powerpc/mm: Make page table size a variable
[linux-2.6-block.git] / arch / powerpc / include / asm / book3s / 64 / pgtable.h
CommitLineData
3dfcb315
AK
1#ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
2#define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
2e873519
AK
3
4/*
5 * Common bits between hash and Radix page table
6 */
7#define _PAGE_BIT_SWAP_TYPE 0
8
9#define _PAGE_EXEC 0x00001 /* execute permission */
10#define _PAGE_WRITE 0x00002 /* write access allowed */
11#define _PAGE_READ 0x00004 /* read access allowed */
12#define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
13#define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
14#define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
15#define _PAGE_SAO 0x00010 /* Strong access order */
16#define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
17#define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
18#define _PAGE_DIRTY 0x00080 /* C: page changed */
19#define _PAGE_ACCESSED 0x00100 /* R: page referenced */
20/*
21 * Software bits
22 */
23#ifdef CONFIG_MEM_SOFT_DIRTY
24#define _PAGE_SOFT_DIRTY 0x00200 /* software: software dirty tracking */
25#else
26#define _PAGE_SOFT_DIRTY 0x00000
27#endif
28#define _PAGE_SPECIAL 0x00400 /* software: special page */
29
30
31#define _PAGE_PTE (1ul << 62) /* distinguishes PTEs from pointers */
32#define _PAGE_PRESENT (1ul << 63) /* pte contains a translation */
33/*
34 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
35 * Instead of fixing all of them, add an alternate define which
36 * maps CI pte mapping.
37 */
38#define _PAGE_NO_CACHE _PAGE_TOLERANT
39/*
40 * We support 57 bit real address in pte. Clear everything above 57, and
41 * every thing below PAGE_SHIFT;
42 */
43#define PTE_RPN_MASK (((1UL << 57) - 1) & (PAGE_MASK))
44/*
45 * set of bits not changed in pmd_modify. Even though we have hash specific bits
46 * in here, on radix we expect them to be zero.
47 */
48#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
49 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
50 _PAGE_SOFT_DIRTY)
51/*
52 * user access blocked by key
53 */
54#define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
55#define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
56#define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \
57 _PAGE_RW | _PAGE_EXEC)
58/*
59 * No page size encoding in the linux PTE
60 */
61#define _PAGE_PSIZE 0
62/*
63 * _PAGE_CHG_MASK masks of bits that are to be preserved across
64 * pgprot changes
65 */
66#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
67 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
68 _PAGE_SOFT_DIRTY)
69/*
70 * Mask of bits returned by pte_pgprot()
71 */
72#define PAGE_PROT_BITS (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
73 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
74 _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_EXEC | \
75 _PAGE_SOFT_DIRTY)
3dfcb315 76/*
2e873519
AK
77 * We define 2 sets of base prot bits, one for basic pages (ie,
78 * cacheable kernel and user pages) and one for non cacheable
79 * pages. We always set _PAGE_COHERENT when SMP is enabled or
80 * the processor might need it for DMA coherency.
3dfcb315 81 */
2e873519
AK
82#define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
83#define _PAGE_BASE (_PAGE_BASE_NC)
84
85/* Permission masks used to generate the __P and __S table,
86 *
87 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
88 *
89 * Write permissions imply read permissions for now (we could make write-only
90 * pages on BookE but we don't bother for now). Execute permission control is
91 * possible on platforms that define _PAGE_EXEC
92 *
93 * Note due to the way vm flags are laid out, the bits are XWR
94 */
95#define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
96#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW)
97#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
98#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ)
99#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
100#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ)
101#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
102
103#define __P000 PAGE_NONE
104#define __P001 PAGE_READONLY
105#define __P010 PAGE_COPY
106#define __P011 PAGE_COPY
107#define __P100 PAGE_READONLY_X
108#define __P101 PAGE_READONLY_X
109#define __P110 PAGE_COPY_X
110#define __P111 PAGE_COPY_X
111
112#define __S000 PAGE_NONE
113#define __S001 PAGE_READONLY
114#define __S010 PAGE_SHARED
115#define __S011 PAGE_SHARED
116#define __S100 PAGE_READONLY_X
117#define __S101 PAGE_READONLY_X
118#define __S110 PAGE_SHARED_X
119#define __S111 PAGE_SHARED_X
120
121/* Permission masks used for kernel mappings */
122#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
123#define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
124 _PAGE_TOLERANT)
125#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
126 _PAGE_NON_IDEMPOTENT)
127#define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
128#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
129#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
130
131/*
132 * Protection used for kernel text. We want the debuggers to be able to
133 * set breakpoints anywhere, so don't write protect the kernel text
134 * on platforms where such control is possible.
135 */
136#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
137 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
138#define PAGE_KERNEL_TEXT PAGE_KERNEL_X
139#else
140#define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
141#endif
142
143/* Make modules code happy. We don't set RO yet */
144#define PAGE_KERNEL_EXEC PAGE_KERNEL_X
145#define PAGE_AGP (PAGE_KERNEL_NC)
3dfcb315 146
dd1842a2
AK
147#ifndef __ASSEMBLY__
148/*
149 * page table defines
150 */
151extern unsigned long __pte_index_size;
152extern unsigned long __pmd_index_size;
153extern unsigned long __pud_index_size;
154extern unsigned long __pgd_index_size;
155extern unsigned long __pmd_cache_index;
156#define PTE_INDEX_SIZE __pte_index_size
157#define PMD_INDEX_SIZE __pmd_index_size
158#define PUD_INDEX_SIZE __pud_index_size
159#define PGD_INDEX_SIZE __pgd_index_size
160#define PMD_CACHE_INDEX __pmd_cache_index
161/*
162 * Because of use of pte fragments and THP, size of page table
163 * are not always derived out of index size above.
164 */
165extern unsigned long __pte_table_size;
166extern unsigned long __pmd_table_size;
167extern unsigned long __pud_table_size;
168extern unsigned long __pgd_table_size;
169#define PTE_TABLE_SIZE __pte_table_size
170#define PMD_TABLE_SIZE __pmd_table_size
171#define PUD_TABLE_SIZE __pud_table_size
172#define PGD_TABLE_SIZE __pgd_table_size
173/*
174 * Pgtable size used by swapper, init in asm code
175 * We will switch this later to radix PGD
176 */
177#define MAX_PGD_TABLE_SIZE (sizeof(pgd_t) << H_PGD_INDEX_SIZE)
178
179#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
180#define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
181#define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
182#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
183
184/* PMD_SHIFT determines what a second-level page table entry can map */
185#define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
186#define PMD_SIZE (1UL << PMD_SHIFT)
187#define PMD_MASK (~(PMD_SIZE-1))
188
189/* PUD_SHIFT determines what a third-level page table entry can map */
190#define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
191#define PUD_SIZE (1UL << PUD_SHIFT)
192#define PUD_MASK (~(PUD_SIZE-1))
193
194/* PGDIR_SHIFT determines what a fourth-level page table entry can map */
195#define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
196#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
197#define PGDIR_MASK (~(PGDIR_SIZE-1))
198
199/* Bits to mask out from a PMD to get to the PTE page */
200#define PMD_MASKED_BITS 0xc0000000000000ffUL
201/* Bits to mask out from a PUD to get to the PMD page */
202#define PUD_MASKED_BITS 0xc0000000000000ffUL
203/* Bits to mask out from a PGD to get to the PUD page */
204#define PGD_MASKED_BITS 0xc0000000000000ffUL
205#endif /* __ASSEMBLY__ */
206
ab537dca 207#include <asm/book3s/64/hash.h>
3dfcb315
AK
208#include <asm/barrier.h>
209
3dfcb315
AK
210/*
211 * The second half of the kernel virtual space is used for IO mappings,
212 * it's itself carved into the PIO region (ISA and PHB IO space) and
213 * the ioremap space
214 *
215 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
216 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
217 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
218 */
219#define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
220#define FULL_IO_SIZE 0x80000000ul
221#define ISA_IO_BASE (KERN_IO_START)
222#define ISA_IO_END (KERN_IO_START + 0x10000ul)
223#define PHB_IO_BASE (ISA_IO_END)
224#define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
225#define IOREMAP_BASE (PHB_IO_END)
226#define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
227
3dfcb315
AK
228#define vmemmap ((struct page *)VMEMMAP_BASE)
229
b0412ea9 230/* Advertise special mapping type for AGP */
b0412ea9
AK
231#define HAVE_PAGE_AGP
232
233/* Advertise support for _PAGE_SPECIAL */
234#define __HAVE_ARCH_PTE_SPECIAL
235
3dfcb315
AK
236#ifndef __ASSEMBLY__
237
238/*
239 * This is the default implementation of various PTE accessors, it's
240 * used in all cases except Book3S with 64K pages where we have a
241 * concept of sub-pages
242 */
243#ifndef __real_pte
244
3dfcb315
AK
245#define __real_pte(e,p) ((real_pte_t){(e)})
246#define __rpte_to_pte(r) ((r).pte)
945537df 247#define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
3dfcb315
AK
248
249#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
250 do { \
251 index = 0; \
252 shift = mmu_psize_defs[psize].shift; \
253
254#define pte_iterate_hashed_end() } while(0)
255
256/*
257 * We expect this to be called only for user addresses or kernel virtual
258 * addresses other than the linear mapping.
259 */
260#define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
261
262#endif /* __real_pte */
263
13f829a5
AK
264/*
265 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
266 * We currently remove entries from the hashtable regardless of whether
267 * the entry was young or dirty.
268 *
269 * We should be more intelligent about this but for the moment we override
270 * these functions and force a tlb flush unconditionally
271 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
272 * function for both hash and radix.
273 */
274static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
275 unsigned long addr, pte_t *ptep)
276{
277 unsigned long old;
278
279 if ((pte_val(*ptep) & (_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
280 return 0;
281 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
282 return (old & _PAGE_ACCESSED) != 0;
283}
284
285#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
286#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
287({ \
288 int __r; \
289 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
290 __r; \
291})
292
293#define __HAVE_ARCH_PTEP_SET_WRPROTECT
294static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
295 pte_t *ptep)
296{
297
298 if ((pte_val(*ptep) & _PAGE_WRITE) == 0)
299 return;
300
301 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
302}
303
304static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
305 unsigned long addr, pte_t *ptep)
306{
307 if ((pte_val(*ptep) & _PAGE_WRITE) == 0)
308 return;
309
310 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
311}
312
313#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
314static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
315 unsigned long addr, pte_t *ptep)
316{
317 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
318 return __pte(old);
319}
320
321static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
322 pte_t * ptep)
323{
324 pte_update(mm, addr, ptep, ~0UL, 0, 0);
325}
326static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_WRITE);}
327static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); }
328static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); }
329static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); }
330static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
331
332#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
333static inline bool pte_soft_dirty(pte_t pte)
334{
335 return !!(pte_val(pte) & _PAGE_SOFT_DIRTY);
336}
337static inline pte_t pte_mksoft_dirty(pte_t pte)
338{
339 return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
340}
341
342static inline pte_t pte_clear_soft_dirty(pte_t pte)
343{
344 return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
345}
346#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
347
348#ifdef CONFIG_NUMA_BALANCING
349/*
350 * These work without NUMA balancing but the kernel does not care. See the
351 * comment in include/asm-generic/pgtable.h . On powerpc, this will only
352 * work for user pages and always return true for kernel pages.
353 */
354static inline int pte_protnone(pte_t pte)
355{
356 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PRIVILEGED)) ==
357 (_PAGE_PRESENT | _PAGE_PRIVILEGED);
358}
359#endif /* CONFIG_NUMA_BALANCING */
360
361static inline int pte_present(pte_t pte)
362{
363 return !!(pte_val(pte) & _PAGE_PRESENT);
364}
365/*
366 * Conversion functions: convert a page and protection to a page entry,
367 * and a page entry and page directory to the page they refer to.
368 *
369 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
370 * long for now.
371 */
372static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
373{
374 return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
375 pgprot_val(pgprot));
376}
377
378static inline unsigned long pte_pfn(pte_t pte)
379{
380 return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
381}
382
383/* Generic modifiers for PTE bits */
384static inline pte_t pte_wrprotect(pte_t pte)
385{
386 return __pte(pte_val(pte) & ~_PAGE_WRITE);
387}
388
389static inline pte_t pte_mkclean(pte_t pte)
390{
391 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
392}
393
394static inline pte_t pte_mkold(pte_t pte)
395{
396 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
397}
398
399static inline pte_t pte_mkwrite(pte_t pte)
400{
401 /*
402 * write implies read, hence set both
403 */
404 return __pte(pte_val(pte) | _PAGE_RW);
405}
406
407static inline pte_t pte_mkdirty(pte_t pte)
408{
409 return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
410}
411
412static inline pte_t pte_mkyoung(pte_t pte)
413{
414 return __pte(pte_val(pte) | _PAGE_ACCESSED);
415}
416
417static inline pte_t pte_mkspecial(pte_t pte)
418{
419 return __pte(pte_val(pte) | _PAGE_SPECIAL);
420}
421
422static inline pte_t pte_mkhuge(pte_t pte)
423{
424 return pte;
425}
426
427static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
428{
429 /* FIXME!! check whether this need to be a conditional */
430 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
431}
432
433#define _PAGE_CACHE_CTL (_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
434
435#define pgprot_noncached pgprot_noncached
436static inline pgprot_t pgprot_noncached(pgprot_t prot)
437{
438 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
439 _PAGE_NON_IDEMPOTENT);
440}
441
442#define pgprot_noncached_wc pgprot_noncached_wc
443static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
444{
445 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
446 _PAGE_TOLERANT);
447}
448
449#define pgprot_cached pgprot_cached
450static inline pgprot_t pgprot_cached(pgprot_t prot)
451{
452 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
453}
454
455#define pgprot_writecombine pgprot_writecombine
456static inline pgprot_t pgprot_writecombine(pgprot_t prot)
457{
458 return pgprot_noncached_wc(prot);
459}
460/*
461 * check a pte mapping have cache inhibited property
462 */
463static inline bool pte_ci(pte_t pte)
464{
465 unsigned long pte_v = pte_val(pte);
466
467 if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
468 ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
469 return true;
470 return false;
471}
472
f281b5d5
AK
473static inline void pmd_set(pmd_t *pmdp, unsigned long val)
474{
475 *pmdp = __pmd(val);
476}
477
478static inline void pmd_clear(pmd_t *pmdp)
479{
480 *pmdp = __pmd(0);
481}
482
3dfcb315 483#define pmd_none(pmd) (!pmd_val(pmd))
3dfcb315 484#define pmd_present(pmd) (!pmd_none(pmd))
3dfcb315 485
f281b5d5
AK
486static inline void pud_set(pud_t *pudp, unsigned long val)
487{
488 *pudp = __pud(val);
489}
490
491static inline void pud_clear(pud_t *pudp)
492{
493 *pudp = __pud(0);
494}
495
3dfcb315 496#define pud_none(pud) (!pud_val(pud))
3dfcb315 497#define pud_present(pud) (pud_val(pud) != 0)
3dfcb315
AK
498
499extern struct page *pud_page(pud_t pud);
371352ca 500extern struct page *pmd_page(pmd_t pmd);
3dfcb315
AK
501static inline pte_t pud_pte(pud_t pud)
502{
503 return __pte(pud_val(pud));
504}
505
506static inline pud_t pte_pud(pte_t pte)
507{
508 return __pud(pte_val(pte));
509}
510#define pud_write(pud) pte_write(pud_pte(pud))
3dfcb315 511#define pgd_write(pgd) pte_write(pgd_pte(pgd))
f281b5d5
AK
512static inline void pgd_set(pgd_t *pgdp, unsigned long val)
513{
514 *pgdp = __pgd(val);
515}
3dfcb315 516
368ced78
AK
517static inline void pgd_clear(pgd_t *pgdp)
518{
519 *pgdp = __pgd(0);
520}
521
522#define pgd_none(pgd) (!pgd_val(pgd))
523#define pgd_present(pgd) (!pgd_none(pgd))
524
525static inline pte_t pgd_pte(pgd_t pgd)
526{
527 return __pte(pgd_val(pgd));
528}
529
530static inline pgd_t pte_pgd(pte_t pte)
531{
532 return __pgd(pte_val(pte));
533}
534
535extern struct page *pgd_page(pgd_t pgd);
536
3dfcb315
AK
537/*
538 * Find an entry in a page-table-directory. We combine the address region
539 * (the high order N bits) and the pgd portion of the address.
540 */
3dfcb315
AK
541
542#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
543
368ced78
AK
544#define pud_offset(pgdp, addr) \
545 (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
3dfcb315 546#define pmd_offset(pudp,addr) \
371352ca 547 (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
3dfcb315 548#define pte_offset_kernel(dir,addr) \
371352ca 549 (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
3dfcb315
AK
550
551#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
552#define pte_unmap(pte) do { } while(0)
553
554/* to find an entry in a kernel page-table-directory */
555/* This now only contains the vmalloc pages */
556#define pgd_offset_k(address) pgd_offset(&init_mm, address)
3dfcb315
AK
557
558#define pte_ERROR(e) \
559 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
560#define pmd_ERROR(e) \
561 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
368ced78
AK
562#define pud_ERROR(e) \
563 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
3dfcb315
AK
564#define pgd_ERROR(e) \
565 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
566
567/* Encode and de-code a swap entry */
568#define MAX_SWAPFILES_CHECK() do { \
569 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
570 /* \
571 * Don't have overlapping bits with _PAGE_HPTEFLAGS \
572 * We filter HPTEFLAGS on set_pte. \
573 */ \
574 BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
7207f436 575 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
3dfcb315
AK
576 } while (0)
577/*
578 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
579 */
580#define SWP_TYPE_BITS 5
581#define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
582 & ((1UL << SWP_TYPE_BITS) - 1))
96270b1f 583#define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
3dfcb315 584#define __swp_entry(type, offset) ((swp_entry_t) { \
f1a9ae03 585 ((type) << _PAGE_BIT_SWAP_TYPE) \
96270b1f 586 | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
44734f23
AK
587/*
588 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
589 * swap type and offset we get from swap and convert that to pte to find a
590 * matching pte in linux page table.
591 * Clear bits not found in swap entries here.
592 */
593#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
594#define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
3dfcb315 595
e7bfc462
AK
596static inline bool pte_user(pte_t pte)
597{
ac29c640 598 return !(pte_val(pte) & _PAGE_PRIVILEGED);
e7bfc462
AK
599}
600
2f10f1a7 601#ifdef CONFIG_MEM_SOFT_DIRTY
7207f436 602#define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
2f10f1a7
HD
603#else
604#define _PAGE_SWP_SOFT_DIRTY 0UL
605#endif /* CONFIG_MEM_SOFT_DIRTY */
606
607#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
7207f436
LD
608static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
609{
610 return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
611}
612static inline bool pte_swp_soft_dirty(pte_t pte)
613{
614 return !!(pte_val(pte) & _PAGE_SWP_SOFT_DIRTY);
615}
616static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
617{
618 return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
619}
7207f436
LD
620#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
621
ac29c640
AK
622static inline bool check_pte_access(unsigned long access, unsigned long ptev)
623{
624 /*
625 * This check for _PAGE_RWX and _PAGE_PRESENT bits
626 */
627 if (access & ~ptev)
628 return false;
629 /*
630 * This check for access to privilege space
631 */
632 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
633 return false;
634
635 return true;
636}
637
3dfcb315
AK
638void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
639void pgtable_cache_init(void);
3dfcb315 640
3dfcb315
AK
641struct page *realmode_pfn_to_page(unsigned long pfn);
642
3dfcb315 643#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3dfcb315
AK
644extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
645extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
646extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
647extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
648 pmd_t *pmdp, pmd_t pmd);
649extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
650 pmd_t *pmd);
3dfcb315 651extern int has_transparent_hugepage(void);
3dfcb315
AK
652#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
653
3dfcb315
AK
654
655static inline pte_t pmd_pte(pmd_t pmd)
656{
657 return __pte(pmd_val(pmd));
658}
659
660static inline pmd_t pte_pmd(pte_t pte)
661{
662 return __pmd(pte_val(pte));
663}
664
665static inline pte_t *pmdp_ptep(pmd_t *pmd)
666{
667 return (pte_t *)pmd;
668}
669
670#define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
671#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
672#define pmd_young(pmd) pte_young(pmd_pte(pmd))
673#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
674#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
675#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
d5d6a443 676#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
3dfcb315
AK
677#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
678#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
7207f436
LD
679
680#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
681#define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
682#define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
683#define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
684#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
685
1ca72129
AK
686#ifdef CONFIG_NUMA_BALANCING
687static inline int pmd_protnone(pmd_t pmd)
688{
689 return pte_protnone(pmd_pte(pmd));
690}
691#endif /* CONFIG_NUMA_BALANCING */
3dfcb315
AK
692
693#define __HAVE_ARCH_PMD_WRITE
694#define pmd_write(pmd) pte_write(pmd_pte(pmd))
695
696static inline pmd_t pmd_mkhuge(pmd_t pmd)
697{
945537df 698 return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
3dfcb315
AK
699}
700
3dfcb315
AK
701#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
702extern int pmdp_set_access_flags(struct vm_area_struct *vma,
703 unsigned long address, pmd_t *pmdp,
704 pmd_t entry, int dirty);
705
3dfcb315
AK
706#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
707extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
708 unsigned long address, pmd_t *pmdp);
3dfcb315
AK
709
710#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
711extern pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
712 unsigned long addr, pmd_t *pmdp);
713
3dfcb315
AK
714extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
715 unsigned long address, pmd_t *pmdp);
716#define pmdp_collapse_flush pmdp_collapse_flush
717
718#define __HAVE_ARCH_PGTABLE_DEPOSIT
719extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
720 pgtable_t pgtable);
721#define __HAVE_ARCH_PGTABLE_WITHDRAW
722extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
723
724#define __HAVE_ARCH_PMDP_INVALIDATE
725extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
726 pmd_t *pmdp);
727
c777e2a8
AK
728#define __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
729extern void pmdp_huge_split_prepare(struct vm_area_struct *vma,
730 unsigned long address, pmd_t *pmdp);
731
3dfcb315
AK
732#define pmd_move_must_withdraw pmd_move_must_withdraw
733struct spinlock;
734static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
735 struct spinlock *old_pmd_ptl)
736{
737 /*
738 * Archs like ppc64 use pgtable to store per pmd
739 * specific information. So when we switch the pmd,
740 * we should also withdraw and deposit the pgtable
741 */
742 return true;
743}
744#endif /* __ASSEMBLY__ */
745#endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */