Merge tag 'kbuild-v4.21-3' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[linux-2.6-block.git] / arch / powerpc / kernel / fadump.c
CommitLineData
eb39c880
MS
1/*
2 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3 * dump with assistance from firmware. This approach does not use kexec,
4 * instead firmware assists in booting the kdump kernel while preserving
5 * memory contents. The most of the code implementation has been adapted
6 * from phyp assisted dump implementation written by Linas Vepstas and
7 * Manish Ahuja
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 *
23 * Copyright 2011 IBM Corporation
24 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25 */
26
27#undef DEBUG
28#define pr_fmt(fmt) "fadump: " fmt
29
30#include <linux/string.h>
31#include <linux/memblock.h>
3ccc00a7 32#include <linux/delay.h>
3ccc00a7 33#include <linux/seq_file.h>
2df173d9 34#include <linux/crash_dump.h>
b500afff
MS
35#include <linux/kobject.h>
36#include <linux/sysfs.h>
a5818313 37#include <linux/slab.h>
a4e92ce8 38#include <linux/cma.h>
eb39c880 39
7644d581 40#include <asm/debugfs.h>
eb39c880
MS
41#include <asm/page.h>
42#include <asm/prom.h>
43#include <asm/rtas.h>
44#include <asm/fadump.h>
cad3c834 45#include <asm/setup.h>
eb39c880
MS
46
47static struct fw_dump fw_dump;
3ccc00a7
MS
48static struct fadump_mem_struct fdm;
49static const struct fadump_mem_struct *fdm_active;
a4e92ce8
MS
50#ifdef CONFIG_CMA
51static struct cma *fadump_cma;
52#endif
3ccc00a7
MS
53
54static DEFINE_MUTEX(fadump_mutex);
1bd6a1c4
HB
55struct fad_crash_memory_ranges *crash_memory_ranges;
56int crash_memory_ranges_size;
2df173d9 57int crash_mem_ranges;
1bd6a1c4 58int max_crash_mem_ranges;
eb39c880 59
a4e92ce8
MS
60#ifdef CONFIG_CMA
61/*
62 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
63 *
64 * This function initializes CMA area from fadump reserved memory.
65 * The total size of fadump reserved memory covers for boot memory size
66 * + cpu data size + hpte size and metadata.
67 * Initialize only the area equivalent to boot memory size for CMA use.
68 * The reamining portion of fadump reserved memory will be not given
69 * to CMA and pages for thoes will stay reserved. boot memory size is
70 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
71 * But for some reason even if it fails we still have the memory reservation
72 * with us and we can still continue doing fadump.
73 */
74int __init fadump_cma_init(void)
75{
76 unsigned long long base, size;
77 int rc;
78
79 if (!fw_dump.fadump_enabled)
80 return 0;
81
82 /*
83 * Do not use CMA if user has provided fadump=nocma kernel parameter.
84 * Return 1 to continue with fadump old behaviour.
85 */
86 if (fw_dump.nocma)
87 return 1;
88
89 base = fw_dump.reserve_dump_area_start;
90 size = fw_dump.boot_memory_size;
91
92 if (!size)
93 return 0;
94
95 rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
96 if (rc) {
97 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
98 /*
99 * Though the CMA init has failed we still have memory
100 * reservation with us. The reserved memory will be
101 * blocked from production system usage. Hence return 1,
102 * so that we can continue with fadump.
103 */
104 return 1;
105 }
106
107 /*
108 * So we now have successfully initialized cma area for fadump.
109 */
110 pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
111 "bytes of memory reserved for firmware-assisted dump\n",
112 cma_get_size(fadump_cma),
113 (unsigned long)cma_get_base(fadump_cma) >> 20,
114 fw_dump.reserve_dump_area_size);
115 return 1;
116}
117#else
118static int __init fadump_cma_init(void) { return 1; }
119#endif /* CONFIG_CMA */
120
eb39c880
MS
121/* Scan the Firmware Assisted dump configuration details. */
122int __init early_init_dt_scan_fw_dump(unsigned long node,
123 const char *uname, int depth, void *data)
124{
9d0c4dfe 125 const __be32 *sections;
eb39c880 126 int i, num_sections;
9d0c4dfe 127 int size;
408cddd9 128 const __be32 *token;
eb39c880
MS
129
130 if (depth != 1 || strcmp(uname, "rtas") != 0)
131 return 0;
132
133 /*
134 * Check if Firmware Assisted dump is supported. if yes, check
135 * if dump has been initiated on last reboot.
136 */
137 token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
138 if (!token)
a7d04317 139 return 1;
eb39c880
MS
140
141 fw_dump.fadump_supported = 1;
408cddd9 142 fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
eb39c880
MS
143
144 /*
145 * The 'ibm,kernel-dump' rtas node is present only if there is
146 * dump data waiting for us.
147 */
3ccc00a7
MS
148 fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
149 if (fdm_active)
eb39c880
MS
150 fw_dump.dump_active = 1;
151
152 /* Get the sizes required to store dump data for the firmware provided
153 * dump sections.
154 * For each dump section type supported, a 32bit cell which defines
155 * the ID of a supported section followed by two 32 bit cells which
156 * gives teh size of the section in bytes.
157 */
158 sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
159 &size);
160
161 if (!sections)
a7d04317 162 return 1;
eb39c880
MS
163
164 num_sections = size / (3 * sizeof(u32));
165
166 for (i = 0; i < num_sections; i++, sections += 3) {
167 u32 type = (u32)of_read_number(sections, 1);
168
169 switch (type) {
170 case FADUMP_CPU_STATE_DATA:
171 fw_dump.cpu_state_data_size =
172 of_read_ulong(&sections[1], 2);
173 break;
174 case FADUMP_HPTE_REGION:
175 fw_dump.hpte_region_size =
176 of_read_ulong(&sections[1], 2);
177 break;
178 }
179 }
a7d04317 180
eb39c880
MS
181 return 1;
182}
183
eae0dfcc
HB
184/*
185 * If fadump is registered, check if the memory provided
0db6896f 186 * falls within boot memory area and reserved memory area.
eae0dfcc 187 */
0db6896f 188int is_fadump_memory_area(u64 addr, ulong size)
eae0dfcc 189{
0db6896f
MS
190 u64 d_start = fw_dump.reserve_dump_area_start;
191 u64 d_end = d_start + fw_dump.reserve_dump_area_size;
192
eae0dfcc
HB
193 if (!fw_dump.dump_registered)
194 return 0;
195
0db6896f
MS
196 if (((addr + size) > d_start) && (addr <= d_end))
197 return 1;
198
eae0dfcc
HB
199 return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size;
200}
201
6fcd6baa
NP
202int should_fadump_crash(void)
203{
204 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
205 return 0;
206 return 1;
207}
208
3ccc00a7
MS
209int is_fadump_active(void)
210{
211 return fw_dump.dump_active;
212}
213
a5a05b91
HB
214/*
215 * Returns 1, if there are no holes in boot memory area,
216 * 0 otherwise.
217 */
218static int is_boot_memory_area_contiguous(void)
219{
220 struct memblock_region *reg;
221 unsigned long tstart, tend;
222 unsigned long start_pfn = PHYS_PFN(RMA_START);
223 unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size);
224 unsigned int ret = 0;
225
226 for_each_memblock(memory, reg) {
227 tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
228 tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
229 if (tstart < tend) {
230 /* Memory hole from start_pfn to tstart */
231 if (tstart > start_pfn)
232 break;
233
234 if (tend == end_pfn) {
235 ret = 1;
236 break;
237 }
238
239 start_pfn = tend + 1;
240 }
241 }
242
243 return ret;
244}
245
f86593be
MS
246/*
247 * Returns true, if there are no holes in reserved memory area,
248 * false otherwise.
249 */
250static bool is_reserved_memory_area_contiguous(void)
251{
252 struct memblock_region *reg;
253 unsigned long start, end;
254 unsigned long d_start = fw_dump.reserve_dump_area_start;
255 unsigned long d_end = d_start + fw_dump.reserve_dump_area_size;
256
257 for_each_memblock(memory, reg) {
258 start = max(d_start, (unsigned long)reg->base);
259 end = min(d_end, (unsigned long)(reg->base + reg->size));
260 if (d_start < end) {
261 /* Memory hole from d_start to start */
262 if (start > d_start)
263 break;
264
265 if (end == d_end)
266 return true;
267
268 d_start = end + 1;
269 }
270 }
271
272 return false;
273}
274
3ccc00a7
MS
275/* Print firmware assisted dump configurations for debugging purpose. */
276static void fadump_show_config(void)
277{
278 pr_debug("Support for firmware-assisted dump (fadump): %s\n",
279 (fw_dump.fadump_supported ? "present" : "no support"));
280
281 if (!fw_dump.fadump_supported)
282 return;
283
284 pr_debug("Fadump enabled : %s\n",
285 (fw_dump.fadump_enabled ? "yes" : "no"));
286 pr_debug("Dump Active : %s\n",
287 (fw_dump.dump_active ? "yes" : "no"));
288 pr_debug("Dump section sizes:\n");
289 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
290 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size);
291 pr_debug("Boot memory size : %lx\n", fw_dump.boot_memory_size);
292}
293
294static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
295 unsigned long addr)
296{
297 if (!fdm)
298 return 0;
299
300 memset(fdm, 0, sizeof(struct fadump_mem_struct));
301 addr = addr & PAGE_MASK;
302
408cddd9
HB
303 fdm->header.dump_format_version = cpu_to_be32(0x00000001);
304 fdm->header.dump_num_sections = cpu_to_be16(3);
3ccc00a7
MS
305 fdm->header.dump_status_flag = 0;
306 fdm->header.offset_first_dump_section =
408cddd9 307 cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
3ccc00a7
MS
308
309 /*
310 * Fields for disk dump option.
311 * We are not using disk dump option, hence set these fields to 0.
312 */
313 fdm->header.dd_block_size = 0;
314 fdm->header.dd_block_offset = 0;
315 fdm->header.dd_num_blocks = 0;
316 fdm->header.dd_offset_disk_path = 0;
317
318 /* set 0 to disable an automatic dump-reboot. */
319 fdm->header.max_time_auto = 0;
320
321 /* Kernel dump sections */
322 /* cpu state data section. */
408cddd9
HB
323 fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
324 fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
3ccc00a7 325 fdm->cpu_state_data.source_address = 0;
408cddd9
HB
326 fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
327 fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
3ccc00a7
MS
328 addr += fw_dump.cpu_state_data_size;
329
330 /* hpte region section */
408cddd9
HB
331 fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
332 fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
3ccc00a7 333 fdm->hpte_region.source_address = 0;
408cddd9
HB
334 fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
335 fdm->hpte_region.destination_address = cpu_to_be64(addr);
3ccc00a7
MS
336 addr += fw_dump.hpte_region_size;
337
338 /* RMA region section */
408cddd9
HB
339 fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
340 fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
341 fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
342 fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
343 fdm->rmr_region.destination_address = cpu_to_be64(addr);
3ccc00a7
MS
344 addr += fw_dump.boot_memory_size;
345
346 return addr;
347}
348
eb39c880
MS
349/**
350 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
351 *
352 * Function to find the largest memory size we need to reserve during early
353 * boot process. This will be the size of the memory that is required for a
354 * kernel to boot successfully.
355 *
356 * This function has been taken from phyp-assisted dump feature implementation.
357 *
358 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
359 *
360 * TODO: Come up with better approach to find out more accurate memory size
361 * that is required for a kernel to boot successfully.
362 *
363 */
364static inline unsigned long fadump_calculate_reserve_size(void)
365{
11550dc0
HB
366 int ret;
367 unsigned long long base, size;
eb39c880 368
81d9eca5
HB
369 if (fw_dump.reserve_bootvar)
370 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
371
eb39c880 372 /*
11550dc0 373 * Check if the size is specified through crashkernel= cmdline
e7467dc6
HB
374 * option. If yes, then use that but ignore base as fadump reserves
375 * memory at a predefined offset.
eb39c880 376 */
11550dc0
HB
377 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
378 &size, &base);
379 if (ret == 0 && size > 0) {
48a316e3
HB
380 unsigned long max_size;
381
81d9eca5
HB
382 if (fw_dump.reserve_bootvar)
383 pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
384
11550dc0 385 fw_dump.reserve_bootvar = (unsigned long)size;
48a316e3
HB
386
387 /*
388 * Adjust if the boot memory size specified is above
389 * the upper limit.
390 */
391 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
392 if (fw_dump.reserve_bootvar > max_size) {
393 fw_dump.reserve_bootvar = max_size;
394 pr_info("Adjusted boot memory size to %luMB\n",
395 (fw_dump.reserve_bootvar >> 20));
396 }
397
eb39c880 398 return fw_dump.reserve_bootvar;
81d9eca5
HB
399 } else if (fw_dump.reserve_bootvar) {
400 /*
401 * 'fadump_reserve_mem=' is being used to reserve memory
402 * for firmware-assisted dump.
403 */
404 return fw_dump.reserve_bootvar;
11550dc0 405 }
eb39c880
MS
406
407 /* divide by 20 to get 5% of value */
48a316e3 408 size = memblock_phys_mem_size() / 20;
eb39c880
MS
409
410 /* round it down in multiples of 256 */
411 size = size & ~0x0FFFFFFFUL;
412
413 /* Truncate to memory_limit. We don't want to over reserve the memory.*/
414 if (memory_limit && size > memory_limit)
415 size = memory_limit;
416
417 return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
418}
419
420/*
421 * Calculate the total memory size required to be reserved for
422 * firmware-assisted dump registration.
423 */
424static unsigned long get_fadump_area_size(void)
425{
426 unsigned long size = 0;
427
428 size += fw_dump.cpu_state_data_size;
429 size += fw_dump.hpte_region_size;
430 size += fw_dump.boot_memory_size;
2df173d9
MS
431 size += sizeof(struct fadump_crash_info_header);
432 size += sizeof(struct elfhdr); /* ELF core header.*/
ebaeb5ae 433 size += sizeof(struct elf_phdr); /* place holder for cpu notes */
2df173d9
MS
434 /* Program headers for crash memory regions. */
435 size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
eb39c880
MS
436
437 size = PAGE_ALIGN(size);
438 return size;
439}
440
b71a693d
MS
441static void __init fadump_reserve_crash_area(unsigned long base,
442 unsigned long size)
443{
444 struct memblock_region *reg;
445 unsigned long mstart, mend, msize;
446
447 for_each_memblock(memory, reg) {
448 mstart = max_t(unsigned long, base, reg->base);
449 mend = reg->base + reg->size;
450 mend = min(base + size, mend);
451
452 if (mstart < mend) {
453 msize = mend - mstart;
454 memblock_reserve(mstart, msize);
455 pr_info("Reserved %ldMB of memory at %#016lx for saving crash dump\n",
456 (msize >> 20), mstart);
457 }
458 }
459}
460
eb39c880
MS
461int __init fadump_reserve_mem(void)
462{
463 unsigned long base, size, memory_boundary;
464
465 if (!fw_dump.fadump_enabled)
466 return 0;
467
468 if (!fw_dump.fadump_supported) {
469 printk(KERN_INFO "Firmware-assisted dump is not supported on"
470 " this hardware\n");
471 fw_dump.fadump_enabled = 0;
472 return 0;
473 }
3ccc00a7
MS
474 /*
475 * Initialize boot memory size
476 * If dump is active then we have already calculated the size during
477 * first kernel.
478 */
479 if (fdm_active)
408cddd9 480 fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
a4e92ce8 481 else {
3ccc00a7 482 fw_dump.boot_memory_size = fadump_calculate_reserve_size();
a4e92ce8
MS
483#ifdef CONFIG_CMA
484 if (!fw_dump.nocma)
485 fw_dump.boot_memory_size =
486 ALIGN(fw_dump.boot_memory_size,
487 FADUMP_CMA_ALIGNMENT);
488#endif
489 }
eb39c880
MS
490
491 /*
492 * Calculate the memory boundary.
493 * If memory_limit is less than actual memory boundary then reserve
494 * the memory for fadump beyond the memory_limit and adjust the
495 * memory_limit accordingly, so that the running kernel can run with
496 * specified memory_limit.
497 */
498 if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
499 size = get_fadump_area_size();
500 if ((memory_limit + size) < memblock_end_of_DRAM())
501 memory_limit += size;
502 else
503 memory_limit = memblock_end_of_DRAM();
504 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
a84fcd46 505 " dump, now %#016llx\n", memory_limit);
eb39c880
MS
506 }
507 if (memory_limit)
508 memory_boundary = memory_limit;
509 else
510 memory_boundary = memblock_end_of_DRAM();
511
512 if (fw_dump.dump_active) {
b71a693d
MS
513 pr_info("Firmware-assisted dump is active.\n");
514
85975387
HB
515#ifdef CONFIG_HUGETLB_PAGE
516 /*
517 * FADump capture kernel doesn't care much about hugepages.
518 * In fact, handling hugepages in capture kernel is asking for
519 * trouble. So, disable HugeTLB support when fadump is active.
520 */
521 hugetlb_disabled = true;
522#endif
eb39c880
MS
523 /*
524 * If last boot has crashed then reserve all the memory
525 * above boot_memory_size so that we don't touch it until
526 * dump is written to disk by userspace tool. This memory
527 * will be released for general use once the dump is saved.
528 */
529 base = fw_dump.boot_memory_size;
530 size = memory_boundary - base;
b71a693d 531 fadump_reserve_crash_area(base, size);
2df173d9
MS
532
533 fw_dump.fadumphdr_addr =
408cddd9
HB
534 be64_to_cpu(fdm_active->rmr_region.destination_address) +
535 be64_to_cpu(fdm_active->rmr_region.source_len);
a4e92ce8
MS
536 pr_debug("fadumphdr_addr = %pa\n", &fw_dump.fadumphdr_addr);
537 fw_dump.reserve_dump_area_start = base;
538 fw_dump.reserve_dump_area_size = size;
eb39c880 539 } else {
eb39c880 540 size = get_fadump_area_size();
f6e6bedb
HB
541
542 /*
543 * Reserve memory at an offset closer to bottom of the RAM to
544 * minimize the impact of memory hot-remove operation. We can't
545 * use memblock_find_in_range() here since it doesn't allocate
546 * from bottom to top.
547 */
548 for (base = fw_dump.boot_memory_size;
549 base <= (memory_boundary - size);
550 base += size) {
551 if (memblock_is_region_memory(base, size) &&
552 !memblock_is_region_reserved(base, size))
553 break;
554 }
555 if ((base > (memory_boundary - size)) ||
556 memblock_reserve(base, size)) {
557 pr_err("Failed to reserve memory\n");
558 return 0;
559 }
560
561 pr_info("Reserved %ldMB of memory at %ldMB for firmware-"
562 "assisted dump (System RAM: %ldMB)\n",
563 (unsigned long)(size >> 20),
564 (unsigned long)(base >> 20),
565 (unsigned long)(memblock_phys_mem_size() >> 20));
f6e6bedb 566
a4e92ce8
MS
567 fw_dump.reserve_dump_area_start = base;
568 fw_dump.reserve_dump_area_size = size;
569 return fadump_cma_init();
570 }
eb39c880
MS
571 return 1;
572}
573
1e76609c
SD
574unsigned long __init arch_reserved_kernel_pages(void)
575{
576 return memblock_reserved_size() / PAGE_SIZE;
577}
578
eb39c880
MS
579/* Look for fadump= cmdline option. */
580static int __init early_fadump_param(char *p)
581{
582 if (!p)
583 return 1;
584
585 if (strncmp(p, "on", 2) == 0)
586 fw_dump.fadump_enabled = 1;
587 else if (strncmp(p, "off", 3) == 0)
588 fw_dump.fadump_enabled = 0;
a4e92ce8
MS
589 else if (strncmp(p, "nocma", 5) == 0) {
590 fw_dump.fadump_enabled = 1;
591 fw_dump.nocma = 1;
592 }
eb39c880
MS
593
594 return 0;
595}
596early_param("fadump", early_fadump_param);
597
81d9eca5
HB
598/*
599 * Look for fadump_reserve_mem= cmdline option
600 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
601 * the sooner 'crashkernel=' parameter is accustomed to.
602 */
603static int __init early_fadump_reserve_mem(char *p)
604{
605 if (p)
606 fw_dump.reserve_bootvar = memparse(p, &p);
607 return 0;
608}
609early_param("fadump_reserve_mem", early_fadump_reserve_mem);
610
98b8cd7f 611static int register_fw_dump(struct fadump_mem_struct *fdm)
3ccc00a7 612{
98b8cd7f 613 int rc, err;
3ccc00a7
MS
614 unsigned int wait_time;
615
616 pr_debug("Registering for firmware-assisted kernel dump...\n");
617
618 /* TODO: Add upper time limit for the delay */
619 do {
620 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
621 FADUMP_REGISTER, fdm,
622 sizeof(struct fadump_mem_struct));
623
624 wait_time = rtas_busy_delay_time(rc);
625 if (wait_time)
626 mdelay(wait_time);
627
628 } while (wait_time);
629
98b8cd7f 630 err = -EIO;
3ccc00a7 631 switch (rc) {
98b8cd7f
MS
632 default:
633 pr_err("Failed to register. Unknown Error(%d).\n", rc);
634 break;
3ccc00a7
MS
635 case -1:
636 printk(KERN_ERR "Failed to register firmware-assisted kernel"
637 " dump. Hardware Error(%d).\n", rc);
638 break;
639 case -3:
a5a05b91 640 if (!is_boot_memory_area_contiguous())
f86593be
MS
641 pr_err("Can't have holes in boot memory area while registering fadump\n");
642 else if (!is_reserved_memory_area_contiguous())
643 pr_err("Can't have holes in reserved memory area while"
644 " registering fadump\n");
a5a05b91 645
3ccc00a7
MS
646 printk(KERN_ERR "Failed to register firmware-assisted kernel"
647 " dump. Parameter Error(%d).\n", rc);
98b8cd7f 648 err = -EINVAL;
3ccc00a7
MS
649 break;
650 case -9:
651 printk(KERN_ERR "firmware-assisted kernel dump is already "
652 " registered.");
653 fw_dump.dump_registered = 1;
98b8cd7f 654 err = -EEXIST;
3ccc00a7
MS
655 break;
656 case 0:
657 printk(KERN_INFO "firmware-assisted kernel dump registration"
658 " is successful\n");
659 fw_dump.dump_registered = 1;
98b8cd7f 660 err = 0;
3ccc00a7
MS
661 break;
662 }
98b8cd7f 663 return err;
3ccc00a7
MS
664}
665
ebaeb5ae
MS
666void crash_fadump(struct pt_regs *regs, const char *str)
667{
668 struct fadump_crash_info_header *fdh = NULL;
f2a5e8f0 669 int old_cpu, this_cpu;
ebaeb5ae 670
6fcd6baa 671 if (!should_fadump_crash())
ebaeb5ae
MS
672 return;
673
f2a5e8f0
MS
674 /*
675 * old_cpu == -1 means this is the first CPU which has come here,
676 * go ahead and trigger fadump.
677 *
678 * old_cpu != -1 means some other CPU has already on it's way
679 * to trigger fadump, just keep looping here.
680 */
681 this_cpu = smp_processor_id();
682 old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
683
684 if (old_cpu != -1) {
685 /*
686 * We can't loop here indefinitely. Wait as long as fadump
687 * is in force. If we race with fadump un-registration this
688 * loop will break and then we go down to normal panic path
689 * and reboot. If fadump is in force the first crashing
690 * cpu will definitely trigger fadump.
691 */
692 while (fw_dump.dump_registered)
693 cpu_relax();
694 return;
695 }
696
ebaeb5ae 697 fdh = __va(fw_dump.fadumphdr_addr);
ebaeb5ae
MS
698 fdh->crashing_cpu = crashing_cpu;
699 crash_save_vmcoreinfo();
700
701 if (regs)
702 fdh->regs = *regs;
703 else
704 ppc_save_regs(&fdh->regs);
705
a0512164 706 fdh->online_mask = *cpu_online_mask;
ebaeb5ae
MS
707
708 /* Call ibm,os-term rtas call to trigger firmware assisted dump */
709 rtas_os_term((char *)str);
710}
711
712#define GPR_MASK 0xffffff0000000000
713static inline int fadump_gpr_index(u64 id)
714{
715 int i = -1;
716 char str[3];
717
718 if ((id & GPR_MASK) == REG_ID("GPR")) {
719 /* get the digits at the end */
720 id &= ~GPR_MASK;
721 id >>= 24;
722 str[2] = '\0';
723 str[1] = id & 0xff;
724 str[0] = (id >> 8) & 0xff;
725 sscanf(str, "%d", &i);
726 if (i > 31)
727 i = -1;
728 }
729 return i;
730}
731
732static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
733 u64 reg_val)
734{
735 int i;
736
737 i = fadump_gpr_index(reg_id);
738 if (i >= 0)
739 regs->gpr[i] = (unsigned long)reg_val;
740 else if (reg_id == REG_ID("NIA"))
741 regs->nip = (unsigned long)reg_val;
742 else if (reg_id == REG_ID("MSR"))
743 regs->msr = (unsigned long)reg_val;
744 else if (reg_id == REG_ID("CTR"))
745 regs->ctr = (unsigned long)reg_val;
746 else if (reg_id == REG_ID("LR"))
747 regs->link = (unsigned long)reg_val;
748 else if (reg_id == REG_ID("XER"))
749 regs->xer = (unsigned long)reg_val;
750 else if (reg_id == REG_ID("CR"))
751 regs->ccr = (unsigned long)reg_val;
752 else if (reg_id == REG_ID("DAR"))
753 regs->dar = (unsigned long)reg_val;
754 else if (reg_id == REG_ID("DSISR"))
755 regs->dsisr = (unsigned long)reg_val;
756}
757
758static struct fadump_reg_entry*
759fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
760{
761 memset(regs, 0, sizeof(struct pt_regs));
762
408cddd9
HB
763 while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
764 fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
765 be64_to_cpu(reg_entry->reg_value));
ebaeb5ae
MS
766 reg_entry++;
767 }
768 reg_entry++;
769 return reg_entry;
770}
771
ebaeb5ae
MS
772static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
773{
774 struct elf_prstatus prstatus;
775
776 memset(&prstatus, 0, sizeof(prstatus));
777 /*
778 * FIXME: How do i get PID? Do I really need it?
779 * prstatus.pr_pid = ????
780 */
781 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
22bd0177
HB
782 buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
783 &prstatus, sizeof(prstatus));
ebaeb5ae
MS
784 return buf;
785}
786
787static void fadump_update_elfcore_header(char *bufp)
788{
789 struct elfhdr *elf;
790 struct elf_phdr *phdr;
791
792 elf = (struct elfhdr *)bufp;
793 bufp += sizeof(struct elfhdr);
794
795 /* First note is a place holder for cpu notes info. */
796 phdr = (struct elf_phdr *)bufp;
797
798 if (phdr->p_type == PT_NOTE) {
799 phdr->p_paddr = fw_dump.cpu_notes_buf;
800 phdr->p_offset = phdr->p_paddr;
801 phdr->p_filesz = fw_dump.cpu_notes_buf_size;
802 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
803 }
804 return;
805}
806
807static void *fadump_cpu_notes_buf_alloc(unsigned long size)
808{
809 void *vaddr;
810 struct page *page;
811 unsigned long order, count, i;
812
813 order = get_order(size);
814 vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
815 if (!vaddr)
816 return NULL;
817
818 count = 1 << order;
819 page = virt_to_page(vaddr);
820 for (i = 0; i < count; i++)
821 SetPageReserved(page + i);
822 return vaddr;
823}
824
825static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
826{
827 struct page *page;
828 unsigned long order, count, i;
829
830 order = get_order(size);
831 count = 1 << order;
832 page = virt_to_page(vaddr);
833 for (i = 0; i < count; i++)
834 ClearPageReserved(page + i);
835 __free_pages(page, order);
836}
837
838/*
839 * Read CPU state dump data and convert it into ELF notes.
840 * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
841 * used to access the data to allow for additional fields to be added without
842 * affecting compatibility. Each list of registers for a CPU starts with
843 * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
844 * 8 Byte ASCII identifier and 8 Byte register value. The register entry
845 * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
846 * of register value. For more details refer to PAPR document.
847 *
848 * Only for the crashing cpu we ignore the CPU dump data and get exact
849 * state from fadump crash info structure populated by first kernel at the
850 * time of crash.
851 */
852static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
853{
854 struct fadump_reg_save_area_header *reg_header;
855 struct fadump_reg_entry *reg_entry;
856 struct fadump_crash_info_header *fdh = NULL;
857 void *vaddr;
858 unsigned long addr;
859 u32 num_cpus, *note_buf;
860 struct pt_regs regs;
861 int i, rc = 0, cpu = 0;
862
863 if (!fdm->cpu_state_data.bytes_dumped)
864 return -EINVAL;
865
408cddd9 866 addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
ebaeb5ae
MS
867 vaddr = __va(addr);
868
869 reg_header = vaddr;
408cddd9 870 if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
ebaeb5ae
MS
871 printk(KERN_ERR "Unable to read register save area.\n");
872 return -ENOENT;
873 }
874 pr_debug("--------CPU State Data------------\n");
408cddd9
HB
875 pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
876 pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
ebaeb5ae 877
408cddd9
HB
878 vaddr += be32_to_cpu(reg_header->num_cpu_offset);
879 num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
ebaeb5ae
MS
880 pr_debug("NumCpus : %u\n", num_cpus);
881 vaddr += sizeof(u32);
882 reg_entry = (struct fadump_reg_entry *)vaddr;
883
884 /* Allocate buffer to hold cpu crash notes. */
885 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
886 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
887 note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
888 if (!note_buf) {
889 printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
890 "cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
891 return -ENOMEM;
892 }
893 fw_dump.cpu_notes_buf = __pa(note_buf);
894
895 pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
896 (num_cpus * sizeof(note_buf_t)), note_buf);
897
898 if (fw_dump.fadumphdr_addr)
899 fdh = __va(fw_dump.fadumphdr_addr);
900
901 for (i = 0; i < num_cpus; i++) {
408cddd9 902 if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
ebaeb5ae
MS
903 printk(KERN_ERR "Unable to read CPU state data\n");
904 rc = -ENOENT;
905 goto error_out;
906 }
907 /* Lower 4 bytes of reg_value contains logical cpu id */
408cddd9 908 cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
a0512164 909 if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
ebaeb5ae
MS
910 SKIP_TO_NEXT_CPU(reg_entry);
911 continue;
912 }
913 pr_debug("Reading register data for cpu %d...\n", cpu);
914 if (fdh && fdh->crashing_cpu == cpu) {
915 regs = fdh->regs;
916 note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
917 SKIP_TO_NEXT_CPU(reg_entry);
918 } else {
919 reg_entry++;
920 reg_entry = fadump_read_registers(reg_entry, &regs);
921 note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
922 }
923 }
22bd0177 924 final_note(note_buf);
ebaeb5ae 925
b717d985
RS
926 if (fdh) {
927 pr_debug("Updating elfcore header (%llx) with cpu notes\n",
ebaeb5ae 928 fdh->elfcorehdr_addr);
b717d985
RS
929 fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
930 }
ebaeb5ae
MS
931 return 0;
932
933error_out:
934 fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
935 fw_dump.cpu_notes_buf_size);
936 fw_dump.cpu_notes_buf = 0;
937 fw_dump.cpu_notes_buf_size = 0;
938 return rc;
939
940}
941
2df173d9
MS
942/*
943 * Validate and process the dump data stored by firmware before exporting
944 * it through '/proc/vmcore'.
945 */
946static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
947{
948 struct fadump_crash_info_header *fdh;
ebaeb5ae 949 int rc = 0;
2df173d9
MS
950
951 if (!fdm_active || !fw_dump.fadumphdr_addr)
952 return -EINVAL;
953
954 /* Check if the dump data is valid. */
408cddd9 955 if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
ebaeb5ae 956 (fdm_active->cpu_state_data.error_flags != 0) ||
2df173d9
MS
957 (fdm_active->rmr_region.error_flags != 0)) {
958 printk(KERN_ERR "Dump taken by platform is not valid\n");
959 return -EINVAL;
960 }
ebaeb5ae
MS
961 if ((fdm_active->rmr_region.bytes_dumped !=
962 fdm_active->rmr_region.source_len) ||
963 !fdm_active->cpu_state_data.bytes_dumped) {
2df173d9
MS
964 printk(KERN_ERR "Dump taken by platform is incomplete\n");
965 return -EINVAL;
966 }
967
968 /* Validate the fadump crash info header */
969 fdh = __va(fw_dump.fadumphdr_addr);
970 if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
971 printk(KERN_ERR "Crash info header is not valid.\n");
972 return -EINVAL;
973 }
974
ebaeb5ae
MS
975 rc = fadump_build_cpu_notes(fdm_active);
976 if (rc)
977 return rc;
978
2df173d9
MS
979 /*
980 * We are done validating dump info and elfcore header is now ready
981 * to be exported. set elfcorehdr_addr so that vmcore module will
982 * export the elfcore header through '/proc/vmcore'.
983 */
984 elfcorehdr_addr = fdh->elfcorehdr_addr;
985
986 return 0;
987}
988
1bd6a1c4
HB
989static void free_crash_memory_ranges(void)
990{
991 kfree(crash_memory_ranges);
992 crash_memory_ranges = NULL;
993 crash_memory_ranges_size = 0;
994 max_crash_mem_ranges = 0;
995}
996
997/*
998 * Allocate or reallocate crash memory ranges array in incremental units
999 * of PAGE_SIZE.
1000 */
1001static int allocate_crash_memory_ranges(void)
1002{
1003 struct fad_crash_memory_ranges *new_array;
1004 u64 new_size;
1005
1006 new_size = crash_memory_ranges_size + PAGE_SIZE;
1007 pr_debug("Allocating %llu bytes of memory for crash memory ranges\n",
1008 new_size);
1009
1010 new_array = krealloc(crash_memory_ranges, new_size, GFP_KERNEL);
1011 if (new_array == NULL) {
1012 pr_err("Insufficient memory for setting up crash memory ranges\n");
1013 free_crash_memory_ranges();
1014 return -ENOMEM;
1015 }
1016
1017 crash_memory_ranges = new_array;
1018 crash_memory_ranges_size = new_size;
1019 max_crash_mem_ranges = (new_size /
1020 sizeof(struct fad_crash_memory_ranges));
1021 return 0;
1022}
1023
1024static inline int fadump_add_crash_memory(unsigned long long base,
1025 unsigned long long end)
2df173d9 1026{
ced1bf52
HB
1027 u64 start, size;
1028 bool is_adjacent = false;
1029
2df173d9 1030 if (base == end)
1bd6a1c4
HB
1031 return 0;
1032
ced1bf52
HB
1033 /*
1034 * Fold adjacent memory ranges to bring down the memory ranges/
1035 * PT_LOAD segments count.
1036 */
1037 if (crash_mem_ranges) {
1038 start = crash_memory_ranges[crash_mem_ranges - 1].base;
1039 size = crash_memory_ranges[crash_mem_ranges - 1].size;
1bd6a1c4 1040
ced1bf52
HB
1041 if ((start + size) == base)
1042 is_adjacent = true;
1043 }
1044 if (!is_adjacent) {
1045 /* resize the array on reaching the limit */
1046 if (crash_mem_ranges == max_crash_mem_ranges) {
1047 int ret;
1048
1049 ret = allocate_crash_memory_ranges();
1050 if (ret)
1051 return ret;
1052 }
1053
1054 start = base;
1055 crash_memory_ranges[crash_mem_ranges].base = start;
1056 crash_mem_ranges++;
1bd6a1c4 1057 }
2df173d9 1058
ced1bf52 1059 crash_memory_ranges[crash_mem_ranges - 1].size = (end - start);
2df173d9 1060 pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
ced1bf52 1061 (crash_mem_ranges - 1), start, end - 1, (end - start));
1bd6a1c4 1062 return 0;
2df173d9
MS
1063}
1064
1bd6a1c4 1065static int fadump_exclude_reserved_area(unsigned long long start,
2df173d9
MS
1066 unsigned long long end)
1067{
1068 unsigned long long ra_start, ra_end;
1bd6a1c4 1069 int ret = 0;
2df173d9
MS
1070
1071 ra_start = fw_dump.reserve_dump_area_start;
1072 ra_end = ra_start + fw_dump.reserve_dump_area_size;
1073
1074 if ((ra_start < end) && (ra_end > start)) {
1075 if ((start < ra_start) && (end > ra_end)) {
1bd6a1c4
HB
1076 ret = fadump_add_crash_memory(start, ra_start);
1077 if (ret)
1078 return ret;
1079
1080 ret = fadump_add_crash_memory(ra_end, end);
2df173d9 1081 } else if (start < ra_start) {
1bd6a1c4 1082 ret = fadump_add_crash_memory(start, ra_start);
2df173d9 1083 } else if (ra_end < end) {
1bd6a1c4 1084 ret = fadump_add_crash_memory(ra_end, end);
2df173d9
MS
1085 }
1086 } else
1bd6a1c4
HB
1087 ret = fadump_add_crash_memory(start, end);
1088
1089 return ret;
2df173d9
MS
1090}
1091
1092static int fadump_init_elfcore_header(char *bufp)
1093{
1094 struct elfhdr *elf;
1095
1096 elf = (struct elfhdr *) bufp;
1097 bufp += sizeof(struct elfhdr);
1098 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1099 elf->e_ident[EI_CLASS] = ELF_CLASS;
1100 elf->e_ident[EI_DATA] = ELF_DATA;
1101 elf->e_ident[EI_VERSION] = EV_CURRENT;
1102 elf->e_ident[EI_OSABI] = ELF_OSABI;
1103 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
1104 elf->e_type = ET_CORE;
1105 elf->e_machine = ELF_ARCH;
1106 elf->e_version = EV_CURRENT;
1107 elf->e_entry = 0;
1108 elf->e_phoff = sizeof(struct elfhdr);
1109 elf->e_shoff = 0;
d8bced27
DA
1110#if defined(_CALL_ELF)
1111 elf->e_flags = _CALL_ELF;
1112#else
1113 elf->e_flags = 0;
1114#endif
2df173d9
MS
1115 elf->e_ehsize = sizeof(struct elfhdr);
1116 elf->e_phentsize = sizeof(struct elf_phdr);
1117 elf->e_phnum = 0;
1118 elf->e_shentsize = 0;
1119 elf->e_shnum = 0;
1120 elf->e_shstrndx = 0;
1121
1122 return 0;
1123}
1124
1125/*
1126 * Traverse through memblock structure and setup crash memory ranges. These
1127 * ranges will be used create PT_LOAD program headers in elfcore header.
1128 */
1bd6a1c4 1129static int fadump_setup_crash_memory_ranges(void)
2df173d9
MS
1130{
1131 struct memblock_region *reg;
1132 unsigned long long start, end;
1bd6a1c4 1133 int ret;
2df173d9
MS
1134
1135 pr_debug("Setup crash memory ranges.\n");
1136 crash_mem_ranges = 0;
ced1bf52 1137
2df173d9
MS
1138 /*
1139 * add the first memory chunk (RMA_START through boot_memory_size) as
1140 * a separate memory chunk. The reason is, at the time crash firmware
1141 * will move the content of this memory chunk to different location
1142 * specified during fadump registration. We need to create a separate
1143 * program header for this chunk with the correct offset.
1144 */
1bd6a1c4
HB
1145 ret = fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
1146 if (ret)
1147 return ret;
2df173d9
MS
1148
1149 for_each_memblock(memory, reg) {
1150 start = (unsigned long long)reg->base;
1151 end = start + (unsigned long long)reg->size;
a77af552
HB
1152
1153 /*
1154 * skip the first memory chunk that is already added (RMA_START
1155 * through boot_memory_size). This logic needs a relook if and
1156 * when RMA_START changes to a non-zero value.
1157 */
1158 BUILD_BUG_ON(RMA_START != 0);
1159 if (start < fw_dump.boot_memory_size) {
1160 if (end > fw_dump.boot_memory_size)
1161 start = fw_dump.boot_memory_size;
1162 else
1163 continue;
1164 }
2df173d9
MS
1165
1166 /* add this range excluding the reserved dump area. */
1bd6a1c4
HB
1167 ret = fadump_exclude_reserved_area(start, end);
1168 if (ret)
1169 return ret;
2df173d9 1170 }
1bd6a1c4
HB
1171
1172 return 0;
2df173d9
MS
1173}
1174
d34c5f26
MS
1175/*
1176 * If the given physical address falls within the boot memory region then
1177 * return the relocated address that points to the dump region reserved
1178 * for saving initial boot memory contents.
1179 */
1180static inline unsigned long fadump_relocate(unsigned long paddr)
1181{
1182 if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
408cddd9 1183 return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
d34c5f26
MS
1184 else
1185 return paddr;
1186}
1187
2df173d9
MS
1188static int fadump_create_elfcore_headers(char *bufp)
1189{
1190 struct elfhdr *elf;
1191 struct elf_phdr *phdr;
1192 int i;
1193
1194 fadump_init_elfcore_header(bufp);
1195 elf = (struct elfhdr *)bufp;
1196 bufp += sizeof(struct elfhdr);
1197
ebaeb5ae
MS
1198 /*
1199 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1200 * will be populated during second kernel boot after crash. Hence
1201 * this PT_NOTE will always be the first elf note.
1202 *
1203 * NOTE: Any new ELF note addition should be placed after this note.
1204 */
1205 phdr = (struct elf_phdr *)bufp;
1206 bufp += sizeof(struct elf_phdr);
1207 phdr->p_type = PT_NOTE;
1208 phdr->p_flags = 0;
1209 phdr->p_vaddr = 0;
1210 phdr->p_align = 0;
1211
1212 phdr->p_offset = 0;
1213 phdr->p_paddr = 0;
1214 phdr->p_filesz = 0;
1215 phdr->p_memsz = 0;
1216
1217 (elf->e_phnum)++;
1218
d34c5f26
MS
1219 /* setup ELF PT_NOTE for vmcoreinfo */
1220 phdr = (struct elf_phdr *)bufp;
1221 bufp += sizeof(struct elf_phdr);
1222 phdr->p_type = PT_NOTE;
1223 phdr->p_flags = 0;
1224 phdr->p_vaddr = 0;
1225 phdr->p_align = 0;
1226
1227 phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note());
1228 phdr->p_offset = phdr->p_paddr;
5203f499 1229 phdr->p_memsz = phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
d34c5f26
MS
1230
1231 /* Increment number of program headers. */
1232 (elf->e_phnum)++;
1233
2df173d9
MS
1234 /* setup PT_LOAD sections. */
1235
1236 for (i = 0; i < crash_mem_ranges; i++) {
1237 unsigned long long mbase, msize;
1238 mbase = crash_memory_ranges[i].base;
1239 msize = crash_memory_ranges[i].size;
1240
1241 if (!msize)
1242 continue;
1243
1244 phdr = (struct elf_phdr *)bufp;
1245 bufp += sizeof(struct elf_phdr);
1246 phdr->p_type = PT_LOAD;
1247 phdr->p_flags = PF_R|PF_W|PF_X;
1248 phdr->p_offset = mbase;
1249
1250 if (mbase == RMA_START) {
1251 /*
1252 * The entire RMA region will be moved by firmware
1253 * to the specified destination_address. Hence set
1254 * the correct offset.
1255 */
408cddd9 1256 phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
2df173d9
MS
1257 }
1258
1259 phdr->p_paddr = mbase;
1260 phdr->p_vaddr = (unsigned long)__va(mbase);
1261 phdr->p_filesz = msize;
1262 phdr->p_memsz = msize;
1263 phdr->p_align = 0;
1264
1265 /* Increment number of program headers. */
1266 (elf->e_phnum)++;
1267 }
1268 return 0;
1269}
1270
1271static unsigned long init_fadump_header(unsigned long addr)
1272{
1273 struct fadump_crash_info_header *fdh;
1274
1275 if (!addr)
1276 return 0;
1277
1278 fw_dump.fadumphdr_addr = addr;
1279 fdh = __va(addr);
1280 addr += sizeof(struct fadump_crash_info_header);
1281
1282 memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1283 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1284 fdh->elfcorehdr_addr = addr;
ebaeb5ae
MS
1285 /* We will set the crashing cpu id in crash_fadump() during crash. */
1286 fdh->crashing_cpu = CPU_UNKNOWN;
2df173d9
MS
1287
1288 return addr;
1289}
1290
98b8cd7f 1291static int register_fadump(void)
3ccc00a7 1292{
2df173d9
MS
1293 unsigned long addr;
1294 void *vaddr;
1bd6a1c4 1295 int ret;
2df173d9 1296
3ccc00a7
MS
1297 /*
1298 * If no memory is reserved then we can not register for firmware-
1299 * assisted dump.
1300 */
1301 if (!fw_dump.reserve_dump_area_size)
98b8cd7f 1302 return -ENODEV;
3ccc00a7 1303
1bd6a1c4
HB
1304 ret = fadump_setup_crash_memory_ranges();
1305 if (ret)
1306 return ret;
2df173d9 1307
408cddd9 1308 addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
2df173d9
MS
1309 /* Initialize fadump crash info header. */
1310 addr = init_fadump_header(addr);
1311 vaddr = __va(addr);
1312
1313 pr_debug("Creating ELF core headers at %#016lx\n", addr);
1314 fadump_create_elfcore_headers(vaddr);
1315
3ccc00a7 1316 /* register the future kernel dump with firmware. */
98b8cd7f 1317 return register_fw_dump(&fdm);
3ccc00a7
MS
1318}
1319
1320static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
1321{
1322 int rc = 0;
1323 unsigned int wait_time;
1324
1325 pr_debug("Un-register firmware-assisted dump\n");
1326
1327 /* TODO: Add upper time limit for the delay */
1328 do {
1329 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1330 FADUMP_UNREGISTER, fdm,
1331 sizeof(struct fadump_mem_struct));
1332
1333 wait_time = rtas_busy_delay_time(rc);
1334 if (wait_time)
1335 mdelay(wait_time);
1336 } while (wait_time);
1337
1338 if (rc) {
1339 printk(KERN_ERR "Failed to un-register firmware-assisted dump."
1340 " unexpected error(%d).\n", rc);
1341 return rc;
1342 }
1343 fw_dump.dump_registered = 0;
1344 return 0;
1345}
1346
a4e92ce8 1347static int fadump_invalidate_dump(const struct fadump_mem_struct *fdm)
b500afff
MS
1348{
1349 int rc = 0;
1350 unsigned int wait_time;
1351
1352 pr_debug("Invalidating firmware-assisted dump registration\n");
1353
1354 /* TODO: Add upper time limit for the delay */
1355 do {
1356 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1357 FADUMP_INVALIDATE, fdm,
1358 sizeof(struct fadump_mem_struct));
1359
1360 wait_time = rtas_busy_delay_time(rc);
1361 if (wait_time)
1362 mdelay(wait_time);
1363 } while (wait_time);
1364
1365 if (rc) {
4a03749f 1366 pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
b5b1cfc5 1367 return rc;
b500afff
MS
1368 }
1369 fw_dump.dump_active = 0;
1370 fdm_active = NULL;
1371 return 0;
1372}
1373
1374void fadump_cleanup(void)
1375{
1376 /* Invalidate the registration only if dump is active. */
1377 if (fw_dump.dump_active) {
a4e92ce8
MS
1378 /* pass the same memory dump structure provided by platform */
1379 fadump_invalidate_dump(fdm_active);
722cde76
MS
1380 } else if (fw_dump.dump_registered) {
1381 /* Un-register Firmware-assisted dump if it was registered. */
1382 fadump_unregister_dump(&fdm);
1bd6a1c4 1383 free_crash_memory_ranges();
b500afff
MS
1384 }
1385}
1386
68fa6478
HB
1387static void fadump_free_reserved_memory(unsigned long start_pfn,
1388 unsigned long end_pfn)
1389{
1390 unsigned long pfn;
1391 unsigned long time_limit = jiffies + HZ;
1392
1393 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1394 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1395
1396 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1397 free_reserved_page(pfn_to_page(pfn));
1398
1399 if (time_after(jiffies, time_limit)) {
1400 cond_resched();
1401 time_limit = jiffies + HZ;
1402 }
1403 }
1404}
1405
1406/*
1407 * Skip memory holes and free memory that was actually reserved.
1408 */
1409static void fadump_release_reserved_area(unsigned long start, unsigned long end)
1410{
1411 struct memblock_region *reg;
1412 unsigned long tstart, tend;
1413 unsigned long start_pfn = PHYS_PFN(start);
1414 unsigned long end_pfn = PHYS_PFN(end);
1415
1416 for_each_memblock(memory, reg) {
1417 tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
1418 tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
1419 if (tstart < tend) {
1420 fadump_free_reserved_memory(tstart, tend);
1421
1422 if (tend == end_pfn)
1423 break;
1424
1425 start_pfn = tend + 1;
1426 }
1427 }
1428}
1429
b500afff
MS
1430/*
1431 * Release the memory that was reserved in early boot to preserve the memory
1432 * contents. The released memory will be available for general use.
1433 */
1434static void fadump_release_memory(unsigned long begin, unsigned long end)
1435{
b500afff
MS
1436 unsigned long ra_start, ra_end;
1437
1438 ra_start = fw_dump.reserve_dump_area_start;
1439 ra_end = ra_start + fw_dump.reserve_dump_area_size;
1440
68fa6478
HB
1441 /*
1442 * exclude the dump reserve area. Will reuse it for next
1443 * fadump registration.
1444 */
1445 if (begin < ra_end && end > ra_start) {
1446 if (begin < ra_start)
1447 fadump_release_reserved_area(begin, ra_start);
1448 if (end > ra_end)
1449 fadump_release_reserved_area(ra_end, end);
1450 } else
1451 fadump_release_reserved_area(begin, end);
b500afff
MS
1452}
1453
1454static void fadump_invalidate_release_mem(void)
1455{
1456 unsigned long reserved_area_start, reserved_area_end;
1457 unsigned long destination_address;
1458
1459 mutex_lock(&fadump_mutex);
1460 if (!fw_dump.dump_active) {
1461 mutex_unlock(&fadump_mutex);
1462 return;
1463 }
1464
408cddd9 1465 destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
b500afff
MS
1466 fadump_cleanup();
1467 mutex_unlock(&fadump_mutex);
1468
1469 /*
1470 * Save the current reserved memory bounds we will require them
1471 * later for releasing the memory for general use.
1472 */
1473 reserved_area_start = fw_dump.reserve_dump_area_start;
1474 reserved_area_end = reserved_area_start +
1475 fw_dump.reserve_dump_area_size;
1476 /*
1477 * Setup reserve_dump_area_start and its size so that we can
1478 * reuse this reserved memory for Re-registration.
1479 */
1480 fw_dump.reserve_dump_area_start = destination_address;
1481 fw_dump.reserve_dump_area_size = get_fadump_area_size();
1482
1483 fadump_release_memory(reserved_area_start, reserved_area_end);
1484 if (fw_dump.cpu_notes_buf) {
1485 fadump_cpu_notes_buf_free(
1486 (unsigned long)__va(fw_dump.cpu_notes_buf),
1487 fw_dump.cpu_notes_buf_size);
1488 fw_dump.cpu_notes_buf = 0;
1489 fw_dump.cpu_notes_buf_size = 0;
1490 }
1491 /* Initialize the kernel dump memory structure for FAD registration. */
1492 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1493}
1494
1495static ssize_t fadump_release_memory_store(struct kobject *kobj,
1496 struct kobj_attribute *attr,
1497 const char *buf, size_t count)
1498{
dcdc4679
MS
1499 int input = -1;
1500
b500afff
MS
1501 if (!fw_dump.dump_active)
1502 return -EPERM;
1503
dcdc4679
MS
1504 if (kstrtoint(buf, 0, &input))
1505 return -EINVAL;
1506
1507 if (input == 1) {
b500afff
MS
1508 /*
1509 * Take away the '/proc/vmcore'. We are releasing the dump
1510 * memory, hence it will not be valid anymore.
1511 */
2685f826 1512#ifdef CONFIG_PROC_VMCORE
b500afff 1513 vmcore_cleanup();
2685f826 1514#endif
b500afff
MS
1515 fadump_invalidate_release_mem();
1516
1517 } else
1518 return -EINVAL;
1519 return count;
1520}
1521
3ccc00a7
MS
1522static ssize_t fadump_enabled_show(struct kobject *kobj,
1523 struct kobj_attribute *attr,
1524 char *buf)
1525{
1526 return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1527}
1528
1529static ssize_t fadump_register_show(struct kobject *kobj,
1530 struct kobj_attribute *attr,
1531 char *buf)
1532{
1533 return sprintf(buf, "%d\n", fw_dump.dump_registered);
1534}
1535
1536static ssize_t fadump_register_store(struct kobject *kobj,
1537 struct kobj_attribute *attr,
1538 const char *buf, size_t count)
1539{
1540 int ret = 0;
dcdc4679 1541 int input = -1;
3ccc00a7
MS
1542
1543 if (!fw_dump.fadump_enabled || fdm_active)
1544 return -EPERM;
1545
dcdc4679
MS
1546 if (kstrtoint(buf, 0, &input))
1547 return -EINVAL;
1548
3ccc00a7
MS
1549 mutex_lock(&fadump_mutex);
1550
dcdc4679
MS
1551 switch (input) {
1552 case 0:
3ccc00a7 1553 if (fw_dump.dump_registered == 0) {
3ccc00a7
MS
1554 goto unlock_out;
1555 }
1556 /* Un-register Firmware-assisted dump */
1557 fadump_unregister_dump(&fdm);
1558 break;
dcdc4679 1559 case 1:
3ccc00a7 1560 if (fw_dump.dump_registered == 1) {
0823c68b
HB
1561 /* Un-register Firmware-assisted dump */
1562 fadump_unregister_dump(&fdm);
3ccc00a7
MS
1563 }
1564 /* Register Firmware-assisted dump */
98b8cd7f 1565 ret = register_fadump();
3ccc00a7
MS
1566 break;
1567 default:
1568 ret = -EINVAL;
1569 break;
1570 }
1571
1572unlock_out:
1573 mutex_unlock(&fadump_mutex);
1574 return ret < 0 ? ret : count;
1575}
1576
1577static int fadump_region_show(struct seq_file *m, void *private)
1578{
1579 const struct fadump_mem_struct *fdm_ptr;
1580
1581 if (!fw_dump.fadump_enabled)
1582 return 0;
1583
b500afff 1584 mutex_lock(&fadump_mutex);
3ccc00a7
MS
1585 if (fdm_active)
1586 fdm_ptr = fdm_active;
b500afff
MS
1587 else {
1588 mutex_unlock(&fadump_mutex);
3ccc00a7 1589 fdm_ptr = &fdm;
b500afff 1590 }
3ccc00a7
MS
1591
1592 seq_printf(m,
1593 "CPU : [%#016llx-%#016llx] %#llx bytes, "
1594 "Dumped: %#llx\n",
408cddd9
HB
1595 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1596 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1597 be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1598 be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1599 be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
3ccc00a7
MS
1600 seq_printf(m,
1601 "HPTE: [%#016llx-%#016llx] %#llx bytes, "
1602 "Dumped: %#llx\n",
408cddd9
HB
1603 be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1604 be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1605 be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1606 be64_to_cpu(fdm_ptr->hpte_region.source_len),
1607 be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
3ccc00a7
MS
1608 seq_printf(m,
1609 "DUMP: [%#016llx-%#016llx] %#llx bytes, "
1610 "Dumped: %#llx\n",
408cddd9
HB
1611 be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1612 be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1613 be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1614 be64_to_cpu(fdm_ptr->rmr_region.source_len),
1615 be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
3ccc00a7
MS
1616
1617 if (!fdm_active ||
1618 (fw_dump.reserve_dump_area_start ==
408cddd9 1619 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
b500afff 1620 goto out;
3ccc00a7
MS
1621
1622 /* Dump is active. Show reserved memory region. */
1623 seq_printf(m,
1624 " : [%#016llx-%#016llx] %#llx bytes, "
1625 "Dumped: %#llx\n",
1626 (unsigned long long)fw_dump.reserve_dump_area_start,
408cddd9
HB
1627 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1628 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
3ccc00a7 1629 fw_dump.reserve_dump_area_start,
408cddd9 1630 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
3ccc00a7 1631 fw_dump.reserve_dump_area_start);
b500afff
MS
1632out:
1633 if (fdm_active)
1634 mutex_unlock(&fadump_mutex);
3ccc00a7
MS
1635 return 0;
1636}
1637
b500afff
MS
1638static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1639 0200, NULL,
1640 fadump_release_memory_store);
3ccc00a7
MS
1641static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1642 0444, fadump_enabled_show,
1643 NULL);
1644static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1645 0644, fadump_register_show,
1646 fadump_register_store);
1647
f6cee260 1648DEFINE_SHOW_ATTRIBUTE(fadump_region);
3ccc00a7
MS
1649
1650static void fadump_init_files(void)
1651{
1652 struct dentry *debugfs_file;
1653 int rc = 0;
1654
1655 rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1656 if (rc)
1657 printk(KERN_ERR "fadump: unable to create sysfs file"
1658 " fadump_enabled (%d)\n", rc);
1659
1660 rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1661 if (rc)
1662 printk(KERN_ERR "fadump: unable to create sysfs file"
1663 " fadump_registered (%d)\n", rc);
1664
1665 debugfs_file = debugfs_create_file("fadump_region", 0444,
1666 powerpc_debugfs_root, NULL,
1667 &fadump_region_fops);
1668 if (!debugfs_file)
1669 printk(KERN_ERR "fadump: unable to create debugfs file"
1670 " fadump_region\n");
b500afff
MS
1671
1672 if (fw_dump.dump_active) {
1673 rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1674 if (rc)
1675 printk(KERN_ERR "fadump: unable to create sysfs file"
1676 " fadump_release_mem (%d)\n", rc);
1677 }
3ccc00a7
MS
1678 return;
1679}
1680
1681/*
1682 * Prepare for firmware-assisted dump.
1683 */
1684int __init setup_fadump(void)
1685{
1686 if (!fw_dump.fadump_enabled)
1687 return 0;
1688
1689 if (!fw_dump.fadump_supported) {
1690 printk(KERN_ERR "Firmware-assisted dump is not supported on"
1691 " this hardware\n");
1692 return 0;
1693 }
1694
1695 fadump_show_config();
2df173d9
MS
1696 /*
1697 * If dump data is available then see if it is valid and prepare for
1698 * saving it to the disk.
1699 */
b500afff
MS
1700 if (fw_dump.dump_active) {
1701 /*
1702 * if dump process fails then invalidate the registration
1703 * and release memory before proceeding for re-registration.
1704 */
1705 if (process_fadump(fdm_active) < 0)
1706 fadump_invalidate_release_mem();
1707 }
3ccc00a7 1708 /* Initialize the kernel dump memory structure for FAD registration. */
2df173d9 1709 else if (fw_dump.reserve_dump_area_size)
3ccc00a7
MS
1710 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1711 fadump_init_files();
1712
1713 return 1;
1714}
1715subsys_initcall(setup_fadump);