Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6-block.git] / arch / mips / mm / dma-default.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
70342287 7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
1da177e4
LT
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9 */
9a88cbb5 10
1da177e4 11#include <linux/types.h>
9a88cbb5 12#include <linux/dma-mapping.h>
1da177e4
LT
13#include <linux/mm.h>
14#include <linux/module.h>
4fcc47a0 15#include <linux/scatterlist.h>
6e86b0bf 16#include <linux/string.h>
5a0e3ad6 17#include <linux/gfp.h>
e36863a5 18#include <linux/highmem.h>
f4649382 19#include <linux/dma-contiguous.h>
1da177e4
LT
20
21#include <asm/cache.h>
69f24d17 22#include <asm/cpu-type.h>
1da177e4
LT
23#include <asm/io.h>
24
9a88cbb5
RB
25#include <dma-coherence.h>
26
885014bc 27#ifdef CONFIG_DMA_MAYBE_COHERENT
b6d92b4a
SH
28int coherentio = 0; /* User defined DMA coherency from command line. */
29EXPORT_SYMBOL_GPL(coherentio);
30int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
31
32static int __init setcoherentio(char *str)
33{
34 coherentio = 1;
35 pr_info("Hardware DMA cache coherency (command line)\n");
36 return 0;
37}
38early_param("coherentio", setcoherentio);
39
40static int __init setnocoherentio(char *str)
41{
42 coherentio = 0;
43 pr_info("Software DMA cache coherency (command line)\n");
44 return 0;
45}
46early_param("nocoherentio", setnocoherentio);
885014bc 47#endif
b6d92b4a 48
e36863a5 49static inline struct page *dma_addr_to_page(struct device *dev,
3807ef3f 50 dma_addr_t dma_addr)
c9d06962 51{
e36863a5
DD
52 return pfn_to_page(
53 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
c9d06962
FBH
54}
55
1da177e4 56/*
f86f55d3
JQ
57 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
58 * speculatively fill random cachelines with stale data at any time,
59 * requiring an extra flush post-DMA.
60 *
1da177e4
LT
61 * Warning on the terminology - Linux calls an uncached area coherent;
62 * MIPS terminology calls memory areas with hardware maintained coherency
63 * coherent.
0dc294c0
RB
64 *
65 * Note that the R14000 and R16000 should also be checked for in this
66 * condition. However this function is only called on non-I/O-coherent
67 * systems and only the R10000 and R12000 are used in such systems, the
68 * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
1da177e4 69 */
f86f55d3 70static inline int cpu_needs_post_dma_flush(struct device *dev)
9a88cbb5
RB
71{
72 return !plat_device_is_coherent(dev) &&
d451e734 73 (boot_cpu_type() == CPU_R10000 ||
eb37e6dd
RB
74 boot_cpu_type() == CPU_R12000 ||
75 boot_cpu_type() == CPU_BMIPS5000);
9a88cbb5
RB
76}
77
cce335ae
RB
78static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
79{
a2e715a8
RB
80 gfp_t dma_flag;
81
cce335ae
RB
82 /* ignore region specifiers */
83 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
84
a2e715a8 85#ifdef CONFIG_ISA
cce335ae 86 if (dev == NULL)
a2e715a8 87 dma_flag = __GFP_DMA;
cce335ae
RB
88 else
89#endif
a2e715a8 90#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
cce335ae 91 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
a2e715a8
RB
92 dma_flag = __GFP_DMA;
93 else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
94 dma_flag = __GFP_DMA32;
95 else
96#endif
97#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
98 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
99 dma_flag = __GFP_DMA32;
100 else
101#endif
102#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
103 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
104 dma_flag = __GFP_DMA;
cce335ae
RB
105 else
106#endif
a2e715a8 107 dma_flag = 0;
cce335ae
RB
108
109 /* Don't invoke OOM killer */
110 gfp |= __GFP_NORETRY;
111
a2e715a8 112 return gfp | dma_flag;
cce335ae
RB
113}
114
1da177e4 115void *dma_alloc_noncoherent(struct device *dev, size_t size,
185a8ff5 116 dma_addr_t * dma_handle, gfp_t gfp)
1da177e4
LT
117{
118 void *ret;
9a88cbb5 119
cce335ae 120 gfp = massage_gfp_flags(dev, gfp);
1da177e4 121
1da177e4
LT
122 ret = (void *) __get_free_pages(gfp, get_order(size));
123
124 if (ret != NULL) {
125 memset(ret, 0, size);
9a88cbb5 126 *dma_handle = plat_map_dma_mem(dev, ret, size);
1da177e4
LT
127 }
128
129 return ret;
130}
1da177e4
LT
131EXPORT_SYMBOL(dma_alloc_noncoherent);
132
48e1fd5a 133static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
e8d51e54 134 dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
1da177e4
LT
135{
136 void *ret;
f4649382
ZLK
137 struct page *page = NULL;
138 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1da177e4 139
f8ac0425
YY
140 if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
141 return ret;
142
cce335ae 143 gfp = massage_gfp_flags(dev, gfp);
9a88cbb5 144
f4649382
ZLK
145 if (IS_ENABLED(CONFIG_DMA_CMA) && !(gfp & GFP_ATOMIC))
146 page = dma_alloc_from_contiguous(dev,
147 count, get_order(size));
148 if (!page)
149 page = alloc_pages(gfp, get_order(size));
150
151 if (!page)
152 return NULL;
153
154 ret = page_address(page);
155 memset(ret, 0, size);
156 *dma_handle = plat_map_dma_mem(dev, ret, size);
157 if (!plat_device_is_coherent(dev)) {
158 dma_cache_wback_inv((unsigned long) ret, size);
159 if (!hw_coherentio)
160 ret = UNCAC_ADDR(ret);
1da177e4
LT
161 }
162
163 return ret;
164}
165
1da177e4
LT
166
167void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
168 dma_addr_t dma_handle)
169{
d3f634b9 170 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
1da177e4
LT
171 free_pages((unsigned long) vaddr, get_order(size));
172}
1da177e4
LT
173EXPORT_SYMBOL(dma_free_noncoherent);
174
48e1fd5a 175static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
e8d51e54 176 dma_addr_t dma_handle, struct dma_attrs *attrs)
1da177e4
LT
177{
178 unsigned long addr = (unsigned long) vaddr;
f8ac0425 179 int order = get_order(size);
f4649382
ZLK
180 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
181 struct page *page = NULL;
f8ac0425
YY
182
183 if (dma_release_from_coherent(dev, order, vaddr))
184 return;
1da177e4 185
d3f634b9 186 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
11531ac2 187
b6d92b4a 188 if (!plat_device_is_coherent(dev) && !hw_coherentio)
9a88cbb5
RB
189 addr = CAC_ADDR(addr);
190
f4649382
ZLK
191 page = virt_to_page((void *) addr);
192
193 if (!dma_release_from_contiguous(dev, page, count))
194 __free_pages(page, get_order(size));
1da177e4
LT
195}
196
e36863a5 197static inline void __dma_sync_virtual(void *addr, size_t size,
1da177e4
LT
198 enum dma_data_direction direction)
199{
200 switch (direction) {
201 case DMA_TO_DEVICE:
e36863a5 202 dma_cache_wback((unsigned long)addr, size);
1da177e4
LT
203 break;
204
205 case DMA_FROM_DEVICE:
e36863a5 206 dma_cache_inv((unsigned long)addr, size);
1da177e4
LT
207 break;
208
209 case DMA_BIDIRECTIONAL:
e36863a5 210 dma_cache_wback_inv((unsigned long)addr, size);
1da177e4
LT
211 break;
212
213 default:
214 BUG();
215 }
216}
217
e36863a5
DD
218/*
219 * A single sg entry may refer to multiple physically contiguous
220 * pages. But we still need to process highmem pages individually.
221 * If highmem is not configured then the bulk of this loop gets
222 * optimized out.
223 */
224static inline void __dma_sync(struct page *page,
225 unsigned long offset, size_t size, enum dma_data_direction direction)
226{
227 size_t left = size;
228
229 do {
230 size_t len = left;
231
232 if (PageHighMem(page)) {
233 void *addr;
234
235 if (offset + len > PAGE_SIZE) {
236 if (offset >= PAGE_SIZE) {
237 page += offset >> PAGE_SHIFT;
238 offset &= ~PAGE_MASK;
239 }
240 len = PAGE_SIZE - offset;
241 }
242
243 addr = kmap_atomic(page);
244 __dma_sync_virtual(addr + offset, len, direction);
245 kunmap_atomic(addr);
246 } else
247 __dma_sync_virtual(page_address(page) + offset,
248 size, direction);
249 offset = 0;
250 page++;
251 left -= len;
252 } while (left);
253}
254
48e1fd5a
DD
255static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
256 size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
1da177e4 257{
f86f55d3 258 if (cpu_needs_post_dma_flush(dev))
e36863a5
DD
259 __dma_sync(dma_addr_to_page(dev, dma_addr),
260 dma_addr & ~PAGE_MASK, size, direction);
0acbfc66 261 plat_post_dma_flush(dev);
d3f634b9 262 plat_unmap_dma_mem(dev, dma_addr, size, direction);
1da177e4
LT
263}
264
48e1fd5a
DD
265static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
266 int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
1da177e4
LT
267{
268 int i;
269
1da177e4 270 for (i = 0; i < nents; i++, sg++) {
e36863a5
DD
271 if (!plat_device_is_coherent(dev))
272 __dma_sync(sg_page(sg), sg->offset, sg->length,
273 direction);
4954a9a2
J
274#ifdef CONFIG_NEED_SG_DMA_LENGTH
275 sg->dma_length = sg->length;
276#endif
e36863a5
DD
277 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
278 sg->offset;
1da177e4
LT
279 }
280
281 return nents;
282}
283
48e1fd5a
DD
284static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
285 unsigned long offset, size_t size, enum dma_data_direction direction,
286 struct dma_attrs *attrs)
1da177e4 287{
48e1fd5a 288 if (!plat_device_is_coherent(dev))
e36863a5 289 __dma_sync(page, offset, size, direction);
1da177e4 290
e36863a5 291 return plat_map_dma_mem_page(dev, page) + offset;
1da177e4
LT
292}
293
48e1fd5a
DD
294static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
295 int nhwentries, enum dma_data_direction direction,
296 struct dma_attrs *attrs)
1da177e4 297{
1da177e4
LT
298 int i;
299
1da177e4 300 for (i = 0; i < nhwentries; i++, sg++) {
9a88cbb5 301 if (!plat_device_is_coherent(dev) &&
e36863a5
DD
302 direction != DMA_TO_DEVICE)
303 __dma_sync(sg_page(sg), sg->offset, sg->length,
304 direction);
d3f634b9 305 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
1da177e4
LT
306 }
307}
308
48e1fd5a
DD
309static void mips_dma_sync_single_for_cpu(struct device *dev,
310 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
1da177e4 311{
f86f55d3 312 if (cpu_needs_post_dma_flush(dev))
e36863a5
DD
313 __dma_sync(dma_addr_to_page(dev, dma_handle),
314 dma_handle & ~PAGE_MASK, size, direction);
0acbfc66 315 plat_post_dma_flush(dev);
1da177e4
LT
316}
317
48e1fd5a
DD
318static void mips_dma_sync_single_for_device(struct device *dev,
319 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
1da177e4 320{
e36863a5
DD
321 if (!plat_device_is_coherent(dev))
322 __dma_sync(dma_addr_to_page(dev, dma_handle),
323 dma_handle & ~PAGE_MASK, size, direction);
1da177e4
LT
324}
325
48e1fd5a
DD
326static void mips_dma_sync_sg_for_cpu(struct device *dev,
327 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
1da177e4
LT
328{
329 int i;
42a3b4f2 330
55c25c2f
J
331 if (cpu_needs_post_dma_flush(dev))
332 for (i = 0; i < nelems; i++, sg++)
e36863a5
DD
333 __dma_sync(sg_page(sg), sg->offset, sg->length,
334 direction);
0acbfc66 335 plat_post_dma_flush(dev);
1da177e4
LT
336}
337
48e1fd5a
DD
338static void mips_dma_sync_sg_for_device(struct device *dev,
339 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
1da177e4
LT
340{
341 int i;
342
55c25c2f
J
343 if (!plat_device_is_coherent(dev))
344 for (i = 0; i < nelems; i++, sg++)
e36863a5
DD
345 __dma_sync(sg_page(sg), sg->offset, sg->length,
346 direction);
1da177e4
LT
347}
348
48e1fd5a 349int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
1da177e4 350{
4e7f7266 351 return 0;
1da177e4
LT
352}
353
48e1fd5a 354int mips_dma_supported(struct device *dev, u64 mask)
1da177e4 355{
843aef49 356 return plat_dma_supported(dev, mask);
1da177e4
LT
357}
358
a3aad4aa 359void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
48e1fd5a 360 enum dma_data_direction direction)
1da177e4 361{
9a88cbb5 362 BUG_ON(direction == DMA_NONE);
1da177e4 363
9a88cbb5 364 if (!plat_device_is_coherent(dev))
e36863a5 365 __dma_sync_virtual(vaddr, size, direction);
1da177e4
LT
366}
367
a3aad4aa
RB
368EXPORT_SYMBOL(dma_cache_sync);
369
48e1fd5a 370static struct dma_map_ops mips_default_dma_map_ops = {
e8d51e54
AP
371 .alloc = mips_dma_alloc_coherent,
372 .free = mips_dma_free_coherent,
48e1fd5a
DD
373 .map_page = mips_dma_map_page,
374 .unmap_page = mips_dma_unmap_page,
375 .map_sg = mips_dma_map_sg,
376 .unmap_sg = mips_dma_unmap_sg,
377 .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
378 .sync_single_for_device = mips_dma_sync_single_for_device,
379 .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
380 .sync_sg_for_device = mips_dma_sync_sg_for_device,
381 .mapping_error = mips_dma_mapping_error,
382 .dma_supported = mips_dma_supported
383};
384
385struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
386EXPORT_SYMBOL(mips_dma_map_ops);
387
388#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
389
390static int __init mips_dma_init(void)
391{
392 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
393
394 return 0;
395}
396fs_initcall(mips_dma_init);