powerpc/mm/64: Document the sizes of/sizes mapped by Pxx_INDEX_SIZE
[linux-2.6-block.git] / arch / powerpc / include / asm / book3s / 64 / hash-64k.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
ab537dca
AK
2#ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
3#define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
4
eea86aa4
ME
5#define H_PTE_INDEX_SIZE 8 // size: 8B << 8 = 2KB, maps 2^8 x 64KB = 16MB
6#define H_PMD_INDEX_SIZE 10 // size: 8B << 10 = 8KB, maps 2^10 x 16MB = 16GB
7#define H_PUD_INDEX_SIZE 10 // size: 8B << 10 = 8KB, maps 2^10 x 16GB = 16TB
8#define H_PGD_INDEX_SIZE 8 // size: 8B << 8 = 2KB, maps 2^8 x 16TB = 4PB
9
ab537dca 10
f384796c
AK
11/*
12 * Each context is 512TB size. SLB miss for first context/default context
13 * is handled in the hotpath.
14 */
15#define MAX_EA_BITS_PER_CONTEXT 49
16
f5bd0fdc
AK
17/*
18 * 64k aligned address free up few of the lower bits of RPN for us
19 * We steal that here. For more deatils look at pte_pfn/pfn_pte()
20 */
32789d38
AK
21#define H_PAGE_COMBO _RPAGE_RPN0 /* this is a combo 4k page */
22#define H_PAGE_4K_PFN _RPAGE_RPN1 /* PFN is for a single 4k page */
bf9a95f9 23#define H_PAGE_BUSY _RPAGE_RPN44 /* software: PTE & hash are busy */
273b4936 24#define H_PAGE_HASHPTE _RPAGE_RPN43 /* PTE has associated HPTE */
9d2edb18 25
1a2f7789
AK
26/* memory key bits. */
27#define H_PTE_PKEY_BIT0 _RPAGE_RSV1
28#define H_PTE_PKEY_BIT1 _RPAGE_RSV2
29#define H_PTE_PKEY_BIT2 _RPAGE_RSV3
30#define H_PTE_PKEY_BIT3 _RPAGE_RSV4
31#define H_PTE_PKEY_BIT4 _RPAGE_RSV5
32
bf680d51 33/*
945537df
AK
34 * We need to differentiate between explicit huge page and THP huge
35 * page, since THP huge page also need to track real subpage details
16c2d476 36 */
945537df
AK
37#define H_PAGE_THP_HUGE H_PAGE_4K_PFN
38
3c726f8d 39/* PTE flags to conserve for HPTE identification */
bf9a95f9 40#define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | H_PAGE_COMBO)
62607bc6
AK
41/*
42 * We use a 2K PTE page fragment and another 2K for storing
43 * real_pte_t hash index
fb4e5dbd
AK
44 * 8 bytes per each pte entry and another 8 bytes for storing
45 * slot details.
62607bc6 46 */
fb4e5dbd
AK
47#define H_PTE_FRAG_SIZE_SHIFT (H_PTE_INDEX_SIZE + 3 + 1)
48#define H_PTE_FRAG_NR (PAGE_SIZE >> H_PTE_FRAG_SIZE_SHIFT)
62607bc6 49
8a6c697b
AK
50#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
51#define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3 + 1)
52#else
53#define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3)
54#endif
55#define H_PMD_FRAG_NR (PAGE_SIZE >> H_PMD_FRAG_SIZE_SHIFT)
56
c605782b 57#ifndef __ASSEMBLY__
96270b1f 58#include <asm/errno.h>
3c726f8d 59
c605782b
BH
60/*
61 * With 64K pages on hash table, we have a special PTE format that
62 * uses a second "half" of the page table to encode sub-page information
63 * in order to deal with 64K made of 4K HW pages. Thus we override the
64 * generic accessors and iterators here
65 */
85c1fafd 66#define __real_pte __real_pte
ff31e105 67static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep, int offset)
85c1fafd
AK
68{
69 real_pte_t rpte;
506b863c 70 unsigned long *hidxp;
85c1fafd
AK
71
72 rpte.pte = pte;
bf9a95f9
RP
73
74 /*
75 * Ensure that we do not read the hidx before we read the PTE. Because
76 * the writer side is expected to finish writing the hidx first followed
77 * by the PTE, by using smp_wmb(). pte_set_hash_slot() ensures that.
78 */
79 smp_rmb();
80
ff31e105 81 hidxp = (unsigned long *)(ptep + offset);
bf9a95f9 82 rpte.hidx = *hidxp;
85c1fafd
AK
83 return rpte;
84}
85
7b84947c
RP
86/*
87 * shift the hidx representation by one-modulo-0xf; i.e hidx 0 is respresented
88 * as 1, 1 as 2,... , and 0xf as 0. This convention lets us represent a
89 * invalid hidx 0xf with a 0x0 bit value. PTEs are anyway zero'd when
90 * allocated. We dont have to zero them gain; thus save on the initialization.
91 */
92#define HIDX_UNSHIFT_BY_ONE(x) ((x + 0xfUL) & 0xfUL) /* shift backward by one */
93#define HIDX_SHIFT_BY_ONE(x) ((x + 0x1UL) & 0xfUL) /* shift forward by one */
59aa31fd 94#define HIDX_BITS(x, index) (x << (index << 2))
bf9a95f9 95#define BITS_TO_HIDX(x, index) ((x >> (index << 2)) & 0xfUL)
7b84947c 96#define INVALID_RPTE_HIDX 0x0UL
59aa31fd 97
85c1fafd
AK
98static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
99{
7b84947c 100 return HIDX_UNSHIFT_BY_ONE(BITS_TO_HIDX(rpte.hidx, index));
85c1fafd
AK
101}
102
59aa31fd
RP
103/*
104 * Commit the hidx and return PTE bits that needs to be modified. The caller is
105 * expected to modify the PTE bits accordingly and commit the PTE to memory.
106 */
107static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte,
ff31e105
AK
108 unsigned int subpg_index,
109 unsigned long hidx, int offset)
59aa31fd 110{
ff31e105 111 unsigned long *hidxp = (unsigned long *)(ptep + offset);
59aa31fd
RP
112
113 rpte.hidx &= ~HIDX_BITS(0xfUL, subpg_index);
7b84947c 114 *hidxp = rpte.hidx | HIDX_BITS(HIDX_SHIFT_BY_ONE(hidx), subpg_index);
59aa31fd
RP
115
116 /*
117 * Anyone reading PTE must ensure hidx bits are read after reading the
118 * PTE by using the read-side barrier smp_rmb(). __real_pte() can be
119 * used for that.
120 */
121 smp_wmb();
122
123 /* No PTE bits to be modified, return 0x0UL */
124 return 0x0UL;
85c1fafd
AK
125}
126
3c726f8d 127#define __rpte_to_pte(r) ((r).pte)
bf680d51 128extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
ab537dca
AK
129/*
130 * Trick: we set __end to va + 64k, which happens works for
3c726f8d
BH
131 * a 16M page as well as we want only one iteration
132 */
5524a27d
AK
133#define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift) \
134 do { \
135 unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT)); \
136 unsigned __split = (psize == MMU_PAGE_4K || \
137 psize == MMU_PAGE_64K_AP); \
138 shift = mmu_psize_defs[psize].shift; \
139 for (index = 0; vpn < __end; index++, \
140 vpn += (1L << (shift - VPN_SHIFT))) { \
f405b510 141 if (!__split || __rpte_sub_valid(rpte, index))
3c726f8d 142
f405b510 143#define pte_iterate_hashed_end() } } while(0)
3c726f8d 144
16c2d476 145#define pte_pagesize_index(mm, addr, pte) \
945537df 146 (((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
3c726f8d 147
96270b1f
AK
148extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
149 unsigned long pfn, unsigned long size, pgprot_t);
6cc1a0ee
AK
150static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr,
151 unsigned long pfn, pgprot_t prot)
96270b1f
AK
152{
153 if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) {
154 WARN(1, "remap_4k_pfn called with wrong pfn value\n");
155 return -EINVAL;
156 }
157 return remap_pfn_range(vma, addr, pfn, PAGE_SIZE,
945537df 158 __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN));
96270b1f 159}
721151d0 160
dd1842a2 161#define H_PTE_TABLE_SIZE PTE_FRAG_SIZE
4a7aa4fe 162#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined (CONFIG_HUGETLB_PAGE)
dd1842a2
AK
163#define H_PMD_TABLE_SIZE ((sizeof(pmd_t) << PMD_INDEX_SIZE) + \
164 (sizeof(unsigned long) << PMD_INDEX_SIZE))
62607bc6 165#else
dd1842a2 166#define H_PMD_TABLE_SIZE (sizeof(pmd_t) << PMD_INDEX_SIZE)
62607bc6 167#endif
fae22116
AK
168#ifdef CONFIG_HUGETLB_PAGE
169#define H_PUD_TABLE_SIZE ((sizeof(pud_t) << PUD_INDEX_SIZE) + \
170 (sizeof(unsigned long) << PUD_INDEX_SIZE))
171#else
dd1842a2 172#define H_PUD_TABLE_SIZE (sizeof(pud_t) << PUD_INDEX_SIZE)
fae22116 173#endif
dd1842a2 174#define H_PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
ab537dca 175
e34aa03c 176#ifdef CONFIG_TRANSPARENT_HUGEPAGE
e34aa03c
AK
177static inline char *get_hpte_slot_array(pmd_t *pmdp)
178{
179 /*
180 * The hpte hindex is stored in the pgtable whose address is in the
181 * second half of the PMD
182 *
183 * Order this load with the test for pmd_trans_huge in the caller
184 */
185 smp_rmb();
186 return *(char **)(pmdp + PTRS_PER_PMD);
187
188
189}
190/*
191 * The linux hugepage PMD now include the pmd entries followed by the address
192 * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
849f86a6 193 * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
e34aa03c
AK
194 * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
195 * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
196 *
849f86a6 197 * The top three bits are intentionally left as zero. This memory location
e34aa03c
AK
198 * are also used as normal page PTE pointers. So if we have any pointers
199 * left around while we collapse a hugepage, we need to make sure
200 * _PAGE_PRESENT bit of that is zero when we look at them
201 */
202static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
203{
849f86a6 204 return hpte_slot_array[index] & 0x1;
e34aa03c
AK
205}
206
207static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
208 int index)
209{
849f86a6 210 return hpte_slot_array[index] >> 1;
e34aa03c
AK
211}
212
213static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
214 unsigned int index, unsigned int hidx)
215{
849f86a6 216 hpte_slot_array[index] = (hidx << 1) | 0x1;
e34aa03c
AK
217}
218
219/*
220 *
221 * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
222 * page. The hugetlbfs page table walking and mangling paths are totally
223 * separated form the core VM paths and they're differentiated by
224 * VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
225 *
226 * pmd_trans_huge() is defined as false at build time if
227 * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
228 * time in such case.
229 *
230 * For ppc64 we need to differntiate from explicit hugepages from THP, because
231 * for THP we also track the subpage details at the pmd level. We don't do
232 * that for explicit huge pages.
233 *
234 */
6cc1a0ee 235static inline int hash__pmd_trans_huge(pmd_t pmd)
e34aa03c 236{
945537df
AK
237 return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE)) ==
238 (_PAGE_PTE | H_PAGE_THP_HUGE));
e34aa03c
AK
239}
240
6cc1a0ee 241static inline int hash__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
e34aa03c 242{
ee3caed3 243 return (((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) & ~cpu_to_be64(_PAGE_HPTEFLAGS)) == 0);
e34aa03c
AK
244}
245
3df33f12
AK
246static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
247{
248 return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
249}
250
251extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
252 unsigned long addr, pmd_t *pmdp,
253 unsigned long clr, unsigned long set);
254extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
255 unsigned long address, pmd_t *pmdp);
256extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
257 pgtable_t pgtable);
258extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
3df33f12
AK
259extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
260 unsigned long addr, pmd_t *pmdp);
261extern int hash__has_transparent_hugepage(void);
e34aa03c 262#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
c605782b 263#endif /* __ASSEMBLY__ */
ab537dca
AK
264
265#endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */