[PARISC] Reorganize sticore probe routine to be a little less convoluted
[linux-2.6-block.git] / arch / parisc / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/parisc/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7 *
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 */
13#include <linux/config.h>
14#include <linux/errno.h>
15#include <linux/module.h>
16#include <linux/sched.h>
17#include <linux/kernel.h>
18#include <linux/param.h>
19#include <linux/string.h>
20#include <linux/mm.h>
21#include <linux/interrupt.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/smp.h>
25#include <linux/profile.h>
26
27#include <asm/uaccess.h>
28#include <asm/io.h>
29#include <asm/irq.h>
30#include <asm/param.h>
31#include <asm/pdc.h>
32#include <asm/led.h>
33
34#include <linux/timex.h>
35
36u64 jiffies_64 = INITIAL_JIFFIES;
37
38EXPORT_SYMBOL(jiffies_64);
39
40/* xtime and wall_jiffies keep wall-clock time */
41extern unsigned long wall_jiffies;
42
43static long clocktick; /* timer cycles per tick */
44static long halftick;
45
46#ifdef CONFIG_SMP
47extern void smp_do_timer(struct pt_regs *regs);
48#endif
49
50irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
51{
52 long now;
53 long next_tick;
54 int nticks;
55 int cpu = smp_processor_id();
56
57 profile_tick(CPU_PROFILING, regs);
58
59 now = mfctl(16);
60 /* initialize next_tick to time at last clocktick */
61 next_tick = cpu_data[cpu].it_value;
62
63 /* since time passes between the interrupt and the mfctl()
64 * above, it is never true that last_tick + clocktick == now. If we
65 * never miss a clocktick, we could set next_tick = last_tick + clocktick
66 * but maybe we'll miss ticks, hence the loop.
67 *
68 * Variables are *signed*.
69 */
70
71 nticks = 0;
72 while((next_tick - now) < halftick) {
73 next_tick += clocktick;
74 nticks++;
75 }
76 mtctl(next_tick, 16);
77 cpu_data[cpu].it_value = next_tick;
78
79 while (nticks--) {
80#ifdef CONFIG_SMP
81 smp_do_timer(regs);
82#else
83 update_process_times(user_mode(regs));
84#endif
85 if (cpu == 0) {
86 write_seqlock(&xtime_lock);
87 do_timer(regs);
88 write_sequnlock(&xtime_lock);
89 }
90 }
91
92#ifdef CONFIG_CHASSIS_LCD_LED
93 /* Only schedule the led tasklet on cpu 0, and only if it
94 * is enabled.
95 */
96 if (cpu == 0 && !atomic_read(&led_tasklet.count))
97 tasklet_schedule(&led_tasklet);
98#endif
99
100 /* check soft power switch status */
101 if (cpu == 0 && !atomic_read(&power_tasklet.count))
102 tasklet_schedule(&power_tasklet);
103
104 return IRQ_HANDLED;
105}
106
107/*** converted from ia64 ***/
108/*
109 * Return the number of micro-seconds that elapsed since the last
110 * update to wall time (aka xtime aka wall_jiffies). The xtime_lock
111 * must be at least read-locked when calling this routine.
112 */
113static inline unsigned long
114gettimeoffset (void)
115{
116#ifndef CONFIG_SMP
117 /*
118 * FIXME: This won't work on smp because jiffies are updated by cpu 0.
119 * Once parisc-linux learns the cr16 difference between processors,
120 * this could be made to work.
121 */
122 long last_tick;
123 long elapsed_cycles;
124
125 /* it_value is the intended time of the next tick */
126 last_tick = cpu_data[smp_processor_id()].it_value;
127
128 /* Subtract one tick and account for possible difference between
129 * when we expected the tick and when it actually arrived.
130 * (aka wall vs real)
131 */
132 last_tick -= clocktick * (jiffies - wall_jiffies + 1);
133 elapsed_cycles = mfctl(16) - last_tick;
134
135 /* the precision of this math could be improved */
136 return elapsed_cycles / (PAGE0->mem_10msec / 10000);
137#else
138 return 0;
139#endif
140}
141
142void
143do_gettimeofday (struct timeval *tv)
144{
145 unsigned long flags, seq, usec, sec;
146
147 do {
148 seq = read_seqbegin_irqsave(&xtime_lock, flags);
149 usec = gettimeoffset();
150 sec = xtime.tv_sec;
151 usec += (xtime.tv_nsec / 1000);
152 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
153
154 while (usec >= 1000000) {
155 usec -= 1000000;
156 ++sec;
157 }
158
159 tv->tv_sec = sec;
160 tv->tv_usec = usec;
161}
162
163EXPORT_SYMBOL(do_gettimeofday);
164
165int
166do_settimeofday (struct timespec *tv)
167{
168 time_t wtm_sec, sec = tv->tv_sec;
169 long wtm_nsec, nsec = tv->tv_nsec;
170
171 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
172 return -EINVAL;
173
174 write_seqlock_irq(&xtime_lock);
175 {
176 /*
177 * This is revolting. We need to set "xtime"
178 * correctly. However, the value in this location is
179 * the value at the most recent update of wall time.
180 * Discover what correction gettimeofday would have
181 * done, and then undo it!
182 */
183 nsec -= gettimeoffset() * 1000;
184
185 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
186 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
187
188 set_normalized_timespec(&xtime, sec, nsec);
189 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
190
b149ee22 191 ntp_clear();
1da177e4
LT
192 }
193 write_sequnlock_irq(&xtime_lock);
194 clock_was_set();
195 return 0;
196}
197EXPORT_SYMBOL(do_settimeofday);
198
199/*
200 * XXX: We can do better than this.
201 * Returns nanoseconds
202 */
203
204unsigned long long sched_clock(void)
205{
206 return (unsigned long long)jiffies * (1000000000 / HZ);
207}
208
209
210void __init time_init(void)
211{
212 unsigned long next_tick;
213 static struct pdc_tod tod_data;
214
215 clocktick = (100 * PAGE0->mem_10msec) / HZ;
216 halftick = clocktick / 2;
217
218 /* Setup clock interrupt timing */
219
220 next_tick = mfctl(16);
221 next_tick += clocktick;
222 cpu_data[smp_processor_id()].it_value = next_tick;
223
224 /* kick off Itimer (CR16) */
225 mtctl(next_tick, 16);
226
227 if(pdc_tod_read(&tod_data) == 0) {
228 write_seqlock_irq(&xtime_lock);
229 xtime.tv_sec = tod_data.tod_sec;
230 xtime.tv_nsec = tod_data.tod_usec * 1000;
231 set_normalized_timespec(&wall_to_monotonic,
232 -xtime.tv_sec, -xtime.tv_nsec);
233 write_sequnlock_irq(&xtime_lock);
234 } else {
235 printk(KERN_ERR "Error reading tod clock\n");
236 xtime.tv_sec = 0;
237 xtime.tv_nsec = 0;
238 }
239}
240