powerpc/mm/hash64: Map all the kernel regions in the same 0xc range
[linux-2.6-block.git] / arch / powerpc / include / asm / book3s / 64 / hash-64k.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
ab537dca
AK
2#ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
3#define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
4
eea86aa4
ME
5#define H_PTE_INDEX_SIZE 8 // size: 8B << 8 = 2KB, maps 2^8 x 64KB = 16MB
6#define H_PMD_INDEX_SIZE 10 // size: 8B << 10 = 8KB, maps 2^10 x 16MB = 16GB
7#define H_PUD_INDEX_SIZE 10 // size: 8B << 10 = 8KB, maps 2^10 x 16GB = 16TB
8#define H_PGD_INDEX_SIZE 8 // size: 8B << 8 = 2KB, maps 2^8 x 16TB = 4PB
9
ab537dca 10
f384796c
AK
11/*
12 * Each context is 512TB size. SLB miss for first context/default context
13 * is handled in the hotpath.
14 */
15#define MAX_EA_BITS_PER_CONTEXT 49
16
0034d395
AK
17/*
18 * We use one context for each MAP area.
19 */
20#define H_KERN_MAP_SIZE (1UL << MAX_EA_BITS_PER_CONTEXT)
21
22/*
23 * Define the address range of the kernel non-linear virtual area
24 * 2PB
25 */
26#define H_KERN_VIRT_START ASM_CONST(0xc008000000000000)
27
f5bd0fdc
AK
28/*
29 * 64k aligned address free up few of the lower bits of RPN for us
30 * We steal that here. For more deatils look at pte_pfn/pfn_pte()
31 */
32789d38
AK
32#define H_PAGE_COMBO _RPAGE_RPN0 /* this is a combo 4k page */
33#define H_PAGE_4K_PFN _RPAGE_RPN1 /* PFN is for a single 4k page */
bf9a95f9 34#define H_PAGE_BUSY _RPAGE_RPN44 /* software: PTE & hash are busy */
273b4936 35#define H_PAGE_HASHPTE _RPAGE_RPN43 /* PTE has associated HPTE */
9d2edb18 36
1a2f7789
AK
37/* memory key bits. */
38#define H_PTE_PKEY_BIT0 _RPAGE_RSV1
39#define H_PTE_PKEY_BIT1 _RPAGE_RSV2
40#define H_PTE_PKEY_BIT2 _RPAGE_RSV3
41#define H_PTE_PKEY_BIT3 _RPAGE_RSV4
42#define H_PTE_PKEY_BIT4 _RPAGE_RSV5
43
bf680d51 44/*
945537df
AK
45 * We need to differentiate between explicit huge page and THP huge
46 * page, since THP huge page also need to track real subpage details
16c2d476 47 */
945537df
AK
48#define H_PAGE_THP_HUGE H_PAGE_4K_PFN
49
3c726f8d 50/* PTE flags to conserve for HPTE identification */
bf9a95f9 51#define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | H_PAGE_COMBO)
62607bc6
AK
52/*
53 * We use a 2K PTE page fragment and another 2K for storing
54 * real_pte_t hash index
fb4e5dbd
AK
55 * 8 bytes per each pte entry and another 8 bytes for storing
56 * slot details.
62607bc6 57 */
fb4e5dbd
AK
58#define H_PTE_FRAG_SIZE_SHIFT (H_PTE_INDEX_SIZE + 3 + 1)
59#define H_PTE_FRAG_NR (PAGE_SIZE >> H_PTE_FRAG_SIZE_SHIFT)
62607bc6 60
8a6c697b
AK
61#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
62#define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3 + 1)
63#else
64#define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3)
65#endif
66#define H_PMD_FRAG_NR (PAGE_SIZE >> H_PMD_FRAG_SIZE_SHIFT)
67
c605782b 68#ifndef __ASSEMBLY__
96270b1f 69#include <asm/errno.h>
3c726f8d 70
c605782b
BH
71/*
72 * With 64K pages on hash table, we have a special PTE format that
73 * uses a second "half" of the page table to encode sub-page information
74 * in order to deal with 64K made of 4K HW pages. Thus we override the
75 * generic accessors and iterators here
76 */
85c1fafd 77#define __real_pte __real_pte
ff31e105 78static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep, int offset)
85c1fafd
AK
79{
80 real_pte_t rpte;
506b863c 81 unsigned long *hidxp;
85c1fafd
AK
82
83 rpte.pte = pte;
bf9a95f9
RP
84
85 /*
86 * Ensure that we do not read the hidx before we read the PTE. Because
87 * the writer side is expected to finish writing the hidx first followed
88 * by the PTE, by using smp_wmb(). pte_set_hash_slot() ensures that.
89 */
90 smp_rmb();
91
ff31e105 92 hidxp = (unsigned long *)(ptep + offset);
bf9a95f9 93 rpte.hidx = *hidxp;
85c1fafd
AK
94 return rpte;
95}
96
7b84947c
RP
97/*
98 * shift the hidx representation by one-modulo-0xf; i.e hidx 0 is respresented
99 * as 1, 1 as 2,... , and 0xf as 0. This convention lets us represent a
100 * invalid hidx 0xf with a 0x0 bit value. PTEs are anyway zero'd when
101 * allocated. We dont have to zero them gain; thus save on the initialization.
102 */
103#define HIDX_UNSHIFT_BY_ONE(x) ((x + 0xfUL) & 0xfUL) /* shift backward by one */
104#define HIDX_SHIFT_BY_ONE(x) ((x + 0x1UL) & 0xfUL) /* shift forward by one */
59aa31fd 105#define HIDX_BITS(x, index) (x << (index << 2))
bf9a95f9 106#define BITS_TO_HIDX(x, index) ((x >> (index << 2)) & 0xfUL)
7b84947c 107#define INVALID_RPTE_HIDX 0x0UL
59aa31fd 108
85c1fafd
AK
109static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
110{
7b84947c 111 return HIDX_UNSHIFT_BY_ONE(BITS_TO_HIDX(rpte.hidx, index));
85c1fafd
AK
112}
113
59aa31fd
RP
114/*
115 * Commit the hidx and return PTE bits that needs to be modified. The caller is
116 * expected to modify the PTE bits accordingly and commit the PTE to memory.
117 */
118static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte,
ff31e105
AK
119 unsigned int subpg_index,
120 unsigned long hidx, int offset)
59aa31fd 121{
ff31e105 122 unsigned long *hidxp = (unsigned long *)(ptep + offset);
59aa31fd
RP
123
124 rpte.hidx &= ~HIDX_BITS(0xfUL, subpg_index);
7b84947c 125 *hidxp = rpte.hidx | HIDX_BITS(HIDX_SHIFT_BY_ONE(hidx), subpg_index);
59aa31fd
RP
126
127 /*
128 * Anyone reading PTE must ensure hidx bits are read after reading the
129 * PTE by using the read-side barrier smp_rmb(). __real_pte() can be
130 * used for that.
131 */
132 smp_wmb();
133
134 /* No PTE bits to be modified, return 0x0UL */
135 return 0x0UL;
85c1fafd
AK
136}
137
3c726f8d 138#define __rpte_to_pte(r) ((r).pte)
bf680d51 139extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
ab537dca
AK
140/*
141 * Trick: we set __end to va + 64k, which happens works for
3c726f8d
BH
142 * a 16M page as well as we want only one iteration
143 */
5524a27d
AK
144#define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift) \
145 do { \
146 unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT)); \
147 unsigned __split = (psize == MMU_PAGE_4K || \
148 psize == MMU_PAGE_64K_AP); \
149 shift = mmu_psize_defs[psize].shift; \
150 for (index = 0; vpn < __end; index++, \
151 vpn += (1L << (shift - VPN_SHIFT))) { \
f405b510 152 if (!__split || __rpte_sub_valid(rpte, index))
3c726f8d 153
f405b510 154#define pte_iterate_hashed_end() } } while(0)
3c726f8d 155
16c2d476 156#define pte_pagesize_index(mm, addr, pte) \
945537df 157 (((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
3c726f8d 158
96270b1f
AK
159extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
160 unsigned long pfn, unsigned long size, pgprot_t);
6cc1a0ee
AK
161static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr,
162 unsigned long pfn, pgprot_t prot)
96270b1f
AK
163{
164 if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) {
165 WARN(1, "remap_4k_pfn called with wrong pfn value\n");
166 return -EINVAL;
167 }
168 return remap_pfn_range(vma, addr, pfn, PAGE_SIZE,
945537df 169 __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN));
96270b1f 170}
721151d0 171
dd1842a2 172#define H_PTE_TABLE_SIZE PTE_FRAG_SIZE
4a7aa4fe 173#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined (CONFIG_HUGETLB_PAGE)
dd1842a2
AK
174#define H_PMD_TABLE_SIZE ((sizeof(pmd_t) << PMD_INDEX_SIZE) + \
175 (sizeof(unsigned long) << PMD_INDEX_SIZE))
62607bc6 176#else
dd1842a2 177#define H_PMD_TABLE_SIZE (sizeof(pmd_t) << PMD_INDEX_SIZE)
62607bc6 178#endif
fae22116
AK
179#ifdef CONFIG_HUGETLB_PAGE
180#define H_PUD_TABLE_SIZE ((sizeof(pud_t) << PUD_INDEX_SIZE) + \
181 (sizeof(unsigned long) << PUD_INDEX_SIZE))
182#else
dd1842a2 183#define H_PUD_TABLE_SIZE (sizeof(pud_t) << PUD_INDEX_SIZE)
fae22116 184#endif
dd1842a2 185#define H_PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
ab537dca 186
e34aa03c 187#ifdef CONFIG_TRANSPARENT_HUGEPAGE
e34aa03c
AK
188static inline char *get_hpte_slot_array(pmd_t *pmdp)
189{
190 /*
191 * The hpte hindex is stored in the pgtable whose address is in the
192 * second half of the PMD
193 *
194 * Order this load with the test for pmd_trans_huge in the caller
195 */
196 smp_rmb();
197 return *(char **)(pmdp + PTRS_PER_PMD);
198
199
200}
201/*
202 * The linux hugepage PMD now include the pmd entries followed by the address
203 * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
849f86a6 204 * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
e34aa03c
AK
205 * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
206 * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
207 *
849f86a6 208 * The top three bits are intentionally left as zero. This memory location
e34aa03c
AK
209 * are also used as normal page PTE pointers. So if we have any pointers
210 * left around while we collapse a hugepage, we need to make sure
211 * _PAGE_PRESENT bit of that is zero when we look at them
212 */
213static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
214{
849f86a6 215 return hpte_slot_array[index] & 0x1;
e34aa03c
AK
216}
217
218static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
219 int index)
220{
849f86a6 221 return hpte_slot_array[index] >> 1;
e34aa03c
AK
222}
223
224static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
225 unsigned int index, unsigned int hidx)
226{
849f86a6 227 hpte_slot_array[index] = (hidx << 1) | 0x1;
e34aa03c
AK
228}
229
230/*
231 *
232 * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
233 * page. The hugetlbfs page table walking and mangling paths are totally
234 * separated form the core VM paths and they're differentiated by
235 * VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
236 *
237 * pmd_trans_huge() is defined as false at build time if
238 * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
239 * time in such case.
240 *
241 * For ppc64 we need to differntiate from explicit hugepages from THP, because
242 * for THP we also track the subpage details at the pmd level. We don't do
243 * that for explicit huge pages.
244 *
245 */
6cc1a0ee 246static inline int hash__pmd_trans_huge(pmd_t pmd)
e34aa03c 247{
945537df
AK
248 return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE)) ==
249 (_PAGE_PTE | H_PAGE_THP_HUGE));
e34aa03c
AK
250}
251
6cc1a0ee 252static inline int hash__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
e34aa03c 253{
ee3caed3 254 return (((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) & ~cpu_to_be64(_PAGE_HPTEFLAGS)) == 0);
e34aa03c
AK
255}
256
3df33f12
AK
257static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
258{
259 return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
260}
261
262extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
263 unsigned long addr, pmd_t *pmdp,
264 unsigned long clr, unsigned long set);
265extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
266 unsigned long address, pmd_t *pmdp);
267extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
268 pgtable_t pgtable);
269extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
3df33f12
AK
270extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
271 unsigned long addr, pmd_t *pmdp);
272extern int hash__has_transparent_hugepage(void);
e34aa03c 273#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
c605782b 274#endif /* __ASSEMBLY__ */
ab537dca
AK
275
276#endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */