hugetlb: introduce generic version of prepare_hugepage_range
[linux-2.6-block.git] / arch / powerpc / include / asm / book3s / 64 / pgtable.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
3dfcb315
AK
2#ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3#define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
2e873519 4
9849a569
KS
5#include <asm-generic/5level-fixup.h>
6
c137a275
AK
7#ifndef __ASSEMBLY__
8#include <linux/mmdebug.h>
ebd31197 9#include <linux/bug.h>
c137a275 10#endif
9849a569 11
2e873519
AK
12/*
13 * Common bits between hash and Radix page table
14 */
15#define _PAGE_BIT_SWAP_TYPE 0
16
35175033 17#define _PAGE_NA 0
6b8cb66a 18#define _PAGE_RO 0
812fadcb 19#define _PAGE_USER 0
6b8cb66a 20
2e873519
AK
21#define _PAGE_EXEC 0x00001 /* execute permission */
22#define _PAGE_WRITE 0x00002 /* write access allowed */
23#define _PAGE_READ 0x00004 /* read access allowed */
24#define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
25#define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
26#define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
27#define _PAGE_SAO 0x00010 /* Strong access order */
28#define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
29#define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
30#define _PAGE_DIRTY 0x00080 /* C: page changed */
31#define _PAGE_ACCESSED 0x00100 /* R: page referenced */
3dfcb315 32/*
2e873519 33 * Software bits
3dfcb315 34 */
69dfbaeb
AK
35#define _RPAGE_SW0 0x2000000000000000UL
36#define _RPAGE_SW1 0x00800
37#define _RPAGE_SW2 0x00400
38#define _RPAGE_SW3 0x00200
049d567a
AK
39#define _RPAGE_RSV1 0x1000000000000000UL
40#define _RPAGE_RSV2 0x0800000000000000UL
41#define _RPAGE_RSV3 0x0400000000000000UL
42#define _RPAGE_RSV4 0x0200000000000000UL
eb95d016 43#define _RPAGE_RSV5 0x00040UL
6aa59f51
AK
44
45#define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */
46#define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */
bd0dbb73
AK
47/*
48 * We need to mark a pmd pte invalid while splitting. We can do that by clearing
49 * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
50 * differentiate between two use a SW field when invalidating.
51 *
52 * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
53 *
54 * This is used only when _PAGE_PRESENT is cleared.
55 */
56#define _PAGE_INVALID _RPAGE_SW0
6aa59f51
AK
57
58/*
59 * Top and bottom bits of RPN which can be used by hash
60 * translation mode, because we expect them to be zero
61 * otherwise.
62 */
32789d38
AK
63#define _RPAGE_RPN0 0x01000
64#define _RPAGE_RPN1 0x02000
6aa59f51
AK
65#define _RPAGE_RPN44 0x0100000000000000UL
66#define _RPAGE_RPN43 0x0080000000000000UL
67#define _RPAGE_RPN42 0x0040000000000000UL
68#define _RPAGE_RPN41 0x0020000000000000UL
049d567a 69
2f18d533
AK
70/* Max physical address bit as per radix table */
71#define _RPAGE_PA_MAX 57
72
73/*
74 * Max physical address bit we will use for now.
75 *
76 * This is mostly a hardware limitation and for now Power9 has
77 * a 51 bit limit.
78 *
79 * This is different from the number of physical bit required to address
80 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
81 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
82 * number of sections we can support (SECTIONS_SHIFT).
83 *
84 * This is different from Radix page table limitation above and
85 * should always be less than that. The limit is done such that
86 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
87 * for hash linux page table specific bits.
88 *
89 * In order to be compatible with future hardware generations we keep
90 * some offsets and limit this for now to 53
91 */
92#define _PAGE_PA_MAX 53
93
69dfbaeb 94#define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */
69dfbaeb 95#define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */
ebd31197
OH
96#define _PAGE_DEVMAP _RPAGE_SW1 /* software: ZONE_DEVICE page */
97#define __HAVE_ARCH_PTE_DEVMAP
98
2e873519
AK
99/*
100 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
101 * Instead of fixing all of them, add an alternate define which
102 * maps CI pte mapping.
103 */
104#define _PAGE_NO_CACHE _PAGE_TOLERANT
105/*
2f18d533
AK
106 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
107 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
108 * and every thing below PAGE_SHIFT;
2e873519 109 */
2f18d533 110#define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
2e873519
AK
111/*
112 * set of bits not changed in pmd_modify. Even though we have hash specific bits
113 * in here, on radix we expect them to be zero.
114 */
115#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
116 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
4628a645 117 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
2e873519
AK
118/*
119 * user access blocked by key
120 */
121#define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
122#define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
123#define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \
124 _PAGE_RW | _PAGE_EXEC)
125/*
126 * No page size encoding in the linux PTE
127 */
128#define _PAGE_PSIZE 0
129/*
130 * _PAGE_CHG_MASK masks of bits that are to be preserved across
131 * pgprot changes
132 */
133#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
134 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
4628a645 135 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
eb95d016
RP
136
137#define H_PTE_PKEY (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
138 H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
2e873519
AK
139/*
140 * Mask of bits returned by pte_pgprot()
141 */
142#define PAGE_PROT_BITS (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
143 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
144 _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_EXEC | \
eb95d016 145 _PAGE_SOFT_DIRTY | H_PTE_PKEY)
3dfcb315 146/*
2e873519
AK
147 * We define 2 sets of base prot bits, one for basic pages (ie,
148 * cacheable kernel and user pages) and one for non cacheable
149 * pages. We always set _PAGE_COHERENT when SMP is enabled or
150 * the processor might need it for DMA coherency.
3dfcb315 151 */
2e873519
AK
152#define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
153#define _PAGE_BASE (_PAGE_BASE_NC)
154
155/* Permission masks used to generate the __P and __S table,
156 *
157 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
158 *
159 * Write permissions imply read permissions for now (we could make write-only
160 * pages on BookE but we don't bother for now). Execute permission control is
161 * possible on platforms that define _PAGE_EXEC
162 *
163 * Note due to the way vm flags are laid out, the bits are XWR
164 */
165#define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
166#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW)
167#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
168#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ)
169#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
170#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ)
171#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
172
173#define __P000 PAGE_NONE
174#define __P001 PAGE_READONLY
175#define __P010 PAGE_COPY
176#define __P011 PAGE_COPY
177#define __P100 PAGE_READONLY_X
178#define __P101 PAGE_READONLY_X
179#define __P110 PAGE_COPY_X
180#define __P111 PAGE_COPY_X
181
182#define __S000 PAGE_NONE
183#define __S001 PAGE_READONLY
184#define __S010 PAGE_SHARED
185#define __S011 PAGE_SHARED
186#define __S100 PAGE_READONLY_X
187#define __S101 PAGE_READONLY_X
188#define __S110 PAGE_SHARED_X
189#define __S111 PAGE_SHARED_X
190
191/* Permission masks used for kernel mappings */
192#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
193#define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
194 _PAGE_TOLERANT)
195#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
196 _PAGE_NON_IDEMPOTENT)
197#define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
198#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
199#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
200
201/*
202 * Protection used for kernel text. We want the debuggers to be able to
203 * set breakpoints anywhere, so don't write protect the kernel text
204 * on platforms where such control is possible.
205 */
206#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
207 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
208#define PAGE_KERNEL_TEXT PAGE_KERNEL_X
209#else
210#define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
211#endif
212
213/* Make modules code happy. We don't set RO yet */
214#define PAGE_KERNEL_EXEC PAGE_KERNEL_X
215#define PAGE_AGP (PAGE_KERNEL_NC)
3dfcb315 216
dd1842a2
AK
217#ifndef __ASSEMBLY__
218/*
219 * page table defines
220 */
221extern unsigned long __pte_index_size;
222extern unsigned long __pmd_index_size;
223extern unsigned long __pud_index_size;
224extern unsigned long __pgd_index_size;
fae22116 225extern unsigned long __pud_cache_index;
dd1842a2
AK
226#define PTE_INDEX_SIZE __pte_index_size
227#define PMD_INDEX_SIZE __pmd_index_size
228#define PUD_INDEX_SIZE __pud_index_size
229#define PGD_INDEX_SIZE __pgd_index_size
738f9645
AK
230/* pmd table use page table fragments */
231#define PMD_CACHE_INDEX 0
fae22116 232#define PUD_CACHE_INDEX __pud_cache_index
dd1842a2
AK
233/*
234 * Because of use of pte fragments and THP, size of page table
235 * are not always derived out of index size above.
236 */
237extern unsigned long __pte_table_size;
238extern unsigned long __pmd_table_size;
239extern unsigned long __pud_table_size;
240extern unsigned long __pgd_table_size;
241#define PTE_TABLE_SIZE __pte_table_size
242#define PMD_TABLE_SIZE __pmd_table_size
243#define PUD_TABLE_SIZE __pud_table_size
244#define PGD_TABLE_SIZE __pgd_table_size
a2f41eb9
AK
245
246extern unsigned long __pmd_val_bits;
247extern unsigned long __pud_val_bits;
248extern unsigned long __pgd_val_bits;
249#define PMD_VAL_BITS __pmd_val_bits
250#define PUD_VAL_BITS __pud_val_bits
251#define PGD_VAL_BITS __pgd_val_bits
5ed7ecd0
AK
252
253extern unsigned long __pte_frag_nr;
254#define PTE_FRAG_NR __pte_frag_nr
255extern unsigned long __pte_frag_size_shift;
256#define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
257#define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
dd1842a2 258
8a6c697b
AK
259extern unsigned long __pmd_frag_nr;
260#define PMD_FRAG_NR __pmd_frag_nr
261extern unsigned long __pmd_frag_size_shift;
262#define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
263#define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
264
dd1842a2
AK
265#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
266#define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
267#define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
268#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
269
270/* PMD_SHIFT determines what a second-level page table entry can map */
271#define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
272#define PMD_SIZE (1UL << PMD_SHIFT)
273#define PMD_MASK (~(PMD_SIZE-1))
274
275/* PUD_SHIFT determines what a third-level page table entry can map */
276#define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
277#define PUD_SIZE (1UL << PUD_SHIFT)
278#define PUD_MASK (~(PUD_SIZE-1))
279
280/* PGDIR_SHIFT determines what a fourth-level page table entry can map */
281#define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
282#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
283#define PGDIR_MASK (~(PGDIR_SIZE-1))
284
285/* Bits to mask out from a PMD to get to the PTE page */
286#define PMD_MASKED_BITS 0xc0000000000000ffUL
287/* Bits to mask out from a PUD to get to the PMD page */
288#define PUD_MASKED_BITS 0xc0000000000000ffUL
289/* Bits to mask out from a PGD to get to the PUD page */
290#define PGD_MASKED_BITS 0xc0000000000000ffUL
d6a9996e 291
0c4d2680
AK
292/*
293 * Used as an indicator for rcu callback functions
294 */
295enum pgtable_index {
296 PTE_INDEX = 0,
297 PMD_INDEX,
298 PUD_INDEX,
299 PGD_INDEX,
fadd03c6
AK
300 /*
301 * Below are used with 4k page size and hugetlb
302 */
303 HTLB_16M_INDEX,
304 HTLB_16G_INDEX,
0c4d2680
AK
305};
306
d6a9996e
AK
307extern unsigned long __vmalloc_start;
308extern unsigned long __vmalloc_end;
309#define VMALLOC_START __vmalloc_start
310#define VMALLOC_END __vmalloc_end
311
312extern unsigned long __kernel_virt_start;
313extern unsigned long __kernel_virt_size;
63ee9b2f 314extern unsigned long __kernel_io_start;
d6a9996e
AK
315#define KERN_VIRT_START __kernel_virt_start
316#define KERN_VIRT_SIZE __kernel_virt_size
63ee9b2f 317#define KERN_IO_START __kernel_io_start
d6a9996e
AK
318extern struct page *vmemmap;
319extern unsigned long ioremap_bot;
bfa37087 320extern unsigned long pci_io_base;
dd1842a2 321#endif /* __ASSEMBLY__ */
3dfcb315 322
ab537dca 323#include <asm/book3s/64/hash.h>
b0b5e9b1 324#include <asm/book3s/64/radix.h>
3dfcb315 325
a9252aae
AK
326#ifdef CONFIG_PPC_64K_PAGES
327#include <asm/book3s/64/pgtable-64k.h>
328#else
329#include <asm/book3s/64/pgtable-4k.h>
330#endif
331
3dfcb315 332#include <asm/barrier.h>
3dfcb315
AK
333/*
334 * The second half of the kernel virtual space is used for IO mappings,
335 * it's itself carved into the PIO region (ISA and PHB IO space) and
336 * the ioremap space
337 *
338 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
339 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
340 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
341 */
3dfcb315
AK
342#define FULL_IO_SIZE 0x80000000ul
343#define ISA_IO_BASE (KERN_IO_START)
344#define ISA_IO_END (KERN_IO_START + 0x10000ul)
345#define PHB_IO_BASE (ISA_IO_END)
346#define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
347#define IOREMAP_BASE (PHB_IO_END)
348#define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
349
b0412ea9 350/* Advertise special mapping type for AGP */
b0412ea9
AK
351#define HAVE_PAGE_AGP
352
3dfcb315
AK
353#ifndef __ASSEMBLY__
354
355/*
356 * This is the default implementation of various PTE accessors, it's
357 * used in all cases except Book3S with 64K pages where we have a
358 * concept of sub-pages
359 */
360#ifndef __real_pte
361
ff31e105 362#define __real_pte(e, p, o) ((real_pte_t){(e)})
3dfcb315 363#define __rpte_to_pte(r) ((r).pte)
945537df 364#define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
3dfcb315
AK
365
366#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
367 do { \
368 index = 0; \
369 shift = mmu_psize_defs[psize].shift; \
370
371#define pte_iterate_hashed_end() } while(0)
372
373/*
374 * We expect this to be called only for user addresses or kernel virtual
375 * addresses other than the linear mapping.
376 */
377#define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
378
379#endif /* __real_pte */
380
ac94ac79
AK
381static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
382 pte_t *ptep, unsigned long clr,
383 unsigned long set, int huge)
384{
385 if (radix_enabled())
386 return radix__pte_update(mm, addr, ptep, clr, set, huge);
387 return hash__pte_update(mm, addr, ptep, clr, set, huge);
388}
13f829a5
AK
389/*
390 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
391 * We currently remove entries from the hashtable regardless of whether
392 * the entry was young or dirty.
393 *
394 * We should be more intelligent about this but for the moment we override
395 * these functions and force a tlb flush unconditionally
396 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
397 * function for both hash and radix.
398 */
399static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
400 unsigned long addr, pte_t *ptep)
401{
402 unsigned long old;
403
66c570f5 404 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
13f829a5
AK
405 return 0;
406 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
407 return (old & _PAGE_ACCESSED) != 0;
408}
409
410#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
411#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
412({ \
413 int __r; \
414 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
415 __r; \
416})
417
d19469e8 418static inline int __pte_write(pte_t pte)
52c50ca7
AK
419{
420 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
421}
422
423#ifdef CONFIG_NUMA_BALANCING
424#define pte_savedwrite pte_savedwrite
425static inline bool pte_savedwrite(pte_t pte)
426{
427 /*
428 * Saved write ptes are prot none ptes that doesn't have
429 * privileged bit sit. We mark prot none as one which has
430 * present and pviliged bit set and RWX cleared. To mark
431 * protnone which used to have _PAGE_WRITE set we clear
432 * the privileged bit.
433 */
434 return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
435}
436#else
437#define pte_savedwrite pte_savedwrite
438static inline bool pte_savedwrite(pte_t pte)
439{
440 return false;
441}
442#endif
443
d19469e8
AK
444static inline int pte_write(pte_t pte)
445{
446 return __pte_write(pte) || pte_savedwrite(pte);
447}
448
ca8afd40
CL
449static inline int pte_read(pte_t pte)
450{
451 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
452}
453
13f829a5
AK
454#define __HAVE_ARCH_PTEP_SET_WRPROTECT
455static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
456 pte_t *ptep)
457{
d19469e8 458 if (__pte_write(*ptep))
52c50ca7
AK
459 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
460 else if (unlikely(pte_savedwrite(*ptep)))
461 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
13f829a5
AK
462}
463
464static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
465 unsigned long addr, pte_t *ptep)
466{
52c50ca7
AK
467 /*
468 * We should not find protnone for hugetlb, but this complete the
469 * interface.
470 */
d19469e8 471 if (__pte_write(*ptep))
52c50ca7
AK
472 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
473 else if (unlikely(pte_savedwrite(*ptep)))
474 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
13f829a5
AK
475}
476
477#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
478static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
479 unsigned long addr, pte_t *ptep)
480{
481 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
482 return __pte(old);
483}
484
f4894b80
AK
485#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
486static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
487 unsigned long addr,
488 pte_t *ptep, int full)
489{
490 if (full && radix_enabled()) {
491 /*
2bf1071a
NP
492 * We know that this is a full mm pte clear and
493 * hence can be sure there is no parallel set_pte.
f4894b80
AK
494 */
495 return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
496 }
497 return ptep_get_and_clear(mm, addr, ptep);
498}
499
500
13f829a5
AK
501static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
502 pte_t * ptep)
503{
504 pte_update(mm, addr, ptep, ~0UL, 0, 0);
505}
66c570f5 506
66c570f5
AK
507static inline int pte_dirty(pte_t pte)
508{
509 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
510}
511
512static inline int pte_young(pte_t pte)
513{
514 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
515}
516
517static inline int pte_special(pte_t pte)
518{
519 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
520}
521
13f829a5
AK
522static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
523
524#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
525static inline bool pte_soft_dirty(pte_t pte)
526{
66c570f5 527 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
13f829a5 528}
66c570f5 529
13f829a5
AK
530static inline pte_t pte_mksoft_dirty(pte_t pte)
531{
532 return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
533}
534
535static inline pte_t pte_clear_soft_dirty(pte_t pte)
536{
537 return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
538}
539#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
540
541#ifdef CONFIG_NUMA_BALANCING
13f829a5
AK
542static inline int pte_protnone(pte_t pte)
543{
c137a275
AK
544 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
545 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
546}
547
548#define pte_mk_savedwrite pte_mk_savedwrite
549static inline pte_t pte_mk_savedwrite(pte_t pte)
550{
551 /*
552 * Used by Autonuma subsystem to preserve the write bit
553 * while marking the pte PROT_NONE. Only allow this
554 * on PROT_NONE pte
555 */
556 VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
557 cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
558 return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
559}
560
561#define pte_clear_savedwrite pte_clear_savedwrite
562static inline pte_t pte_clear_savedwrite(pte_t pte)
563{
564 /*
565 * Used by KSM subsystem to make a protnone pte readonly.
566 */
567 VM_BUG_ON(!pte_protnone(pte));
568 return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
569}
d19469e8
AK
570#else
571#define pte_clear_savedwrite pte_clear_savedwrite
572static inline pte_t pte_clear_savedwrite(pte_t pte)
573{
574 VM_WARN_ON(1);
575 return __pte(pte_val(pte) & ~_PAGE_WRITE);
576}
13f829a5
AK
577#endif /* CONFIG_NUMA_BALANCING */
578
579static inline int pte_present(pte_t pte)
580{
bd0dbb73
AK
581 /*
582 * A pte is considerent present if _PAGE_PRESENT is set.
583 * We also need to consider the pte present which is marked
584 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
585 * if we find _PAGE_PRESENT cleared.
586 */
587 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID));
13f829a5 588}
f72a85e3 589
bca7aacf 590#ifdef CONFIG_PPC_MEM_KEYS
f2407ef3 591extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
bca7aacf
RP
592#else
593static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
594{
595 return true;
596}
597#endif /* CONFIG_PPC_MEM_KEYS */
f2407ef3 598
f72a85e3
AK
599#define pte_access_permitted pte_access_permitted
600static inline bool pte_access_permitted(pte_t pte, bool write)
601{
602 unsigned long pteval = pte_val(pte);
603 /* Also check for pte_user */
604 unsigned long clear_pte_bits = _PAGE_PRIVILEGED;
605 /*
606 * _PAGE_READ is needed for any access and will be
607 * cleared for PROT_NONE
608 */
609 unsigned long need_pte_bits = _PAGE_PRESENT | _PAGE_READ;
610
611 if (write)
612 need_pte_bits |= _PAGE_WRITE;
613
614 if ((pteval & need_pte_bits) != need_pte_bits)
615 return false;
616
617 if ((pteval & clear_pte_bits) == clear_pte_bits)
618 return false;
bca7aacf
RP
619
620 return arch_pte_access_permitted(pte_val(pte), write, 0);
f72a85e3
AK
621}
622
13f829a5
AK
623/*
624 * Conversion functions: convert a page and protection to a page entry,
625 * and a page entry and page directory to the page they refer to.
626 *
627 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
628 * long for now.
629 */
630static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
631{
632 return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
633 pgprot_val(pgprot));
634}
635
636static inline unsigned long pte_pfn(pte_t pte)
637{
638 return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
639}
640
641/* Generic modifiers for PTE bits */
642static inline pte_t pte_wrprotect(pte_t pte)
643{
d19469e8
AK
644 if (unlikely(pte_savedwrite(pte)))
645 return pte_clear_savedwrite(pte);
13f829a5
AK
646 return __pte(pte_val(pte) & ~_PAGE_WRITE);
647}
648
649static inline pte_t pte_mkclean(pte_t pte)
650{
651 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
652}
653
654static inline pte_t pte_mkold(pte_t pte)
655{
656 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
657}
658
659static inline pte_t pte_mkwrite(pte_t pte)
660{
661 /*
662 * write implies read, hence set both
663 */
664 return __pte(pte_val(pte) | _PAGE_RW);
665}
666
667static inline pte_t pte_mkdirty(pte_t pte)
668{
669 return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
670}
671
672static inline pte_t pte_mkyoung(pte_t pte)
673{
674 return __pte(pte_val(pte) | _PAGE_ACCESSED);
675}
676
677static inline pte_t pte_mkspecial(pte_t pte)
678{
679 return __pte(pte_val(pte) | _PAGE_SPECIAL);
680}
681
682static inline pte_t pte_mkhuge(pte_t pte)
683{
684 return pte;
685}
686
ebd31197
OH
687static inline pte_t pte_mkdevmap(pte_t pte)
688{
689 return __pte(pte_val(pte) | _PAGE_SPECIAL|_PAGE_DEVMAP);
690}
691
c9c98bc5
OH
692/*
693 * This is potentially called with a pmd as the argument, in which case it's not
694 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
695 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
696 * use in page directory entries (ie. non-ptes).
697 */
ebd31197
OH
698static inline int pte_devmap(pte_t pte)
699{
c9c98bc5
OH
700 u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
701
702 return (pte_raw(pte) & mask) == mask;
ebd31197
OH
703}
704
13f829a5
AK
705static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
706{
707 /* FIXME!! check whether this need to be a conditional */
708 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
709}
710
34fbadd8
AK
711static inline bool pte_user(pte_t pte)
712{
66c570f5 713 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
34fbadd8
AK
714}
715
716/* Encode and de-code a swap entry */
717#define MAX_SWAPFILES_CHECK() do { \
718 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
719 /* \
720 * Don't have overlapping bits with _PAGE_HPTEFLAGS \
721 * We filter HPTEFLAGS on set_pte. \
722 */ \
723 BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
724 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
725 } while (0)
726/*
727 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
728 */
729#define SWP_TYPE_BITS 5
730#define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
731 & ((1UL << SWP_TYPE_BITS) - 1))
732#define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
733#define __swp_entry(type, offset) ((swp_entry_t) { \
734 ((type) << _PAGE_BIT_SWAP_TYPE) \
735 | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
736/*
737 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
738 * swap type and offset we get from swap and convert that to pte to find a
739 * matching pte in linux page table.
740 * Clear bits not found in swap entries here.
741 */
742#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
743#define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
744
745#ifdef CONFIG_MEM_SOFT_DIRTY
746#define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
747#else
748#define _PAGE_SWP_SOFT_DIRTY 0UL
749#endif /* CONFIG_MEM_SOFT_DIRTY */
750
751#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
752static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
753{
754 return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
755}
66c570f5 756
34fbadd8
AK
757static inline bool pte_swp_soft_dirty(pte_t pte)
758{
66c570f5 759 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
34fbadd8 760}
66c570f5 761
34fbadd8
AK
762static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
763{
764 return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
765}
766#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
767
768static inline bool check_pte_access(unsigned long access, unsigned long ptev)
769{
770 /*
771 * This check for _PAGE_RWX and _PAGE_PRESENT bits
772 */
773 if (access & ~ptev)
774 return false;
775 /*
776 * This check for access to privilege space
777 */
778 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
779 return false;
780
781 return true;
782}
ac94ac79
AK
783/*
784 * Generic functions with hash/radix callbacks
785 */
786
e4c1112c 787static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
b3603e17 788 pte_t *ptep, pte_t entry,
e4c1112c
AK
789 unsigned long address,
790 int psize)
ac94ac79
AK
791{
792 if (radix_enabled())
e4c1112c
AK
793 return radix__ptep_set_access_flags(vma, ptep, entry,
794 address, psize);
ac94ac79
AK
795 return hash__ptep_set_access_flags(ptep, entry);
796}
797
798#define __HAVE_ARCH_PTE_SAME
799static inline int pte_same(pte_t pte_a, pte_t pte_b)
800{
801 if (radix_enabled())
802 return radix__pte_same(pte_a, pte_b);
803 return hash__pte_same(pte_a, pte_b);
804}
805
806static inline int pte_none(pte_t pte)
807{
808 if (radix_enabled())
809 return radix__pte_none(pte);
810 return hash__pte_none(pte);
811}
812
813static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
814 pte_t *ptep, pte_t pte, int percpu)
815{
816 if (radix_enabled())
817 return radix__set_pte_at(mm, addr, ptep, pte, percpu);
818 return hash__set_pte_at(mm, addr, ptep, pte, percpu);
819}
34fbadd8 820
13f829a5
AK
821#define _PAGE_CACHE_CTL (_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
822
823#define pgprot_noncached pgprot_noncached
824static inline pgprot_t pgprot_noncached(pgprot_t prot)
825{
826 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
827 _PAGE_NON_IDEMPOTENT);
828}
829
830#define pgprot_noncached_wc pgprot_noncached_wc
831static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
832{
833 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
834 _PAGE_TOLERANT);
835}
836
837#define pgprot_cached pgprot_cached
838static inline pgprot_t pgprot_cached(pgprot_t prot)
839{
840 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
841}
842
843#define pgprot_writecombine pgprot_writecombine
844static inline pgprot_t pgprot_writecombine(pgprot_t prot)
845{
846 return pgprot_noncached_wc(prot);
847}
848/*
849 * check a pte mapping have cache inhibited property
850 */
851static inline bool pte_ci(pte_t pte)
852{
853 unsigned long pte_v = pte_val(pte);
854
855 if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
856 ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
857 return true;
858 return false;
859}
860
f281b5d5
AK
861static inline void pmd_set(pmd_t *pmdp, unsigned long val)
862{
863 *pmdp = __pmd(val);
864}
865
866static inline void pmd_clear(pmd_t *pmdp)
867{
868 *pmdp = __pmd(0);
869}
870
66c570f5
AK
871static inline int pmd_none(pmd_t pmd)
872{
873 return !pmd_raw(pmd);
874}
875
876static inline int pmd_present(pmd_t pmd)
877{
878
879 return !pmd_none(pmd);
880}
3dfcb315 881
ac94ac79
AK
882static inline int pmd_bad(pmd_t pmd)
883{
884 if (radix_enabled())
885 return radix__pmd_bad(pmd);
886 return hash__pmd_bad(pmd);
887}
888
f281b5d5
AK
889static inline void pud_set(pud_t *pudp, unsigned long val)
890{
891 *pudp = __pud(val);
892}
893
894static inline void pud_clear(pud_t *pudp)
895{
896 *pudp = __pud(0);
897}
898
66c570f5
AK
899static inline int pud_none(pud_t pud)
900{
901 return !pud_raw(pud);
902}
903
904static inline int pud_present(pud_t pud)
905{
906 return !pud_none(pud);
907}
3dfcb315
AK
908
909extern struct page *pud_page(pud_t pud);
371352ca 910extern struct page *pmd_page(pmd_t pmd);
3dfcb315
AK
911static inline pte_t pud_pte(pud_t pud)
912{
66c570f5 913 return __pte_raw(pud_raw(pud));
3dfcb315
AK
914}
915
916static inline pud_t pte_pud(pte_t pte)
917{
66c570f5 918 return __pud_raw(pte_raw(pte));
3dfcb315
AK
919}
920#define pud_write(pud) pte_write(pud_pte(pud))
ac94ac79
AK
921
922static inline int pud_bad(pud_t pud)
923{
924 if (radix_enabled())
925 return radix__pud_bad(pud);
926 return hash__pud_bad(pud);
927}
928
f72a85e3
AK
929#define pud_access_permitted pud_access_permitted
930static inline bool pud_access_permitted(pud_t pud, bool write)
931{
932 return pte_access_permitted(pud_pte(pud), write);
933}
ac94ac79 934
3dfcb315 935#define pgd_write(pgd) pte_write(pgd_pte(pgd))
f281b5d5
AK
936static inline void pgd_set(pgd_t *pgdp, unsigned long val)
937{
938 *pgdp = __pgd(val);
939}
3dfcb315 940
368ced78
AK
941static inline void pgd_clear(pgd_t *pgdp)
942{
943 *pgdp = __pgd(0);
944}
945
66c570f5
AK
946static inline int pgd_none(pgd_t pgd)
947{
948 return !pgd_raw(pgd);
949}
950
951static inline int pgd_present(pgd_t pgd)
952{
953 return !pgd_none(pgd);
954}
368ced78
AK
955
956static inline pte_t pgd_pte(pgd_t pgd)
957{
66c570f5 958 return __pte_raw(pgd_raw(pgd));
368ced78
AK
959}
960
961static inline pgd_t pte_pgd(pte_t pte)
962{
66c570f5 963 return __pgd_raw(pte_raw(pte));
368ced78
AK
964}
965
ac94ac79
AK
966static inline int pgd_bad(pgd_t pgd)
967{
968 if (radix_enabled())
969 return radix__pgd_bad(pgd);
970 return hash__pgd_bad(pgd);
971}
972
f72a85e3
AK
973#define pgd_access_permitted pgd_access_permitted
974static inline bool pgd_access_permitted(pgd_t pgd, bool write)
975{
976 return pte_access_permitted(pgd_pte(pgd), write);
977}
978
368ced78
AK
979extern struct page *pgd_page(pgd_t pgd);
980
aba480e1
AK
981/* Pointers in the page table tree are physical addresses */
982#define __pgtable_ptr_val(ptr) __pa(ptr)
983
984#define pmd_page_vaddr(pmd) __va(pmd_val(pmd) & ~PMD_MASKED_BITS)
985#define pud_page_vaddr(pud) __va(pud_val(pud) & ~PUD_MASKED_BITS)
986#define pgd_page_vaddr(pgd) __va(pgd_val(pgd) & ~PGD_MASKED_BITS)
987
988#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
989#define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
990#define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
991#define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
992
3dfcb315
AK
993/*
994 * Find an entry in a page-table-directory. We combine the address region
995 * (the high order N bits) and the pgd portion of the address.
996 */
3dfcb315
AK
997
998#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
999
368ced78
AK
1000#define pud_offset(pgdp, addr) \
1001 (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
3dfcb315 1002#define pmd_offset(pudp,addr) \
371352ca 1003 (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
3dfcb315 1004#define pte_offset_kernel(dir,addr) \
371352ca 1005 (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
3dfcb315
AK
1006
1007#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
1008#define pte_unmap(pte) do { } while(0)
1009
1010/* to find an entry in a kernel page-table-directory */
1011/* This now only contains the vmalloc pages */
1012#define pgd_offset_k(address) pgd_offset(&init_mm, address)
3dfcb315
AK
1013
1014#define pte_ERROR(e) \
1015 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1016#define pmd_ERROR(e) \
1017 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
368ced78
AK
1018#define pud_ERROR(e) \
1019 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
3dfcb315
AK
1020#define pgd_ERROR(e) \
1021 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1022
31a14fae
AK
1023static inline int map_kernel_page(unsigned long ea, unsigned long pa,
1024 unsigned long flags)
7207f436 1025{
d9225ad9
AK
1026 if (radix_enabled()) {
1027#if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1028 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1029 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1030#endif
1031 return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
1032 }
31a14fae 1033 return hash__map_kernel_page(ea, pa, flags);
7207f436 1034}
31a14fae
AK
1035
1036static inline int __meminit vmemmap_create_mapping(unsigned long start,
1037 unsigned long page_size,
1038 unsigned long phys)
7207f436 1039{
d9225ad9
AK
1040 if (radix_enabled())
1041 return radix__vmemmap_create_mapping(start, page_size, phys);
31a14fae 1042 return hash__vmemmap_create_mapping(start, page_size, phys);
7207f436 1043}
31a14fae
AK
1044
1045#ifdef CONFIG_MEMORY_HOTPLUG
1046static inline void vmemmap_remove_mapping(unsigned long start,
1047 unsigned long page_size)
7207f436 1048{
d9225ad9
AK
1049 if (radix_enabled())
1050 return radix__vmemmap_remove_mapping(start, page_size);
31a14fae 1051 return hash__vmemmap_remove_mapping(start, page_size);
7207f436 1052}
31a14fae 1053#endif
3dfcb315 1054
3dfcb315
AK
1055static inline pte_t pmd_pte(pmd_t pmd)
1056{
66c570f5 1057 return __pte_raw(pmd_raw(pmd));
3dfcb315
AK
1058}
1059
1060static inline pmd_t pte_pmd(pte_t pte)
1061{
66c570f5 1062 return __pmd_raw(pte_raw(pte));
3dfcb315
AK
1063}
1064
1065static inline pte_t *pmdp_ptep(pmd_t *pmd)
1066{
1067 return (pte_t *)pmd;
1068}
3dfcb315
AK
1069#define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
1070#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
1071#define pmd_young(pmd) pte_young(pmd_pte(pmd))
1072#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
1073#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1074#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
d5d6a443 1075#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
3dfcb315
AK
1076#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1077#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
c137a275
AK
1078#define pmd_mk_savedwrite(pmd) pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1079#define pmd_clear_savedwrite(pmd) pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
7207f436
LD
1080
1081#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1082#define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
1083#define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1084#define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1085#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1086
1ca72129
AK
1087#ifdef CONFIG_NUMA_BALANCING
1088static inline int pmd_protnone(pmd_t pmd)
1089{
1090 return pte_protnone(pmd_pte(pmd));
1091}
1092#endif /* CONFIG_NUMA_BALANCING */
3dfcb315 1093
3dfcb315 1094#define pmd_write(pmd) pte_write(pmd_pte(pmd))
d19469e8 1095#define __pmd_write(pmd) __pte_write(pmd_pte(pmd))
c137a275 1096#define pmd_savedwrite(pmd) pte_savedwrite(pmd_pte(pmd))
3dfcb315 1097
f72a85e3
AK
1098#define pmd_access_permitted pmd_access_permitted
1099static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1100{
1101 return pte_access_permitted(pmd_pte(pmd), write);
1102}
1103
6a1ea362
AK
1104#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1105extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1106extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1107extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1108extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1109 pmd_t *pmdp, pmd_t pmd);
1110extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
1111 pmd_t *pmd);
3df33f12
AK
1112extern int hash__has_transparent_hugepage(void);
1113static inline int has_transparent_hugepage(void)
1114{
bde3eb62
AK
1115 if (radix_enabled())
1116 return radix__has_transparent_hugepage();
3df33f12
AK
1117 return hash__has_transparent_hugepage();
1118}
c04a5880 1119#define has_transparent_hugepage has_transparent_hugepage
6a1ea362 1120
3df33f12
AK
1121static inline unsigned long
1122pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1123 unsigned long clr, unsigned long set)
3dfcb315 1124{
bde3eb62
AK
1125 if (radix_enabled())
1126 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
3df33f12
AK
1127 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1128}
1129
1130static inline int pmd_large(pmd_t pmd)
1131{
66c570f5 1132 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
3df33f12
AK
1133}
1134
1135static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1136{
1137 return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1138}
1139/*
1140 * For radix we should always find H_PAGE_HASHPTE zero. Hence
1141 * the below will work for radix too
1142 */
1143static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1144 unsigned long addr, pmd_t *pmdp)
1145{
1146 unsigned long old;
1147
66c570f5 1148 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
3df33f12
AK
1149 return 0;
1150 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1151 return ((old & _PAGE_ACCESSED) != 0);
1152}
1153
1154#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1155static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1156 pmd_t *pmdp)
1157{
d19469e8 1158 if (__pmd_write((*pmdp)))
52c50ca7
AK
1159 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1160 else if (unlikely(pmd_savedwrite(*pmdp)))
1161 pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
3dfcb315
AK
1162}
1163
ab624762
AK
1164static inline int pmd_trans_huge(pmd_t pmd)
1165{
1166 if (radix_enabled())
1167 return radix__pmd_trans_huge(pmd);
1168 return hash__pmd_trans_huge(pmd);
1169}
1170
1171#define __HAVE_ARCH_PMD_SAME
1172static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1173{
1174 if (radix_enabled())
1175 return radix__pmd_same(pmd_a, pmd_b);
1176 return hash__pmd_same(pmd_a, pmd_b);
1177}
1178
3dfcb315
AK
1179static inline pmd_t pmd_mkhuge(pmd_t pmd)
1180{
ab624762
AK
1181 if (radix_enabled())
1182 return radix__pmd_mkhuge(pmd);
1183 return hash__pmd_mkhuge(pmd);
3dfcb315
AK
1184}
1185
3dfcb315
AK
1186#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1187extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1188 unsigned long address, pmd_t *pmdp,
1189 pmd_t entry, int dirty);
1190
3dfcb315
AK
1191#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1192extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1193 unsigned long address, pmd_t *pmdp);
3dfcb315
AK
1194
1195#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
3df33f12
AK
1196static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1197 unsigned long addr, pmd_t *pmdp)
1198{
bde3eb62
AK
1199 if (radix_enabled())
1200 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
3df33f12
AK
1201 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1202}
3dfcb315 1203
3df33f12
AK
1204static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1205 unsigned long address, pmd_t *pmdp)
1206{
bde3eb62
AK
1207 if (radix_enabled())
1208 return radix__pmdp_collapse_flush(vma, address, pmdp);
3df33f12
AK
1209 return hash__pmdp_collapse_flush(vma, address, pmdp);
1210}
3dfcb315
AK
1211#define pmdp_collapse_flush pmdp_collapse_flush
1212
1213#define __HAVE_ARCH_PGTABLE_DEPOSIT
3df33f12
AK
1214static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1215 pmd_t *pmdp, pgtable_t pgtable)
1216{
bde3eb62
AK
1217 if (radix_enabled())
1218 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
3df33f12
AK
1219 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1220}
1221
3dfcb315 1222#define __HAVE_ARCH_PGTABLE_WITHDRAW
3df33f12
AK
1223static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1224 pmd_t *pmdp)
1225{
bde3eb62
AK
1226 if (radix_enabled())
1227 return radix__pgtable_trans_huge_withdraw(mm, pmdp);
3df33f12
AK
1228 return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1229}
3dfcb315
AK
1230
1231#define __HAVE_ARCH_PMDP_INVALIDATE
8cc931e0
AK
1232extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1233 pmd_t *pmdp);
3dfcb315
AK
1234
1235#define pmd_move_must_withdraw pmd_move_must_withdraw
1236struct spinlock;
1237static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1dd38b6c
AK
1238 struct spinlock *old_pmd_ptl,
1239 struct vm_area_struct *vma)
3dfcb315 1240{
bde3eb62
AK
1241 if (radix_enabled())
1242 return false;
3dfcb315
AK
1243 /*
1244 * Archs like ppc64 use pgtable to store per pmd
1245 * specific information. So when we switch the pmd,
1246 * we should also withdraw and deposit the pgtable
1247 */
1248 return true;
1249}
953c66c2
AK
1250
1251
1252#define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1253static inline bool arch_needs_pgtable_deposit(void)
1254{
1255 if (radix_enabled())
1256 return false;
1257 return true;
1258}
fa4531f7 1259extern void serialize_against_pte_lookup(struct mm_struct *mm);
953c66c2 1260
ebd31197
OH
1261
1262static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1263{
1264 return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
1265}
1266
1267static inline int pmd_devmap(pmd_t pmd)
1268{
1269 return pte_devmap(pmd_pte(pmd));
1270}
1271
1272static inline int pud_devmap(pud_t pud)
1273{
1274 return 0;
1275}
1276
1277static inline int pgd_devmap(pgd_t pgd)
1278{
1279 return 0;
1280}
6a1ea362 1281#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ebd31197
OH
1282
1283static inline const int pud_pfn(pud_t pud)
1284{
1285 /*
1286 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1287 * check so this should never be used. If it grows another user we
1288 * want to know about it.
1289 */
1290 BUILD_BUG();
1291 return 0;
1292}
029d9252 1293
3dfcb315
AK
1294#endif /* __ASSEMBLY__ */
1295#endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */