powerpc/mm/book3s: Rename hash specific PTE bits to carry H_ prefix
[linux-block.git] / arch / powerpc / include / asm / book3s / 64 / hash-64k.h
CommitLineData
ab537dca
AK
1#ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
2#define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
3
ab537dca 4#define PTE_INDEX_SIZE 8
368ced78
AK
5#define PMD_INDEX_SIZE 5
6#define PUD_INDEX_SIZE 5
ab537dca
AK
7#define PGD_INDEX_SIZE 12
8
9#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
10#define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
368ced78 11#define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
ab537dca
AK
12#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
13
14/* With 4k base page size, hugepage PTEs go at the PMD level */
15#define MIN_HUGEPTE_SHIFT PAGE_SHIFT
16
17/* PMD_SHIFT determines what a second-level page table entry can map */
18#define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
19#define PMD_SIZE (1UL << PMD_SHIFT)
20#define PMD_MASK (~(PMD_SIZE-1))
21
368ced78
AK
22/* PUD_SHIFT determines what a third-level page table entry can map */
23#define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
24#define PUD_SIZE (1UL << PUD_SHIFT)
25#define PUD_MASK (~(PUD_SIZE-1))
26
27/* PGDIR_SHIFT determines what a fourth-level page table entry can map */
28#define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
ab537dca
AK
29#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
30#define PGDIR_MASK (~(PGDIR_SIZE-1))
31
945537df
AK
32#define H_PAGE_COMBO 0x00001000 /* this is a combo 4k page */
33#define H_PAGE_4K_PFN 0x00002000 /* PFN is for a single 4k page */
bf680d51 34/*
945537df
AK
35 * We need to differentiate between explicit huge page and THP huge
36 * page, since THP huge page also need to track real subpage details
16c2d476 37 */
945537df
AK
38#define H_PAGE_THP_HUGE H_PAGE_4K_PFN
39
40/*
41 * Used to track subpage group valid if H_PAGE_COMBO is set
42 * This overloads H_PAGE_F_GIX and H_PAGE_F_SECOND
43 */
44#define H_PAGE_COMBO_VALID (H_PAGE_F_GIX | H_PAGE_F_SECOND)
3c726f8d
BH
45
46/* PTE flags to conserve for HPTE identification */
945537df
AK
47#define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_F_SECOND | \
48 H_PAGE_F_GIX | H_PAGE_HASHPTE | H_PAGE_COMBO)
62607bc6
AK
49/*
50 * we support 16 fragments per PTE page of 64K size.
51 */
52#define PTE_FRAG_NR 16
53/*
54 * We use a 2K PTE page fragment and another 2K for storing
55 * real_pte_t hash index
56 */
57#define PTE_FRAG_SIZE_SHIFT 12
58#define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
59
368ced78
AK
60/* Bits to mask out from a PMD to get to the PTE page */
61#define PMD_MASKED_BITS 0xc0000000000000ffUL
62/* Bits to mask out from a PUD to get to the PMD page */
63#define PUD_MASKED_BITS 0xc0000000000000ffUL
64/* Bits to mask out from a PGD to get to the PUD page */
65#define PGD_MASKED_BITS 0xc0000000000000ffUL
3c726f8d 66
c605782b 67#ifndef __ASSEMBLY__
96270b1f 68#include <asm/errno.h>
3c726f8d 69
c605782b
BH
70/*
71 * With 64K pages on hash table, we have a special PTE format that
72 * uses a second "half" of the page table to encode sub-page information
73 * in order to deal with 64K made of 4K HW pages. Thus we override the
74 * generic accessors and iterators here
75 */
85c1fafd
AK
76#define __real_pte __real_pte
77static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep)
78{
79 real_pte_t rpte;
506b863c 80 unsigned long *hidxp;
85c1fafd
AK
81
82 rpte.pte = pte;
83 rpte.hidx = 0;
945537df 84 if (pte_val(pte) & H_PAGE_COMBO) {
85c1fafd 85 /*
945537df 86 * Make sure we order the hidx load against the H_PAGE_COMBO
85c1fafd
AK
87 * check. The store side ordering is done in __hash_page_4K
88 */
89 smp_rmb();
506b863c
AK
90 hidxp = (unsigned long *)(ptep + PTRS_PER_PTE);
91 rpte.hidx = *hidxp;
85c1fafd
AK
92 }
93 return rpte;
94}
95
96static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
97{
945537df 98 if ((pte_val(rpte.pte) & H_PAGE_COMBO))
85c1fafd 99 return (rpte.hidx >> (index<<2)) & 0xf;
945537df 100 return (pte_val(rpte.pte) >> H_PAGE_F_GIX_SHIFT) & 0xf;
85c1fafd
AK
101}
102
3c726f8d 103#define __rpte_to_pte(r) ((r).pte)
bf680d51 104extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
ab537dca
AK
105/*
106 * Trick: we set __end to va + 64k, which happens works for
3c726f8d
BH
107 * a 16M page as well as we want only one iteration
108 */
5524a27d
AK
109#define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift) \
110 do { \
111 unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT)); \
112 unsigned __split = (psize == MMU_PAGE_4K || \
113 psize == MMU_PAGE_64K_AP); \
114 shift = mmu_psize_defs[psize].shift; \
115 for (index = 0; vpn < __end; index++, \
116 vpn += (1L << (shift - VPN_SHIFT))) { \
117 if (!__split || __rpte_sub_valid(rpte, index)) \
118 do {
3c726f8d
BH
119
120#define pte_iterate_hashed_end() } while(0); } } while(0)
121
16c2d476 122#define pte_pagesize_index(mm, addr, pte) \
945537df 123 (((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
3c726f8d 124
96270b1f
AK
125extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
126 unsigned long pfn, unsigned long size, pgprot_t);
127static inline int remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr,
128 unsigned long pfn, pgprot_t prot)
129{
130 if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) {
131 WARN(1, "remap_4k_pfn called with wrong pfn value\n");
132 return -EINVAL;
133 }
134 return remap_pfn_range(vma, addr, pfn, PAGE_SIZE,
945537df 135 __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN));
96270b1f 136}
721151d0 137
62607bc6
AK
138#define PTE_TABLE_SIZE PTE_FRAG_SIZE
139#ifdef CONFIG_TRANSPARENT_HUGEPAGE
140#define PMD_TABLE_SIZE ((sizeof(pmd_t) << PMD_INDEX_SIZE) + (sizeof(unsigned long) << PMD_INDEX_SIZE))
141#else
ab537dca 142#define PMD_TABLE_SIZE (sizeof(pmd_t) << PMD_INDEX_SIZE)
62607bc6 143#endif
368ced78 144#define PUD_TABLE_SIZE (sizeof(pud_t) << PUD_INDEX_SIZE)
ab537dca
AK
145#define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
146
26a344ae
AK
147#ifdef CONFIG_HUGETLB_PAGE
148/*
149 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
150 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
151 *
152 * Defined in such a way that we can optimize away code block at build time
153 * if CONFIG_HUGETLB_PAGE=n.
154 */
155static inline int pmd_huge(pmd_t pmd)
156{
157 /*
6a119eae 158 * leaf pte for huge page
26a344ae 159 */
6a119eae 160 return !!(pmd_val(pmd) & _PAGE_PTE);
26a344ae
AK
161}
162
163static inline int pud_huge(pud_t pud)
164{
165 /*
6a119eae 166 * leaf pte for huge page
26a344ae 167 */
6a119eae 168 return !!(pud_val(pud) & _PAGE_PTE);
26a344ae
AK
169}
170
171static inline int pgd_huge(pgd_t pgd)
172{
173 /*
6a119eae 174 * leaf pte for huge page
26a344ae 175 */
6a119eae 176 return !!(pgd_val(pgd) & _PAGE_PTE);
26a344ae
AK
177}
178#define pgd_huge pgd_huge
179
180#ifdef CONFIG_DEBUG_VM
181extern int hugepd_ok(hugepd_t hpd);
182#define is_hugepd(hpd) (hugepd_ok(hpd))
183#else
184/*
185 * With 64k page size, we have hugepage ptes in the pgd and pmd entries. We don't
186 * need to setup hugepage directory for them. Our pte and page directory format
187 * enable us to have this enabled.
188 */
189static inline int hugepd_ok(hugepd_t hpd)
190{
191 return 0;
192}
193#define is_hugepd(pdep) 0
194#endif /* CONFIG_DEBUG_VM */
195
196#endif /* CONFIG_HUGETLB_PAGE */
197
e34aa03c
AK
198#ifdef CONFIG_TRANSPARENT_HUGEPAGE
199extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
200 unsigned long addr,
201 pmd_t *pmdp,
202 unsigned long clr,
203 unsigned long set);
204static inline char *get_hpte_slot_array(pmd_t *pmdp)
205{
206 /*
207 * The hpte hindex is stored in the pgtable whose address is in the
208 * second half of the PMD
209 *
210 * Order this load with the test for pmd_trans_huge in the caller
211 */
212 smp_rmb();
213 return *(char **)(pmdp + PTRS_PER_PMD);
214
215
216}
217/*
218 * The linux hugepage PMD now include the pmd entries followed by the address
219 * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
849f86a6 220 * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
e34aa03c
AK
221 * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
222 * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
223 *
849f86a6 224 * The top three bits are intentionally left as zero. This memory location
e34aa03c
AK
225 * are also used as normal page PTE pointers. So if we have any pointers
226 * left around while we collapse a hugepage, we need to make sure
227 * _PAGE_PRESENT bit of that is zero when we look at them
228 */
229static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
230{
849f86a6 231 return hpte_slot_array[index] & 0x1;
e34aa03c
AK
232}
233
234static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
235 int index)
236{
849f86a6 237 return hpte_slot_array[index] >> 1;
e34aa03c
AK
238}
239
240static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
241 unsigned int index, unsigned int hidx)
242{
849f86a6 243 hpte_slot_array[index] = (hidx << 1) | 0x1;
e34aa03c
AK
244}
245
246/*
247 *
248 * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
249 * page. The hugetlbfs page table walking and mangling paths are totally
250 * separated form the core VM paths and they're differentiated by
251 * VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
252 *
253 * pmd_trans_huge() is defined as false at build time if
254 * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
255 * time in such case.
256 *
257 * For ppc64 we need to differntiate from explicit hugepages from THP, because
258 * for THP we also track the subpage details at the pmd level. We don't do
259 * that for explicit huge pages.
260 *
261 */
262static inline int pmd_trans_huge(pmd_t pmd)
263{
945537df
AK
264 return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE)) ==
265 (_PAGE_PTE | H_PAGE_THP_HUGE));
e34aa03c
AK
266}
267
e34aa03c
AK
268static inline int pmd_large(pmd_t pmd)
269{
6a119eae 270 return !!(pmd_val(pmd) & _PAGE_PTE);
e34aa03c
AK
271}
272
273static inline pmd_t pmd_mknotpresent(pmd_t pmd)
274{
275 return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
276}
277
e34aa03c
AK
278#define __HAVE_ARCH_PMD_SAME
279static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
280{
ee3caed3 281 return (((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) & ~cpu_to_be64(_PAGE_HPTEFLAGS)) == 0);
e34aa03c
AK
282}
283
284static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
285 unsigned long addr, pmd_t *pmdp)
286{
287 unsigned long old;
288
945537df 289 if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
e34aa03c
AK
290 return 0;
291 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
292 return ((old & _PAGE_ACCESSED) != 0);
293}
294
295#define __HAVE_ARCH_PMDP_SET_WRPROTECT
296static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
297 pmd_t *pmdp)
298{
299
c7d54842 300 if ((pmd_val(*pmdp) & _PAGE_WRITE) == 0)
e34aa03c
AK
301 return;
302
c7d54842 303 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
e34aa03c
AK
304}
305
306#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
c605782b 307#endif /* __ASSEMBLY__ */
ab537dca
AK
308
309#endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */