Merge tag 'dmaengine-4.21-rc1' of git://git.infradead.org/users/vkoul/slave-dma
[linux-2.6-block.git] / arch / powerpc / kernel / eeh_pe.c
CommitLineData
55037d17
GS
1/*
2 * The file intends to implement PE based on the information from
3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4 * All the PEs should be organized as hierarchy tree. The first level
5 * of the tree will be associated to existing PHBs since the particular
6 * PE is only meaningful in one PHB domain.
7 *
8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24
652defed 25#include <linux/delay.h>
55037d17
GS
26#include <linux/export.h>
27#include <linux/gfp.h>
55037d17
GS
28#include <linux/kernel.h>
29#include <linux/pci.h>
30#include <linux/string.h>
31
32#include <asm/pci-bridge.h>
33#include <asm/ppc-pci.h>
34
bb593c00 35static int eeh_pe_aux_size = 0;
55037d17
GS
36static LIST_HEAD(eeh_phb_pe);
37
bb593c00
GS
38/**
39 * eeh_set_pe_aux_size - Set PE auxillary data size
40 * @size: PE auxillary data size
41 *
42 * Set PE auxillary data size
43 */
44void eeh_set_pe_aux_size(int size)
45{
46 if (size < 0)
47 return;
48
49 eeh_pe_aux_size = size;
50}
51
55037d17
GS
52/**
53 * eeh_pe_alloc - Allocate PE
54 * @phb: PCI controller
55 * @type: PE type
56 *
57 * Allocate PE instance dynamically.
58 */
59static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
60{
61 struct eeh_pe *pe;
bb593c00
GS
62 size_t alloc_size;
63
64 alloc_size = sizeof(struct eeh_pe);
65 if (eeh_pe_aux_size) {
66 alloc_size = ALIGN(alloc_size, cache_line_size());
67 alloc_size += eeh_pe_aux_size;
68 }
55037d17
GS
69
70 /* Allocate PHB PE */
bb593c00 71 pe = kzalloc(alloc_size, GFP_KERNEL);
55037d17
GS
72 if (!pe) return NULL;
73
74 /* Initialize PHB PE */
75 pe->type = type;
76 pe->phb = phb;
77 INIT_LIST_HEAD(&pe->child_list);
55037d17
GS
78 INIT_LIST_HEAD(&pe->edevs);
79
bb593c00
GS
80 pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
81 cache_line_size());
55037d17
GS
82 return pe;
83}
84
85/**
86 * eeh_phb_pe_create - Create PHB PE
87 * @phb: PCI controller
88 *
89 * The function should be called while the PHB is detected during
90 * system boot or PCI hotplug in order to create PHB PE.
91 */
cad5cef6 92int eeh_phb_pe_create(struct pci_controller *phb)
55037d17
GS
93{
94 struct eeh_pe *pe;
95
96 /* Allocate PHB PE */
97 pe = eeh_pe_alloc(phb, EEH_PE_PHB);
98 if (!pe) {
99 pr_err("%s: out of memory!\n", __func__);
100 return -ENOMEM;
101 }
102
103 /* Put it into the list */
55037d17 104 list_add_tail(&pe->child, &eeh_phb_pe);
55037d17 105
1f52f176 106 pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
55037d17
GS
107
108 return 0;
109}
110
fef7f905
SB
111/**
112 * eeh_wait_state - Wait for PE state
113 * @pe: EEH PE
114 * @max_wait: maximal period in millisecond
115 *
116 * Wait for the state of associated PE. It might take some time
117 * to retrieve the PE's state.
118 */
119int eeh_wait_state(struct eeh_pe *pe, int max_wait)
120{
121 int ret;
122 int mwait;
123
124 /*
125 * According to PAPR, the state of PE might be temporarily
126 * unavailable. Under the circumstance, we have to wait
127 * for indicated time determined by firmware. The maximal
128 * wait time is 5 minutes, which is acquired from the original
129 * EEH implementation. Also, the original implementation
130 * also defined the minimal wait time as 1 second.
131 */
132#define EEH_STATE_MIN_WAIT_TIME (1000)
133#define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
134
135 while (1) {
136 ret = eeh_ops->get_state(pe, &mwait);
137
138 if (ret != EEH_STATE_UNAVAILABLE)
139 return ret;
140
141 if (max_wait <= 0) {
142 pr_warn("%s: Timeout when getting PE's state (%d)\n",
143 __func__, max_wait);
144 return EEH_STATE_NOT_SUPPORT;
145 }
146
147 if (mwait < EEH_STATE_MIN_WAIT_TIME) {
148 pr_warn("%s: Firmware returned bad wait value %d\n",
149 __func__, mwait);
150 mwait = EEH_STATE_MIN_WAIT_TIME;
151 } else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
152 pr_warn("%s: Firmware returned too long wait value %d\n",
153 __func__, mwait);
154 mwait = EEH_STATE_MAX_WAIT_TIME;
155 }
156
157 msleep(min(mwait, max_wait));
158 max_wait -= mwait;
159 }
160}
161
55037d17
GS
162/**
163 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
164 * @phb: PCI controller
165 *
166 * The overall PEs form hierarchy tree. The first layer of the
167 * hierarchy tree is composed of PHB PEs. The function is used
168 * to retrieve the corresponding PHB PE according to the given PHB.
169 */
9ff67433 170struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
55037d17
GS
171{
172 struct eeh_pe *pe;
173
55037d17
GS
174 list_for_each_entry(pe, &eeh_phb_pe, child) {
175 /*
176 * Actually, we needn't check the type since
177 * the PE for PHB has been determined when that
178 * was created.
179 */
7844663a 180 if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
55037d17 181 return pe;
55037d17
GS
182 }
183
55037d17
GS
184 return NULL;
185}
22f4ab12
GS
186
187/**
188 * eeh_pe_next - Retrieve the next PE in the tree
189 * @pe: current PE
190 * @root: root PE
191 *
192 * The function is used to retrieve the next PE in the
193 * hierarchy PE tree.
194 */
309ed3a7 195struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root)
22f4ab12
GS
196{
197 struct list_head *next = pe->child_list.next;
198
199 if (next == &pe->child_list) {
200 while (1) {
201 if (pe == root)
202 return NULL;
203 next = pe->child.next;
204 if (next != &pe->parent->child_list)
205 break;
206 pe = pe->parent;
207 }
208 }
209
210 return list_entry(next, struct eeh_pe, child);
211}
212
213/**
214 * eeh_pe_traverse - Traverse PEs in the specified PHB
215 * @root: root PE
216 * @fn: callback
217 * @flag: extra parameter to callback
218 *
219 * The function is used to traverse the specified PE and its
220 * child PEs. The traversing is to be terminated once the
221 * callback returns something other than NULL, or no more PEs
222 * to be traversed.
223 */
f5c57710 224void *eeh_pe_traverse(struct eeh_pe *root,
d6c4932f 225 eeh_pe_traverse_func fn, void *flag)
22f4ab12
GS
226{
227 struct eeh_pe *pe;
228 void *ret;
229
309ed3a7 230 eeh_for_each_pe(root, pe) {
22f4ab12
GS
231 ret = fn(pe, flag);
232 if (ret) return ret;
233 }
234
235 return NULL;
236}
237
9e6d2cf6
GS
238/**
239 * eeh_pe_dev_traverse - Traverse the devices from the PE
240 * @root: EEH PE
241 * @fn: function callback
242 * @flag: extra parameter to callback
243 *
244 * The function is used to traverse the devices of the specified
245 * PE and its child PEs.
246 */
247void *eeh_pe_dev_traverse(struct eeh_pe *root,
d6c4932f 248 eeh_edev_traverse_func fn, void *flag)
9e6d2cf6
GS
249{
250 struct eeh_pe *pe;
9feed42e 251 struct eeh_dev *edev, *tmp;
9e6d2cf6
GS
252 void *ret;
253
254 if (!root) {
0dae2743
GS
255 pr_warn("%s: Invalid PE %p\n",
256 __func__, root);
9e6d2cf6
GS
257 return NULL;
258 }
259
260 /* Traverse root PE */
309ed3a7 261 eeh_for_each_pe(root, pe) {
9feed42e 262 eeh_pe_for_each_dev(pe, edev, tmp) {
9e6d2cf6 263 ret = fn(edev, flag);
ef6a2857 264 if (ret)
ea81245c 265 return ret;
9e6d2cf6
GS
266 }
267 }
268
269 return NULL;
270}
271
22f4ab12
GS
272/**
273 * __eeh_pe_get - Check the PE address
274 * @data: EEH PE
275 * @flag: EEH device
276 *
277 * For one particular PE, it can be identified by PE address
278 * or tranditional BDF address. BDF address is composed of
279 * Bus/Device/Function number. The extra data referred by flag
280 * indicates which type of address should be used.
281 */
8bae6a23
AK
282struct eeh_pe_get_flag {
283 int pe_no;
284 int config_addr;
285};
286
d6c4932f 287static void *__eeh_pe_get(struct eeh_pe *pe, void *flag)
22f4ab12 288{
8bae6a23 289 struct eeh_pe_get_flag *tmp = (struct eeh_pe_get_flag *) flag;
22f4ab12
GS
290
291 /* Unexpected PHB PE */
5efc3ad7 292 if (pe->type & EEH_PE_PHB)
22f4ab12
GS
293 return NULL;
294
2aa5cf9e
GS
295 /*
296 * We prefer PE address. For most cases, we should
297 * have non-zero PE address
298 */
299 if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
8bae6a23 300 if (tmp->pe_no == pe->addr)
2aa5cf9e
GS
301 return pe;
302 } else {
8bae6a23
AK
303 if (tmp->pe_no &&
304 (tmp->pe_no == pe->addr))
2d521784 305 return pe;
2aa5cf9e 306 }
22f4ab12
GS
307
308 /* Try BDF address */
8bae6a23
AK
309 if (tmp->config_addr &&
310 (tmp->config_addr == pe->config_addr))
22f4ab12
GS
311 return pe;
312
313 return NULL;
314}
315
316/**
317 * eeh_pe_get - Search PE based on the given address
8bae6a23
AK
318 * @phb: PCI controller
319 * @pe_no: PE number
320 * @config_addr: Config address
22f4ab12
GS
321 *
322 * Search the corresponding PE based on the specified address which
323 * is included in the eeh device. The function is used to check if
324 * the associated PE has been created against the PE address. It's
325 * notable that the PE address has 2 format: traditional PE address
326 * which is composed of PCI bus/device/function number, or unified
327 * PE address.
328 */
8bae6a23
AK
329struct eeh_pe *eeh_pe_get(struct pci_controller *phb,
330 int pe_no, int config_addr)
22f4ab12 331{
8bae6a23
AK
332 struct eeh_pe *root = eeh_phb_pe_get(phb);
333 struct eeh_pe_get_flag tmp = { pe_no, config_addr };
22f4ab12
GS
334 struct eeh_pe *pe;
335
8bae6a23 336 pe = eeh_pe_traverse(root, __eeh_pe_get, &tmp);
22f4ab12
GS
337
338 return pe;
339}
340
341/**
342 * eeh_pe_get_parent - Retrieve the parent PE
343 * @edev: EEH device
344 *
345 * The whole PEs existing in the system are organized as hierarchy
346 * tree. The function is used to retrieve the parent PE according
347 * to the parent EEH device.
348 */
349static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
350{
22f4ab12 351 struct eeh_dev *parent;
0bd78587 352 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
22f4ab12
GS
353
354 /*
355 * It might have the case for the indirect parent
356 * EEH device already having associated PE, but
357 * the direct parent EEH device doesn't have yet.
358 */
c29fa27d
WY
359 if (edev->physfn)
360 pdn = pci_get_pdn(edev->physfn);
361 else
362 pdn = pdn ? pdn->parent : NULL;
0bd78587 363 while (pdn) {
22f4ab12 364 /* We're poking out of PCI territory */
0bd78587
GS
365 parent = pdn_to_eeh_dev(pdn);
366 if (!parent)
367 return NULL;
22f4ab12
GS
368
369 if (parent->pe)
370 return parent->pe;
371
0bd78587 372 pdn = pdn->parent;
22f4ab12
GS
373 }
374
375 return NULL;
376}
9b84348c
GS
377
378/**
379 * eeh_add_to_parent_pe - Add EEH device to parent PE
380 * @edev: EEH device
381 *
382 * Add EEH device to the parent PE. If the parent PE already
383 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
384 * we have to create new PE to hold the EEH device and the new
385 * PE will be linked to its parent PE as well.
386 */
387int eeh_add_to_parent_pe(struct eeh_dev *edev)
388{
389 struct eeh_pe *pe, *parent;
69672bd7 390 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
405b33a7 391 int config_addr = (pdn->busno << 8) | (pdn->devfn);
9b84348c 392
433185d2
GS
393 /* Check if the PE number is valid */
394 if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) {
1f52f176 395 pr_err("%s: Invalid PE#0 for edev 0x%x on PHB#%x\n",
405b33a7 396 __func__, config_addr, pdn->phb->global_number);
433185d2
GS
397 return -EINVAL;
398 }
399
9b84348c
GS
400 /*
401 * Search the PE has been existing or not according
402 * to the PE address. If that has been existing, the
403 * PE should be composed of PCI bus and its subordinate
404 * components.
405 */
405b33a7 406 pe = eeh_pe_get(pdn->phb, edev->pe_config_addr, config_addr);
5efc3ad7 407 if (pe && !(pe->type & EEH_PE_INVALID)) {
9b84348c
GS
408 /* Mark the PE as type of PCI bus */
409 pe->type = EEH_PE_BUS;
410 edev->pe = pe;
411
412 /* Put the edev to PE */
80e65b00 413 list_add_tail(&edev->entry, &pe->edevs);
c6406d8f 414 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Bus PE#%x\n",
69672bd7 415 pdn->phb->global_number,
405b33a7
AK
416 pdn->busno,
417 PCI_SLOT(pdn->devfn),
418 PCI_FUNC(pdn->devfn),
419 pe->addr);
5efc3ad7
GS
420 return 0;
421 } else if (pe && (pe->type & EEH_PE_INVALID)) {
80e65b00 422 list_add_tail(&edev->entry, &pe->edevs);
5efc3ad7
GS
423 edev->pe = pe;
424 /*
425 * We're running to here because of PCI hotplug caused by
426 * EEH recovery. We need clear EEH_PE_INVALID until the top.
427 */
428 parent = pe;
429 while (parent) {
430 if (!(parent->type & EEH_PE_INVALID))
431 break;
473af09b 432 parent->type &= ~EEH_PE_INVALID;
5efc3ad7
GS
433 parent = parent->parent;
434 }
5efc3ad7 435
c6406d8f
GS
436 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Device "
437 "PE#%x, Parent PE#%x\n",
69672bd7 438 pdn->phb->global_number,
405b33a7
AK
439 pdn->busno,
440 PCI_SLOT(pdn->devfn),
441 PCI_FUNC(pdn->devfn),
442 pe->addr, pe->parent->addr);
9b84348c
GS
443 return 0;
444 }
445
446 /* Create a new EEH PE */
c29fa27d 447 if (edev->physfn)
69672bd7 448 pe = eeh_pe_alloc(pdn->phb, EEH_PE_VF);
c29fa27d 449 else
69672bd7 450 pe = eeh_pe_alloc(pdn->phb, EEH_PE_DEVICE);
9b84348c
GS
451 if (!pe) {
452 pr_err("%s: out of memory!\n", __func__);
453 return -ENOMEM;
454 }
455 pe->addr = edev->pe_config_addr;
405b33a7 456 pe->config_addr = config_addr;
9b84348c
GS
457
458 /*
459 * Put the new EEH PE into hierarchy tree. If the parent
460 * can't be found, the newly created PE will be attached
461 * to PHB directly. Otherwise, we have to associate the
462 * PE with its parent.
463 */
464 parent = eeh_pe_get_parent(edev);
465 if (!parent) {
69672bd7 466 parent = eeh_phb_pe_get(pdn->phb);
9b84348c
GS
467 if (!parent) {
468 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
69672bd7 469 __func__, pdn->phb->global_number);
9b84348c
GS
470 edev->pe = NULL;
471 kfree(pe);
472 return -EEXIST;
473 }
474 }
475 pe->parent = parent;
476
477 /*
478 * Put the newly created PE into the child list and
479 * link the EEH device accordingly.
480 */
481 list_add_tail(&pe->child, &parent->child_list);
80e65b00 482 list_add_tail(&edev->entry, &pe->edevs);
9b84348c 483 edev->pe = pe;
c6406d8f
GS
484 pr_debug("EEH: Add %04x:%02x:%02x.%01x to "
485 "Device PE#%x, Parent PE#%x\n",
69672bd7 486 pdn->phb->global_number,
405b33a7
AK
487 pdn->busno,
488 PCI_SLOT(pdn->devfn),
489 PCI_FUNC(pdn->devfn),
c6406d8f 490 pe->addr, pe->parent->addr);
9b84348c
GS
491
492 return 0;
493}
82e8882f
GS
494
495/**
496 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
497 * @edev: EEH device
498 *
499 * The PE hierarchy tree might be changed when doing PCI hotplug.
500 * Also, the PCI devices or buses could be removed from the system
501 * during EEH recovery. So we have to call the function remove the
502 * corresponding PE accordingly if necessary.
503 */
807a827d 504int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
82e8882f 505{
5efc3ad7
GS
506 struct eeh_pe *pe, *parent, *child;
507 int cnt;
69672bd7 508 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
82e8882f 509
9a3eda26
SB
510 pe = eeh_dev_to_pe(edev);
511 if (!pe) {
c6406d8f 512 pr_debug("%s: No PE found for device %04x:%02x:%02x.%01x\n",
69672bd7 513 __func__, pdn->phb->global_number,
405b33a7
AK
514 pdn->busno,
515 PCI_SLOT(pdn->devfn),
516 PCI_FUNC(pdn->devfn));
82e8882f
GS
517 return -EEXIST;
518 }
519
520 /* Remove the EEH device */
82e8882f 521 edev->pe = NULL;
80e65b00 522 list_del(&edev->entry);
82e8882f
GS
523
524 /*
525 * Check if the parent PE includes any EEH devices.
526 * If not, we should delete that. Also, we should
527 * delete the parent PE if it doesn't have associated
528 * child PEs and EEH devices.
529 */
530 while (1) {
531 parent = pe->parent;
5efc3ad7 532 if (pe->type & EEH_PE_PHB)
82e8882f
GS
533 break;
534
807a827d 535 if (!(pe->state & EEH_PE_KEEP)) {
20ee6a97
GS
536 if (list_empty(&pe->edevs) &&
537 list_empty(&pe->child_list)) {
538 list_del(&pe->child);
539 kfree(pe);
540 } else {
541 break;
5efc3ad7 542 }
20ee6a97
GS
543 } else {
544 if (list_empty(&pe->edevs)) {
545 cnt = 0;
546 list_for_each_entry(child, &pe->child_list, child) {
e716e014 547 if (!(child->type & EEH_PE_INVALID)) {
20ee6a97
GS
548 cnt++;
549 break;
550 }
551 }
5efc3ad7 552
20ee6a97
GS
553 if (!cnt)
554 pe->type |= EEH_PE_INVALID;
555 else
556 break;
557 }
82e8882f
GS
558 }
559
560 pe = parent;
561 }
562
563 return 0;
564}
5b663529 565
5a71978e
GS
566/**
567 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
568 * @pe: EEH PE
569 *
570 * We have time stamp for each PE to trace its time of getting
571 * frozen in last hour. The function should be called to update
572 * the time stamp on first error of the specific PE. On the other
573 * handle, we needn't account for errors happened in last hour.
574 */
575void eeh_pe_update_time_stamp(struct eeh_pe *pe)
576{
edfd17ff 577 time64_t tstamp;
5a71978e
GS
578
579 if (!pe) return;
580
581 if (pe->freeze_count <= 0) {
582 pe->freeze_count = 0;
edfd17ff 583 pe->tstamp = ktime_get_seconds();
5a71978e 584 } else {
edfd17ff
AB
585 tstamp = ktime_get_seconds();
586 if (tstamp - pe->tstamp > 3600) {
5a71978e
GS
587 pe->tstamp = tstamp;
588 pe->freeze_count = 0;
589 }
590 }
591}
592
5b663529 593/**
e762bb89
SB
594 * eeh_pe_state_mark - Mark specified state for PE and its associated device
595 * @pe: EEH PE
5b663529 596 *
e762bb89
SB
597 * EEH error affects the current PE and its child PEs. The function
598 * is used to mark appropriate state for the affected PEs and the
599 * associated devices.
5b663529 600 */
e762bb89 601void eeh_pe_state_mark(struct eeh_pe *root, int state)
5b663529 602{
e762bb89 603 struct eeh_pe *pe;
b6541db1 604
e762bb89
SB
605 eeh_for_each_pe(root, pe)
606 if (!(pe->state & EEH_PE_REMOVED))
607 pe->state |= state;
5b663529 608}
e762bb89 609EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
5b663529
GS
610
611/**
e762bb89 612 * eeh_pe_mark_isolated
5b663529
GS
613 * @pe: EEH PE
614 *
e762bb89
SB
615 * Record that a PE has been isolated by marking the PE and it's children as
616 * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices
617 * as pci_channel_io_frozen.
5b663529 618 */
e762bb89 619void eeh_pe_mark_isolated(struct eeh_pe *root)
5b663529 620{
e762bb89
SB
621 struct eeh_pe *pe;
622 struct eeh_dev *edev;
623 struct pci_dev *pdev;
624
625 eeh_pe_state_mark(root, EEH_PE_ISOLATED);
626 eeh_for_each_pe(root, pe) {
627 list_for_each_entry(edev, &pe->edevs, entry) {
628 pdev = eeh_dev_to_pci_dev(edev);
629 if (pdev)
630 pdev->error_state = pci_channel_io_frozen;
631 }
632 /* Block PCI config access if required */
633 if (pe->state & EEH_PE_CFG_RESTRICTED)
634 pe->state |= EEH_PE_CFG_BLOCKED;
635 }
5b663529 636}
e762bb89 637EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated);
5b663529 638
d6c4932f 639static void *__eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag)
d2b0f6f7 640{
d2b0f6f7
GS
641 int mode = *((int *)flag);
642
643 edev->mode |= mode;
644
645 return NULL;
646}
647
648/**
649 * eeh_pe_dev_state_mark - Mark state for all device under the PE
650 * @pe: EEH PE
651 *
652 * Mark specific state for all child devices of the PE.
653 */
654void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
655{
656 eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
657}
658
5b663529
GS
659/**
660 * __eeh_pe_state_clear - Clear state for the PE
661 * @data: EEH PE
662 * @flag: state
663 *
664 * The function is used to clear the indicated state from the
665 * given PE. Besides, we also clear the check count of the PE
666 * as well.
667 */
d6c4932f 668static void *__eeh_pe_state_clear(struct eeh_pe *pe, void *flag)
5b663529 669{
5b663529 670 int state = *((int *)flag);
22fca179
GS
671 struct eeh_dev *edev, *tmp;
672 struct pci_dev *pdev;
5b663529 673
d2b0f6f7 674 /* Keep the state of permanently removed PE intact */
432227e9 675 if (pe->state & EEH_PE_REMOVED)
d2b0f6f7
GS
676 return NULL;
677
5b663529 678 pe->state &= ~state;
d2b0f6f7 679
22fca179
GS
680 /*
681 * Special treatment on clearing isolated state. Clear
682 * check count since last isolation and put all affected
683 * devices to normal state.
684 */
685 if (!(state & EEH_PE_ISOLATED))
686 return NULL;
687
688 pe->check_count = 0;
689 eeh_pe_for_each_dev(pe, edev, tmp) {
690 pdev = eeh_dev_to_pci_dev(edev);
691 if (!pdev)
692 continue;
693
694 pdev->error_state = pci_channel_io_normal;
695 }
5b663529 696
b6541db1
GS
697 /* Unblock PCI config access if required */
698 if (pe->state & EEH_PE_CFG_RESTRICTED)
699 pe->state &= ~EEH_PE_CFG_BLOCKED;
700
5b663529
GS
701 return NULL;
702}
703
704/**
705 * eeh_pe_state_clear - Clear state for the PE and its children
706 * @pe: PE
707 * @state: state to be cleared
708 *
709 * When the PE and its children has been recovered from error,
710 * we need clear the error state for that. The function is used
711 * for the purpose.
712 */
713void eeh_pe_state_clear(struct eeh_pe *pe, int state)
714{
715 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
39bfd715
GS
716}
717
652defed
GS
718/*
719 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
720 * buses assigned explicitly by firmware, and we probably have
721 * lost that after reset. So we have to delay the check until
722 * the PCI-CFG registers have been restored for the parent
723 * bridge.
9e6d2cf6 724 *
652defed
GS
725 * Don't use normal PCI-CFG accessors, which probably has been
726 * blocked on normal path during the stage. So we need utilize
727 * eeh operations, which is always permitted.
9e6d2cf6 728 */
0bd78587 729static void eeh_bridge_check_link(struct eeh_dev *edev)
652defed 730{
0bd78587 731 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
652defed
GS
732 int cap;
733 uint32_t val;
734 int timeout = 0;
735
736 /*
737 * We only check root port and downstream ports of
738 * PCIe switches
739 */
4b83bd45 740 if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
652defed
GS
741 return;
742
4b83bd45 743 pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
69672bd7 744 __func__, pdn->phb->global_number,
405b33a7
AK
745 pdn->busno,
746 PCI_SLOT(pdn->devfn),
747 PCI_FUNC(pdn->devfn));
652defed
GS
748
749 /* Check slot status */
4b83bd45 750 cap = edev->pcie_cap;
0bd78587 751 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val);
652defed
GS
752 if (!(val & PCI_EXP_SLTSTA_PDS)) {
753 pr_debug(" No card in the slot (0x%04x) !\n", val);
754 return;
755 }
756
757 /* Check power status if we have the capability */
0bd78587 758 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val);
652defed 759 if (val & PCI_EXP_SLTCAP_PCP) {
0bd78587 760 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val);
652defed
GS
761 if (val & PCI_EXP_SLTCTL_PCC) {
762 pr_debug(" In power-off state, power it on ...\n");
763 val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
764 val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
0bd78587 765 eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val);
652defed
GS
766 msleep(2 * 1000);
767 }
768 }
769
770 /* Enable link */
0bd78587 771 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val);
652defed 772 val &= ~PCI_EXP_LNKCTL_LD;
0bd78587 773 eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val);
652defed
GS
774
775 /* Check link */
0bd78587 776 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val);
652defed
GS
777 if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
778 pr_debug(" No link reporting capability (0x%08x) \n", val);
779 msleep(1000);
780 return;
781 }
782
783 /* Wait the link is up until timeout (5s) */
784 timeout = 0;
785 while (timeout < 5000) {
786 msleep(20);
787 timeout += 20;
788
0bd78587 789 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val);
652defed
GS
790 if (val & PCI_EXP_LNKSTA_DLLLA)
791 break;
792 }
793
794 if (val & PCI_EXP_LNKSTA_DLLLA)
795 pr_debug(" Link up (%s)\n",
796 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
797 else
798 pr_debug(" Link not ready (0x%04x)\n", val);
799}
800
801#define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
802#define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
803
0bd78587 804static void eeh_restore_bridge_bars(struct eeh_dev *edev)
652defed 805{
0bd78587 806 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
652defed
GS
807 int i;
808
809 /*
810 * Device BARs: 0x10 - 0x18
811 * Bus numbers and windows: 0x18 - 0x30
812 */
813 for (i = 4; i < 13; i++)
0bd78587 814 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
652defed 815 /* Rom: 0x38 */
0bd78587 816 eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]);
652defed
GS
817
818 /* Cache line & Latency timer: 0xC 0xD */
0bd78587 819 eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
652defed 820 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
0bd78587 821 eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
652defed
GS
822 SAVED_BYTE(PCI_LATENCY_TIMER));
823 /* Max latency, min grant, interrupt ping and line: 0x3C */
0bd78587 824 eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
652defed
GS
825
826 /* PCI Command: 0x4 */
13a83eac
MN
827 eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1] |
828 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
652defed
GS
829
830 /* Check the PCIe link is ready */
0bd78587 831 eeh_bridge_check_link(edev);
652defed
GS
832}
833
0bd78587 834static void eeh_restore_device_bars(struct eeh_dev *edev)
9e6d2cf6 835{
0bd78587 836 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
9e6d2cf6
GS
837 int i;
838 u32 cmd;
9e6d2cf6
GS
839
840 for (i = 4; i < 10; i++)
0bd78587 841 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
9e6d2cf6 842 /* 12 == Expansion ROM Address */
0bd78587 843 eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]);
9e6d2cf6 844
0bd78587 845 eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
9e6d2cf6 846 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
0bd78587 847 eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
9e6d2cf6
GS
848 SAVED_BYTE(PCI_LATENCY_TIMER));
849
850 /* max latency, min grant, interrupt pin and line */
0bd78587 851 eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
9e6d2cf6
GS
852
853 /*
854 * Restore PERR & SERR bits, some devices require it,
855 * don't touch the other command bits
856 */
0bd78587 857 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd);
9e6d2cf6
GS
858 if (edev->config_space[1] & PCI_COMMAND_PARITY)
859 cmd |= PCI_COMMAND_PARITY;
860 else
861 cmd &= ~PCI_COMMAND_PARITY;
862 if (edev->config_space[1] & PCI_COMMAND_SERR)
863 cmd |= PCI_COMMAND_SERR;
864 else
865 cmd &= ~PCI_COMMAND_SERR;
0bd78587 866 eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd);
652defed
GS
867}
868
869/**
870 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
871 * @data: EEH device
872 * @flag: Unused
873 *
874 * Loads the PCI configuration space base address registers,
875 * the expansion ROM base address, the latency timer, and etc.
876 * from the saved values in the device node.
877 */
d6c4932f 878static void *eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag)
652defed 879{
0bd78587 880 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
652defed 881
f5c57710 882 /* Do special restore for bridges */
4b83bd45 883 if (edev->mode & EEH_DEV_BRIDGE)
0bd78587 884 eeh_restore_bridge_bars(edev);
652defed 885 else
0bd78587 886 eeh_restore_device_bars(edev);
9e6d2cf6 887
0bd78587
GS
888 if (eeh_ops->restore_config && pdn)
889 eeh_ops->restore_config(pdn);
1d350544 890
9e6d2cf6
GS
891 return NULL;
892}
893
894/**
895 * eeh_pe_restore_bars - Restore the PCI config space info
896 * @pe: EEH PE
897 *
898 * This routine performs a recursive walk to the children
899 * of this device as well.
900 */
901void eeh_pe_restore_bars(struct eeh_pe *pe)
902{
ea81245c
GS
903 /*
904 * We needn't take the EEH lock since eeh_pe_dev_traverse()
905 * will take that.
906 */
9e6d2cf6
GS
907 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
908}
9b3c76f0 909
357b2f3d
GS
910/**
911 * eeh_pe_loc_get - Retrieve location code binding to the given PE
912 * @pe: EEH PE
913 *
914 * Retrieve the location code of the given PE. If the primary PE bus
915 * is root bus, we will grab location code from PHB device tree node
916 * or root port. Otherwise, the upstream bridge's device tree node
917 * of the primary PE bus will be checked for the location code.
918 */
919const char *eeh_pe_loc_get(struct eeh_pe *pe)
920{
357b2f3d 921 struct pci_bus *bus = eeh_pe_bus_get(pe);
7e56f627 922 struct device_node *dn;
9e5c6e5a 923 const char *loc = NULL;
357b2f3d 924
7e56f627
GS
925 while (bus) {
926 dn = pci_bus_to_OF_node(bus);
927 if (!dn) {
928 bus = bus->parent;
929 continue;
930 }
357b2f3d 931
7e56f627 932 if (pci_is_root_bus(bus))
9e5c6e5a 933 loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
7e56f627
GS
934 else
935 loc = of_get_property(dn, "ibm,slot-location-code",
936 NULL);
937
357b2f3d 938 if (loc)
7e56f627 939 return loc;
357b2f3d 940
7e56f627 941 bus = bus->parent;
357b2f3d
GS
942 }
943
7e56f627 944 return "N/A";
357b2f3d
GS
945}
946
9b3c76f0
GS
947/**
948 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
949 * @pe: EEH PE
950 *
951 * Retrieve the PCI bus according to the given PE. Basically,
952 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
953 * primary PCI bus will be retrieved. The parent bus will be
954 * returned for BUS PE. However, we don't have associated PCI
955 * bus for DEVICE PE.
956 */
957struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
958{
9b3c76f0
GS
959 struct eeh_dev *edev;
960 struct pci_dev *pdev;
961
4eb0799f
GS
962 if (pe->type & EEH_PE_PHB)
963 return pe->phb->bus;
8cdb2833 964
4eb0799f
GS
965 /* The primary bus might be cached during probe time */
966 if (pe->state & EEH_PE_PRI_BUS)
967 return pe->bus;
968
969 /* Retrieve the parent PCI bus of first (top) PCI device */
80e65b00 970 edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
4eb0799f
GS
971 pdev = eeh_dev_to_pci_dev(edev);
972 if (pdev)
973 return pdev->bus;
9b3c76f0 974
4eb0799f 975 return NULL;
9b3c76f0 976}