powerpc/fadump: exclude memory holes while reserving memory in second kernel
[linux-block.git] / arch / powerpc / kernel / fadump.c
CommitLineData
eb39c880
MS
1/*
2 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3 * dump with assistance from firmware. This approach does not use kexec,
4 * instead firmware assists in booting the kdump kernel while preserving
5 * memory contents. The most of the code implementation has been adapted
6 * from phyp assisted dump implementation written by Linas Vepstas and
7 * Manish Ahuja
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 *
23 * Copyright 2011 IBM Corporation
24 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25 */
26
27#undef DEBUG
28#define pr_fmt(fmt) "fadump: " fmt
29
30#include <linux/string.h>
31#include <linux/memblock.h>
3ccc00a7 32#include <linux/delay.h>
3ccc00a7 33#include <linux/seq_file.h>
2df173d9 34#include <linux/crash_dump.h>
b500afff
MS
35#include <linux/kobject.h>
36#include <linux/sysfs.h>
eb39c880 37
7644d581 38#include <asm/debugfs.h>
eb39c880
MS
39#include <asm/page.h>
40#include <asm/prom.h>
41#include <asm/rtas.h>
42#include <asm/fadump.h>
cad3c834 43#include <asm/setup.h>
eb39c880
MS
44
45static struct fw_dump fw_dump;
3ccc00a7
MS
46static struct fadump_mem_struct fdm;
47static const struct fadump_mem_struct *fdm_active;
48
49static DEFINE_MUTEX(fadump_mutex);
2df173d9
MS
50struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
51int crash_mem_ranges;
eb39c880
MS
52
53/* Scan the Firmware Assisted dump configuration details. */
54int __init early_init_dt_scan_fw_dump(unsigned long node,
55 const char *uname, int depth, void *data)
56{
9d0c4dfe 57 const __be32 *sections;
eb39c880 58 int i, num_sections;
9d0c4dfe 59 int size;
408cddd9 60 const __be32 *token;
eb39c880
MS
61
62 if (depth != 1 || strcmp(uname, "rtas") != 0)
63 return 0;
64
65 /*
66 * Check if Firmware Assisted dump is supported. if yes, check
67 * if dump has been initiated on last reboot.
68 */
69 token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
70 if (!token)
a7d04317 71 return 1;
eb39c880
MS
72
73 fw_dump.fadump_supported = 1;
408cddd9 74 fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
eb39c880
MS
75
76 /*
77 * The 'ibm,kernel-dump' rtas node is present only if there is
78 * dump data waiting for us.
79 */
3ccc00a7
MS
80 fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
81 if (fdm_active)
eb39c880
MS
82 fw_dump.dump_active = 1;
83
84 /* Get the sizes required to store dump data for the firmware provided
85 * dump sections.
86 * For each dump section type supported, a 32bit cell which defines
87 * the ID of a supported section followed by two 32 bit cells which
88 * gives teh size of the section in bytes.
89 */
90 sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
91 &size);
92
93 if (!sections)
a7d04317 94 return 1;
eb39c880
MS
95
96 num_sections = size / (3 * sizeof(u32));
97
98 for (i = 0; i < num_sections; i++, sections += 3) {
99 u32 type = (u32)of_read_number(sections, 1);
100
101 switch (type) {
102 case FADUMP_CPU_STATE_DATA:
103 fw_dump.cpu_state_data_size =
104 of_read_ulong(&sections[1], 2);
105 break;
106 case FADUMP_HPTE_REGION:
107 fw_dump.hpte_region_size =
108 of_read_ulong(&sections[1], 2);
109 break;
110 }
111 }
a7d04317 112
eb39c880
MS
113 return 1;
114}
115
eae0dfcc
HB
116/*
117 * If fadump is registered, check if the memory provided
118 * falls within boot memory area.
119 */
120int is_fadump_boot_memory_area(u64 addr, ulong size)
121{
122 if (!fw_dump.dump_registered)
123 return 0;
124
125 return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size;
126}
127
6fcd6baa
NP
128int should_fadump_crash(void)
129{
130 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
131 return 0;
132 return 1;
133}
134
3ccc00a7
MS
135int is_fadump_active(void)
136{
137 return fw_dump.dump_active;
138}
139
a5a05b91
HB
140/*
141 * Returns 1, if there are no holes in boot memory area,
142 * 0 otherwise.
143 */
144static int is_boot_memory_area_contiguous(void)
145{
146 struct memblock_region *reg;
147 unsigned long tstart, tend;
148 unsigned long start_pfn = PHYS_PFN(RMA_START);
149 unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size);
150 unsigned int ret = 0;
151
152 for_each_memblock(memory, reg) {
153 tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
154 tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
155 if (tstart < tend) {
156 /* Memory hole from start_pfn to tstart */
157 if (tstart > start_pfn)
158 break;
159
160 if (tend == end_pfn) {
161 ret = 1;
162 break;
163 }
164
165 start_pfn = tend + 1;
166 }
167 }
168
169 return ret;
170}
171
3ccc00a7
MS
172/* Print firmware assisted dump configurations for debugging purpose. */
173static void fadump_show_config(void)
174{
175 pr_debug("Support for firmware-assisted dump (fadump): %s\n",
176 (fw_dump.fadump_supported ? "present" : "no support"));
177
178 if (!fw_dump.fadump_supported)
179 return;
180
181 pr_debug("Fadump enabled : %s\n",
182 (fw_dump.fadump_enabled ? "yes" : "no"));
183 pr_debug("Dump Active : %s\n",
184 (fw_dump.dump_active ? "yes" : "no"));
185 pr_debug("Dump section sizes:\n");
186 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
187 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size);
188 pr_debug("Boot memory size : %lx\n", fw_dump.boot_memory_size);
189}
190
191static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
192 unsigned long addr)
193{
194 if (!fdm)
195 return 0;
196
197 memset(fdm, 0, sizeof(struct fadump_mem_struct));
198 addr = addr & PAGE_MASK;
199
408cddd9
HB
200 fdm->header.dump_format_version = cpu_to_be32(0x00000001);
201 fdm->header.dump_num_sections = cpu_to_be16(3);
3ccc00a7
MS
202 fdm->header.dump_status_flag = 0;
203 fdm->header.offset_first_dump_section =
408cddd9 204 cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
3ccc00a7
MS
205
206 /*
207 * Fields for disk dump option.
208 * We are not using disk dump option, hence set these fields to 0.
209 */
210 fdm->header.dd_block_size = 0;
211 fdm->header.dd_block_offset = 0;
212 fdm->header.dd_num_blocks = 0;
213 fdm->header.dd_offset_disk_path = 0;
214
215 /* set 0 to disable an automatic dump-reboot. */
216 fdm->header.max_time_auto = 0;
217
218 /* Kernel dump sections */
219 /* cpu state data section. */
408cddd9
HB
220 fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
221 fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
3ccc00a7 222 fdm->cpu_state_data.source_address = 0;
408cddd9
HB
223 fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
224 fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
3ccc00a7
MS
225 addr += fw_dump.cpu_state_data_size;
226
227 /* hpte region section */
408cddd9
HB
228 fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
229 fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
3ccc00a7 230 fdm->hpte_region.source_address = 0;
408cddd9
HB
231 fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
232 fdm->hpte_region.destination_address = cpu_to_be64(addr);
3ccc00a7
MS
233 addr += fw_dump.hpte_region_size;
234
235 /* RMA region section */
408cddd9
HB
236 fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
237 fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
238 fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
239 fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
240 fdm->rmr_region.destination_address = cpu_to_be64(addr);
3ccc00a7
MS
241 addr += fw_dump.boot_memory_size;
242
243 return addr;
244}
245
eb39c880
MS
246/**
247 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
248 *
249 * Function to find the largest memory size we need to reserve during early
250 * boot process. This will be the size of the memory that is required for a
251 * kernel to boot successfully.
252 *
253 * This function has been taken from phyp-assisted dump feature implementation.
254 *
255 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
256 *
257 * TODO: Come up with better approach to find out more accurate memory size
258 * that is required for a kernel to boot successfully.
259 *
260 */
261static inline unsigned long fadump_calculate_reserve_size(void)
262{
11550dc0
HB
263 int ret;
264 unsigned long long base, size;
eb39c880 265
81d9eca5
HB
266 if (fw_dump.reserve_bootvar)
267 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
268
eb39c880 269 /*
11550dc0 270 * Check if the size is specified through crashkernel= cmdline
e7467dc6
HB
271 * option. If yes, then use that but ignore base as fadump reserves
272 * memory at a predefined offset.
eb39c880 273 */
11550dc0
HB
274 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
275 &size, &base);
276 if (ret == 0 && size > 0) {
48a316e3
HB
277 unsigned long max_size;
278
81d9eca5
HB
279 if (fw_dump.reserve_bootvar)
280 pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
281
11550dc0 282 fw_dump.reserve_bootvar = (unsigned long)size;
48a316e3
HB
283
284 /*
285 * Adjust if the boot memory size specified is above
286 * the upper limit.
287 */
288 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
289 if (fw_dump.reserve_bootvar > max_size) {
290 fw_dump.reserve_bootvar = max_size;
291 pr_info("Adjusted boot memory size to %luMB\n",
292 (fw_dump.reserve_bootvar >> 20));
293 }
294
eb39c880 295 return fw_dump.reserve_bootvar;
81d9eca5
HB
296 } else if (fw_dump.reserve_bootvar) {
297 /*
298 * 'fadump_reserve_mem=' is being used to reserve memory
299 * for firmware-assisted dump.
300 */
301 return fw_dump.reserve_bootvar;
11550dc0 302 }
eb39c880
MS
303
304 /* divide by 20 to get 5% of value */
48a316e3 305 size = memblock_phys_mem_size() / 20;
eb39c880
MS
306
307 /* round it down in multiples of 256 */
308 size = size & ~0x0FFFFFFFUL;
309
310 /* Truncate to memory_limit. We don't want to over reserve the memory.*/
311 if (memory_limit && size > memory_limit)
312 size = memory_limit;
313
314 return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
315}
316
317/*
318 * Calculate the total memory size required to be reserved for
319 * firmware-assisted dump registration.
320 */
321static unsigned long get_fadump_area_size(void)
322{
323 unsigned long size = 0;
324
325 size += fw_dump.cpu_state_data_size;
326 size += fw_dump.hpte_region_size;
327 size += fw_dump.boot_memory_size;
2df173d9
MS
328 size += sizeof(struct fadump_crash_info_header);
329 size += sizeof(struct elfhdr); /* ELF core header.*/
ebaeb5ae 330 size += sizeof(struct elf_phdr); /* place holder for cpu notes */
2df173d9
MS
331 /* Program headers for crash memory regions. */
332 size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
eb39c880
MS
333
334 size = PAGE_ALIGN(size);
335 return size;
336}
337
b71a693d
MS
338static void __init fadump_reserve_crash_area(unsigned long base,
339 unsigned long size)
340{
341 struct memblock_region *reg;
342 unsigned long mstart, mend, msize;
343
344 for_each_memblock(memory, reg) {
345 mstart = max_t(unsigned long, base, reg->base);
346 mend = reg->base + reg->size;
347 mend = min(base + size, mend);
348
349 if (mstart < mend) {
350 msize = mend - mstart;
351 memblock_reserve(mstart, msize);
352 pr_info("Reserved %ldMB of memory at %#016lx for saving crash dump\n",
353 (msize >> 20), mstart);
354 }
355 }
356}
357
eb39c880
MS
358int __init fadump_reserve_mem(void)
359{
360 unsigned long base, size, memory_boundary;
361
362 if (!fw_dump.fadump_enabled)
363 return 0;
364
365 if (!fw_dump.fadump_supported) {
366 printk(KERN_INFO "Firmware-assisted dump is not supported on"
367 " this hardware\n");
368 fw_dump.fadump_enabled = 0;
369 return 0;
370 }
3ccc00a7
MS
371 /*
372 * Initialize boot memory size
373 * If dump is active then we have already calculated the size during
374 * first kernel.
375 */
376 if (fdm_active)
408cddd9 377 fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
3ccc00a7
MS
378 else
379 fw_dump.boot_memory_size = fadump_calculate_reserve_size();
eb39c880
MS
380
381 /*
382 * Calculate the memory boundary.
383 * If memory_limit is less than actual memory boundary then reserve
384 * the memory for fadump beyond the memory_limit and adjust the
385 * memory_limit accordingly, so that the running kernel can run with
386 * specified memory_limit.
387 */
388 if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
389 size = get_fadump_area_size();
390 if ((memory_limit + size) < memblock_end_of_DRAM())
391 memory_limit += size;
392 else
393 memory_limit = memblock_end_of_DRAM();
394 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
a84fcd46 395 " dump, now %#016llx\n", memory_limit);
eb39c880
MS
396 }
397 if (memory_limit)
398 memory_boundary = memory_limit;
399 else
400 memory_boundary = memblock_end_of_DRAM();
401
402 if (fw_dump.dump_active) {
b71a693d
MS
403 pr_info("Firmware-assisted dump is active.\n");
404
eb39c880
MS
405 /*
406 * If last boot has crashed then reserve all the memory
407 * above boot_memory_size so that we don't touch it until
408 * dump is written to disk by userspace tool. This memory
409 * will be released for general use once the dump is saved.
410 */
411 base = fw_dump.boot_memory_size;
412 size = memory_boundary - base;
b71a693d 413 fadump_reserve_crash_area(base, size);
2df173d9
MS
414
415 fw_dump.fadumphdr_addr =
408cddd9
HB
416 be64_to_cpu(fdm_active->rmr_region.destination_address) +
417 be64_to_cpu(fdm_active->rmr_region.source_len);
2df173d9
MS
418 pr_debug("fadumphdr_addr = %p\n",
419 (void *) fw_dump.fadumphdr_addr);
eb39c880 420 } else {
eb39c880 421 size = get_fadump_area_size();
f6e6bedb
HB
422
423 /*
424 * Reserve memory at an offset closer to bottom of the RAM to
425 * minimize the impact of memory hot-remove operation. We can't
426 * use memblock_find_in_range() here since it doesn't allocate
427 * from bottom to top.
428 */
429 for (base = fw_dump.boot_memory_size;
430 base <= (memory_boundary - size);
431 base += size) {
432 if (memblock_is_region_memory(base, size) &&
433 !memblock_is_region_reserved(base, size))
434 break;
435 }
436 if ((base > (memory_boundary - size)) ||
437 memblock_reserve(base, size)) {
438 pr_err("Failed to reserve memory\n");
439 return 0;
440 }
441
442 pr_info("Reserved %ldMB of memory at %ldMB for firmware-"
443 "assisted dump (System RAM: %ldMB)\n",
444 (unsigned long)(size >> 20),
445 (unsigned long)(base >> 20),
446 (unsigned long)(memblock_phys_mem_size() >> 20));
eb39c880 447 }
f6e6bedb 448
eb39c880
MS
449 fw_dump.reserve_dump_area_start = base;
450 fw_dump.reserve_dump_area_size = size;
451 return 1;
452}
453
1e76609c
SD
454unsigned long __init arch_reserved_kernel_pages(void)
455{
456 return memblock_reserved_size() / PAGE_SIZE;
457}
458
eb39c880
MS
459/* Look for fadump= cmdline option. */
460static int __init early_fadump_param(char *p)
461{
462 if (!p)
463 return 1;
464
465 if (strncmp(p, "on", 2) == 0)
466 fw_dump.fadump_enabled = 1;
467 else if (strncmp(p, "off", 3) == 0)
468 fw_dump.fadump_enabled = 0;
469
470 return 0;
471}
472early_param("fadump", early_fadump_param);
473
81d9eca5
HB
474/*
475 * Look for fadump_reserve_mem= cmdline option
476 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
477 * the sooner 'crashkernel=' parameter is accustomed to.
478 */
479static int __init early_fadump_reserve_mem(char *p)
480{
481 if (p)
482 fw_dump.reserve_bootvar = memparse(p, &p);
483 return 0;
484}
485early_param("fadump_reserve_mem", early_fadump_reserve_mem);
486
98b8cd7f 487static int register_fw_dump(struct fadump_mem_struct *fdm)
3ccc00a7 488{
98b8cd7f 489 int rc, err;
3ccc00a7
MS
490 unsigned int wait_time;
491
492 pr_debug("Registering for firmware-assisted kernel dump...\n");
493
494 /* TODO: Add upper time limit for the delay */
495 do {
496 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
497 FADUMP_REGISTER, fdm,
498 sizeof(struct fadump_mem_struct));
499
500 wait_time = rtas_busy_delay_time(rc);
501 if (wait_time)
502 mdelay(wait_time);
503
504 } while (wait_time);
505
98b8cd7f 506 err = -EIO;
3ccc00a7 507 switch (rc) {
98b8cd7f
MS
508 default:
509 pr_err("Failed to register. Unknown Error(%d).\n", rc);
510 break;
3ccc00a7
MS
511 case -1:
512 printk(KERN_ERR "Failed to register firmware-assisted kernel"
513 " dump. Hardware Error(%d).\n", rc);
514 break;
515 case -3:
a5a05b91
HB
516 if (!is_boot_memory_area_contiguous())
517 pr_err("Can't have holes in boot memory area while "
518 "registering fadump\n");
519
3ccc00a7
MS
520 printk(KERN_ERR "Failed to register firmware-assisted kernel"
521 " dump. Parameter Error(%d).\n", rc);
98b8cd7f 522 err = -EINVAL;
3ccc00a7
MS
523 break;
524 case -9:
525 printk(KERN_ERR "firmware-assisted kernel dump is already "
526 " registered.");
527 fw_dump.dump_registered = 1;
98b8cd7f 528 err = -EEXIST;
3ccc00a7
MS
529 break;
530 case 0:
531 printk(KERN_INFO "firmware-assisted kernel dump registration"
532 " is successful\n");
533 fw_dump.dump_registered = 1;
98b8cd7f 534 err = 0;
3ccc00a7
MS
535 break;
536 }
98b8cd7f 537 return err;
3ccc00a7
MS
538}
539
ebaeb5ae
MS
540void crash_fadump(struct pt_regs *regs, const char *str)
541{
542 struct fadump_crash_info_header *fdh = NULL;
f2a5e8f0 543 int old_cpu, this_cpu;
ebaeb5ae 544
6fcd6baa 545 if (!should_fadump_crash())
ebaeb5ae
MS
546 return;
547
f2a5e8f0
MS
548 /*
549 * old_cpu == -1 means this is the first CPU which has come here,
550 * go ahead and trigger fadump.
551 *
552 * old_cpu != -1 means some other CPU has already on it's way
553 * to trigger fadump, just keep looping here.
554 */
555 this_cpu = smp_processor_id();
556 old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
557
558 if (old_cpu != -1) {
559 /*
560 * We can't loop here indefinitely. Wait as long as fadump
561 * is in force. If we race with fadump un-registration this
562 * loop will break and then we go down to normal panic path
563 * and reboot. If fadump is in force the first crashing
564 * cpu will definitely trigger fadump.
565 */
566 while (fw_dump.dump_registered)
567 cpu_relax();
568 return;
569 }
570
ebaeb5ae 571 fdh = __va(fw_dump.fadumphdr_addr);
ebaeb5ae
MS
572 fdh->crashing_cpu = crashing_cpu;
573 crash_save_vmcoreinfo();
574
575 if (regs)
576 fdh->regs = *regs;
577 else
578 ppc_save_regs(&fdh->regs);
579
a0512164 580 fdh->online_mask = *cpu_online_mask;
ebaeb5ae
MS
581
582 /* Call ibm,os-term rtas call to trigger firmware assisted dump */
583 rtas_os_term((char *)str);
584}
585
586#define GPR_MASK 0xffffff0000000000
587static inline int fadump_gpr_index(u64 id)
588{
589 int i = -1;
590 char str[3];
591
592 if ((id & GPR_MASK) == REG_ID("GPR")) {
593 /* get the digits at the end */
594 id &= ~GPR_MASK;
595 id >>= 24;
596 str[2] = '\0';
597 str[1] = id & 0xff;
598 str[0] = (id >> 8) & 0xff;
599 sscanf(str, "%d", &i);
600 if (i > 31)
601 i = -1;
602 }
603 return i;
604}
605
606static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
607 u64 reg_val)
608{
609 int i;
610
611 i = fadump_gpr_index(reg_id);
612 if (i >= 0)
613 regs->gpr[i] = (unsigned long)reg_val;
614 else if (reg_id == REG_ID("NIA"))
615 regs->nip = (unsigned long)reg_val;
616 else if (reg_id == REG_ID("MSR"))
617 regs->msr = (unsigned long)reg_val;
618 else if (reg_id == REG_ID("CTR"))
619 regs->ctr = (unsigned long)reg_val;
620 else if (reg_id == REG_ID("LR"))
621 regs->link = (unsigned long)reg_val;
622 else if (reg_id == REG_ID("XER"))
623 regs->xer = (unsigned long)reg_val;
624 else if (reg_id == REG_ID("CR"))
625 regs->ccr = (unsigned long)reg_val;
626 else if (reg_id == REG_ID("DAR"))
627 regs->dar = (unsigned long)reg_val;
628 else if (reg_id == REG_ID("DSISR"))
629 regs->dsisr = (unsigned long)reg_val;
630}
631
632static struct fadump_reg_entry*
633fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
634{
635 memset(regs, 0, sizeof(struct pt_regs));
636
408cddd9
HB
637 while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
638 fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
639 be64_to_cpu(reg_entry->reg_value));
ebaeb5ae
MS
640 reg_entry++;
641 }
642 reg_entry++;
643 return reg_entry;
644}
645
ebaeb5ae
MS
646static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
647{
648 struct elf_prstatus prstatus;
649
650 memset(&prstatus, 0, sizeof(prstatus));
651 /*
652 * FIXME: How do i get PID? Do I really need it?
653 * prstatus.pr_pid = ????
654 */
655 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
22bd0177
HB
656 buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
657 &prstatus, sizeof(prstatus));
ebaeb5ae
MS
658 return buf;
659}
660
661static void fadump_update_elfcore_header(char *bufp)
662{
663 struct elfhdr *elf;
664 struct elf_phdr *phdr;
665
666 elf = (struct elfhdr *)bufp;
667 bufp += sizeof(struct elfhdr);
668
669 /* First note is a place holder for cpu notes info. */
670 phdr = (struct elf_phdr *)bufp;
671
672 if (phdr->p_type == PT_NOTE) {
673 phdr->p_paddr = fw_dump.cpu_notes_buf;
674 phdr->p_offset = phdr->p_paddr;
675 phdr->p_filesz = fw_dump.cpu_notes_buf_size;
676 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
677 }
678 return;
679}
680
681static void *fadump_cpu_notes_buf_alloc(unsigned long size)
682{
683 void *vaddr;
684 struct page *page;
685 unsigned long order, count, i;
686
687 order = get_order(size);
688 vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
689 if (!vaddr)
690 return NULL;
691
692 count = 1 << order;
693 page = virt_to_page(vaddr);
694 for (i = 0; i < count; i++)
695 SetPageReserved(page + i);
696 return vaddr;
697}
698
699static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
700{
701 struct page *page;
702 unsigned long order, count, i;
703
704 order = get_order(size);
705 count = 1 << order;
706 page = virt_to_page(vaddr);
707 for (i = 0; i < count; i++)
708 ClearPageReserved(page + i);
709 __free_pages(page, order);
710}
711
712/*
713 * Read CPU state dump data and convert it into ELF notes.
714 * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
715 * used to access the data to allow for additional fields to be added without
716 * affecting compatibility. Each list of registers for a CPU starts with
717 * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
718 * 8 Byte ASCII identifier and 8 Byte register value. The register entry
719 * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
720 * of register value. For more details refer to PAPR document.
721 *
722 * Only for the crashing cpu we ignore the CPU dump data and get exact
723 * state from fadump crash info structure populated by first kernel at the
724 * time of crash.
725 */
726static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
727{
728 struct fadump_reg_save_area_header *reg_header;
729 struct fadump_reg_entry *reg_entry;
730 struct fadump_crash_info_header *fdh = NULL;
731 void *vaddr;
732 unsigned long addr;
733 u32 num_cpus, *note_buf;
734 struct pt_regs regs;
735 int i, rc = 0, cpu = 0;
736
737 if (!fdm->cpu_state_data.bytes_dumped)
738 return -EINVAL;
739
408cddd9 740 addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
ebaeb5ae
MS
741 vaddr = __va(addr);
742
743 reg_header = vaddr;
408cddd9 744 if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
ebaeb5ae
MS
745 printk(KERN_ERR "Unable to read register save area.\n");
746 return -ENOENT;
747 }
748 pr_debug("--------CPU State Data------------\n");
408cddd9
HB
749 pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
750 pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
ebaeb5ae 751
408cddd9
HB
752 vaddr += be32_to_cpu(reg_header->num_cpu_offset);
753 num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
ebaeb5ae
MS
754 pr_debug("NumCpus : %u\n", num_cpus);
755 vaddr += sizeof(u32);
756 reg_entry = (struct fadump_reg_entry *)vaddr;
757
758 /* Allocate buffer to hold cpu crash notes. */
759 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
760 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
761 note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
762 if (!note_buf) {
763 printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
764 "cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
765 return -ENOMEM;
766 }
767 fw_dump.cpu_notes_buf = __pa(note_buf);
768
769 pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
770 (num_cpus * sizeof(note_buf_t)), note_buf);
771
772 if (fw_dump.fadumphdr_addr)
773 fdh = __va(fw_dump.fadumphdr_addr);
774
775 for (i = 0; i < num_cpus; i++) {
408cddd9 776 if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
ebaeb5ae
MS
777 printk(KERN_ERR "Unable to read CPU state data\n");
778 rc = -ENOENT;
779 goto error_out;
780 }
781 /* Lower 4 bytes of reg_value contains logical cpu id */
408cddd9 782 cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
a0512164 783 if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
ebaeb5ae
MS
784 SKIP_TO_NEXT_CPU(reg_entry);
785 continue;
786 }
787 pr_debug("Reading register data for cpu %d...\n", cpu);
788 if (fdh && fdh->crashing_cpu == cpu) {
789 regs = fdh->regs;
790 note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
791 SKIP_TO_NEXT_CPU(reg_entry);
792 } else {
793 reg_entry++;
794 reg_entry = fadump_read_registers(reg_entry, &regs);
795 note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
796 }
797 }
22bd0177 798 final_note(note_buf);
ebaeb5ae 799
b717d985
RS
800 if (fdh) {
801 pr_debug("Updating elfcore header (%llx) with cpu notes\n",
ebaeb5ae 802 fdh->elfcorehdr_addr);
b717d985
RS
803 fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
804 }
ebaeb5ae
MS
805 return 0;
806
807error_out:
808 fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
809 fw_dump.cpu_notes_buf_size);
810 fw_dump.cpu_notes_buf = 0;
811 fw_dump.cpu_notes_buf_size = 0;
812 return rc;
813
814}
815
2df173d9
MS
816/*
817 * Validate and process the dump data stored by firmware before exporting
818 * it through '/proc/vmcore'.
819 */
820static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
821{
822 struct fadump_crash_info_header *fdh;
ebaeb5ae 823 int rc = 0;
2df173d9
MS
824
825 if (!fdm_active || !fw_dump.fadumphdr_addr)
826 return -EINVAL;
827
828 /* Check if the dump data is valid. */
408cddd9 829 if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
ebaeb5ae 830 (fdm_active->cpu_state_data.error_flags != 0) ||
2df173d9
MS
831 (fdm_active->rmr_region.error_flags != 0)) {
832 printk(KERN_ERR "Dump taken by platform is not valid\n");
833 return -EINVAL;
834 }
ebaeb5ae
MS
835 if ((fdm_active->rmr_region.bytes_dumped !=
836 fdm_active->rmr_region.source_len) ||
837 !fdm_active->cpu_state_data.bytes_dumped) {
2df173d9
MS
838 printk(KERN_ERR "Dump taken by platform is incomplete\n");
839 return -EINVAL;
840 }
841
842 /* Validate the fadump crash info header */
843 fdh = __va(fw_dump.fadumphdr_addr);
844 if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
845 printk(KERN_ERR "Crash info header is not valid.\n");
846 return -EINVAL;
847 }
848
ebaeb5ae
MS
849 rc = fadump_build_cpu_notes(fdm_active);
850 if (rc)
851 return rc;
852
2df173d9
MS
853 /*
854 * We are done validating dump info and elfcore header is now ready
855 * to be exported. set elfcorehdr_addr so that vmcore module will
856 * export the elfcore header through '/proc/vmcore'.
857 */
858 elfcorehdr_addr = fdh->elfcorehdr_addr;
859
860 return 0;
861}
862
863static inline void fadump_add_crash_memory(unsigned long long base,
864 unsigned long long end)
865{
866 if (base == end)
867 return;
868
869 pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
870 crash_mem_ranges, base, end - 1, (end - base));
871 crash_memory_ranges[crash_mem_ranges].base = base;
872 crash_memory_ranges[crash_mem_ranges].size = end - base;
873 crash_mem_ranges++;
874}
875
876static void fadump_exclude_reserved_area(unsigned long long start,
877 unsigned long long end)
878{
879 unsigned long long ra_start, ra_end;
880
881 ra_start = fw_dump.reserve_dump_area_start;
882 ra_end = ra_start + fw_dump.reserve_dump_area_size;
883
884 if ((ra_start < end) && (ra_end > start)) {
885 if ((start < ra_start) && (end > ra_end)) {
886 fadump_add_crash_memory(start, ra_start);
887 fadump_add_crash_memory(ra_end, end);
888 } else if (start < ra_start) {
889 fadump_add_crash_memory(start, ra_start);
890 } else if (ra_end < end) {
891 fadump_add_crash_memory(ra_end, end);
892 }
893 } else
894 fadump_add_crash_memory(start, end);
895}
896
897static int fadump_init_elfcore_header(char *bufp)
898{
899 struct elfhdr *elf;
900
901 elf = (struct elfhdr *) bufp;
902 bufp += sizeof(struct elfhdr);
903 memcpy(elf->e_ident, ELFMAG, SELFMAG);
904 elf->e_ident[EI_CLASS] = ELF_CLASS;
905 elf->e_ident[EI_DATA] = ELF_DATA;
906 elf->e_ident[EI_VERSION] = EV_CURRENT;
907 elf->e_ident[EI_OSABI] = ELF_OSABI;
908 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
909 elf->e_type = ET_CORE;
910 elf->e_machine = ELF_ARCH;
911 elf->e_version = EV_CURRENT;
912 elf->e_entry = 0;
913 elf->e_phoff = sizeof(struct elfhdr);
914 elf->e_shoff = 0;
d8bced27
DA
915#if defined(_CALL_ELF)
916 elf->e_flags = _CALL_ELF;
917#else
918 elf->e_flags = 0;
919#endif
2df173d9
MS
920 elf->e_ehsize = sizeof(struct elfhdr);
921 elf->e_phentsize = sizeof(struct elf_phdr);
922 elf->e_phnum = 0;
923 elf->e_shentsize = 0;
924 elf->e_shnum = 0;
925 elf->e_shstrndx = 0;
926
927 return 0;
928}
929
930/*
931 * Traverse through memblock structure and setup crash memory ranges. These
932 * ranges will be used create PT_LOAD program headers in elfcore header.
933 */
934static void fadump_setup_crash_memory_ranges(void)
935{
936 struct memblock_region *reg;
937 unsigned long long start, end;
938
939 pr_debug("Setup crash memory ranges.\n");
940 crash_mem_ranges = 0;
941 /*
942 * add the first memory chunk (RMA_START through boot_memory_size) as
943 * a separate memory chunk. The reason is, at the time crash firmware
944 * will move the content of this memory chunk to different location
945 * specified during fadump registration. We need to create a separate
946 * program header for this chunk with the correct offset.
947 */
948 fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
949
950 for_each_memblock(memory, reg) {
951 start = (unsigned long long)reg->base;
952 end = start + (unsigned long long)reg->size;
a77af552
HB
953
954 /*
955 * skip the first memory chunk that is already added (RMA_START
956 * through boot_memory_size). This logic needs a relook if and
957 * when RMA_START changes to a non-zero value.
958 */
959 BUILD_BUG_ON(RMA_START != 0);
960 if (start < fw_dump.boot_memory_size) {
961 if (end > fw_dump.boot_memory_size)
962 start = fw_dump.boot_memory_size;
963 else
964 continue;
965 }
2df173d9
MS
966
967 /* add this range excluding the reserved dump area. */
968 fadump_exclude_reserved_area(start, end);
969 }
970}
971
d34c5f26
MS
972/*
973 * If the given physical address falls within the boot memory region then
974 * return the relocated address that points to the dump region reserved
975 * for saving initial boot memory contents.
976 */
977static inline unsigned long fadump_relocate(unsigned long paddr)
978{
979 if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
408cddd9 980 return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
d34c5f26
MS
981 else
982 return paddr;
983}
984
2df173d9
MS
985static int fadump_create_elfcore_headers(char *bufp)
986{
987 struct elfhdr *elf;
988 struct elf_phdr *phdr;
989 int i;
990
991 fadump_init_elfcore_header(bufp);
992 elf = (struct elfhdr *)bufp;
993 bufp += sizeof(struct elfhdr);
994
ebaeb5ae
MS
995 /*
996 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
997 * will be populated during second kernel boot after crash. Hence
998 * this PT_NOTE will always be the first elf note.
999 *
1000 * NOTE: Any new ELF note addition should be placed after this note.
1001 */
1002 phdr = (struct elf_phdr *)bufp;
1003 bufp += sizeof(struct elf_phdr);
1004 phdr->p_type = PT_NOTE;
1005 phdr->p_flags = 0;
1006 phdr->p_vaddr = 0;
1007 phdr->p_align = 0;
1008
1009 phdr->p_offset = 0;
1010 phdr->p_paddr = 0;
1011 phdr->p_filesz = 0;
1012 phdr->p_memsz = 0;
1013
1014 (elf->e_phnum)++;
1015
d34c5f26
MS
1016 /* setup ELF PT_NOTE for vmcoreinfo */
1017 phdr = (struct elf_phdr *)bufp;
1018 bufp += sizeof(struct elf_phdr);
1019 phdr->p_type = PT_NOTE;
1020 phdr->p_flags = 0;
1021 phdr->p_vaddr = 0;
1022 phdr->p_align = 0;
1023
1024 phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note());
1025 phdr->p_offset = phdr->p_paddr;
5203f499 1026 phdr->p_memsz = phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
d34c5f26
MS
1027
1028 /* Increment number of program headers. */
1029 (elf->e_phnum)++;
1030
2df173d9
MS
1031 /* setup PT_LOAD sections. */
1032
1033 for (i = 0; i < crash_mem_ranges; i++) {
1034 unsigned long long mbase, msize;
1035 mbase = crash_memory_ranges[i].base;
1036 msize = crash_memory_ranges[i].size;
1037
1038 if (!msize)
1039 continue;
1040
1041 phdr = (struct elf_phdr *)bufp;
1042 bufp += sizeof(struct elf_phdr);
1043 phdr->p_type = PT_LOAD;
1044 phdr->p_flags = PF_R|PF_W|PF_X;
1045 phdr->p_offset = mbase;
1046
1047 if (mbase == RMA_START) {
1048 /*
1049 * The entire RMA region will be moved by firmware
1050 * to the specified destination_address. Hence set
1051 * the correct offset.
1052 */
408cddd9 1053 phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
2df173d9
MS
1054 }
1055
1056 phdr->p_paddr = mbase;
1057 phdr->p_vaddr = (unsigned long)__va(mbase);
1058 phdr->p_filesz = msize;
1059 phdr->p_memsz = msize;
1060 phdr->p_align = 0;
1061
1062 /* Increment number of program headers. */
1063 (elf->e_phnum)++;
1064 }
1065 return 0;
1066}
1067
1068static unsigned long init_fadump_header(unsigned long addr)
1069{
1070 struct fadump_crash_info_header *fdh;
1071
1072 if (!addr)
1073 return 0;
1074
1075 fw_dump.fadumphdr_addr = addr;
1076 fdh = __va(addr);
1077 addr += sizeof(struct fadump_crash_info_header);
1078
1079 memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1080 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1081 fdh->elfcorehdr_addr = addr;
ebaeb5ae
MS
1082 /* We will set the crashing cpu id in crash_fadump() during crash. */
1083 fdh->crashing_cpu = CPU_UNKNOWN;
2df173d9
MS
1084
1085 return addr;
1086}
1087
98b8cd7f 1088static int register_fadump(void)
3ccc00a7 1089{
2df173d9
MS
1090 unsigned long addr;
1091 void *vaddr;
1092
3ccc00a7
MS
1093 /*
1094 * If no memory is reserved then we can not register for firmware-
1095 * assisted dump.
1096 */
1097 if (!fw_dump.reserve_dump_area_size)
98b8cd7f 1098 return -ENODEV;
3ccc00a7 1099
2df173d9
MS
1100 fadump_setup_crash_memory_ranges();
1101
408cddd9 1102 addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
2df173d9
MS
1103 /* Initialize fadump crash info header. */
1104 addr = init_fadump_header(addr);
1105 vaddr = __va(addr);
1106
1107 pr_debug("Creating ELF core headers at %#016lx\n", addr);
1108 fadump_create_elfcore_headers(vaddr);
1109
3ccc00a7 1110 /* register the future kernel dump with firmware. */
98b8cd7f 1111 return register_fw_dump(&fdm);
3ccc00a7
MS
1112}
1113
1114static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
1115{
1116 int rc = 0;
1117 unsigned int wait_time;
1118
1119 pr_debug("Un-register firmware-assisted dump\n");
1120
1121 /* TODO: Add upper time limit for the delay */
1122 do {
1123 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1124 FADUMP_UNREGISTER, fdm,
1125 sizeof(struct fadump_mem_struct));
1126
1127 wait_time = rtas_busy_delay_time(rc);
1128 if (wait_time)
1129 mdelay(wait_time);
1130 } while (wait_time);
1131
1132 if (rc) {
1133 printk(KERN_ERR "Failed to un-register firmware-assisted dump."
1134 " unexpected error(%d).\n", rc);
1135 return rc;
1136 }
1137 fw_dump.dump_registered = 0;
1138 return 0;
1139}
1140
b500afff
MS
1141static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
1142{
1143 int rc = 0;
1144 unsigned int wait_time;
1145
1146 pr_debug("Invalidating firmware-assisted dump registration\n");
1147
1148 /* TODO: Add upper time limit for the delay */
1149 do {
1150 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1151 FADUMP_INVALIDATE, fdm,
1152 sizeof(struct fadump_mem_struct));
1153
1154 wait_time = rtas_busy_delay_time(rc);
1155 if (wait_time)
1156 mdelay(wait_time);
1157 } while (wait_time);
1158
1159 if (rc) {
4a03749f 1160 pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
b5b1cfc5 1161 return rc;
b500afff
MS
1162 }
1163 fw_dump.dump_active = 0;
1164 fdm_active = NULL;
1165 return 0;
1166}
1167
1168void fadump_cleanup(void)
1169{
1170 /* Invalidate the registration only if dump is active. */
1171 if (fw_dump.dump_active) {
1172 init_fadump_mem_struct(&fdm,
408cddd9 1173 be64_to_cpu(fdm_active->cpu_state_data.destination_address));
b500afff
MS
1174 fadump_invalidate_dump(&fdm);
1175 }
1176}
1177
68fa6478
HB
1178static void fadump_free_reserved_memory(unsigned long start_pfn,
1179 unsigned long end_pfn)
1180{
1181 unsigned long pfn;
1182 unsigned long time_limit = jiffies + HZ;
1183
1184 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1185 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1186
1187 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1188 free_reserved_page(pfn_to_page(pfn));
1189
1190 if (time_after(jiffies, time_limit)) {
1191 cond_resched();
1192 time_limit = jiffies + HZ;
1193 }
1194 }
1195}
1196
1197/*
1198 * Skip memory holes and free memory that was actually reserved.
1199 */
1200static void fadump_release_reserved_area(unsigned long start, unsigned long end)
1201{
1202 struct memblock_region *reg;
1203 unsigned long tstart, tend;
1204 unsigned long start_pfn = PHYS_PFN(start);
1205 unsigned long end_pfn = PHYS_PFN(end);
1206
1207 for_each_memblock(memory, reg) {
1208 tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
1209 tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
1210 if (tstart < tend) {
1211 fadump_free_reserved_memory(tstart, tend);
1212
1213 if (tend == end_pfn)
1214 break;
1215
1216 start_pfn = tend + 1;
1217 }
1218 }
1219}
1220
b500afff
MS
1221/*
1222 * Release the memory that was reserved in early boot to preserve the memory
1223 * contents. The released memory will be available for general use.
1224 */
1225static void fadump_release_memory(unsigned long begin, unsigned long end)
1226{
b500afff
MS
1227 unsigned long ra_start, ra_end;
1228
1229 ra_start = fw_dump.reserve_dump_area_start;
1230 ra_end = ra_start + fw_dump.reserve_dump_area_size;
1231
68fa6478
HB
1232 /*
1233 * exclude the dump reserve area. Will reuse it for next
1234 * fadump registration.
1235 */
1236 if (begin < ra_end && end > ra_start) {
1237 if (begin < ra_start)
1238 fadump_release_reserved_area(begin, ra_start);
1239 if (end > ra_end)
1240 fadump_release_reserved_area(ra_end, end);
1241 } else
1242 fadump_release_reserved_area(begin, end);
b500afff
MS
1243}
1244
1245static void fadump_invalidate_release_mem(void)
1246{
1247 unsigned long reserved_area_start, reserved_area_end;
1248 unsigned long destination_address;
1249
1250 mutex_lock(&fadump_mutex);
1251 if (!fw_dump.dump_active) {
1252 mutex_unlock(&fadump_mutex);
1253 return;
1254 }
1255
408cddd9 1256 destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
b500afff
MS
1257 fadump_cleanup();
1258 mutex_unlock(&fadump_mutex);
1259
1260 /*
1261 * Save the current reserved memory bounds we will require them
1262 * later for releasing the memory for general use.
1263 */
1264 reserved_area_start = fw_dump.reserve_dump_area_start;
1265 reserved_area_end = reserved_area_start +
1266 fw_dump.reserve_dump_area_size;
1267 /*
1268 * Setup reserve_dump_area_start and its size so that we can
1269 * reuse this reserved memory for Re-registration.
1270 */
1271 fw_dump.reserve_dump_area_start = destination_address;
1272 fw_dump.reserve_dump_area_size = get_fadump_area_size();
1273
1274 fadump_release_memory(reserved_area_start, reserved_area_end);
1275 if (fw_dump.cpu_notes_buf) {
1276 fadump_cpu_notes_buf_free(
1277 (unsigned long)__va(fw_dump.cpu_notes_buf),
1278 fw_dump.cpu_notes_buf_size);
1279 fw_dump.cpu_notes_buf = 0;
1280 fw_dump.cpu_notes_buf_size = 0;
1281 }
1282 /* Initialize the kernel dump memory structure for FAD registration. */
1283 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1284}
1285
1286static ssize_t fadump_release_memory_store(struct kobject *kobj,
1287 struct kobj_attribute *attr,
1288 const char *buf, size_t count)
1289{
dcdc4679
MS
1290 int input = -1;
1291
b500afff
MS
1292 if (!fw_dump.dump_active)
1293 return -EPERM;
1294
dcdc4679
MS
1295 if (kstrtoint(buf, 0, &input))
1296 return -EINVAL;
1297
1298 if (input == 1) {
b500afff
MS
1299 /*
1300 * Take away the '/proc/vmcore'. We are releasing the dump
1301 * memory, hence it will not be valid anymore.
1302 */
2685f826 1303#ifdef CONFIG_PROC_VMCORE
b500afff 1304 vmcore_cleanup();
2685f826 1305#endif
b500afff
MS
1306 fadump_invalidate_release_mem();
1307
1308 } else
1309 return -EINVAL;
1310 return count;
1311}
1312
3ccc00a7
MS
1313static ssize_t fadump_enabled_show(struct kobject *kobj,
1314 struct kobj_attribute *attr,
1315 char *buf)
1316{
1317 return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1318}
1319
1320static ssize_t fadump_register_show(struct kobject *kobj,
1321 struct kobj_attribute *attr,
1322 char *buf)
1323{
1324 return sprintf(buf, "%d\n", fw_dump.dump_registered);
1325}
1326
1327static ssize_t fadump_register_store(struct kobject *kobj,
1328 struct kobj_attribute *attr,
1329 const char *buf, size_t count)
1330{
1331 int ret = 0;
dcdc4679 1332 int input = -1;
3ccc00a7
MS
1333
1334 if (!fw_dump.fadump_enabled || fdm_active)
1335 return -EPERM;
1336
dcdc4679
MS
1337 if (kstrtoint(buf, 0, &input))
1338 return -EINVAL;
1339
3ccc00a7
MS
1340 mutex_lock(&fadump_mutex);
1341
dcdc4679
MS
1342 switch (input) {
1343 case 0:
3ccc00a7 1344 if (fw_dump.dump_registered == 0) {
3ccc00a7
MS
1345 goto unlock_out;
1346 }
1347 /* Un-register Firmware-assisted dump */
1348 fadump_unregister_dump(&fdm);
1349 break;
dcdc4679 1350 case 1:
3ccc00a7 1351 if (fw_dump.dump_registered == 1) {
98b8cd7f 1352 ret = -EEXIST;
3ccc00a7
MS
1353 goto unlock_out;
1354 }
1355 /* Register Firmware-assisted dump */
98b8cd7f 1356 ret = register_fadump();
3ccc00a7
MS
1357 break;
1358 default:
1359 ret = -EINVAL;
1360 break;
1361 }
1362
1363unlock_out:
1364 mutex_unlock(&fadump_mutex);
1365 return ret < 0 ? ret : count;
1366}
1367
1368static int fadump_region_show(struct seq_file *m, void *private)
1369{
1370 const struct fadump_mem_struct *fdm_ptr;
1371
1372 if (!fw_dump.fadump_enabled)
1373 return 0;
1374
b500afff 1375 mutex_lock(&fadump_mutex);
3ccc00a7
MS
1376 if (fdm_active)
1377 fdm_ptr = fdm_active;
b500afff
MS
1378 else {
1379 mutex_unlock(&fadump_mutex);
3ccc00a7 1380 fdm_ptr = &fdm;
b500afff 1381 }
3ccc00a7
MS
1382
1383 seq_printf(m,
1384 "CPU : [%#016llx-%#016llx] %#llx bytes, "
1385 "Dumped: %#llx\n",
408cddd9
HB
1386 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1387 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1388 be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1389 be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1390 be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
3ccc00a7
MS
1391 seq_printf(m,
1392 "HPTE: [%#016llx-%#016llx] %#llx bytes, "
1393 "Dumped: %#llx\n",
408cddd9
HB
1394 be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1395 be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1396 be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1397 be64_to_cpu(fdm_ptr->hpte_region.source_len),
1398 be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
3ccc00a7
MS
1399 seq_printf(m,
1400 "DUMP: [%#016llx-%#016llx] %#llx bytes, "
1401 "Dumped: %#llx\n",
408cddd9
HB
1402 be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1403 be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1404 be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1405 be64_to_cpu(fdm_ptr->rmr_region.source_len),
1406 be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
3ccc00a7
MS
1407
1408 if (!fdm_active ||
1409 (fw_dump.reserve_dump_area_start ==
408cddd9 1410 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
b500afff 1411 goto out;
3ccc00a7
MS
1412
1413 /* Dump is active. Show reserved memory region. */
1414 seq_printf(m,
1415 " : [%#016llx-%#016llx] %#llx bytes, "
1416 "Dumped: %#llx\n",
1417 (unsigned long long)fw_dump.reserve_dump_area_start,
408cddd9
HB
1418 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1419 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
3ccc00a7 1420 fw_dump.reserve_dump_area_start,
408cddd9 1421 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
3ccc00a7 1422 fw_dump.reserve_dump_area_start);
b500afff
MS
1423out:
1424 if (fdm_active)
1425 mutex_unlock(&fadump_mutex);
3ccc00a7
MS
1426 return 0;
1427}
1428
b500afff
MS
1429static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1430 0200, NULL,
1431 fadump_release_memory_store);
3ccc00a7
MS
1432static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1433 0444, fadump_enabled_show,
1434 NULL);
1435static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1436 0644, fadump_register_show,
1437 fadump_register_store);
1438
1439static int fadump_region_open(struct inode *inode, struct file *file)
1440{
1441 return single_open(file, fadump_region_show, inode->i_private);
1442}
1443
1444static const struct file_operations fadump_region_fops = {
1445 .open = fadump_region_open,
1446 .read = seq_read,
1447 .llseek = seq_lseek,
1448 .release = single_release,
1449};
1450
1451static void fadump_init_files(void)
1452{
1453 struct dentry *debugfs_file;
1454 int rc = 0;
1455
1456 rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1457 if (rc)
1458 printk(KERN_ERR "fadump: unable to create sysfs file"
1459 " fadump_enabled (%d)\n", rc);
1460
1461 rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1462 if (rc)
1463 printk(KERN_ERR "fadump: unable to create sysfs file"
1464 " fadump_registered (%d)\n", rc);
1465
1466 debugfs_file = debugfs_create_file("fadump_region", 0444,
1467 powerpc_debugfs_root, NULL,
1468 &fadump_region_fops);
1469 if (!debugfs_file)
1470 printk(KERN_ERR "fadump: unable to create debugfs file"
1471 " fadump_region\n");
b500afff
MS
1472
1473 if (fw_dump.dump_active) {
1474 rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1475 if (rc)
1476 printk(KERN_ERR "fadump: unable to create sysfs file"
1477 " fadump_release_mem (%d)\n", rc);
1478 }
3ccc00a7
MS
1479 return;
1480}
1481
1482/*
1483 * Prepare for firmware-assisted dump.
1484 */
1485int __init setup_fadump(void)
1486{
1487 if (!fw_dump.fadump_enabled)
1488 return 0;
1489
1490 if (!fw_dump.fadump_supported) {
1491 printk(KERN_ERR "Firmware-assisted dump is not supported on"
1492 " this hardware\n");
1493 return 0;
1494 }
1495
1496 fadump_show_config();
2df173d9
MS
1497 /*
1498 * If dump data is available then see if it is valid and prepare for
1499 * saving it to the disk.
1500 */
b500afff
MS
1501 if (fw_dump.dump_active) {
1502 /*
1503 * if dump process fails then invalidate the registration
1504 * and release memory before proceeding for re-registration.
1505 */
1506 if (process_fadump(fdm_active) < 0)
1507 fadump_invalidate_release_mem();
1508 }
3ccc00a7 1509 /* Initialize the kernel dump memory structure for FAD registration. */
2df173d9 1510 else if (fw_dump.reserve_dump_area_size)
3ccc00a7
MS
1511 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1512 fadump_init_files();
1513
1514 return 1;
1515}
1516subsys_initcall(setup_fadump);