powerpc/mm/hugetlb: Add support for reserving gigantic huge pages via kernel command...
[linux-2.6-block.git] / arch / powerpc / include / asm / book3s / 64 / mmu-hash.h
CommitLineData
11a6f6ab
AK
1#ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
2#define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
8d2169e8
DG
3/*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <asm/asm-compat.h>
16#include <asm/page.h>
891121e6 17#include <asm/bug.h>
8d2169e8 18
78f1dbde
AK
19/*
20 * This is necessary to get the definition of PGTABLE_RANGE which we
21 * need for various slices related matters. Note that this isn't the
22 * complete pgtable.h but only a portion of it.
23 */
3dfcb315 24#include <asm/book3s/64/pgtable.h>
cf9427b8 25#include <asm/bug.h>
dad6f37c 26#include <asm/processor.h>
b92a226e 27#include <asm/cpu_has_feature.h>
78f1dbde 28
8d2169e8
DG
29/*
30 * SLB
31 */
32
33#define SLB_NUM_BOLTED 3
34#define SLB_CACHE_ENTRIES 8
46db2f86 35#define SLB_MIN_SIZE 32
8d2169e8
DG
36
37/* Bits in the SLB ESID word */
38#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
39
40/* Bits in the SLB VSID word */
41#define SLB_VSID_SHIFT 12
e6f81a92 42#define SLB_VSID_SHIFT_256M SLB_VSID_SHIFT
1189be65
PM
43#define SLB_VSID_SHIFT_1T 24
44#define SLB_VSID_SSIZE_SHIFT 62
8d2169e8
DG
45#define SLB_VSID_B ASM_CONST(0xc000000000000000)
46#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
47#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
48#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
49#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
50#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
51#define SLB_VSID_L ASM_CONST(0x0000000000000100)
52#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
53#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
54#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
55#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
56#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
57#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
58#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
59
60#define SLB_VSID_KERNEL (SLB_VSID_KP)
61#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
62
63#define SLBIE_C (0x08000000)
1189be65 64#define SLBIE_SSIZE_SHIFT 25
8d2169e8
DG
65
66/*
67 * Hash table
68 */
69
70#define HPTES_PER_GROUP 8
71
2454c7e9 72#define HPTE_V_SSIZE_SHIFT 62
8d2169e8 73#define HPTE_V_AVPN_SHIFT 7
6b243fcf 74#define HPTE_V_COMMON_BITS ASM_CONST(0x000fffffffffffff)
2454c7e9 75#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
6b243fcf 76#define HPTE_V_AVPN_3_0 ASM_CONST(0x000fffffffffff80)
8d2169e8 77#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
91bbbe22 78#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
8d2169e8
DG
79#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
80#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
81#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
82#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
83#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
84
50de596d 85/*
6b243fcf 86 * ISA 3.0 has a different HPTE format.
50de596d
AK
87 */
88#define HPTE_R_3_0_SSIZE_SHIFT 58
6b243fcf 89#define HPTE_R_3_0_SSIZE_MASK (3ull << HPTE_R_3_0_SSIZE_SHIFT)
8d2169e8
DG
90#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
91#define HPTE_R_TS ASM_CONST(0x4000000000000000)
de56a948 92#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
8d2169e8 93#define HPTE_R_RPN_SHIFT 12
de56a948 94#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
6b243fcf 95#define HPTE_R_RPN_3_0 ASM_CONST(0x01fffffffffff000)
8d2169e8 96#define HPTE_R_PP ASM_CONST(0x0000000000000003)
8550e2fa 97#define HPTE_R_PPP ASM_CONST(0x8000000000000003)
8d2169e8 98#define HPTE_R_N ASM_CONST(0x0000000000000004)
de56a948
PM
99#define HPTE_R_G ASM_CONST(0x0000000000000008)
100#define HPTE_R_M ASM_CONST(0x0000000000000010)
101#define HPTE_R_I ASM_CONST(0x0000000000000020)
102#define HPTE_R_W ASM_CONST(0x0000000000000040)
103#define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
8d2169e8
DG
104#define HPTE_R_C ASM_CONST(0x0000000000000080)
105#define HPTE_R_R ASM_CONST(0x0000000000000100)
de56a948 106#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
8d2169e8 107
b7abc5c5
SS
108#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
109#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
110
8d2169e8 111/* Values for PP (assumes Ks=0, Kp=1) */
8d2169e8
DG
112#define PP_RWXX 0 /* Supervisor read/write, User none */
113#define PP_RWRX 1 /* Supervisor read/write, User read */
114#define PP_RWRW 2 /* Supervisor read/write, User read/write */
115#define PP_RXRX 3 /* Supervisor read, User read */
697d3899 116#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
8d2169e8 117
b4072df4
PM
118/* Fields for tlbiel instruction in architecture 2.06 */
119#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
120#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
121#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
122#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
123#define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
124#define TLBIEL_INVAL_SET_SHIFT 12
125
126#define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
45706bb5 127#define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
c3ab300e 128#define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */
1a472c9d 129#define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */
b4072df4 130
8d2169e8
DG
131#ifndef __ASSEMBLY__
132
7025776e
BH
133struct mmu_hash_ops {
134 void (*hpte_invalidate)(unsigned long slot,
135 unsigned long vpn,
136 int bpsize, int apsize,
137 int ssize, int local);
138 long (*hpte_updatepp)(unsigned long slot,
139 unsigned long newpp,
140 unsigned long vpn,
141 int bpsize, int apsize,
142 int ssize, unsigned long flags);
143 void (*hpte_updateboltedpp)(unsigned long newpp,
144 unsigned long ea,
145 int psize, int ssize);
146 long (*hpte_insert)(unsigned long hpte_group,
147 unsigned long vpn,
148 unsigned long prpn,
149 unsigned long rflags,
150 unsigned long vflags,
151 int psize, int apsize,
152 int ssize);
153 long (*hpte_remove)(unsigned long hpte_group);
154 int (*hpte_removebolted)(unsigned long ea,
155 int psize, int ssize);
156 void (*flush_hash_range)(unsigned long number, int local);
157 void (*hugepage_invalidate)(unsigned long vsid,
158 unsigned long addr,
159 unsigned char *hpte_slot_array,
160 int psize, int ssize, int local);
dbcf929c 161 int (*resize_hpt)(unsigned long shift);
7025776e
BH
162 /*
163 * Special for kexec.
164 * To be called in real mode with interrupts disabled. No locks are
165 * taken as such, concurrent access on pre POWER5 hardware could result
166 * in a deadlock.
167 * The linear mapping is destroyed as well.
168 */
169 void (*hpte_clear_all)(void);
170};
171extern struct mmu_hash_ops mmu_hash_ops;
172
8e561e7e 173struct hash_pte {
12f04f2b
AB
174 __be64 v;
175 __be64 r;
8e561e7e 176};
8d2169e8 177
8e561e7e 178extern struct hash_pte *htab_address;
8d2169e8
DG
179extern unsigned long htab_size_bytes;
180extern unsigned long htab_hash_mask;
181
cf9427b8
AK
182
183static inline int shift_to_mmu_psize(unsigned int shift)
184{
185 int psize;
186
187 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
188 if (mmu_psize_defs[psize].shift == shift)
189 return psize;
190 return -1;
191}
192
193static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
194{
195 if (mmu_psize_defs[mmu_psize].shift)
196 return mmu_psize_defs[mmu_psize].shift;
197 BUG();
198}
8d2169e8 199
138ee7ee
AK
200static inline unsigned long get_sllp_encoding(int psize)
201{
202 unsigned long sllp;
203
204 sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |
205 ((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);
206 return sllp;
207}
208
8d2169e8
DG
209#endif /* __ASSEMBLY__ */
210
2454c7e9
PM
211/*
212 * Segment sizes.
213 * These are the values used by hardware in the B field of
214 * SLB entries and the first dword of MMU hashtable entries.
215 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
216 */
217#define MMU_SEGSIZE_256M 0
218#define MMU_SEGSIZE_1T 1
219
5524a27d
AK
220/*
221 * encode page number shift.
222 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
223 * 12 bits. This enable us to address upto 76 bit va.
224 * For hpt hash from a va we can ignore the page size bits of va and for
225 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
226 * we work in all cases including 4k page size.
227 */
228#define VPN_SHIFT 12
1189be65 229
b1022fbd
AK
230/*
231 * HPTE Large Page (LP) details
232 */
233#define LP_SHIFT 12
234#define LP_BITS 8
235#define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
236
8d2169e8
DG
237#ifndef __ASSEMBLY__
238
73d16a6e
IM
239static inline int slb_vsid_shift(int ssize)
240{
241 if (ssize == MMU_SEGSIZE_256M)
242 return SLB_VSID_SHIFT;
243 return SLB_VSID_SHIFT_1T;
244}
245
5524a27d
AK
246static inline int segment_shift(int ssize)
247{
248 if (ssize == MMU_SEGSIZE_256M)
249 return SID_SHIFT;
250 return SID_SHIFT_1T;
251}
252
0eeede0c
PM
253/*
254 * This array is indexed by the LP field of the HPTE second dword.
255 * Since this field may contain some RPN bits, some entries are
256 * replicated so that we get the same value irrespective of RPN.
257 * The top 4 bits are the page size index (MMU_PAGE_*) for the
258 * actual page size, the bottom 4 bits are the base page size.
259 */
260extern u8 hpte_page_sizes[1 << LP_BITS];
261
262static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
263 bool is_base_size)
264{
265 unsigned int i, lp;
266
267 if (!(h & HPTE_V_LARGE))
268 return 1ul << 12;
269
270 /* Look at the 8 bit LP value */
271 lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
272 i = hpte_page_sizes[lp];
273 if (!i)
274 return 0;
275 if (!is_base_size)
276 i >>= 4;
277 return 1ul << mmu_psize_defs[i & 0xf].shift;
278}
279
280static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
281{
282 return __hpte_page_size(h, l, 0);
283}
284
285static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
286{
287 return __hpte_page_size(h, l, 1);
288}
289
8d2169e8 290/*
1189be65 291 * The current system page and segment sizes
8d2169e8 292 */
1189be65
PM
293extern int mmu_kernel_ssize;
294extern int mmu_highuser_ssize;
584f8b71 295extern u16 mmu_slb_size;
572fb578 296extern unsigned long tce_alloc_start, tce_alloc_end;
8d2169e8
DG
297
298/*
299 * If the processor supports 64k normal pages but not 64k cache
300 * inhibited pages, we have to be prepared to switch processes
301 * to use 4k pages when they create cache-inhibited mappings.
302 * If this is the case, mmu_ci_restrictions will be set to 1.
303 */
304extern int mmu_ci_restrictions;
305
5524a27d
AK
306/*
307 * This computes the AVPN and B fields of the first dword of a HPTE,
308 * for use when we want to match an existing PTE. The bottom 7 bits
309 * of the returned value are zero.
310 */
311static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
312 int ssize)
313{
314 unsigned long v;
315 /*
316 * The AVA field omits the low-order 23 bits of the 78 bits VA.
317 * These bits are not needed in the PTE, because the
318 * low-order b of these bits are part of the byte offset
319 * into the virtual page and, if b < 23, the high-order
320 * 23-b of these bits are always used in selecting the
321 * PTEGs to be searched
322 */
323 v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
324 v <<= HPTE_V_AVPN_SHIFT;
6b243fcf 325 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
5524a27d
AK
326 return v;
327}
328
6b243fcf
PM
329/*
330 * ISA v3.0 defines a new HPTE format, which differs from the old
331 * format in having smaller AVPN and ARPN fields, and the B field
332 * in the second dword instead of the first.
333 */
334static inline unsigned long hpte_old_to_new_v(unsigned long v)
335{
336 /* trim AVPN, drop B */
337 return v & HPTE_V_COMMON_BITS;
338}
339
340static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
341{
342 /* move B field from 1st to 2nd dword, trim ARPN */
343 return (r & ~HPTE_R_3_0_SSIZE_MASK) |
344 (((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
345}
346
347static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
348{
349 /* insert B field */
350 return (v & HPTE_V_COMMON_BITS) |
351 ((r & HPTE_R_3_0_SSIZE_MASK) <<
352 (HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
353}
354
355static inline unsigned long hpte_new_to_old_r(unsigned long r)
356{
357 /* clear out B field */
358 return r & ~HPTE_R_3_0_SSIZE_MASK;
359}
360
8d2169e8
DG
361/*
362 * This function sets the AVPN and L fields of the HPTE appropriately
b1022fbd 363 * using the base page size and actual page size.
8d2169e8 364 */
b1022fbd
AK
365static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
366 int actual_psize, int ssize)
8d2169e8 367{
1189be65 368 unsigned long v;
b1022fbd
AK
369 v = hpte_encode_avpn(vpn, base_psize, ssize);
370 if (actual_psize != MMU_PAGE_4K)
8d2169e8
DG
371 v |= HPTE_V_LARGE;
372 return v;
373}
374
375/*
376 * This function sets the ARPN, and LP fields of the HPTE appropriately
377 * for the page size. We assume the pa is already "clean" that is properly
378 * aligned for the requested page size
379 */
b1022fbd 380static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
6b243fcf 381 int actual_psize)
8d2169e8 382{
8d2169e8 383 /* A 4K page needs no special encoding */
b1022fbd 384 if (actual_psize == MMU_PAGE_4K)
8d2169e8
DG
385 return pa & HPTE_R_RPN;
386 else {
b1022fbd
AK
387 unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
388 unsigned int shift = mmu_psize_defs[actual_psize].shift;
389 return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
8d2169e8 390 }
8d2169e8
DG
391}
392
393/*
5524a27d 394 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
8d2169e8 395 */
5524a27d
AK
396static inline unsigned long hpt_vpn(unsigned long ea,
397 unsigned long vsid, int ssize)
1189be65 398{
5524a27d
AK
399 unsigned long mask;
400 int s_shift = segment_shift(ssize);
401
402 mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
403 return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
1189be65 404}
8d2169e8 405
1189be65
PM
406/*
407 * This hashes a virtual address
408 */
5524a27d
AK
409static inline unsigned long hpt_hash(unsigned long vpn,
410 unsigned int shift, int ssize)
8d2169e8 411{
59248aec 412 unsigned long mask;
1189be65
PM
413 unsigned long hash, vsid;
414
5524a27d 415 /* VPN_SHIFT can be atmost 12 */
1189be65 416 if (ssize == MMU_SEGSIZE_256M) {
5524a27d
AK
417 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
418 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
419 ((vpn & mask) >> (shift - VPN_SHIFT));
1189be65 420 } else {
5524a27d
AK
421 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
422 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
423 hash = vsid ^ (vsid << 25) ^
424 ((vpn & mask) >> (shift - VPN_SHIFT)) ;
1189be65
PM
425 }
426 return hash & 0x7fffffffffUL;
8d2169e8
DG
427}
428
aefa5688
AK
429#define HPTE_LOCAL_UPDATE 0x1
430#define HPTE_NOHPTE_UPDATE 0x2
431
8d2169e8
DG
432extern int __hash_page_4K(unsigned long ea, unsigned long access,
433 unsigned long vsid, pte_t *ptep, unsigned long trap,
aefa5688 434 unsigned long flags, int ssize, int subpage_prot);
8d2169e8
DG
435extern int __hash_page_64K(unsigned long ea, unsigned long access,
436 unsigned long vsid, pte_t *ptep, unsigned long trap,
aefa5688 437 unsigned long flags, int ssize);
8d2169e8 438struct mm_struct;
0895ecda 439unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
aefa5688
AK
440extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
441 unsigned long access, unsigned long trap,
442 unsigned long flags);
443extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
444 unsigned long dsisr);
a4fe3ce7 445int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
aefa5688
AK
446 pte_t *ptep, unsigned long trap, unsigned long flags,
447 int ssize, unsigned int shift, unsigned int mmu_psize);
6d492ecc
AK
448#ifdef CONFIG_TRANSPARENT_HUGEPAGE
449extern int __hash_page_thp(unsigned long ea, unsigned long access,
450 unsigned long vsid, pmd_t *pmdp, unsigned long trap,
aefa5688 451 unsigned long flags, int ssize, unsigned int psize);
6d492ecc
AK
452#else
453static inline int __hash_page_thp(unsigned long ea, unsigned long access,
454 unsigned long vsid, pmd_t *pmdp,
aefa5688 455 unsigned long trap, unsigned long flags,
6d492ecc
AK
456 int ssize, unsigned int psize)
457{
458 BUG();
ff1e7683 459 return -1;
6d492ecc
AK
460}
461#endif
4b8692c0
BH
462extern void hash_failure_debug(unsigned long ea, unsigned long access,
463 unsigned long vsid, unsigned long trap,
d8139ebf
AK
464 int ssize, int psize, int lpsize,
465 unsigned long pte);
8d2169e8 466extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
bc033b63 467 unsigned long pstart, unsigned long prot,
1189be65 468 int psize, int ssize);
f6026df1
AB
469int htab_remove_mapping(unsigned long vstart, unsigned long vend,
470 int psize, int ssize);
79cc38de 471extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
fa28237c 472extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
8d2169e8 473
6364e84e
ME
474#ifdef CONFIG_PPC_PSERIES
475void hpte_init_pseries(void);
476#else
477static inline void hpte_init_pseries(void) { }
478#endif
479
8d2169e8 480extern void hpte_init_native(void);
8d2169e8 481
8d2169e8
DG
482extern void slb_initialize(void);
483extern void slb_flush_and_rebolt(void);
8d2169e8 484
67439b76 485extern void slb_vmalloc_update(void);
46db2f86 486extern void slb_set_size(u16 size);
8d2169e8
DG
487#endif /* __ASSEMBLY__ */
488
489/*
f033d659 490 * VSID allocation (256MB segment)
8d2169e8 491 *
c60ac569
AK
492 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
493 * from mmu context id and effective segment id of the address.
8d2169e8 494 *
941711a3
AK
495 * For user processes max context id is limited to MAX_USER_CONTEXT.
496
add2e1e5 497 * For kernel space, we use context ids 1-4 to map addresses as below:
c60ac569 498 * NOTE: each context only support 64TB now.
941711a3
AK
499 * 0x00001 - [ 0xc000000000000000 - 0xc0003fffffffffff ]
500 * 0x00002 - [ 0xd000000000000000 - 0xd0003fffffffffff ]
501 * 0x00003 - [ 0xe000000000000000 - 0xe0003fffffffffff ]
502 * 0x00004 - [ 0xf000000000000000 - 0xf0003fffffffffff ]
8d2169e8
DG
503 *
504 * The proto-VSIDs are then scrambled into real VSIDs with the
505 * multiplicative hash:
506 *
507 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
8d2169e8 508 *
f033d659 509 * VSID_MULTIPLIER is prime, so in particular it is
8d2169e8
DG
510 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
511 * Because the modulus is 2^n-1 we can compute it efficiently without
c60ac569
AK
512 * a divide or extra multiply (see below). The scramble function gives
513 * robust scattering in the hash table (at least based on some initial
514 * results).
8d2169e8 515 *
941711a3
AK
516 * We use VSID 0 to indicate an invalid VSID. The means we can't use context id
517 * 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which
518 * will produce a VSID of 0.
8d2169e8 519 *
c60ac569
AK
520 * We also need to avoid the last segment of the last context, because that
521 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
941711a3 522 * because of the modulo operation in vsid scramble.
8d2169e8 523 */
8d2169e8 524
e6f81a92
AK
525/*
526 * Max Va bits we support as of now is 68 bits. We want 19 bit
527 * context ID.
528 * Restrictions:
529 * GPU has restrictions of not able to access beyond 128TB
530 * (47 bit effective address). We also cannot do more than 20bit PID.
531 * For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS
532 * to 16 bits (ie, we can only have 2^16 pids at the same time).
533 */
534#define VA_BITS 68
e39d1a47 535#define CONTEXT_BITS 19
e6f81a92
AK
536#define ESID_BITS (VA_BITS - (SID_SHIFT + CONTEXT_BITS))
537#define ESID_BITS_1T (VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS))
e39d1a47 538
79270e0a
AK
539#define ESID_BITS_MASK ((1 << ESID_BITS) - 1)
540#define ESID_BITS_1T_MASK ((1 << ESID_BITS_1T) - 1)
541
c60ac569
AK
542/*
543 * 256MB segment
af81d787 544 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
941711a3
AK
545 * available for user + kernel mapping. VSID 0 is reserved as invalid, contexts
546 * 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each
e6f81a92 547 * context maps 2^49 bytes (512TB).
941711a3
AK
548 *
549 * We also need to avoid the last segment of the last context, because that
550 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
551 * because of the modulo operation in vsid scramble.
c60ac569 552 */
941711a3
AK
553#define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 2)
554#define MIN_USER_CONTEXT (5)
555
556/* Would be nice to use KERNEL_REGION_ID here */
557#define KERNEL_REGION_CONTEXT_OFFSET (0xc - 1)
c60ac569 558
e6f81a92
AK
559/*
560 * For platforms that support on 65bit VA we limit the context bits
561 */
562#define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2)
563
048ee099
AK
564/*
565 * This should be computed such that protovosid * vsid_mulitplier
e6f81a92
AK
566 * doesn't overflow 64 bits. The vsid_mutliplier should also be
567 * co-prime to vsid_modulus. We also need to make sure that number
568 * of bits in multiplied result (dividend) is less than twice the number of
569 * protovsid bits for our modulus optmization to work.
570 *
571 * The below table shows the current values used.
572 * |-------+------------+----------------------+------------+-------------------|
573 * | | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS |
574 * |-------+------------+----------------------+------------+-------------------|
575 * | 1T | 24 | 25 | 49 | 50 |
576 * |-------+------------+----------------------+------------+-------------------|
577 * | 256MB | 24 | 37 | 61 | 74 |
578 * |-------+------------+----------------------+------------+-------------------|
579 *
580 * |-------+------------+----------------------+------------+--------------------|
581 * | | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS |
582 * |-------+------------+----------------------+------------+--------------------|
583 * | 1T | 24 | 28 | 52 | 56 |
584 * |-------+------------+----------------------+------------+--------------------|
585 * | 256MB | 24 | 40 | 64 | 80 |
586 * |-------+------------+----------------------+------------+--------------------|
587 *
048ee099
AK
588 */
589#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
e6f81a92
AK
590#define VSID_BITS_256M (VA_BITS - SID_SHIFT)
591#define VSID_BITS_65_256M (65 - SID_SHIFT)
82228e36
AK
592/*
593 * Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS
594 */
595#define VSID_MULINV_256M ASM_CONST(665548017062)
8d2169e8 596
1189be65 597#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
e6f81a92
AK
598#define VSID_BITS_1T (VA_BITS - SID_SHIFT_1T)
599#define VSID_BITS_65_1T (65 - SID_SHIFT_1T)
82228e36 600#define VSID_MULINV_1T ASM_CONST(209034062)
8d2169e8 601
82228e36
AK
602/* 1TB VSID reserved for VRMA */
603#define VRMA_VSID 0x1ffffffUL
af81d787 604#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
8d2169e8 605
78f1dbde 606/* 4 bits per slice and we have one slice per 1TB */
957b778a
AK
607#define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41)
608#define TASK_SLICE_ARRAY_SZ(x) ((x)->context.addr_limit >> 41)
8d2169e8
DG
609
610#ifndef __ASSEMBLY__
611
d28513bc
DG
612#ifdef CONFIG_PPC_SUBPAGE_PROT
613/*
614 * For the sub-page protection option, we extend the PGD with one of
615 * these. Basically we have a 3-level tree, with the top level being
616 * the protptrs array. To optimize speed and memory consumption when
617 * only addresses < 4GB are being protected, pointers to the first
618 * four pages of sub-page protection words are stored in the low_prot
619 * array.
620 * Each page of sub-page protection words protects 1GB (4 bytes
621 * protects 64k). For the 3-level tree, each page of pointers then
622 * protects 8TB.
623 */
624struct subpage_prot_table {
625 unsigned long maxaddr; /* only addresses < this are protected */
dad6f37c 626 unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
d28513bc
DG
627 unsigned int *low_prot[4];
628};
629
630#define SBP_L1_BITS (PAGE_SHIFT - 2)
631#define SBP_L2_BITS (PAGE_SHIFT - 3)
632#define SBP_L1_COUNT (1 << SBP_L1_BITS)
633#define SBP_L2_COUNT (1 << SBP_L2_BITS)
634#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
635#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
636
637extern void subpage_prot_free(struct mm_struct *mm);
638extern void subpage_prot_init_new_context(struct mm_struct *mm);
639#else
640static inline void subpage_prot_free(struct mm_struct *mm) {}
641static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
642#endif /* CONFIG_PPC_SUBPAGE_PROT */
643
8d2169e8 644#if 0
1189be65
PM
645/*
646 * The code below is equivalent to this function for arguments
647 * < 2^VSID_BITS, which is all this should ever be called
648 * with. However gcc is not clever enough to compute the
649 * modulus (2^n-1) without a second multiply.
650 */
34692708 651#define vsid_scramble(protovsid, size) \
1189be65 652 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
8d2169e8 653
e6f81a92 654/* simplified form avoiding mod operation */
1189be65
PM
655#define vsid_scramble(protovsid, size) \
656 ({ \
657 unsigned long x; \
658 x = (protovsid) * VSID_MULTIPLIER_##size; \
659 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
660 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
661 })
e6f81a92
AK
662
663#else /* 1 */
664static inline unsigned long vsid_scramble(unsigned long protovsid,
665 unsigned long vsid_multiplier, int vsid_bits)
666{
667 unsigned long vsid;
668 unsigned long vsid_modulus = ((1UL << vsid_bits) - 1);
669 /*
670 * We have same multipler for both 256 and 1T segements now
671 */
672 vsid = protovsid * vsid_multiplier;
673 vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus);
674 return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus;
675}
676
8d2169e8 677#endif /* 1 */
8d2169e8 678
1189be65
PM
679/* Returns the segment size indicator for a user address */
680static inline int user_segment_size(unsigned long addr)
8d2169e8 681{
1189be65
PM
682 /* Use 1T segments if possible for addresses >= 1T */
683 if (addr >= (1UL << SID_SHIFT_1T))
684 return mmu_highuser_ssize;
685 return MMU_SEGSIZE_256M;
8d2169e8
DG
686}
687
1189be65
PM
688static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
689 int ssize)
690{
e6f81a92
AK
691 unsigned long va_bits = VA_BITS;
692 unsigned long vsid_bits;
693 unsigned long protovsid;
694
c60ac569
AK
695 /*
696 * Bad address. We return VSID 0 for that
697 */
dd1842a2 698 if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
c60ac569
AK
699 return 0;
700
e6f81a92
AK
701 if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
702 va_bits = 65;
703
704 if (ssize == MMU_SEGSIZE_256M) {
705 vsid_bits = va_bits - SID_SHIFT;
706 protovsid = (context << ESID_BITS) |
707 ((ea >> SID_SHIFT) & ESID_BITS_MASK);
708 return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits);
709 }
710 /* 1T segment */
711 vsid_bits = va_bits - SID_SHIFT_1T;
712 protovsid = (context << ESID_BITS_1T) |
713 ((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK);
714 return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits);
1189be65
PM
715}
716
c60ac569
AK
717/*
718 * This is only valid for addresses >= PAGE_OFFSET
c60ac569
AK
719 */
720static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
721{
722 unsigned long context;
723
85beb1c4
ME
724 if (!is_kernel_addr(ea))
725 return 0;
726
c60ac569 727 /*
941711a3
AK
728 * For kernel space, we use context ids 1-4 to map the address space as
729 * below:
730 *
731 * 0x00001 - [ 0xc000000000000000 - 0xc0003fffffffffff ]
732 * 0x00002 - [ 0xd000000000000000 - 0xd0003fffffffffff ]
733 * 0x00003 - [ 0xe000000000000000 - 0xe0003fffffffffff ]
734 * 0x00004 - [ 0xf000000000000000 - 0xf0003fffffffffff ]
735 *
736 * So we can compute the context from the region (top nibble) by
737 * subtracting 11, or 0xc - 1.
c60ac569 738 */
941711a3
AK
739 context = (ea >> 60) - KERNEL_REGION_CONTEXT_OFFSET;
740
c60ac569
AK
741 return get_vsid(context, ea, ssize);
742}
5c3c7ede
DG
743
744unsigned htab_shift_for_mem_size(unsigned long mem_size);
745
8d2169e8
DG
746#endif /* __ASSEMBLY__ */
747
11a6f6ab 748#endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */