ||
2df173d9
MS
951 (fdm_active->rmr_region.error_flags != 0)) {
952 printk(KERN_ERR "Dump taken by platform is not valid\n");
953 return -EINVAL;
954 }
ebaeb5ae
MS
955 if ((fdm_active->rmr_region.bytes_dumped !=
956 fdm_active->rmr_region.source_len) ||
957 !fdm_active->cpu_state_data.bytes_dumped) {
2df173d9
MS
958 printk(KERN_ERR "Dump taken by platform is incomplete\n");
959 return -EINVAL;
960 }
961
962 /* Validate the fadump crash info header */
963 fdh = __va(fw_dump.fadumphdr_addr);
964 if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
965 printk(KERN_ERR "Crash info header is not valid.\n");
966 return -EINVAL;
967 }
968
ebaeb5ae
MS
969 rc = fadump_build_cpu_notes(fdm_active);
970 if (rc)
971 return rc;
972
2df173d9
MS
973 /*
974 * We are done validating dump info and elfcore header is now ready
975 * to be exported. set elfcorehdr_addr so that vmcore module will
976 * export the elfcore header through '/proc/vmcore'.
977 */
978 elfcorehdr_addr = fdh->elfcorehdr_addr;
979
980 return 0;
981}
982
1bd6a1c4
HB
983static void free_crash_memory_ranges(void)
984{
985 kfree(crash_memory_ranges);
986 crash_memory_ranges = NULL;
987 crash_memory_ranges_size = 0;
988 max_crash_mem_ranges = 0;
989}
990
991/*
992 * Allocate or reallocate crash memory ranges array in incremental units
993 * of PAGE_SIZE.
994 */
995static int allocate_crash_memory_ranges(void)
996{
997 struct fad_crash_memory_ranges *new_array;
998 u64 new_size;
999
1000 new_size = crash_memory_ranges_size + PAGE_SIZE;
1001 pr_debug("Allocating %llu bytes of memory for crash memory ranges\n",
1002 new_size);
1003
1004 new_array = krealloc(crash_memory_ranges, new_size, GFP_KERNEL);
1005 if (new_array == NULL) {
1006 pr_err("Insufficient memory for setting up crash memory ranges\n");
1007 free_crash_memory_ranges();
1008 return -ENOMEM;
1009 }
1010
1011 crash_memory_ranges = new_array;
1012 crash_memory_ranges_size = new_size;
1013 max_crash_mem_ranges = (new_size /
1014 sizeof(struct fad_crash_memory_ranges));
1015 return 0;
1016}
1017
1018static inline int fadump_add_crash_memory(unsigned long long base,
1019 unsigned long long end)
2df173d9 1020{
ced1bf52
HB
1021 u64 start, size;
1022 bool is_adjacent = false;
1023
2df173d9 1024 if (base == end)
1bd6a1c4
HB
1025 return 0;
1026
ced1bf52
HB
1027 /*
1028 * Fold adjacent memory ranges to bring down the memory ranges/
1029 * PT_LOAD segments count.
1030 */
1031 if (crash_mem_ranges) {
1032 start = crash_memory_ranges[crash_mem_ranges - 1].base;
1033 size = crash_memory_ranges[crash_mem_ranges - 1].size;
1bd6a1c4 1034
ced1bf52
HB
1035 if ((start + size) == base)
1036 is_adjacent = true;
1037 }
1038 if (!is_adjacent) {
1039 /* resize the array on reaching the limit */
1040 if (crash_mem_ranges == max_crash_mem_ranges) {
1041 int ret;
1042
1043 ret = allocate_crash_memory_ranges();
1044 if (ret)
1045 return ret;
1046 }
1047
1048 start = base;
1049 crash_memory_ranges[crash_mem_ranges].base = start;
1050 crash_mem_ranges++;
1bd6a1c4 1051 }
2df173d9 1052
ced1bf52 1053 crash_memory_ranges[crash_mem_ranges - 1].size = (end - start);
2df173d9 1054 pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
ced1bf52 1055 (crash_mem_ranges - 1), start, end - 1, (end - start));
1bd6a1c4 1056 return 0;
2df173d9
MS
1057}
1058
1bd6a1c4 1059static int fadump_exclude_reserved_area(unsigned long long start,
2df173d9
MS
1060 unsigned long long end)
1061{
1062 unsigned long long ra_start, ra_end;
1bd6a1c4 1063 int ret = 0;
2df173d9
MS
1064
1065 ra_start = fw_dump.reserve_dump_area_start;
1066 ra_end = ra_start + fw_dump.reserve_dump_area_size;
1067
1068 if ((ra_start < end) && (ra_end > start)) {
1069 if ((start < ra_start) && (end > ra_end)) {
1bd6a1c4
HB
1070 ret = fadump_add_crash_memory(start, ra_start);
1071 if (ret)
1072 return ret;
1073
1074 ret = fadump_add_crash_memory(ra_end, end);
2df173d9 1075 } else if (start < ra_start) {
1bd6a1c4 1076 ret = fadump_add_crash_memory(start, ra_start);
2df173d9 1077 } else if (ra_end < end) {
1bd6a1c4 1078 ret = fadump_add_crash_memory(ra_end, end);
2df173d9
MS
1079 }
1080 } else
1bd6a1c4
HB
1081 ret = fadump_add_crash_memory(start, end);
1082
1083 return ret;
2df173d9
MS
1084}
1085
1086static int fadump_init_elfcore_header(char *bufp)
1087{
1088 struct elfhdr *elf;
1089
1090 elf = (struct elfhdr *) bufp;
1091 bufp += sizeof(struct elfhdr);
1092 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1093 elf->e_ident[EI_CLASS] = ELF_CLASS;
1094 elf->e_ident[EI_DATA] = ELF_DATA;
1095 elf->e_ident[EI_VERSION] = EV_CURRENT;
1096 elf->e_ident[EI_OSABI] = ELF_OSABI;
1097 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
1098 elf->e_type = ET_CORE;
1099 elf->e_machine = ELF_ARCH;
1100 elf->e_version = EV_CURRENT;
1101 elf->e_entry = 0;
1102 elf->e_phoff = sizeof(struct elfhdr);
1103 elf->e_shoff = 0;
d8bced27
DA
1104#if defined(_CALL_ELF)
1105 elf->e_flags = _CALL_ELF;
1106#else
1107 elf->e_flags = 0;
1108#endif
2df173d9
MS
1109 elf->e_ehsize = sizeof(struct elfhdr);
1110 elf->e_phentsize = sizeof(struct elf_phdr);
1111 elf->e_phnum = 0;
1112 elf->e_shentsize = 0;
1113 elf->e_shnum = 0;
1114 elf->e_shstrndx = 0;
1115
1116 return 0;
1117}
1118
1119/*
1120 * Traverse through memblock structure and setup crash memory ranges. These
1121 * ranges will be used create PT_LOAD program headers in elfcore header.
1122 */
1bd6a1c4 1123static int fadump_setup_crash_memory_ranges(void)
2df173d9
MS
1124{
1125 struct memblock_region *reg;
1126 unsigned long long start, end;
1bd6a1c4 1127 int ret;
2df173d9
MS
1128
1129 pr_debug("Setup crash memory ranges.\n");
1130 crash_mem_ranges = 0;
ced1bf52 1131
2df173d9
MS
1132 /*
1133 * add the first memory chunk (RMA_START through boot_memory_size) as
1134 * a separate memory chunk. The reason is, at the time crash firmware
1135 * will move the content of this memory chunk to different location
1136 * specified during fadump registration. We need to create a separate
1137 * program header for this chunk with the correct offset.
1138 */
1bd6a1c4
HB
1139 ret = fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
1140 if (ret)
1141 return ret;
2df173d9
MS
1142
1143 for_each_memblock(memory, reg) {
1144 start = (unsigned long long)reg->base;
1145 end = start + (unsigned long long)reg->size;
a77af552
HB
1146
1147 /*
1148 * skip the first memory chunk that is already added (RMA_START
1149 * through boot_memory_size). This logic needs a relook if and
1150 * when RMA_START changes to a non-zero value.
1151 */
1152 BUILD_BUG_ON(RMA_START != 0);
1153 if (start < fw_dump.boot_memory_size) {
1154 if (end > fw_dump.boot_memory_size)
1155 start = fw_dump.boot_memory_size;
1156 else
1157 continue;
1158 }
2df173d9
MS
1159
1160 /* add this range excluding the reserved dump area. */
1bd6a1c4
HB
1161 ret = fadump_exclude_reserved_area(start, end);
1162 if (ret)
1163 return ret;
2df173d9 1164 }
1bd6a1c4
HB
1165
1166 return 0;
2df173d9
MS
1167}
1168
d34c5f26
MS
1169/*
1170 * If the given physical address falls within the boot memory region then
1171 * return the relocated address that points to the dump region reserved
1172 * for saving initial boot memory contents.
1173 */
1174static inline unsigned long fadump_relocate(unsigned long paddr)
1175{
1176 if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
408cddd9 1177 return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
d34c5f26
MS
1178 else
1179 return paddr;
1180}
1181
2df173d9
MS
1182static int fadump_create_elfcore_headers(char *bufp)
1183{
1184 struct elfhdr *elf;
1185 struct elf_phdr *phdr;
1186 int i;
1187
1188 fadump_init_elfcore_header(bufp);
1189 elf = (struct elfhdr *)bufp;
1190 bufp += sizeof(struct elfhdr);
1191
ebaeb5ae
MS
1192 /*
1193 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1194 * will be populated during second kernel boot after crash. Hence
1195 * this PT_NOTE will always be the first elf note.
1196 *
1197 * NOTE: Any new ELF note addition should be placed after this note.
1198 */
1199 phdr = (struct elf_phdr *)bufp;
1200 bufp += sizeof(struct elf_phdr);
1201 phdr->p_type = PT_NOTE;
1202 phdr->p_flags = 0;
1203 phdr->p_vaddr = 0;
1204 phdr->p_align = 0;
1205
1206 phdr->p_offset = 0;
1207 phdr->p_paddr = 0;
1208 phdr->p_filesz = 0;
1209 phdr->p_memsz = 0;
1210
1211 (elf->e_phnum)++;
1212
d34c5f26
MS
1213 /* setup ELF PT_NOTE for vmcoreinfo */
1214 phdr = (struct elf_phdr *)bufp;
1215 bufp += sizeof(struct elf_phdr);
1216 phdr->p_type = PT_NOTE;
1217 phdr->p_flags = 0;
1218 phdr->p_vaddr = 0;
1219 phdr->p_align = 0;
1220
1221 phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note());
1222 phdr->p_offset = phdr->p_paddr;
5203f499 1223 phdr->p_memsz = phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
d34c5f26
MS
1224
1225 /* Increment number of program headers. */
1226 (elf->e_phnum)++;
1227
2df173d9
MS
1228 /* setup PT_LOAD sections. */
1229
1230 for (i = 0; i < crash_mem_ranges; i++) {
1231 unsigned long long mbase, msize;
1232 mbase = crash_memory_ranges[i].base;
1233 msize = crash_memory_ranges[i].size;
1234
1235 if (!msize)
1236 continue;
1237
1238 phdr = (struct elf_phdr *)bufp;
1239 bufp += sizeof(struct elf_phdr);
1240 phdr->p_type = PT_LOAD;
1241 phdr->p_flags = PF_R|PF_W|PF_X;
1242 phdr->p_offset = mbase;
1243
1244 if (mbase == RMA_START) {
1245 /*
1246 * The entire RMA region will be moved by firmware
1247 * to the specified destination_address. Hence set
1248 * the correct offset.
1249 */
408cddd9 1250 phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
2df173d9
MS
1251 }
1252
1253 phdr->p_paddr = mbase;
1254 phdr->p_vaddr = (unsigned long)__va(mbase);
1255 phdr->p_filesz = msize;
1256 phdr->p_memsz = msize;
1257 phdr->p_align = 0;
1258
1259 /* Increment number of program headers. */
1260 (elf->e_phnum)++;
1261 }
1262 return 0;
1263}
1264
1265static unsigned long init_fadump_header(unsigned long addr)
1266{
1267 struct fadump_crash_info_header *fdh;
1268
1269 if (!addr)
1270 return 0;
1271
1272 fw_dump.fadumphdr_addr = addr;
1273 fdh = __va(addr);
1274 addr += sizeof(struct fadump_crash_info_header);
1275
1276 memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1277 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1278 fdh->elfcorehdr_addr = addr;
ebaeb5ae
MS
1279 /* We will set the crashing cpu id in crash_fadump() during crash. */
1280 fdh->crashing_cpu = CPU_UNKNOWN;
2df173d9
MS
1281
1282 return addr;
1283}
1284
98b8cd7f 1285static int register_fadump(void)
3ccc00a7 1286{
2df173d9
MS
1287 unsigned long addr;
1288 void *vaddr;
1bd6a1c4 1289 int ret;
2df173d9 1290
3ccc00a7
MS
1291 /*
1292 * If no memory is reserved then we can not register for firmware-
1293 * assisted dump.
1294 */
1295 if (!fw_dump.reserve_dump_area_size)
98b8cd7f 1296 return -ENODEV;
3ccc00a7 1297
1bd6a1c4
HB
1298 ret = fadump_setup_crash_memory_ranges();
1299 if (ret)
1300 return ret;
2df173d9 1301
408cddd9 1302 addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
2df173d9
MS
1303 /* Initialize fadump crash info header. */
1304 addr = init_fadump_header(addr);
1305 vaddr = __va(addr);
1306
1307 pr_debug("Creating ELF core headers at %#016lx\n", addr);
1308 fadump_create_elfcore_headers(vaddr);
1309
3ccc00a7 1310 /* register the future kernel dump with firmware. */
98b8cd7f 1311 return register_fw_dump(&fdm);
3ccc00a7
MS
1312}
1313
1314static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
1315{
1316 int rc = 0;
1317 unsigned int wait_time;
1318
1319 pr_debug("Un-register firmware-assisted dump\n");
1320
1321 /* TODO: Add upper time limit for the delay */
1322 do {
1323 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1324 FADUMP_UNREGISTER, fdm,
1325 sizeof(struct fadump_mem_struct));
1326
1327 wait_time = rtas_busy_delay_time(rc);
1328 if (wait_time)
1329 mdelay(wait_time);
1330 } while (wait_time);
1331
1332 if (rc) {
1333 printk(KERN_ERR "Failed to un-register firmware-assisted dump."
1334 " unexpected error(%d).\n", rc);
1335 return rc;
1336 }
1337 fw_dump.dump_registered = 0;
1338 return 0;
1339}
1340
a4e92ce8 1341static int fadump_invalidate_dump(const struct fadump_mem_struct *fdm)
b500afff
MS
1342{
1343 int rc = 0;
1344 unsigned int wait_time;
1345
1346 pr_debug("Invalidating firmware-assisted dump registration\n");
1347
1348 /* TODO: Add upper time limit for the delay */
1349 do {
1350 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1351 FADUMP_INVALIDATE, fdm,
1352 sizeof(struct fadump_mem_struct));
1353
1354 wait_time = rtas_busy_delay_time(rc);
1355 if (wait_time)
1356 mdelay(wait_time);
1357 } while (wait_time);
1358
1359 if (rc) {
4a03749f 1360 pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
b5b1cfc5 1361 return rc;
b500afff
MS
1362 }
1363 fw_dump.dump_active = 0;
1364 fdm_active = NULL;
1365 return 0;
1366}
1367
1368void fadump_cleanup(void)
1369{
1370 /* Invalidate the registration only if dump is active. */
1371 if (fw_dump.dump_active) {
a4e92ce8
MS
1372 /* pass the same memory dump structure provided by platform */
1373 fadump_invalidate_dump(fdm_active);
722cde76
MS
1374 } else if (fw_dump.dump_registered) {
1375 /* Un-register Firmware-assisted dump if it was registered. */
1376 fadump_unregister_dump(&fdm);
1bd6a1c4 1377 free_crash_memory_ranges();
b500afff
MS
1378 }
1379}
1380
68fa6478
HB
1381static void fadump_free_reserved_memory(unsigned long start_pfn,
1382 unsigned long end_pfn)
1383{
1384 unsigned long pfn;
1385 unsigned long time_limit = jiffies + HZ;
1386
1387 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1388 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1389
1390 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1391 free_reserved_page(pfn_to_page(pfn));
1392
1393 if (time_after(jiffies, time_limit)) {
1394 cond_resched();
1395 time_limit = jiffies + HZ;
1396 }
1397 }
1398}
1399
1400/*
1401 * Skip memory holes and free memory that was actually reserved.
1402 */
1403static void fadump_release_reserved_area(unsigned long start, unsigned long end)
1404{
1405 struct memblock_region *reg;
1406 unsigned long tstart, tend;
1407 unsigned long start_pfn = PHYS_PFN(start);
1408 unsigned long end_pfn = PHYS_PFN(end);
1409
1410 for_each_memblock(memory, reg) {
1411 tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
1412 tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
1413 if (tstart < tend) {
1414 fadump_free_reserved_memory(tstart, tend);
1415
1416 if (tend == end_pfn)
1417 break;
1418
1419 start_pfn = tend + 1;
1420 }
1421 }
1422}
1423
b500afff
MS
1424/*
1425 * Release the memory that was reserved in early boot to preserve the memory
1426 * contents. The released memory will be available for general use.
1427 */
1428static void fadump_release_memory(unsigned long begin, unsigned long end)
1429{
b500afff
MS
1430 unsigned long ra_start, ra_end;
1431
1432 ra_start = fw_dump.reserve_dump_area_start;
1433 ra_end = ra_start + fw_dump.reserve_dump_area_size;
1434
68fa6478
HB
1435 /*
1436 * exclude the dump reserve area. Will reuse it for next
1437 * fadump registration.
1438 */
1439 if (begin < ra_end && end > ra_start) {
1440 if (begin < ra_start)
1441 fadump_release_reserved_area(begin, ra_start);
1442 if (end > ra_end)
1443 fadump_release_reserved_area(ra_end, end);
1444 } else
1445 fadump_release_reserved_area(begin, end);
b500afff
MS
1446}
1447
1448static void fadump_invalidate_release_mem(void)
1449{
1450 unsigned long reserved_area_start, reserved_area_end;
1451 unsigned long destination_address;
1452
1453 mutex_lock(&fadump_mutex);
1454 if (!fw_dump.dump_active) {
1455 mutex_unlock(&fadump_mutex);
1456 return;
1457 }
1458
408cddd9 1459 destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
b500afff
MS
1460 fadump_cleanup();
1461 mutex_unlock(&fadump_mutex);
1462
1463 /*
1464 * Save the current reserved memory bounds we will require them
1465 * later for releasing the memory for general use.
1466 */
1467 reserved_area_start = fw_dump.reserve_dump_area_start;
1468 reserved_area_end = reserved_area_start +
1469 fw_dump.reserve_dump_area_size;
1470 /*
1471 * Setup reserve_dump_area_start and its size so that we can
1472 * reuse this reserved memory for Re-registration.
1473 */
1474 fw_dump.reserve_dump_area_start = destination_address;
1475 fw_dump.reserve_dump_area_size = get_fadump_area_size();
1476
1477 fadump_release_memory(reserved_area_start, reserved_area_end);
1478 if (fw_dump.cpu_notes_buf) {
1479 fadump_cpu_notes_buf_free(
1480 (unsigned long)__va(fw_dump.cpu_notes_buf),
1481 fw_dump.cpu_notes_buf_size);
1482 fw_dump.cpu_notes_buf = 0;
1483 fw_dump.cpu_notes_buf_size = 0;
1484 }
1485 /* Initialize the kernel dump memory structure for FAD registration. */
1486 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1487}
1488
1489static ssize_t fadump_release_memory_store(struct kobject *kobj,
1490 struct kobj_attribute *attr,
1491 const char *buf, size_t count)
1492{
dcdc4679
MS
1493 int input = -1;
1494
b500afff
MS
1495 if (!fw_dump.dump_active)
1496 return -EPERM;
1497
dcdc4679
MS
1498 if (kstrtoint(buf, 0, &input))
1499 return -EINVAL;
1500
1501 if (input == 1) {
b500afff
MS
1502 /*
1503 * Take away the '/proc/vmcore'. We are releasing the dump
1504 * memory, hence it will not be valid anymore.
1505 */
2685f826 1506#ifdef CONFIG_PROC_VMCORE
b500afff 1507 vmcore_cleanup();
2685f826 1508#endif
b500afff
MS
1509 fadump_invalidate_release_mem();
1510
1511 } else
1512 return -EINVAL;
1513 return count;
1514}
1515
3ccc00a7
MS
1516static ssize_t fadump_enabled_show(struct kobject *kobj,
1517 struct kobj_attribute *attr,
1518 char *buf)
1519{
1520 return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1521}
1522
1523static ssize_t fadump_register_show(struct kobject *kobj,
1524 struct kobj_attribute *attr,
1525 char *buf)
1526{
1527 return sprintf(buf, "%d\n", fw_dump.dump_registered);
1528}
1529
1530static ssize_t fadump_register_store(struct kobject *kobj,
1531 struct kobj_attribute *attr,
1532 const char *buf, size_t count)
1533{
1534 int ret = 0;
dcdc4679 1535 int input = -1;
3ccc00a7
MS
1536
1537 if (!fw_dump.fadump_enabled || fdm_active)
1538 return -EPERM;
1539
dcdc4679
MS
1540 if (kstrtoint(buf, 0, &input))
1541 return -EINVAL;
1542
3ccc00a7
MS
1543 mutex_lock(&fadump_mutex);
1544
dcdc4679
MS
1545 switch (input) {
1546 case 0:
3ccc00a7 1547 if (fw_dump.dump_registered == 0) {
3ccc00a7
MS
1548 goto unlock_out;
1549 }
1550 /* Un-register Firmware-assisted dump */
1551 fadump_unregister_dump(&fdm);
1552 break;
dcdc4679 1553 case 1:
3ccc00a7 1554 if (fw_dump.dump_registered == 1) {
0823c68b
HB
1555 /* Un-register Firmware-assisted dump */
1556 fadump_unregister_dump(&fdm);
3ccc00a7
MS
1557 }
1558 /* Register Firmware-assisted dump */
98b8cd7f 1559 ret = register_fadump();
3ccc00a7
MS
1560 break;
1561 default:
1562 ret = -EINVAL;
1563 break;
1564 }
1565
1566unlock_out:
1567 mutex_unlock(&fadump_mutex);
1568 return ret < 0 ? ret : count;
1569}
1570
1571static int fadump_region_show(struct seq_file *m, void *private)
1572{
1573 const struct fadump_mem_struct *fdm_ptr;
1574
1575 if (!fw_dump.fadump_enabled)
1576 return 0;
1577
b500afff 1578 mutex_lock(&fadump_mutex);
3ccc00a7
MS
1579 if (fdm_active)
1580 fdm_ptr = fdm_active;
b500afff
MS
1581 else {
1582 mutex_unlock(&fadump_mutex);
3ccc00a7 1583 fdm_ptr = &fdm;
b500afff 1584 }
3ccc00a7
MS
1585
1586 seq_printf(m,
1587 "CPU : [%#016llx-%#016llx] %#llx bytes, "
1588 "Dumped: %#llx\n",
408cddd9
HB
1589 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1590 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1591 be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1592 be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1593 be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
3ccc00a7
MS
1594 seq_printf(m,
1595 "HPTE: [%#016llx-%#016llx] %#llx bytes, "
1596 "Dumped: %#llx\n",
408cddd9
HB
1597 be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1598 be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1599 be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1600 be64_to_cpu(fdm_ptr->hpte_region.source_len),
1601 be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
3ccc00a7
MS
1602 seq_printf(m,
1603 "DUMP: [%#016llx-%#016llx] %#llx bytes, "
1604 "Dumped: %#llx\n",
408cddd9
HB
1605 be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1606 be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1607 be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1608 be64_to_cpu(fdm_ptr->rmr_region.source_len),
1609 be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
3ccc00a7
MS
1610
1611 if (!fdm_active ||
1612 (fw_dump.reserve_dump_area_start ==
408cddd9 1613 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
b500afff 1614 goto out;
3ccc00a7
MS
1615
1616 /* Dump is active. Show reserved memory region. */
1617 seq_printf(m,
1618 " : [%#016llx-%#016llx] %#llx bytes, "
1619 "Dumped: %#llx\n",
1620 (unsigned long long)fw_dump.reserve_dump_area_start,
408cddd9
HB
1621 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1622 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
3ccc00a7 1623 fw_dump.reserve_dump_area_start,
408cddd9 1624 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
3ccc00a7 1625 fw_dump.reserve_dump_area_start);
b500afff
MS
1626out:
1627 if (fdm_active)
1628 mutex_unlock(&fadump_mutex);
3ccc00a7
MS
1629 return 0;
1630}
1631
b500afff
MS
1632static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1633 0200, NULL,
1634 fadump_release_memory_store);
3ccc00a7
MS
1635static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1636 0444, fadump_enabled_show,
1637 NULL);
1638static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1639 0644, fadump_register_show,
1640 fadump_register_store);
1641
f6cee260 1642DEFINE_SHOW_ATTRIBUTE(fadump_region);
3ccc00a7
MS
1643
1644static void fadump_init_files(void)
1645{
1646 struct dentry *debugfs_file;
1647 int rc = 0;
1648
1649 rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1650 if (rc)
1651 printk(KERN_ERR "fadump: unable to create sysfs file"
1652 " fadump_enabled (%d)\n", rc);
1653
1654 rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1655 if (rc)
1656 printk(KERN_ERR "fadump: unable to create sysfs file"
1657 " fadump_registered (%d)\n", rc);
1658
1659 debugfs_file = debugfs_create_file("fadump_region", 0444,
1660 powerpc_debugfs_root, NULL,
1661 &fadump_region_fops);
1662 if (!debugfs_file)
1663 printk(KERN_ERR "fadump: unable to create debugfs file"
1664 " fadump_region\n");
b500afff
MS
1665
1666 if (fw_dump.dump_active) {
1667 rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1668 if (rc)
1669 printk(KERN_ERR "fadump: unable to create sysfs file"
1670 " fadump_release_mem (%d)\n", rc);
1671 }
3ccc00a7
MS
1672 return;
1673}
1674
1675/*
1676 * Prepare for firmware-assisted dump.
1677 */
1678int __init setup_fadump(void)
1679{
1680 if (!fw_dump.fadump_enabled)
1681 return 0;
1682
1683 if (!fw_dump.fadump_supported) {
1684 printk(KERN_ERR "Firmware-assisted dump is not supported on"
1685 " this hardware\n");
1686 return 0;
1687 }
1688
1689 fadump_show_config();
2df173d9
MS
1690 /*
1691 * If dump data is available then see if it is valid and prepare for
1692 * saving it to the disk.
1693 */
b500afff
MS
1694 if (fw_dump.dump_active) {
1695 /*
1696 * if dump process fails then invalidate the registration
1697 * and release memory before proceeding for re-registration.
1698 */
1699 if (process_fadump(fdm_active) < 0)
1700 fadump_invalidate_release_mem();
1701 }
3ccc00a7 1702 /* Initialize the kernel dump memory structure for FAD registration. */
2df173d9 1703 else if (fw_dump.reserve_dump_area_size)
3ccc00a7
MS
1704 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1705 fadump_init_files();
1706
1707 return 1;
1708}
1709subsys_initcall(setup_fadump);