powerpc/64s: Move hash MMU support code under CONFIG_PPC_64S_HASH_MMU
[linux-2.6-block.git] / arch / powerpc / include / asm / book3s / 64 / mmu-hash.h
CommitLineData
2874c5fd 1/* SPDX-License-Identifier: GPL-2.0-or-later */
11a6f6ab
AK
2#ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
3#define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
8d2169e8
DG
4/*
5 * PowerPC64 memory management structures
6 *
7 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
8 * PPC64 rework.
8d2169e8
DG
9 */
10
8d2169e8 11#include <asm/page.h>
891121e6 12#include <asm/bug.h>
ec0c464c 13#include <asm/asm-const.h>
8d2169e8 14
78f1dbde
AK
15/*
16 * This is necessary to get the definition of PGTABLE_RANGE which we
17 * need for various slices related matters. Note that this isn't the
18 * complete pgtable.h but only a portion of it.
19 */
3dfcb315 20#include <asm/book3s/64/pgtable.h>
92ab45c5 21#include <asm/task_size_64.h>
b92a226e 22#include <asm/cpu_has_feature.h>
78f1dbde 23
8d2169e8
DG
24/*
25 * SLB
26 */
27
85376e2a 28#define SLB_NUM_BOLTED 2
8d2169e8 29#define SLB_CACHE_ENTRIES 8
46db2f86 30#define SLB_MIN_SIZE 32
8d2169e8
DG
31
32/* Bits in the SLB ESID word */
33#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
34
35/* Bits in the SLB VSID word */
36#define SLB_VSID_SHIFT 12
e6f81a92 37#define SLB_VSID_SHIFT_256M SLB_VSID_SHIFT
1189be65
PM
38#define SLB_VSID_SHIFT_1T 24
39#define SLB_VSID_SSIZE_SHIFT 62
8d2169e8
DG
40#define SLB_VSID_B ASM_CONST(0xc000000000000000)
41#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
42#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
43#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
44#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
45#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
46#define SLB_VSID_L ASM_CONST(0x0000000000000100)
47#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
48#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
49#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
50#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
51#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
52#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
53#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
54
55#define SLB_VSID_KERNEL (SLB_VSID_KP)
56#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
57
58#define SLBIE_C (0x08000000)
1189be65 59#define SLBIE_SSIZE_SHIFT 25
8d2169e8
DG
60
61/*
62 * Hash table
63 */
64
65#define HPTES_PER_GROUP 8
66
2454c7e9 67#define HPTE_V_SSIZE_SHIFT 62
8d2169e8 68#define HPTE_V_AVPN_SHIFT 7
6b243fcf 69#define HPTE_V_COMMON_BITS ASM_CONST(0x000fffffffffffff)
2454c7e9 70#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
6b243fcf 71#define HPTE_V_AVPN_3_0 ASM_CONST(0x000fffffffffff80)
8d2169e8 72#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
91bbbe22 73#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
8d2169e8
DG
74#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
75#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
76#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
77#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
78#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
79
50de596d 80/*
6b243fcf 81 * ISA 3.0 has a different HPTE format.
50de596d
AK
82 */
83#define HPTE_R_3_0_SSIZE_SHIFT 58
6b243fcf 84#define HPTE_R_3_0_SSIZE_MASK (3ull << HPTE_R_3_0_SSIZE_SHIFT)
8d2169e8
DG
85#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
86#define HPTE_R_TS ASM_CONST(0x4000000000000000)
de56a948 87#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
33699023
AK
88#define HPTE_R_KEY_BIT4 ASM_CONST(0x2000000000000000)
89#define HPTE_R_KEY_BIT3 ASM_CONST(0x1000000000000000)
8d2169e8 90#define HPTE_R_RPN_SHIFT 12
de56a948 91#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
6b243fcf 92#define HPTE_R_RPN_3_0 ASM_CONST(0x01fffffffffff000)
8d2169e8 93#define HPTE_R_PP ASM_CONST(0x0000000000000003)
8550e2fa 94#define HPTE_R_PPP ASM_CONST(0x8000000000000003)
8d2169e8 95#define HPTE_R_N ASM_CONST(0x0000000000000004)
de56a948
PM
96#define HPTE_R_G ASM_CONST(0x0000000000000008)
97#define HPTE_R_M ASM_CONST(0x0000000000000010)
98#define HPTE_R_I ASM_CONST(0x0000000000000020)
99#define HPTE_R_W ASM_CONST(0x0000000000000040)
100#define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
8d2169e8
DG
101#define HPTE_R_C ASM_CONST(0x0000000000000080)
102#define HPTE_R_R ASM_CONST(0x0000000000000100)
de56a948 103#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
a6590ca5 104#define HPTE_R_KEY_BIT2 ASM_CONST(0x0000000000000800)
33699023
AK
105#define HPTE_R_KEY_BIT1 ASM_CONST(0x0000000000000400)
106#define HPTE_R_KEY_BIT0 ASM_CONST(0x0000000000000200)
d182b8fd 107#define HPTE_R_KEY (HPTE_R_KEY_LO | HPTE_R_KEY_HI)
8d2169e8 108
b7abc5c5
SS
109#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
110#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
111
8d2169e8 112/* Values for PP (assumes Ks=0, Kp=1) */
8d2169e8
DG
113#define PP_RWXX 0 /* Supervisor read/write, User none */
114#define PP_RWRX 1 /* Supervisor read/write, User read */
115#define PP_RWRW 2 /* Supervisor read/write, User read/write */
116#define PP_RXRX 3 /* Supervisor read, User read */
697d3899 117#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
8d2169e8 118
b4072df4
PM
119/* Fields for tlbiel instruction in architecture 2.06 */
120#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
121#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
122#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
123#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
124#define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
125#define TLBIEL_INVAL_SET_SHIFT 12
126
127#define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
45706bb5 128#define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
c3ab300e 129#define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */
1a472c9d 130#define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */
b4072df4 131
8d2169e8
DG
132#ifndef __ASSEMBLY__
133
7025776e
BH
134struct mmu_hash_ops {
135 void (*hpte_invalidate)(unsigned long slot,
136 unsigned long vpn,
137 int bpsize, int apsize,
138 int ssize, int local);
139 long (*hpte_updatepp)(unsigned long slot,
140 unsigned long newpp,
141 unsigned long vpn,
142 int bpsize, int apsize,
143 int ssize, unsigned long flags);
144 void (*hpte_updateboltedpp)(unsigned long newpp,
145 unsigned long ea,
146 int psize, int ssize);
147 long (*hpte_insert)(unsigned long hpte_group,
148 unsigned long vpn,
149 unsigned long prpn,
150 unsigned long rflags,
151 unsigned long vflags,
152 int psize, int apsize,
153 int ssize);
154 long (*hpte_remove)(unsigned long hpte_group);
155 int (*hpte_removebolted)(unsigned long ea,
156 int psize, int ssize);
157 void (*flush_hash_range)(unsigned long number, int local);
158 void (*hugepage_invalidate)(unsigned long vsid,
159 unsigned long addr,
160 unsigned char *hpte_slot_array,
161 int psize, int ssize, int local);
dbcf929c 162 int (*resize_hpt)(unsigned long shift);
7025776e
BH
163 /*
164 * Special for kexec.
165 * To be called in real mode with interrupts disabled. No locks are
166 * taken as such, concurrent access on pre POWER5 hardware could result
167 * in a deadlock.
168 * The linear mapping is destroyed as well.
169 */
170 void (*hpte_clear_all)(void);
171};
172extern struct mmu_hash_ops mmu_hash_ops;
173
8e561e7e 174struct hash_pte {
12f04f2b
AB
175 __be64 v;
176 __be64 r;
8e561e7e 177};
8d2169e8 178
8e561e7e 179extern struct hash_pte *htab_address;
8d2169e8
DG
180extern unsigned long htab_size_bytes;
181extern unsigned long htab_hash_mask;
182
cf9427b8
AK
183
184static inline int shift_to_mmu_psize(unsigned int shift)
185{
186 int psize;
187
188 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
189 if (mmu_psize_defs[psize].shift == shift)
190 return psize;
191 return -1;
192}
193
194static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
195{
196 if (mmu_psize_defs[mmu_psize].shift)
197 return mmu_psize_defs[mmu_psize].shift;
198 BUG();
199}
8d2169e8 200
e3b6b466
SJS
201static inline unsigned int ap_to_shift(unsigned long ap)
202{
203 int psize;
204
205 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
206 if (mmu_psize_defs[psize].ap == ap)
207 return mmu_psize_defs[psize].shift;
208 }
209
210 return -1;
211}
212
138ee7ee
AK
213static inline unsigned long get_sllp_encoding(int psize)
214{
215 unsigned long sllp;
216
217 sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |
218 ((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);
219 return sllp;
220}
221
8d2169e8
DG
222#endif /* __ASSEMBLY__ */
223
2454c7e9
PM
224/*
225 * Segment sizes.
226 * These are the values used by hardware in the B field of
227 * SLB entries and the first dword of MMU hashtable entries.
228 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
229 */
230#define MMU_SEGSIZE_256M 0
231#define MMU_SEGSIZE_1T 1
232
5524a27d
AK
233/*
234 * encode page number shift.
235 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
236 * 12 bits. This enable us to address upto 76 bit va.
237 * For hpt hash from a va we can ignore the page size bits of va and for
238 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
239 * we work in all cases including 4k page size.
240 */
241#define VPN_SHIFT 12
1189be65 242
b1022fbd
AK
243/*
244 * HPTE Large Page (LP) details
245 */
246#define LP_SHIFT 12
247#define LP_BITS 8
248#define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
249
8d2169e8
DG
250#ifndef __ASSEMBLY__
251
73d16a6e
IM
252static inline int slb_vsid_shift(int ssize)
253{
254 if (ssize == MMU_SEGSIZE_256M)
255 return SLB_VSID_SHIFT;
256 return SLB_VSID_SHIFT_1T;
257}
258
5524a27d
AK
259static inline int segment_shift(int ssize)
260{
261 if (ssize == MMU_SEGSIZE_256M)
262 return SID_SHIFT;
263 return SID_SHIFT_1T;
264}
265
0eeede0c
PM
266/*
267 * This array is indexed by the LP field of the HPTE second dword.
268 * Since this field may contain some RPN bits, some entries are
269 * replicated so that we get the same value irrespective of RPN.
270 * The top 4 bits are the page size index (MMU_PAGE_*) for the
271 * actual page size, the bottom 4 bits are the base page size.
272 */
273extern u8 hpte_page_sizes[1 << LP_BITS];
274
275static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
276 bool is_base_size)
277{
278 unsigned int i, lp;
279
280 if (!(h & HPTE_V_LARGE))
281 return 1ul << 12;
282
283 /* Look at the 8 bit LP value */
284 lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
285 i = hpte_page_sizes[lp];
286 if (!i)
287 return 0;
288 if (!is_base_size)
289 i >>= 4;
290 return 1ul << mmu_psize_defs[i & 0xf].shift;
291}
292
293static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
294{
295 return __hpte_page_size(h, l, 0);
296}
297
298static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
299{
300 return __hpte_page_size(h, l, 1);
301}
302
8d2169e8 303/*
1189be65 304 * The current system page and segment sizes
8d2169e8 305 */
1189be65
PM
306extern int mmu_kernel_ssize;
307extern int mmu_highuser_ssize;
584f8b71 308extern u16 mmu_slb_size;
572fb578 309extern unsigned long tce_alloc_start, tce_alloc_end;
8d2169e8
DG
310
311/*
312 * If the processor supports 64k normal pages but not 64k cache
313 * inhibited pages, we have to be prepared to switch processes
314 * to use 4k pages when they create cache-inhibited mappings.
315 * If this is the case, mmu_ci_restrictions will be set to 1.
316 */
317extern int mmu_ci_restrictions;
318
5524a27d
AK
319/*
320 * This computes the AVPN and B fields of the first dword of a HPTE,
321 * for use when we want to match an existing PTE. The bottom 7 bits
322 * of the returned value are zero.
323 */
324static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
325 int ssize)
326{
327 unsigned long v;
328 /*
329 * The AVA field omits the low-order 23 bits of the 78 bits VA.
330 * These bits are not needed in the PTE, because the
331 * low-order b of these bits are part of the byte offset
332 * into the virtual page and, if b < 23, the high-order
333 * 23-b of these bits are always used in selecting the
334 * PTEGs to be searched
335 */
336 v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
337 v <<= HPTE_V_AVPN_SHIFT;
6b243fcf 338 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
5524a27d
AK
339 return v;
340}
341
6b243fcf
PM
342/*
343 * ISA v3.0 defines a new HPTE format, which differs from the old
344 * format in having smaller AVPN and ARPN fields, and the B field
345 * in the second dword instead of the first.
346 */
347static inline unsigned long hpte_old_to_new_v(unsigned long v)
348{
349 /* trim AVPN, drop B */
350 return v & HPTE_V_COMMON_BITS;
351}
352
353static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
354{
355 /* move B field from 1st to 2nd dword, trim ARPN */
356 return (r & ~HPTE_R_3_0_SSIZE_MASK) |
357 (((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
358}
359
360static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
361{
362 /* insert B field */
363 return (v & HPTE_V_COMMON_BITS) |
364 ((r & HPTE_R_3_0_SSIZE_MASK) <<
365 (HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
366}
367
368static inline unsigned long hpte_new_to_old_r(unsigned long r)
369{
370 /* clear out B field */
371 return r & ~HPTE_R_3_0_SSIZE_MASK;
372}
373
a833280b
AK
374static inline unsigned long hpte_get_old_v(struct hash_pte *hptep)
375{
376 unsigned long hpte_v;
377
378 hpte_v = be64_to_cpu(hptep->v);
379 if (cpu_has_feature(CPU_FTR_ARCH_300))
380 hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r));
381 return hpte_v;
382}
383
8d2169e8
DG
384/*
385 * This function sets the AVPN and L fields of the HPTE appropriately
b1022fbd 386 * using the base page size and actual page size.
8d2169e8 387 */
b1022fbd
AK
388static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
389 int actual_psize, int ssize)
8d2169e8 390{
1189be65 391 unsigned long v;
b1022fbd
AK
392 v = hpte_encode_avpn(vpn, base_psize, ssize);
393 if (actual_psize != MMU_PAGE_4K)
8d2169e8
DG
394 v |= HPTE_V_LARGE;
395 return v;
396}
397
398/*
399 * This function sets the ARPN, and LP fields of the HPTE appropriately
400 * for the page size. We assume the pa is already "clean" that is properly
401 * aligned for the requested page size
402 */
b1022fbd 403static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
6b243fcf 404 int actual_psize)
8d2169e8 405{
8d2169e8 406 /* A 4K page needs no special encoding */
b1022fbd 407 if (actual_psize == MMU_PAGE_4K)
8d2169e8
DG
408 return pa & HPTE_R_RPN;
409 else {
b1022fbd
AK
410 unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
411 unsigned int shift = mmu_psize_defs[actual_psize].shift;
412 return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
8d2169e8 413 }
8d2169e8
DG
414}
415
416/*
5524a27d 417 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
8d2169e8 418 */
5524a27d
AK
419static inline unsigned long hpt_vpn(unsigned long ea,
420 unsigned long vsid, int ssize)
1189be65 421{
5524a27d
AK
422 unsigned long mask;
423 int s_shift = segment_shift(ssize);
424
425 mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
426 return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
1189be65 427}
8d2169e8 428
1189be65
PM
429/*
430 * This hashes a virtual address
431 */
5524a27d
AK
432static inline unsigned long hpt_hash(unsigned long vpn,
433 unsigned int shift, int ssize)
8d2169e8 434{
59248aec 435 unsigned long mask;
1189be65
PM
436 unsigned long hash, vsid;
437
5524a27d 438 /* VPN_SHIFT can be atmost 12 */
1189be65 439 if (ssize == MMU_SEGSIZE_256M) {
5524a27d
AK
440 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
441 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
442 ((vpn & mask) >> (shift - VPN_SHIFT));
1189be65 443 } else {
5524a27d
AK
444 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
445 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
446 hash = vsid ^ (vsid << 25) ^
447 ((vpn & mask) >> (shift - VPN_SHIFT)) ;
1189be65
PM
448 }
449 return hash & 0x7fffffffffUL;
8d2169e8
DG
450}
451
aefa5688
AK
452#define HPTE_LOCAL_UPDATE 0x1
453#define HPTE_NOHPTE_UPDATE 0x2
d94b827e 454#define HPTE_USE_KERNEL_KEY 0x4
aefa5688 455
11f9c1d2
CLG
456long hpte_insert_repeating(unsigned long hash, unsigned long vpn, unsigned long pa,
457 unsigned long rlags, unsigned long vflags, int psize, int ssize);
8d2169e8
DG
458extern int __hash_page_4K(unsigned long ea, unsigned long access,
459 unsigned long vsid, pte_t *ptep, unsigned long trap,
aefa5688 460 unsigned long flags, int ssize, int subpage_prot);
8d2169e8
DG
461extern int __hash_page_64K(unsigned long ea, unsigned long access,
462 unsigned long vsid, pte_t *ptep, unsigned long trap,
aefa5688 463 unsigned long flags, int ssize);
8d2169e8 464struct mm_struct;
0895ecda 465unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
aefa5688
AK
466extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
467 unsigned long access, unsigned long trap,
468 unsigned long flags);
469extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
470 unsigned long dsisr);
cccaf1a1
CLG
471void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc);
472int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr, unsigned long msr);
a4fe3ce7 473int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
aefa5688
AK
474 pte_t *ptep, unsigned long trap, unsigned long flags,
475 int ssize, unsigned int shift, unsigned int mmu_psize);
6d492ecc
AK
476#ifdef CONFIG_TRANSPARENT_HUGEPAGE
477extern int __hash_page_thp(unsigned long ea, unsigned long access,
478 unsigned long vsid, pmd_t *pmdp, unsigned long trap,
aefa5688 479 unsigned long flags, int ssize, unsigned int psize);
6d492ecc
AK
480#else
481static inline int __hash_page_thp(unsigned long ea, unsigned long access,
482 unsigned long vsid, pmd_t *pmdp,
aefa5688 483 unsigned long trap, unsigned long flags,
6d492ecc
AK
484 int ssize, unsigned int psize)
485{
486 BUG();
ff1e7683 487 return -1;
6d492ecc
AK
488}
489#endif
4b8692c0
BH
490extern void hash_failure_debug(unsigned long ea, unsigned long access,
491 unsigned long vsid, unsigned long trap,
d8139ebf
AK
492 int ssize, int psize, int lpsize,
493 unsigned long pte);
8d2169e8 494extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
bc033b63 495 unsigned long pstart, unsigned long prot,
1189be65 496 int psize, int ssize);
f6026df1
AB
497int htab_remove_mapping(unsigned long vstart, unsigned long vend,
498 int psize, int ssize);
79cc38de 499extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
fa28237c 500extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
8d2169e8 501
425d3314
NP
502extern void hash__setup_new_exec(void);
503
6364e84e
ME
504#ifdef CONFIG_PPC_PSERIES
505void hpte_init_pseries(void);
506#else
507static inline void hpte_init_pseries(void) { }
508#endif
509
8d2169e8 510extern void hpte_init_native(void);
8d2169e8 511
c6d15258
MS
512struct slb_entry {
513 u64 esid;
514 u64 vsid;
515};
516
8d2169e8 517extern void slb_initialize(void);
94ee4272 518void slb_flush_and_restore_bolted(void);
e7e81847
NP
519void slb_flush_all_realmode(void);
520void __slb_restore_bolted_realmode(void);
521void slb_restore_bolted_realmode(void);
c6d15258
MS
522void slb_save_contents(struct slb_entry *slb_ptr);
523void slb_dump_contents(struct slb_entry *slb_ptr);
8d2169e8 524
67439b76 525extern void slb_vmalloc_update(void);
1f55aefe 526void preload_new_slb_context(unsigned long start, unsigned long sp);
387e220a
NP
527
528#ifdef CONFIG_PPC_64S_HASH_MMU
529void slb_set_size(u16 size);
530#else
531static inline void slb_set_size(u16 size) { }
532#endif
533
8d2169e8
DG
534#endif /* __ASSEMBLY__ */
535
536/*
f033d659 537 * VSID allocation (256MB segment)
8d2169e8 538 *
c60ac569
AK
539 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
540 * from mmu context id and effective segment id of the address.
8d2169e8 541 *
941711a3 542 * For user processes max context id is limited to MAX_USER_CONTEXT.
4ffe713b
AK
543 * more details in get_user_context
544 *
545 * For kernel space get_kernel_context
8d2169e8
DG
546 *
547 * The proto-VSIDs are then scrambled into real VSIDs with the
548 * multiplicative hash:
549 *
550 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
8d2169e8 551 *
f033d659 552 * VSID_MULTIPLIER is prime, so in particular it is
8d2169e8
DG
553 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
554 * Because the modulus is 2^n-1 we can compute it efficiently without
c60ac569
AK
555 * a divide or extra multiply (see below). The scramble function gives
556 * robust scattering in the hash table (at least based on some initial
557 * results).
8d2169e8 558 *
941711a3
AK
559 * We use VSID 0 to indicate an invalid VSID. The means we can't use context id
560 * 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which
561 * will produce a VSID of 0.
8d2169e8 562 *
c60ac569
AK
563 * We also need to avoid the last segment of the last context, because that
564 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
941711a3 565 * because of the modulo operation in vsid scramble.
8d2169e8 566 */
8d2169e8 567
e6f81a92
AK
568/*
569 * Max Va bits we support as of now is 68 bits. We want 19 bit
570 * context ID.
571 * Restrictions:
572 * GPU has restrictions of not able to access beyond 128TB
573 * (47 bit effective address). We also cannot do more than 20bit PID.
574 * For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS
575 * to 16 bits (ie, we can only have 2^16 pids at the same time).
576 */
577#define VA_BITS 68
e39d1a47 578#define CONTEXT_BITS 19
e6f81a92
AK
579#define ESID_BITS (VA_BITS - (SID_SHIFT + CONTEXT_BITS))
580#define ESID_BITS_1T (VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS))
e39d1a47 581
79270e0a
AK
582#define ESID_BITS_MASK ((1 << ESID_BITS) - 1)
583#define ESID_BITS_1T_MASK ((1 << ESID_BITS_1T) - 1)
584
4ffe713b
AK
585/*
586 * Now certain config support MAX_PHYSMEM more than 512TB. Hence we will need
587 * to use more than one context for linear mapping the kernel.
588 * For vmalloc and memmap, we use just one context with 512TB. With 64 byte
589 * struct page size, we need ony 32 TB in memmap for 2PB (51 bits (MAX_PHYSMEM_BITS)).
590 */
b32d5d7e
AK
591#if (H_MAX_PHYSMEM_BITS > MAX_EA_BITS_PER_CONTEXT)
592#define MAX_KERNEL_CTX_CNT (1UL << (H_MAX_PHYSMEM_BITS - MAX_EA_BITS_PER_CONTEXT))
4ffe713b
AK
593#else
594#define MAX_KERNEL_CTX_CNT 1
595#endif
596
597#define MAX_VMALLOC_CTX_CNT 1
0034d395
AK
598#define MAX_IO_CTX_CNT 1
599#define MAX_VMEMMAP_CTX_CNT 1
4ffe713b 600
c60ac569
AK
601/*
602 * 256MB segment
af81d787 603 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
941711a3
AK
604 * available for user + kernel mapping. VSID 0 is reserved as invalid, contexts
605 * 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each
e6f81a92 606 * context maps 2^49 bytes (512TB).
941711a3
AK
607 *
608 * We also need to avoid the last segment of the last context, because that
609 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
610 * because of the modulo operation in vsid scramble.
4ffe713b 611 *
c60ac569 612 */
941711a3 613#define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 2)
5d2e5dd5
AK
614
615// The + 2 accounts for INVALID_REGION and 1 more to avoid overlap with kernel
4ffe713b 616#define MIN_USER_CONTEXT (MAX_KERNEL_CTX_CNT + MAX_VMALLOC_CTX_CNT + \
5d2e5dd5
AK
617 MAX_IO_CTX_CNT + MAX_VMEMMAP_CTX_CNT + 2)
618
e6f81a92
AK
619/*
620 * For platforms that support on 65bit VA we limit the context bits
621 */
622#define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2)
623
048ee099
AK
624/*
625 * This should be computed such that protovosid * vsid_mulitplier
e6f81a92
AK
626 * doesn't overflow 64 bits. The vsid_mutliplier should also be
627 * co-prime to vsid_modulus. We also need to make sure that number
628 * of bits in multiplied result (dividend) is less than twice the number of
629 * protovsid bits for our modulus optmization to work.
630 *
631 * The below table shows the current values used.
632 * |-------+------------+----------------------+------------+-------------------|
633 * | | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS |
634 * |-------+------------+----------------------+------------+-------------------|
635 * | 1T | 24 | 25 | 49 | 50 |
636 * |-------+------------+----------------------+------------+-------------------|
637 * | 256MB | 24 | 37 | 61 | 74 |
638 * |-------+------------+----------------------+------------+-------------------|
639 *
640 * |-------+------------+----------------------+------------+--------------------|
641 * | | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS |
642 * |-------+------------+----------------------+------------+--------------------|
643 * | 1T | 24 | 28 | 52 | 56 |
644 * |-------+------------+----------------------+------------+--------------------|
645 * | 256MB | 24 | 40 | 64 | 80 |
646 * |-------+------------+----------------------+------------+--------------------|
647 *
048ee099
AK
648 */
649#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
e6f81a92
AK
650#define VSID_BITS_256M (VA_BITS - SID_SHIFT)
651#define VSID_BITS_65_256M (65 - SID_SHIFT)
82228e36
AK
652/*
653 * Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS
654 */
655#define VSID_MULINV_256M ASM_CONST(665548017062)
8d2169e8 656
1189be65 657#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
e6f81a92
AK
658#define VSID_BITS_1T (VA_BITS - SID_SHIFT_1T)
659#define VSID_BITS_65_1T (65 - SID_SHIFT_1T)
82228e36 660#define VSID_MULINV_1T ASM_CONST(209034062)
8d2169e8 661
82228e36
AK
662/* 1TB VSID reserved for VRMA */
663#define VRMA_VSID 0x1ffffffUL
af81d787 664#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
8d2169e8 665
78f1dbde 666/* 4 bits per slice and we have one slice per 1TB */
957b778a 667#define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41)
60458fba 668#define LOW_SLICE_ARRAY_SZ (BITS_PER_LONG / BITS_PER_BYTE)
70110186 669#define TASK_SLICE_ARRAY_SZ(x) ((x)->hash_context->slb_addr_limit >> 41)
8d2169e8
DG
670#ifndef __ASSEMBLY__
671
d28513bc
DG
672#ifdef CONFIG_PPC_SUBPAGE_PROT
673/*
674 * For the sub-page protection option, we extend the PGD with one of
675 * these. Basically we have a 3-level tree, with the top level being
676 * the protptrs array. To optimize speed and memory consumption when
677 * only addresses < 4GB are being protected, pointers to the first
678 * four pages of sub-page protection words are stored in the low_prot
679 * array.
680 * Each page of sub-page protection words protects 1GB (4 bytes
681 * protects 64k). For the 3-level tree, each page of pointers then
682 * protects 8TB.
683 */
684struct subpage_prot_table {
685 unsigned long maxaddr; /* only addresses < this are protected */
dad6f37c 686 unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
d28513bc
DG
687 unsigned int *low_prot[4];
688};
689
690#define SBP_L1_BITS (PAGE_SHIFT - 2)
691#define SBP_L2_BITS (PAGE_SHIFT - 3)
692#define SBP_L1_COUNT (1 << SBP_L1_BITS)
693#define SBP_L2_COUNT (1 << SBP_L2_BITS)
694#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
695#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
696
697extern void subpage_prot_free(struct mm_struct *mm);
d28513bc
DG
698#else
699static inline void subpage_prot_free(struct mm_struct *mm) {}
d28513bc
DG
700#endif /* CONFIG_PPC_SUBPAGE_PROT */
701
70110186
AK
702/*
703 * One bit per slice. We have lower slices which cover 256MB segments
704 * upto 4G range. That gets us 16 low slices. For the rest we track slices
705 * in 1TB size.
706 */
707struct slice_mask {
708 u64 low_slices;
709 DECLARE_BITMAP(high_slices, SLICE_NUM_HIGH);
710};
711
712struct hash_mm_context {
713 u16 user_psize; /* page size index */
714
715 /* SLB page size encodings*/
716 unsigned char low_slices_psize[LOW_SLICE_ARRAY_SZ];
717 unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
718 unsigned long slb_addr_limit;
719#ifdef CONFIG_PPC_64K_PAGES
720 struct slice_mask mask_64k;
721#endif
722 struct slice_mask mask_4k;
723#ifdef CONFIG_HUGETLB_PAGE
724 struct slice_mask mask_16m;
725 struct slice_mask mask_16g;
726#endif
727
728#ifdef CONFIG_PPC_SUBPAGE_PROT
ef629cc5 729 struct subpage_prot_table *spt;
70110186
AK
730#endif /* CONFIG_PPC_SUBPAGE_PROT */
731};
732
8d2169e8 733#if 0
1189be65
PM
734/*
735 * The code below is equivalent to this function for arguments
736 * < 2^VSID_BITS, which is all this should ever be called
737 * with. However gcc is not clever enough to compute the
738 * modulus (2^n-1) without a second multiply.
739 */
34692708 740#define vsid_scramble(protovsid, size) \
1189be65 741 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
8d2169e8 742
e6f81a92 743/* simplified form avoiding mod operation */
1189be65
PM
744#define vsid_scramble(protovsid, size) \
745 ({ \
746 unsigned long x; \
747 x = (protovsid) * VSID_MULTIPLIER_##size; \
748 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
749 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
750 })
e6f81a92
AK
751
752#else /* 1 */
753static inline unsigned long vsid_scramble(unsigned long protovsid,
754 unsigned long vsid_multiplier, int vsid_bits)
755{
756 unsigned long vsid;
757 unsigned long vsid_modulus = ((1UL << vsid_bits) - 1);
758 /*
759 * We have same multipler for both 256 and 1T segements now
760 */
761 vsid = protovsid * vsid_multiplier;
762 vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus);
763 return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus;
764}
765
8d2169e8 766#endif /* 1 */
8d2169e8 767
1189be65
PM
768/* Returns the segment size indicator for a user address */
769static inline int user_segment_size(unsigned long addr)
8d2169e8 770{
1189be65
PM
771 /* Use 1T segments if possible for addresses >= 1T */
772 if (addr >= (1UL << SID_SHIFT_1T))
773 return mmu_highuser_ssize;
774 return MMU_SEGSIZE_256M;
8d2169e8
DG
775}
776
1189be65
PM
777static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
778 int ssize)
779{
e6f81a92
AK
780 unsigned long va_bits = VA_BITS;
781 unsigned long vsid_bits;
782 unsigned long protovsid;
783
c60ac569
AK
784 /*
785 * Bad address. We return VSID 0 for that
786 */
0034d395 787 if ((ea & EA_MASK) >= H_PGTABLE_RANGE)
c60ac569
AK
788 return 0;
789
e6f81a92
AK
790 if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
791 va_bits = 65;
792
793 if (ssize == MMU_SEGSIZE_256M) {
794 vsid_bits = va_bits - SID_SHIFT;
795 protovsid = (context << ESID_BITS) |
796 ((ea >> SID_SHIFT) & ESID_BITS_MASK);
797 return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits);
798 }
799 /* 1T segment */
800 vsid_bits = va_bits - SID_SHIFT_1T;
801 protovsid = (context << ESID_BITS_1T) |
802 ((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK);
803 return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits);
1189be65
PM
804}
805
4ffe713b 806/*
10a4a016 807 * For kernel space, we use context ids as
4ffe713b
AK
808 * below. Range is 512TB per context.
809 *
810 * 0x00001 - [ 0xc000000000000000 - 0xc001ffffffffffff]
811 * 0x00002 - [ 0xc002000000000000 - 0xc003ffffffffffff]
812 * 0x00003 - [ 0xc004000000000000 - 0xc005ffffffffffff]
813 * 0x00004 - [ 0xc006000000000000 - 0xc007ffffffffffff]
4ffe713b 814 *
0034d395
AK
815 * vmap, IO, vmemap
816 *
817 * 0x00005 - [ 0xc008000000000000 - 0xc009ffffffffffff]
818 * 0x00006 - [ 0xc00a000000000000 - 0xc00bffffffffffff]
819 * 0x00007 - [ 0xc00c000000000000 - 0xc00dffffffffffff]
820 *
4ffe713b
AK
821 */
822static inline unsigned long get_kernel_context(unsigned long ea)
823{
0034d395 824 unsigned long region_id = get_region_id(ea);
4ffe713b
AK
825 unsigned long ctx;
826 /*
0034d395
AK
827 * Depending on Kernel config, kernel region can have one context
828 * or more.
4ffe713b 829 */
5f53d286 830 if (region_id == LINEAR_MAP_REGION_ID) {
4ffe713b
AK
831 /*
832 * We already verified ea to be not beyond the addr limit.
833 */
0034d395 834 ctx = 1 + ((ea & EA_MASK) >> MAX_EA_BITS_PER_CONTEXT);
4ffe713b 835 } else
1c946c1b 836 ctx = region_id + MAX_KERNEL_CTX_CNT - 1;
4ffe713b
AK
837 return ctx;
838}
839
c60ac569
AK
840/*
841 * This is only valid for addresses >= PAGE_OFFSET
c60ac569
AK
842 */
843static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
844{
845 unsigned long context;
846
85beb1c4
ME
847 if (!is_kernel_addr(ea))
848 return 0;
849
4ffe713b 850 context = get_kernel_context(ea);
c60ac569
AK
851 return get_vsid(context, ea, ssize);
852}
5c3c7ede
DG
853
854unsigned htab_shift_for_mem_size(unsigned long mem_size);
855
3ba150fb
GG
856enum slb_index {
857 LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */
858 KSTACK_INDEX = 1, /* Kernel stack map */
859};
8d2169e8 860
3ba150fb
GG
861#define slb_esid_mask(ssize) \
862 (((ssize) == MMU_SEGSIZE_256M) ? ESID_MASK : ESID_MASK_1T)
863
864static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
865 enum slb_index index)
866{
867 return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
868}
869
870static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
871 unsigned long flags)
872{
873 return (vsid << slb_vsid_shift(ssize)) | flags |
874 ((unsigned long)ssize << SLB_VSID_SSIZE_SHIFT);
875}
876
877static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
878 unsigned long flags)
879{
880 return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
881}
882
883#endif /* __ASSEMBLY__ */
11a6f6ab 884#endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */