powerpc: Add memory management headers for new 64-bit BookE
[linux-2.6-block.git] / arch / powerpc / include / asm / mmu-hash64.h
CommitLineData
8d2169e8
DG
1#ifndef _ASM_POWERPC_MMU_HASH64_H_
2#define _ASM_POWERPC_MMU_HASH64_H_
3/*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <asm/asm-compat.h>
16#include <asm/page.h>
17
18/*
19 * Segment table
20 */
21
22#define STE_ESID_V 0x80
23#define STE_ESID_KS 0x20
24#define STE_ESID_KP 0x10
25#define STE_ESID_N 0x08
26
27#define STE_VSID_SHIFT 12
28
29/* Location of cpu0's segment table */
30#define STAB0_PAGE 0x6
31#define STAB0_OFFSET (STAB0_PAGE << 12)
32#define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
33
34#ifndef __ASSEMBLY__
35extern char initial_stab[];
36#endif /* ! __ASSEMBLY */
37
38/*
39 * SLB
40 */
41
42#define SLB_NUM_BOLTED 3
43#define SLB_CACHE_ENTRIES 8
44
45/* Bits in the SLB ESID word */
46#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
47
48/* Bits in the SLB VSID word */
49#define SLB_VSID_SHIFT 12
1189be65
PM
50#define SLB_VSID_SHIFT_1T 24
51#define SLB_VSID_SSIZE_SHIFT 62
8d2169e8
DG
52#define SLB_VSID_B ASM_CONST(0xc000000000000000)
53#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
54#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
55#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
56#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
57#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
58#define SLB_VSID_L ASM_CONST(0x0000000000000100)
59#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
60#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
61#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
62#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
63#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
64#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
65#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
66
67#define SLB_VSID_KERNEL (SLB_VSID_KP)
68#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
69
70#define SLBIE_C (0x08000000)
1189be65 71#define SLBIE_SSIZE_SHIFT 25
8d2169e8
DG
72
73/*
74 * Hash table
75 */
76
77#define HPTES_PER_GROUP 8
78
2454c7e9 79#define HPTE_V_SSIZE_SHIFT 62
8d2169e8 80#define HPTE_V_AVPN_SHIFT 7
2454c7e9 81#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
8d2169e8 82#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
91bbbe22 83#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
8d2169e8
DG
84#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
85#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
86#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
87#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
88#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
89
90#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
91#define HPTE_R_TS ASM_CONST(0x4000000000000000)
92#define HPTE_R_RPN_SHIFT 12
93#define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
94#define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
95#define HPTE_R_PP ASM_CONST(0x0000000000000003)
96#define HPTE_R_N ASM_CONST(0x0000000000000004)
97#define HPTE_R_C ASM_CONST(0x0000000000000080)
98#define HPTE_R_R ASM_CONST(0x0000000000000100)
99
b7abc5c5
SS
100#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
101#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
102
8d2169e8
DG
103/* Values for PP (assumes Ks=0, Kp=1) */
104/* pp0 will always be 0 for linux */
105#define PP_RWXX 0 /* Supervisor read/write, User none */
106#define PP_RWRX 1 /* Supervisor read/write, User read */
107#define PP_RWRW 2 /* Supervisor read/write, User read/write */
108#define PP_RXRX 3 /* Supervisor read, User read */
109
110#ifndef __ASSEMBLY__
111
8e561e7e 112struct hash_pte {
8d2169e8
DG
113 unsigned long v;
114 unsigned long r;
8e561e7e 115};
8d2169e8 116
8e561e7e 117extern struct hash_pte *htab_address;
8d2169e8
DG
118extern unsigned long htab_size_bytes;
119extern unsigned long htab_hash_mask;
120
121/*
122 * Page size definition
123 *
124 * shift : is the "PAGE_SHIFT" value for that page size
125 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
126 * directly to a slbmte "vsid" value
127 * penc : is the HPTE encoding mask for the "LP" field:
128 *
129 */
130struct mmu_psize_def
131{
132 unsigned int shift; /* number of bits */
133 unsigned int penc; /* HPTE encoding */
134 unsigned int tlbiel; /* tlbiel supported for that page size */
135 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
136 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
137};
138
139#endif /* __ASSEMBLY__ */
140
2454c7e9
PM
141/*
142 * Segment sizes.
143 * These are the values used by hardware in the B field of
144 * SLB entries and the first dword of MMU hashtable entries.
145 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
146 */
147#define MMU_SEGSIZE_256M 0
148#define MMU_SEGSIZE_1T 1
149
1189be65 150
8d2169e8
DG
151#ifndef __ASSEMBLY__
152
153/*
1189be65 154 * The current system page and segment sizes
8d2169e8
DG
155 */
156extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
157extern int mmu_linear_psize;
158extern int mmu_virtual_psize;
159extern int mmu_vmalloc_psize;
cec08e7a 160extern int mmu_vmemmap_psize;
8d2169e8 161extern int mmu_io_psize;
1189be65
PM
162extern int mmu_kernel_ssize;
163extern int mmu_highuser_ssize;
584f8b71 164extern u16 mmu_slb_size;
572fb578 165extern unsigned long tce_alloc_start, tce_alloc_end;
8d2169e8
DG
166
167/*
168 * If the processor supports 64k normal pages but not 64k cache
169 * inhibited pages, we have to be prepared to switch processes
170 * to use 4k pages when they create cache-inhibited mappings.
171 * If this is the case, mmu_ci_restrictions will be set to 1.
172 */
173extern int mmu_ci_restrictions;
174
175#ifdef CONFIG_HUGETLB_PAGE
176/*
0d9ea754 177 * The page size indexes of the huge pages for use by hugetlbfs
8d2169e8 178 */
0d9ea754 179extern unsigned int mmu_huge_psizes[MMU_PAGE_COUNT];
8d2169e8
DG
180
181#endif /* CONFIG_HUGETLB_PAGE */
182
183/*
184 * This function sets the AVPN and L fields of the HPTE appropriately
185 * for the page size
186 */
1189be65
PM
187static inline unsigned long hpte_encode_v(unsigned long va, int psize,
188 int ssize)
8d2169e8 189{
1189be65 190 unsigned long v;
8d2169e8
DG
191 v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
192 v <<= HPTE_V_AVPN_SHIFT;
193 if (psize != MMU_PAGE_4K)
194 v |= HPTE_V_LARGE;
1189be65 195 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
8d2169e8
DG
196 return v;
197}
198
199/*
200 * This function sets the ARPN, and LP fields of the HPTE appropriately
201 * for the page size. We assume the pa is already "clean" that is properly
202 * aligned for the requested page size
203 */
204static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
205{
206 unsigned long r;
207
208 /* A 4K page needs no special encoding */
209 if (psize == MMU_PAGE_4K)
210 return pa & HPTE_R_RPN;
211 else {
212 unsigned int penc = mmu_psize_defs[psize].penc;
213 unsigned int shift = mmu_psize_defs[psize].shift;
214 return (pa & ~((1ul << shift) - 1)) | (penc << 12);
215 }
216 return r;
217}
218
219/*
1189be65 220 * Build a VA given VSID, EA and segment size
8d2169e8 221 */
1189be65
PM
222static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
223 int ssize)
224{
225 if (ssize == MMU_SEGSIZE_256M)
226 return (vsid << 28) | (ea & 0xfffffffUL);
227 return (vsid << 40) | (ea & 0xffffffffffUL);
228}
8d2169e8 229
1189be65
PM
230/*
231 * This hashes a virtual address
232 */
233
234static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
235 int ssize)
8d2169e8 236{
1189be65
PM
237 unsigned long hash, vsid;
238
239 if (ssize == MMU_SEGSIZE_256M) {
240 hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
241 } else {
242 vsid = va >> 40;
243 hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
244 }
245 return hash & 0x7fffffffffUL;
8d2169e8
DG
246}
247
248extern int __hash_page_4K(unsigned long ea, unsigned long access,
249 unsigned long vsid, pte_t *ptep, unsigned long trap,
fa28237c 250 unsigned int local, int ssize, int subpage_prot);
8d2169e8
DG
251extern int __hash_page_64K(unsigned long ea, unsigned long access,
252 unsigned long vsid, pte_t *ptep, unsigned long trap,
1189be65 253 unsigned int local, int ssize);
8d2169e8
DG
254struct mm_struct;
255extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
256extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
257 unsigned long ea, unsigned long vsid, int local,
258 unsigned long trap);
259
260extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
bc033b63 261 unsigned long pstart, unsigned long prot,
1189be65 262 int psize, int ssize);
658013e9
JT
263extern void add_gpage(unsigned long addr, unsigned long page_size,
264 unsigned long number_of_pages);
fa28237c 265extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
8d2169e8 266
8d2169e8
DG
267extern void hpte_init_native(void);
268extern void hpte_init_lpar(void);
269extern void hpte_init_iSeries(void);
270extern void hpte_init_beat(void);
7f2c8577 271extern void hpte_init_beat_v3(void);
8d2169e8
DG
272
273extern void stabs_alloc(void);
274extern void slb_initialize(void);
275extern void slb_flush_and_rebolt(void);
276extern void stab_initialize(unsigned long stab);
277
67439b76 278extern void slb_vmalloc_update(void);
8d2169e8
DG
279#endif /* __ASSEMBLY__ */
280
281/*
282 * VSID allocation
283 *
284 * We first generate a 36-bit "proto-VSID". For kernel addresses this
285 * is equal to the ESID, for user addresses it is:
286 * (context << 15) | (esid & 0x7fff)
287 *
288 * The two forms are distinguishable because the top bit is 0 for user
289 * addresses, whereas the top two bits are 1 for kernel addresses.
290 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
291 * now.
292 *
293 * The proto-VSIDs are then scrambled into real VSIDs with the
294 * multiplicative hash:
295 *
296 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
297 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
298 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
299 *
300 * This scramble is only well defined for proto-VSIDs below
301 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
302 * reserved. VSID_MULTIPLIER is prime, so in particular it is
303 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
304 * Because the modulus is 2^n-1 we can compute it efficiently without
305 * a divide or extra multiply (see below).
306 *
307 * This scheme has several advantages over older methods:
308 *
309 * - We have VSIDs allocated for every kernel address
310 * (i.e. everything above 0xC000000000000000), except the very top
311 * segment, which simplifies several things.
312 *
313 * - We allow for 15 significant bits of ESID and 20 bits of
314 * context for user addresses. i.e. 8T (43 bits) of address space for
315 * up to 1M contexts (although the page table structure and context
316 * allocation will need changes to take advantage of this).
317 *
318 * - The scramble function gives robust scattering in the hash
319 * table (at least based on some initial results). The previous
320 * method was more susceptible to pathological cases giving excessive
321 * hash collisions.
322 */
323/*
324 * WARNING - If you change these you must make sure the asm
325 * implementations in slb_allocate (slb_low.S), do_stab_bolted
326 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
327 *
328 * You'll also need to change the precomputed VSID values in head.S
329 * which are used by the iSeries firmware.
330 */
331
1189be65
PM
332#define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */
333#define VSID_BITS_256M 36
334#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
8d2169e8 335
1189be65
PM
336#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
337#define VSID_BITS_1T 24
338#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
339
340#define CONTEXT_BITS 19
341#define USER_ESID_BITS 16
342#define USER_ESID_BITS_1T 4
8d2169e8
DG
343
344#define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
345
346/*
347 * This macro generates asm code to compute the VSID scramble
348 * function. Used in slb_allocate() and do_stab_bolted. The function
349 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
350 *
351 * rt = register continaing the proto-VSID and into which the
352 * VSID will be stored
353 * rx = scratch register (clobbered)
354 *
355 * - rt and rx must be different registers
1189be65 356 * - The answer will end up in the low VSID_BITS bits of rt. The higher
8d2169e8
DG
357 * bits may contain other garbage, so you may need to mask the
358 * result.
359 */
1189be65
PM
360#define ASM_VSID_SCRAMBLE(rt, rx, size) \
361 lis rx,VSID_MULTIPLIER_##size@h; \
362 ori rx,rx,VSID_MULTIPLIER_##size@l; \
8d2169e8
DG
363 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
364 \
1189be65
PM
365 srdi rx,rt,VSID_BITS_##size; \
366 clrldi rt,rt,(64-VSID_BITS_##size); \
8d2169e8
DG
367 add rt,rt,rx; /* add high and low bits */ \
368 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
369 * 2^36-1+2^28-1. That in particular means that if r3 >= \
370 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
371 * the bit clear, r3 already has the answer we want, if it \
372 * doesn't, the answer is the low 36 bits of r3+1. So in all \
373 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
374 addi rx,rt,1; \
1189be65 375 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
8d2169e8
DG
376 add rt,rt,rx
377
378
379#ifndef __ASSEMBLY__
380
381typedef unsigned long mm_context_id_t;
382
383typedef struct {
384 mm_context_id_t id;
d0f13e3c
BH
385 u16 user_psize; /* page size index */
386
387#ifdef CONFIG_PPC_MM_SLICES
388 u64 low_slices_psize; /* SLB page size encodings */
389 u64 high_slices_psize; /* 4 bits per slice for now */
390#else
391 u16 sllp; /* SLB page size encoding */
8d2169e8
DG
392#endif
393 unsigned long vdso_base;
394} mm_context_t;
395
396
8d2169e8 397#if 0
1189be65
PM
398/*
399 * The code below is equivalent to this function for arguments
400 * < 2^VSID_BITS, which is all this should ever be called
401 * with. However gcc is not clever enough to compute the
402 * modulus (2^n-1) without a second multiply.
403 */
404#define vsid_scrample(protovsid, size) \
405 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
8d2169e8 406
1189be65
PM
407#else /* 1 */
408#define vsid_scramble(protovsid, size) \
409 ({ \
410 unsigned long x; \
411 x = (protovsid) * VSID_MULTIPLIER_##size; \
412 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
413 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
414 })
8d2169e8 415#endif /* 1 */
8d2169e8 416
549e8152 417/* This is only valid for addresses >= PAGE_OFFSET */
1189be65 418static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
8d2169e8 419{
1189be65
PM
420 if (ssize == MMU_SEGSIZE_256M)
421 return vsid_scramble(ea >> SID_SHIFT, 256M);
422 return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
8d2169e8
DG
423}
424
1189be65
PM
425/* Returns the segment size indicator for a user address */
426static inline int user_segment_size(unsigned long addr)
8d2169e8 427{
1189be65
PM
428 /* Use 1T segments if possible for addresses >= 1T */
429 if (addr >= (1UL << SID_SHIFT_1T))
430 return mmu_highuser_ssize;
431 return MMU_SEGSIZE_256M;
8d2169e8
DG
432}
433
1189be65
PM
434/* This is only valid for user addresses (which are below 2^44) */
435static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
436 int ssize)
437{
438 if (ssize == MMU_SEGSIZE_256M)
439 return vsid_scramble((context << USER_ESID_BITS)
440 | (ea >> SID_SHIFT), 256M);
441 return vsid_scramble((context << USER_ESID_BITS_1T)
442 | (ea >> SID_SHIFT_1T), 1T);
443}
444
445/*
446 * This is only used on legacy iSeries in lparmap.c,
447 * hence the 256MB segment assumption.
448 */
449#define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \
450 VSID_MODULUS_256M)
8d2169e8
DG
451#define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
452
8d2169e8
DG
453#endif /* __ASSEMBLY__ */
454
455#endif /* _ASM_POWERPC_MMU_HASH64_H_ */