[MIPS] Make sure cpu_has_fpu is used only in atomic context
[linux-block.git] / arch / mips / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
36ccf1c0 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
1da177e4
LT
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
3b2396d9 12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
1da177e4 13 */
1da177e4
LT
14#include <linux/init.h>
15#include <linux/mm.h>
16#include <linux/module.h>
17#include <linux/sched.h>
18#include <linux/smp.h>
19#include <linux/smp_lock.h>
20#include <linux/spinlock.h>
21#include <linux/kallsyms.h>
e01402b1 22#include <linux/bootmem.h>
d4fd1989 23#include <linux/interrupt.h>
1da177e4
LT
24
25#include <asm/bootinfo.h>
26#include <asm/branch.h>
27#include <asm/break.h>
28#include <asm/cpu.h>
e50c0a8f 29#include <asm/dsp.h>
1da177e4 30#include <asm/fpu.h>
340ee4b9
RB
31#include <asm/mipsregs.h>
32#include <asm/mipsmtregs.h>
1da177e4
LT
33#include <asm/module.h>
34#include <asm/pgtable.h>
35#include <asm/ptrace.h>
36#include <asm/sections.h>
37#include <asm/system.h>
38#include <asm/tlbdebug.h>
39#include <asm/traps.h>
40#include <asm/uaccess.h>
41#include <asm/mmu_context.h>
42#include <asm/watch.h>
43#include <asm/types.h>
1df0f0ff 44#include <asm/stacktrace.h>
1da177e4 45
e4ac58af 46extern asmlinkage void handle_int(void);
1da177e4
LT
47extern asmlinkage void handle_tlbm(void);
48extern asmlinkage void handle_tlbl(void);
49extern asmlinkage void handle_tlbs(void);
50extern asmlinkage void handle_adel(void);
51extern asmlinkage void handle_ades(void);
52extern asmlinkage void handle_ibe(void);
53extern asmlinkage void handle_dbe(void);
54extern asmlinkage void handle_sys(void);
55extern asmlinkage void handle_bp(void);
56extern asmlinkage void handle_ri(void);
57extern asmlinkage void handle_cpu(void);
58extern asmlinkage void handle_ov(void);
59extern asmlinkage void handle_tr(void);
60extern asmlinkage void handle_fpe(void);
61extern asmlinkage void handle_mdmx(void);
62extern asmlinkage void handle_watch(void);
340ee4b9 63extern asmlinkage void handle_mt(void);
e50c0a8f 64extern asmlinkage void handle_dsp(void);
1da177e4
LT
65extern asmlinkage void handle_mcheck(void);
66extern asmlinkage void handle_reserved(void);
67
12616ed2 68extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
e04582b7 69 struct mips_fpu_struct *ctx, int has_fpu);
1da177e4
LT
70
71void (*board_be_init)(void);
72int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
e01402b1
RB
73void (*board_nmi_handler_setup)(void);
74void (*board_ejtag_handler_setup)(void);
75void (*board_bind_eic_interrupt)(int irq, int regset);
1da177e4 76
1da177e4 77
4d157d5e 78static void show_raw_backtrace(unsigned long reg29)
e889d78f 79{
4d157d5e 80 unsigned long *sp = (unsigned long *)reg29;
e889d78f
AN
81 unsigned long addr;
82
83 printk("Call Trace:");
84#ifdef CONFIG_KALLSYMS
85 printk("\n");
86#endif
87151ae3
FBH
87 while (!kstack_end(sp)) {
88 addr = *sp++;
89 if (__kernel_text_address(addr))
90 print_ip_sym(addr);
e889d78f
AN
91 }
92 printk("\n");
93}
94
f66686f7 95#ifdef CONFIG_KALLSYMS
1df0f0ff 96int raw_show_trace;
f66686f7
AN
97static int __init set_raw_show_trace(char *str)
98{
99 raw_show_trace = 1;
100 return 1;
101}
102__setup("raw_show_trace", set_raw_show_trace);
1df0f0ff 103#endif
4d157d5e 104
87151ae3 105static void show_backtrace(struct task_struct *task, struct pt_regs *regs)
f66686f7 106{
4d157d5e
FBH
107 unsigned long sp = regs->regs[29];
108 unsigned long ra = regs->regs[31];
f66686f7 109 unsigned long pc = regs->cp0_epc;
f66686f7
AN
110
111 if (raw_show_trace || !__kernel_text_address(pc)) {
87151ae3 112 show_raw_backtrace(sp);
f66686f7
AN
113 return;
114 }
115 printk("Call Trace:\n");
4d157d5e 116 do {
87151ae3 117 print_ip_sym(pc);
1924600c 118 pc = unwind_stack(task, &sp, pc, &ra);
4d157d5e 119 } while (pc);
f66686f7
AN
120 printk("\n");
121}
f66686f7 122
1da177e4
LT
123/*
124 * This routine abuses get_user()/put_user() to reference pointers
125 * with at least a bit of error checking ...
126 */
f66686f7 127static void show_stacktrace(struct task_struct *task, struct pt_regs *regs)
1da177e4
LT
128{
129 const int field = 2 * sizeof(unsigned long);
130 long stackdata;
131 int i;
f66686f7 132 unsigned long *sp = (unsigned long *)regs->regs[29];
1da177e4
LT
133
134 printk("Stack :");
135 i = 0;
136 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
137 if (i && ((i % (64 / field)) == 0))
138 printk("\n ");
139 if (i > 39) {
140 printk(" ...");
141 break;
142 }
143
144 if (__get_user(stackdata, sp++)) {
145 printk(" (Bad stack address)");
146 break;
147 }
148
149 printk(" %0*lx", field, stackdata);
150 i++;
151 }
152 printk("\n");
87151ae3 153 show_backtrace(task, regs);
f66686f7
AN
154}
155
f66686f7
AN
156void show_stack(struct task_struct *task, unsigned long *sp)
157{
158 struct pt_regs regs;
159 if (sp) {
160 regs.regs[29] = (unsigned long)sp;
161 regs.regs[31] = 0;
162 regs.cp0_epc = 0;
163 } else {
164 if (task && task != current) {
165 regs.regs[29] = task->thread.reg29;
166 regs.regs[31] = 0;
167 regs.cp0_epc = task->thread.reg31;
168 } else {
169 prepare_frametrace(&regs);
170 }
171 }
172 show_stacktrace(task, &regs);
1da177e4
LT
173}
174
175/*
176 * The architecture-independent dump_stack generator
177 */
178void dump_stack(void)
179{
1666a6fc 180 struct pt_regs regs;
1da177e4 181
1666a6fc
FBH
182 prepare_frametrace(&regs);
183 show_backtrace(current, &regs);
1da177e4
LT
184}
185
186EXPORT_SYMBOL(dump_stack);
187
188void show_code(unsigned int *pc)
189{
190 long i;
191
192 printk("\nCode:");
193
194 for(i = -3 ; i < 6 ; i++) {
195 unsigned int insn;
196 if (__get_user(insn, pc + i)) {
197 printk(" (Bad address in epc)\n");
198 break;
199 }
200 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
201 }
202}
203
204void show_regs(struct pt_regs *regs)
205{
206 const int field = 2 * sizeof(unsigned long);
207 unsigned int cause = regs->cp0_cause;
208 int i;
209
210 printk("Cpu %d\n", smp_processor_id());
211
212 /*
213 * Saved main processor registers
214 */
215 for (i = 0; i < 32; ) {
216 if ((i % 4) == 0)
217 printk("$%2d :", i);
218 if (i == 0)
219 printk(" %0*lx", field, 0UL);
220 else if (i == 26 || i == 27)
221 printk(" %*s", field, "");
222 else
223 printk(" %0*lx", field, regs->regs[i]);
224
225 i++;
226 if ((i % 4) == 0)
227 printk("\n");
228 }
229
230 printk("Hi : %0*lx\n", field, regs->hi);
231 printk("Lo : %0*lx\n", field, regs->lo);
232
233 /*
234 * Saved cp0 registers
235 */
236 printk("epc : %0*lx ", field, regs->cp0_epc);
237 print_symbol("%s ", regs->cp0_epc);
238 printk(" %s\n", print_tainted());
239 printk("ra : %0*lx ", field, regs->regs[31]);
240 print_symbol("%s\n", regs->regs[31]);
241
242 printk("Status: %08x ", (uint32_t) regs->cp0_status);
243
3b2396d9
MR
244 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
245 if (regs->cp0_status & ST0_KUO)
246 printk("KUo ");
247 if (regs->cp0_status & ST0_IEO)
248 printk("IEo ");
249 if (regs->cp0_status & ST0_KUP)
250 printk("KUp ");
251 if (regs->cp0_status & ST0_IEP)
252 printk("IEp ");
253 if (regs->cp0_status & ST0_KUC)
254 printk("KUc ");
255 if (regs->cp0_status & ST0_IEC)
256 printk("IEc ");
257 } else {
258 if (regs->cp0_status & ST0_KX)
259 printk("KX ");
260 if (regs->cp0_status & ST0_SX)
261 printk("SX ");
262 if (regs->cp0_status & ST0_UX)
263 printk("UX ");
264 switch (regs->cp0_status & ST0_KSU) {
265 case KSU_USER:
266 printk("USER ");
267 break;
268 case KSU_SUPERVISOR:
269 printk("SUPERVISOR ");
270 break;
271 case KSU_KERNEL:
272 printk("KERNEL ");
273 break;
274 default:
275 printk("BAD_MODE ");
276 break;
277 }
278 if (regs->cp0_status & ST0_ERL)
279 printk("ERL ");
280 if (regs->cp0_status & ST0_EXL)
281 printk("EXL ");
282 if (regs->cp0_status & ST0_IE)
283 printk("IE ");
1da177e4 284 }
1da177e4
LT
285 printk("\n");
286
287 printk("Cause : %08x\n", cause);
288
289 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
290 if (1 <= cause && cause <= 5)
291 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
292
293 printk("PrId : %08x\n", read_c0_prid());
294}
295
296void show_registers(struct pt_regs *regs)
297{
298 show_regs(regs);
299 print_modules();
300 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
301 current->comm, current->pid, current_thread_info(), current);
f66686f7 302 show_stacktrace(current, regs);
1da177e4
LT
303 show_code((unsigned int *) regs->cp0_epc);
304 printk("\n");
305}
306
307static DEFINE_SPINLOCK(die_lock);
308
178086c8 309NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs)
1da177e4
LT
310{
311 static int die_counter;
41c594ab
RB
312#ifdef CONFIG_MIPS_MT_SMTC
313 unsigned long dvpret = dvpe();
314#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
315
316 console_verbose();
317 spin_lock_irq(&die_lock);
41c594ab
RB
318 bust_spinlocks(1);
319#ifdef CONFIG_MIPS_MT_SMTC
320 mips_mt_regdump(dvpret);
321#endif /* CONFIG_MIPS_MT_SMTC */
178086c8 322 printk("%s[#%d]:\n", str, ++die_counter);
1da177e4
LT
323 show_registers(regs);
324 spin_unlock_irq(&die_lock);
d4fd1989
MB
325
326 if (in_interrupt())
327 panic("Fatal exception in interrupt");
328
329 if (panic_on_oops) {
330 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
331 ssleep(5);
332 panic("Fatal exception");
333 }
334
1da177e4
LT
335 do_exit(SIGSEGV);
336}
337
1da177e4
LT
338extern const struct exception_table_entry __start___dbe_table[];
339extern const struct exception_table_entry __stop___dbe_table[];
340
341void __declare_dbe_table(void)
342{
343 __asm__ __volatile__(
344 ".section\t__dbe_table,\"a\"\n\t"
345 ".previous"
346 );
347}
348
349/* Given an address, look for it in the exception tables. */
350static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
351{
352 const struct exception_table_entry *e;
353
354 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
355 if (!e)
356 e = search_module_dbetables(addr);
357 return e;
358}
359
360asmlinkage void do_be(struct pt_regs *regs)
361{
362 const int field = 2 * sizeof(unsigned long);
363 const struct exception_table_entry *fixup = NULL;
364 int data = regs->cp0_cause & 4;
365 int action = MIPS_BE_FATAL;
366
367 /* XXX For now. Fixme, this searches the wrong table ... */
368 if (data && !user_mode(regs))
369 fixup = search_dbe_tables(exception_epc(regs));
370
371 if (fixup)
372 action = MIPS_BE_FIXUP;
373
374 if (board_be_handler)
375 action = board_be_handler(regs, fixup != 0);
376
377 switch (action) {
378 case MIPS_BE_DISCARD:
379 return;
380 case MIPS_BE_FIXUP:
381 if (fixup) {
382 regs->cp0_epc = fixup->nextinsn;
383 return;
384 }
385 break;
386 default:
387 break;
388 }
389
390 /*
391 * Assume it would be too dangerous to continue ...
392 */
393 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
394 data ? "Data" : "Instruction",
395 field, regs->cp0_epc, field, regs->regs[31]);
396 die_if_kernel("Oops", regs);
397 force_sig(SIGBUS, current);
398}
399
400static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
401{
fe00f943 402 unsigned int __user *epc;
1da177e4 403
fe00f943 404 epc = (unsigned int __user *) regs->cp0_epc +
1da177e4
LT
405 ((regs->cp0_cause & CAUSEF_BD) != 0);
406 if (!get_user(*opcode, epc))
407 return 0;
408
409 force_sig(SIGSEGV, current);
410 return 1;
411}
412
413/*
414 * ll/sc emulation
415 */
416
417#define OPCODE 0xfc000000
418#define BASE 0x03e00000
419#define RT 0x001f0000
420#define OFFSET 0x0000ffff
421#define LL 0xc0000000
422#define SC 0xe0000000
3c37026d
RB
423#define SPEC3 0x7c000000
424#define RD 0x0000f800
425#define FUNC 0x0000003f
426#define RDHWR 0x0000003b
1da177e4
LT
427
428/*
429 * The ll_bit is cleared by r*_switch.S
430 */
431
432unsigned long ll_bit;
433
434static struct task_struct *ll_task = NULL;
435
436static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
437{
fe00f943 438 unsigned long value, __user *vaddr;
1da177e4
LT
439 long offset;
440 int signal = 0;
441
442 /*
443 * analyse the ll instruction that just caused a ri exception
444 * and put the referenced address to addr.
445 */
446
447 /* sign extend offset */
448 offset = opcode & OFFSET;
449 offset <<= 16;
450 offset >>= 16;
451
fe00f943
RB
452 vaddr = (unsigned long __user *)
453 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
454
455 if ((unsigned long)vaddr & 3) {
456 signal = SIGBUS;
457 goto sig;
458 }
459 if (get_user(value, vaddr)) {
460 signal = SIGSEGV;
461 goto sig;
462 }
463
464 preempt_disable();
465
466 if (ll_task == NULL || ll_task == current) {
467 ll_bit = 1;
468 } else {
469 ll_bit = 0;
470 }
471 ll_task = current;
472
473 preempt_enable();
474
6dd04688
RB
475 compute_return_epc(regs);
476
1da177e4
LT
477 regs->regs[(opcode & RT) >> 16] = value;
478
1da177e4
LT
479 return;
480
481sig:
482 force_sig(signal, current);
483}
484
485static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
486{
fe00f943
RB
487 unsigned long __user *vaddr;
488 unsigned long reg;
1da177e4
LT
489 long offset;
490 int signal = 0;
491
492 /*
493 * analyse the sc instruction that just caused a ri exception
494 * and put the referenced address to addr.
495 */
496
497 /* sign extend offset */
498 offset = opcode & OFFSET;
499 offset <<= 16;
500 offset >>= 16;
501
fe00f943
RB
502 vaddr = (unsigned long __user *)
503 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
504 reg = (opcode & RT) >> 16;
505
506 if ((unsigned long)vaddr & 3) {
507 signal = SIGBUS;
508 goto sig;
509 }
510
511 preempt_disable();
512
513 if (ll_bit == 0 || ll_task != current) {
05b8042a 514 compute_return_epc(regs);
1da177e4
LT
515 regs->regs[reg] = 0;
516 preempt_enable();
1da177e4
LT
517 return;
518 }
519
520 preempt_enable();
521
522 if (put_user(regs->regs[reg], vaddr)) {
523 signal = SIGSEGV;
524 goto sig;
525 }
526
6dd04688 527 compute_return_epc(regs);
1da177e4
LT
528 regs->regs[reg] = 1;
529
1da177e4
LT
530 return;
531
532sig:
533 force_sig(signal, current);
534}
535
536/*
537 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
538 * opcodes are supposed to result in coprocessor unusable exceptions if
539 * executed on ll/sc-less processors. That's the theory. In practice a
540 * few processors such as NEC's VR4100 throw reserved instruction exceptions
541 * instead, so we're doing the emulation thing in both exception handlers.
542 */
543static inline int simulate_llsc(struct pt_regs *regs)
544{
545 unsigned int opcode;
546
547 if (unlikely(get_insn_opcode(regs, &opcode)))
548 return -EFAULT;
549
550 if ((opcode & OPCODE) == LL) {
551 simulate_ll(regs, opcode);
552 return 0;
553 }
554 if ((opcode & OPCODE) == SC) {
555 simulate_sc(regs, opcode);
556 return 0;
557 }
558
559 return -EFAULT; /* Strange things going on ... */
560}
561
3c37026d
RB
562/*
563 * Simulate trapping 'rdhwr' instructions to provide user accessible
564 * registers not implemented in hardware. The only current use of this
565 * is the thread area pointer.
566 */
567static inline int simulate_rdhwr(struct pt_regs *regs)
568{
dc8f6029 569 struct thread_info *ti = task_thread_info(current);
3c37026d
RB
570 unsigned int opcode;
571
572 if (unlikely(get_insn_opcode(regs, &opcode)))
573 return -EFAULT;
574
575 if (unlikely(compute_return_epc(regs)))
576 return -EFAULT;
577
578 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
579 int rd = (opcode & RD) >> 11;
580 int rt = (opcode & RT) >> 16;
581 switch (rd) {
582 case 29:
583 regs->regs[rt] = ti->tp_value;
56ebd51b 584 return 0;
3c37026d
RB
585 default:
586 return -EFAULT;
587 }
588 }
589
56ebd51b
DJ
590 /* Not ours. */
591 return -EFAULT;
3c37026d
RB
592}
593
1da177e4
LT
594asmlinkage void do_ov(struct pt_regs *regs)
595{
596 siginfo_t info;
597
36ccf1c0
RB
598 die_if_kernel("Integer overflow", regs);
599
1da177e4
LT
600 info.si_code = FPE_INTOVF;
601 info.si_signo = SIGFPE;
602 info.si_errno = 0;
fe00f943 603 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
604 force_sig_info(SIGFPE, &info, current);
605}
606
607/*
608 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
609 */
610asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
611{
57725f9e
CD
612 die_if_kernel("FP exception in kernel code", regs);
613
1da177e4
LT
614 if (fcr31 & FPU_CSR_UNI_X) {
615 int sig;
616
617 preempt_disable();
618
cd21dfcf
RB
619#ifdef CONFIG_PREEMPT
620 if (!is_fpu_owner()) {
621 /* We might lose fpu before disabling preempt... */
622 own_fpu();
623 BUG_ON(!used_math());
624 restore_fp(current);
625 }
626#endif
1da177e4 627 /*
a3dddd56 628 * Unimplemented operation exception. If we've got the full
1da177e4
LT
629 * software emulator on-board, let's use it...
630 *
631 * Force FPU to dump state into task/thread context. We're
632 * moving a lot of data here for what is probably a single
633 * instruction, but the alternative is to pre-decode the FP
634 * register operands before invoking the emulator, which seems
635 * a bit extreme for what should be an infrequent event.
636 */
637 save_fp(current);
cd21dfcf
RB
638 /* Ensure 'resume' not overwrite saved fp context again. */
639 lose_fpu();
640
641 preempt_enable();
1da177e4
LT
642
643 /* Run the emulator */
e04582b7 644 sig = fpu_emulator_cop1Handler (regs, &current->thread.fpu, 1);
1da177e4 645
cd21dfcf
RB
646 preempt_disable();
647
648 own_fpu(); /* Using the FPU again. */
1da177e4
LT
649 /*
650 * We can't allow the emulated instruction to leave any of
651 * the cause bit set in $fcr31.
652 */
eae89076 653 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1da177e4
LT
654
655 /* Restore the hardware register state */
656 restore_fp(current);
657
658 preempt_enable();
659
660 /* If something went wrong, signal */
661 if (sig)
662 force_sig(sig, current);
663
664 return;
665 }
666
667 force_sig(SIGFPE, current);
668}
669
670asmlinkage void do_bp(struct pt_regs *regs)
671{
672 unsigned int opcode, bcode;
673 siginfo_t info;
674
675 die_if_kernel("Break instruction in kernel code", regs);
676
677 if (get_insn_opcode(regs, &opcode))
678 return;
679
680 /*
681 * There is the ancient bug in the MIPS assemblers that the break
682 * code starts left to bit 16 instead to bit 6 in the opcode.
683 * Gas is bug-compatible, but not always, grrr...
684 * We handle both cases with a simple heuristics. --macro
685 */
686 bcode = ((opcode >> 6) & ((1 << 20) - 1));
687 if (bcode < (1 << 10))
688 bcode <<= 10;
689
690 /*
691 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
692 * insns, even for break codes that indicate arithmetic failures.
693 * Weird ...)
694 * But should we continue the brokenness??? --macro
695 */
696 switch (bcode) {
697 case BRK_OVERFLOW << 10:
698 case BRK_DIVZERO << 10:
699 if (bcode == (BRK_DIVZERO << 10))
700 info.si_code = FPE_INTDIV;
701 else
702 info.si_code = FPE_INTOVF;
703 info.si_signo = SIGFPE;
704 info.si_errno = 0;
fe00f943 705 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
706 force_sig_info(SIGFPE, &info, current);
707 break;
708 default:
709 force_sig(SIGTRAP, current);
710 }
711}
712
713asmlinkage void do_tr(struct pt_regs *regs)
714{
715 unsigned int opcode, tcode = 0;
716 siginfo_t info;
717
718 die_if_kernel("Trap instruction in kernel code", regs);
719
720 if (get_insn_opcode(regs, &opcode))
721 return;
722
723 /* Immediate versions don't provide a code. */
724 if (!(opcode & OPCODE))
725 tcode = ((opcode >> 6) & ((1 << 10) - 1));
726
727 /*
728 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
729 * insns, even for trap codes that indicate arithmetic failures.
730 * Weird ...)
731 * But should we continue the brokenness??? --macro
732 */
733 switch (tcode) {
734 case BRK_OVERFLOW:
735 case BRK_DIVZERO:
736 if (tcode == BRK_DIVZERO)
737 info.si_code = FPE_INTDIV;
738 else
739 info.si_code = FPE_INTOVF;
740 info.si_signo = SIGFPE;
741 info.si_errno = 0;
fe00f943 742 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
743 force_sig_info(SIGFPE, &info, current);
744 break;
745 default:
746 force_sig(SIGTRAP, current);
747 }
748}
749
750asmlinkage void do_ri(struct pt_regs *regs)
751{
752 die_if_kernel("Reserved instruction in kernel code", regs);
753
754 if (!cpu_has_llsc)
755 if (!simulate_llsc(regs))
756 return;
757
3c37026d
RB
758 if (!simulate_rdhwr(regs))
759 return;
760
1da177e4
LT
761 force_sig(SIGILL, current);
762}
763
764asmlinkage void do_cpu(struct pt_regs *regs)
765{
766 unsigned int cpid;
767
768 die_if_kernel("do_cpu invoked from kernel context!", regs);
769
770 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
771
772 switch (cpid) {
773 case 0:
3c37026d
RB
774 if (!cpu_has_llsc)
775 if (!simulate_llsc(regs))
776 return;
1da177e4 777
3c37026d 778 if (!simulate_rdhwr(regs))
1da177e4 779 return;
3c37026d 780
1da177e4
LT
781 break;
782
783 case 1:
784 preempt_disable();
785
786 own_fpu();
787 if (used_math()) { /* Using the FPU again. */
788 restore_fp(current);
789 } else { /* First time FPU user. */
790 init_fpu();
791 set_used_math();
792 }
793
e04582b7
AN
794 if (cpu_has_fpu) {
795 preempt_enable();
796 } else {
797 int sig;
798 preempt_enable();
799 sig = fpu_emulator_cop1Handler(regs,
800 &current->thread.fpu, 0);
1da177e4
LT
801 if (sig)
802 force_sig(sig, current);
f088fc84
RB
803#ifdef CONFIG_MIPS_MT_FPAFF
804 else {
805 /*
806 * MIPS MT processors may have fewer FPU contexts
807 * than CPU threads. If we've emulated more than
808 * some threshold number of instructions, force
809 * migration to a "CPU" that has FP support.
810 */
811 if(mt_fpemul_threshold > 0
812 && ((current->thread.emulated_fp++
813 > mt_fpemul_threshold))) {
814 /*
815 * If there's no FPU present, or if the
816 * application has already restricted
817 * the allowed set to exclude any CPUs
818 * with FPUs, we'll skip the procedure.
819 */
820 if (cpus_intersects(current->cpus_allowed,
821 mt_fpu_cpumask)) {
822 cpumask_t tmask;
823
824 cpus_and(tmask,
825 current->thread.user_cpus_allowed,
826 mt_fpu_cpumask);
827 set_cpus_allowed(current, tmask);
828 current->thread.mflags |= MF_FPUBOUND;
829 }
830 }
831 }
832#endif /* CONFIG_MIPS_MT_FPAFF */
1da177e4
LT
833 }
834
1da177e4
LT
835 return;
836
837 case 2:
838 case 3:
41c594ab 839 die_if_kernel("do_cpu invoked from kernel context!", regs);
1da177e4
LT
840 break;
841 }
842
843 force_sig(SIGILL, current);
844}
845
846asmlinkage void do_mdmx(struct pt_regs *regs)
847{
848 force_sig(SIGILL, current);
849}
850
851asmlinkage void do_watch(struct pt_regs *regs)
852{
853 /*
854 * We use the watch exception where available to detect stack
855 * overflows.
856 */
857 dump_tlb_all();
858 show_regs(regs);
859 panic("Caught WATCH exception - probably caused by stack overflow.");
860}
861
862asmlinkage void do_mcheck(struct pt_regs *regs)
863{
cac4bcbc
RB
864 const int field = 2 * sizeof(unsigned long);
865 int multi_match = regs->cp0_status & ST0_TS;
866
1da177e4 867 show_regs(regs);
cac4bcbc
RB
868
869 if (multi_match) {
870 printk("Index : %0x\n", read_c0_index());
871 printk("Pagemask: %0x\n", read_c0_pagemask());
872 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
873 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
874 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
875 printk("\n");
876 dump_tlb_all();
877 }
878
879 show_code((unsigned int *) regs->cp0_epc);
880
1da177e4
LT
881 /*
882 * Some chips may have other causes of machine check (e.g. SB1
883 * graduation timer)
884 */
885 panic("Caught Machine Check exception - %scaused by multiple "
886 "matching entries in the TLB.",
cac4bcbc 887 (multi_match) ? "" : "not ");
1da177e4
LT
888}
889
340ee4b9
RB
890asmlinkage void do_mt(struct pt_regs *regs)
891{
41c594ab
RB
892 int subcode;
893
41c594ab
RB
894 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
895 >> VPECONTROL_EXCPT_SHIFT;
896 switch (subcode) {
897 case 0:
e35a5e35 898 printk(KERN_DEBUG "Thread Underflow\n");
41c594ab
RB
899 break;
900 case 1:
e35a5e35 901 printk(KERN_DEBUG "Thread Overflow\n");
41c594ab
RB
902 break;
903 case 2:
e35a5e35 904 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
41c594ab
RB
905 break;
906 case 3:
e35a5e35 907 printk(KERN_DEBUG "Gating Storage Exception\n");
41c594ab
RB
908 break;
909 case 4:
e35a5e35 910 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
41c594ab
RB
911 break;
912 case 5:
e35a5e35 913 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
41c594ab
RB
914 break;
915 default:
e35a5e35 916 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
41c594ab
RB
917 subcode);
918 break;
919 }
340ee4b9
RB
920 die_if_kernel("MIPS MT Thread exception in kernel", regs);
921
922 force_sig(SIGILL, current);
923}
924
925
e50c0a8f
RB
926asmlinkage void do_dsp(struct pt_regs *regs)
927{
928 if (cpu_has_dsp)
929 panic("Unexpected DSP exception\n");
930
931 force_sig(SIGILL, current);
932}
933
1da177e4
LT
934asmlinkage void do_reserved(struct pt_regs *regs)
935{
936 /*
937 * Game over - no way to handle this if it ever occurs. Most probably
938 * caused by a new unknown cpu type or after another deadly
939 * hard/software error.
940 */
941 show_regs(regs);
942 panic("Caught reserved exception %ld - should not happen.",
943 (regs->cp0_cause & 0x7f) >> 2);
944}
945
e01402b1
RB
946asmlinkage void do_default_vi(struct pt_regs *regs)
947{
948 show_regs(regs);
949 panic("Caught unexpected vectored interrupt.");
950}
951
1da177e4
LT
952/*
953 * Some MIPS CPUs can enable/disable for cache parity detection, but do
954 * it different ways.
955 */
956static inline void parity_protection_init(void)
957{
958 switch (current_cpu_data.cputype) {
959 case CPU_24K:
98a41de9 960 case CPU_34K:
1da177e4 961 case CPU_5KC:
14f18b7f
RB
962 write_c0_ecc(0x80000000);
963 back_to_back_c0_hazard();
964 /* Set the PE bit (bit 31) in the c0_errctl register. */
965 printk(KERN_INFO "Cache parity protection %sabled\n",
966 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1da177e4
LT
967 break;
968 case CPU_20KC:
969 case CPU_25KF:
970 /* Clear the DE bit (bit 16) in the c0_status register. */
971 printk(KERN_INFO "Enable cache parity protection for "
972 "MIPS 20KC/25KF CPUs.\n");
973 clear_c0_status(ST0_DE);
974 break;
975 default:
976 break;
977 }
978}
979
980asmlinkage void cache_parity_error(void)
981{
982 const int field = 2 * sizeof(unsigned long);
983 unsigned int reg_val;
984
985 /* For the moment, report the problem and hang. */
986 printk("Cache error exception:\n");
987 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
988 reg_val = read_c0_cacheerr();
989 printk("c0_cacheerr == %08x\n", reg_val);
990
991 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
992 reg_val & (1<<30) ? "secondary" : "primary",
993 reg_val & (1<<31) ? "data" : "insn");
994 printk("Error bits: %s%s%s%s%s%s%s\n",
995 reg_val & (1<<29) ? "ED " : "",
996 reg_val & (1<<28) ? "ET " : "",
997 reg_val & (1<<26) ? "EE " : "",
998 reg_val & (1<<25) ? "EB " : "",
999 reg_val & (1<<24) ? "EI " : "",
1000 reg_val & (1<<23) ? "E1 " : "",
1001 reg_val & (1<<22) ? "E0 " : "");
1002 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1003
ec917c2c 1004#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1da177e4
LT
1005 if (reg_val & (1<<22))
1006 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1007
1008 if (reg_val & (1<<23))
1009 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1010#endif
1011
1012 panic("Can't handle the cache error!");
1013}
1014
1015/*
1016 * SDBBP EJTAG debug exception handler.
1017 * We skip the instruction and return to the next instruction.
1018 */
1019void ejtag_exception_handler(struct pt_regs *regs)
1020{
1021 const int field = 2 * sizeof(unsigned long);
1022 unsigned long depc, old_epc;
1023 unsigned int debug;
1024
70ae6126 1025 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1da177e4
LT
1026 depc = read_c0_depc();
1027 debug = read_c0_debug();
70ae6126 1028 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1da177e4
LT
1029 if (debug & 0x80000000) {
1030 /*
1031 * In branch delay slot.
1032 * We cheat a little bit here and use EPC to calculate the
1033 * debug return address (DEPC). EPC is restored after the
1034 * calculation.
1035 */
1036 old_epc = regs->cp0_epc;
1037 regs->cp0_epc = depc;
1038 __compute_return_epc(regs);
1039 depc = regs->cp0_epc;
1040 regs->cp0_epc = old_epc;
1041 } else
1042 depc += 4;
1043 write_c0_depc(depc);
1044
1045#if 0
70ae6126 1046 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1da177e4
LT
1047 write_c0_debug(debug | 0x100);
1048#endif
1049}
1050
1051/*
1052 * NMI exception handler.
1053 */
1054void nmi_exception_handler(struct pt_regs *regs)
1055{
41c594ab
RB
1056#ifdef CONFIG_MIPS_MT_SMTC
1057 unsigned long dvpret = dvpe();
1058 bust_spinlocks(1);
1059 printk("NMI taken!!!!\n");
1060 mips_mt_regdump(dvpret);
1061#else
1062 bust_spinlocks(1);
1da177e4 1063 printk("NMI taken!!!!\n");
41c594ab 1064#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1065 die("NMI", regs);
1066 while(1) ;
1067}
1068
e01402b1
RB
1069#define VECTORSPACING 0x100 /* for EI/VI mode */
1070
1071unsigned long ebase;
1da177e4 1072unsigned long exception_handlers[32];
e01402b1 1073unsigned long vi_handlers[64];
1da177e4
LT
1074
1075/*
1076 * As a side effect of the way this is implemented we're limited
1077 * to interrupt handlers in the address range from
1078 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1079 */
1080void *set_except_vector(int n, void *addr)
1081{
1082 unsigned long handler = (unsigned long) addr;
1083 unsigned long old_handler = exception_handlers[n];
1084
1085 exception_handlers[n] = handler;
1086 if (n == 0 && cpu_has_divec) {
e01402b1 1087 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
1da177e4 1088 (0x03ffffff & (handler >> 2));
e01402b1
RB
1089 flush_icache_range(ebase + 0x200, ebase + 0x204);
1090 }
1091 return (void *)old_handler;
1092}
1093
f41ae0b2 1094#ifdef CONFIG_CPU_MIPSR2_SRS
e01402b1 1095/*
193dd2ce 1096 * MIPSR2 shadow register set allocation
e01402b1
RB
1097 * FIXME: SMP...
1098 */
1099
193dd2ce
RB
1100static struct shadow_registers {
1101 /*
1102 * Number of shadow register sets supported
1103 */
1104 unsigned long sr_supported;
1105 /*
1106 * Bitmap of allocated shadow registers
1107 */
1108 unsigned long sr_allocated;
e01402b1
RB
1109} shadow_registers;
1110
bb12d612 1111static void mips_srs_init(void)
e01402b1 1112{
e01402b1 1113 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
7acb783e
RB
1114 printk(KERN_INFO "%d MIPSR2 register sets available\n",
1115 shadow_registers.sr_supported);
e01402b1 1116 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
e01402b1
RB
1117}
1118
1119int mips_srs_max(void)
1120{
1121 return shadow_registers.sr_supported;
1122}
1123
ff3eab2a 1124int mips_srs_alloc(void)
e01402b1
RB
1125{
1126 struct shadow_registers *sr = &shadow_registers;
e01402b1
RB
1127 int set;
1128
193dd2ce
RB
1129again:
1130 set = find_first_zero_bit(&sr->sr_allocated, sr->sr_supported);
1131 if (set >= sr->sr_supported)
1132 return -1;
e01402b1 1133
193dd2ce
RB
1134 if (test_and_set_bit(set, &sr->sr_allocated))
1135 goto again;
e01402b1 1136
193dd2ce 1137 return set;
e01402b1
RB
1138}
1139
41c594ab 1140void mips_srs_free(int set)
e01402b1
RB
1141{
1142 struct shadow_registers *sr = &shadow_registers;
e01402b1 1143
193dd2ce 1144 clear_bit(set, &sr->sr_allocated);
e01402b1
RB
1145}
1146
b4d05cb9 1147static void *set_vi_srs_handler(int n, void *addr, int srs)
e01402b1
RB
1148{
1149 unsigned long handler;
1150 unsigned long old_handler = vi_handlers[n];
1151 u32 *w;
1152 unsigned char *b;
1153
1154 if (!cpu_has_veic && !cpu_has_vint)
1155 BUG();
1156
1157 if (addr == NULL) {
1158 handler = (unsigned long) do_default_vi;
1159 srs = 0;
41c594ab 1160 } else
e01402b1
RB
1161 handler = (unsigned long) addr;
1162 vi_handlers[n] = (unsigned long) addr;
1163
1164 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1165
1166 if (srs >= mips_srs_max())
1167 panic("Shadow register set %d not supported", srs);
1168
1169 if (cpu_has_veic) {
1170 if (board_bind_eic_interrupt)
1171 board_bind_eic_interrupt (n, srs);
41c594ab 1172 } else if (cpu_has_vint) {
e01402b1
RB
1173 /* SRSMap is only defined if shadow sets are implemented */
1174 if (mips_srs_max() > 1)
1175 change_c0_srsmap (0xf << n*4, srs << n*4);
1176 }
1177
1178 if (srs == 0) {
1179 /*
1180 * If no shadow set is selected then use the default handler
1181 * that does normal register saving and a standard interrupt exit
1182 */
1183
1184 extern char except_vec_vi, except_vec_vi_lui;
1185 extern char except_vec_vi_ori, except_vec_vi_end;
41c594ab
RB
1186#ifdef CONFIG_MIPS_MT_SMTC
1187 /*
1188 * We need to provide the SMTC vectored interrupt handler
1189 * not only with the address of the handler, but with the
1190 * Status.IM bit to be masked before going there.
1191 */
1192 extern char except_vec_vi_mori;
1193 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1194#endif /* CONFIG_MIPS_MT_SMTC */
e01402b1
RB
1195 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1196 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1197 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1198
1199 if (handler_len > VECTORSPACING) {
1200 /*
1201 * Sigh... panicing won't help as the console
1202 * is probably not configured :(
1203 */
1204 panic ("VECTORSPACING too small");
1205 }
1206
1207 memcpy (b, &except_vec_vi, handler_len);
41c594ab
RB
1208#ifdef CONFIG_MIPS_MT_SMTC
1209 if (n > 7)
1210 printk("Vector index %d exceeds SMTC maximum\n", n);
1211 w = (u32 *)(b + mori_offset);
1212 *w = (*w & 0xffff0000) | (0x100 << n);
1213#endif /* CONFIG_MIPS_MT_SMTC */
e01402b1
RB
1214 w = (u32 *)(b + lui_offset);
1215 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1216 w = (u32 *)(b + ori_offset);
1217 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1218 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1219 }
1220 else {
1221 /*
1222 * In other cases jump directly to the interrupt handler
1223 *
1224 * It is the handlers responsibility to save registers if required
1225 * (eg hi/lo) and return from the exception using "eret"
1226 */
1227 w = (u32 *)b;
1228 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1229 *w = 0;
1230 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1da177e4 1231 }
e01402b1 1232
1da177e4
LT
1233 return (void *)old_handler;
1234}
1235
41c594ab 1236void *set_vi_handler(int n, void *addr)
e01402b1 1237{
ff3eab2a 1238 return set_vi_srs_handler(n, addr, 0);
e01402b1 1239}
f41ae0b2
RB
1240
1241#else
1242
1243static inline void mips_srs_init(void)
1244{
1245}
1246
1247#endif /* CONFIG_CPU_MIPSR2_SRS */
e01402b1 1248
1da177e4
LT
1249/*
1250 * This is used by native signal handling
1251 */
1252asmlinkage int (*save_fp_context)(struct sigcontext *sc);
1253asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
1254
1255extern asmlinkage int _save_fp_context(struct sigcontext *sc);
1256extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
1257
1258extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
1259extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
1260
41c594ab
RB
1261#ifdef CONFIG_SMP
1262static int smp_save_fp_context(struct sigcontext *sc)
1263{
1264 return cpu_has_fpu
1265 ? _save_fp_context(sc)
1266 : fpu_emulator_save_context(sc);
1267}
1268
1269static int smp_restore_fp_context(struct sigcontext *sc)
1270{
1271 return cpu_has_fpu
1272 ? _restore_fp_context(sc)
1273 : fpu_emulator_restore_context(sc);
1274}
1275#endif
1276
1da177e4
LT
1277static inline void signal_init(void)
1278{
41c594ab
RB
1279#ifdef CONFIG_SMP
1280 /* For now just do the cpu_has_fpu check when the functions are invoked */
1281 save_fp_context = smp_save_fp_context;
1282 restore_fp_context = smp_restore_fp_context;
1283#else
1da177e4
LT
1284 if (cpu_has_fpu) {
1285 save_fp_context = _save_fp_context;
1286 restore_fp_context = _restore_fp_context;
1287 } else {
1288 save_fp_context = fpu_emulator_save_context;
1289 restore_fp_context = fpu_emulator_restore_context;
1290 }
41c594ab 1291#endif
1da177e4
LT
1292}
1293
1294#ifdef CONFIG_MIPS32_COMPAT
1295
1296/*
1297 * This is used by 32-bit signal stuff on the 64-bit kernel
1298 */
1299asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
1300asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
1301
1302extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
1303extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
1304
1305extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
1306extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
1307
1308static inline void signal32_init(void)
1309{
1310 if (cpu_has_fpu) {
1311 save_fp_context32 = _save_fp_context32;
1312 restore_fp_context32 = _restore_fp_context32;
1313 } else {
1314 save_fp_context32 = fpu_emulator_save_context32;
1315 restore_fp_context32 = fpu_emulator_restore_context32;
1316 }
1317}
1318#endif
1319
1320extern void cpu_cache_init(void);
1321extern void tlb_init(void);
1d40cfcd 1322extern void flush_tlb_handlers(void);
1da177e4
LT
1323
1324void __init per_cpu_trap_init(void)
1325{
1326 unsigned int cpu = smp_processor_id();
1327 unsigned int status_set = ST0_CU0;
41c594ab
RB
1328#ifdef CONFIG_MIPS_MT_SMTC
1329 int secondaryTC = 0;
1330 int bootTC = (cpu == 0);
1331
1332 /*
1333 * Only do per_cpu_trap_init() for first TC of Each VPE.
1334 * Note that this hack assumes that the SMTC init code
1335 * assigns TCs consecutively and in ascending order.
1336 */
1337
1338 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1339 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1340 secondaryTC = 1;
1341#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1342
1343 /*
1344 * Disable coprocessors and select 32-bit or 64-bit addressing
1345 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1346 * flag that some firmware may have left set and the TS bit (for
1347 * IP27). Set XX for ISA IV code to work.
1348 */
875d43e7 1349#ifdef CONFIG_64BIT
1da177e4
LT
1350 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1351#endif
1352 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1353 status_set |= ST0_XX;
b38c7399 1354 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1da177e4
LT
1355 status_set);
1356
e50c0a8f
RB
1357 if (cpu_has_dsp)
1358 set_c0_status(ST0_MX);
1359
e01402b1
RB
1360#ifdef CONFIG_CPU_MIPSR2
1361 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1362#endif
1363
41c594ab
RB
1364#ifdef CONFIG_MIPS_MT_SMTC
1365 if (!secondaryTC) {
1366#endif /* CONFIG_MIPS_MT_SMTC */
1367
1da177e4 1368 /*
e01402b1 1369 * Interrupt handling.
1da177e4 1370 */
e01402b1
RB
1371 if (cpu_has_veic || cpu_has_vint) {
1372 write_c0_ebase (ebase);
1373 /* Setting vector spacing enables EI/VI mode */
1374 change_c0_intctl (0x3e0, VECTORSPACING);
1375 }
d03d0a57
RB
1376 if (cpu_has_divec) {
1377 if (cpu_has_mipsmt) {
1378 unsigned int vpflags = dvpe();
1379 set_c0_cause(CAUSEF_IV);
1380 evpe(vpflags);
1381 } else
1382 set_c0_cause(CAUSEF_IV);
1383 }
41c594ab
RB
1384#ifdef CONFIG_MIPS_MT_SMTC
1385 }
1386#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1387
1388 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1389 TLBMISS_HANDLER_SETUP();
1390
1391 atomic_inc(&init_mm.mm_count);
1392 current->active_mm = &init_mm;
1393 BUG_ON(current->mm);
1394 enter_lazy_tlb(&init_mm, current);
1395
41c594ab
RB
1396#ifdef CONFIG_MIPS_MT_SMTC
1397 if (bootTC) {
1398#endif /* CONFIG_MIPS_MT_SMTC */
1399 cpu_cache_init();
1400 tlb_init();
1401#ifdef CONFIG_MIPS_MT_SMTC
1402 }
1403#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1404}
1405
e01402b1
RB
1406/* Install CPU exception handler */
1407void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1408{
1409 memcpy((void *)(ebase + offset), addr, size);
1410 flush_icache_range(ebase + offset, ebase + offset + size);
1411}
1412
1413/* Install uncached CPU exception handler */
1414void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1415{
1416#ifdef CONFIG_32BIT
1417 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1418#endif
1419#ifdef CONFIG_64BIT
1420 unsigned long uncached_ebase = TO_UNCAC(ebase);
1421#endif
1422
1423 memcpy((void *)(uncached_ebase + offset), addr, size);
1424}
1425
1da177e4
LT
1426void __init trap_init(void)
1427{
1428 extern char except_vec3_generic, except_vec3_r4000;
1da177e4
LT
1429 extern char except_vec4;
1430 unsigned long i;
1431
e01402b1
RB
1432 if (cpu_has_veic || cpu_has_vint)
1433 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1434 else
1435 ebase = CAC_BASE;
1436
e01402b1 1437 mips_srs_init();
e01402b1 1438
1da177e4
LT
1439 per_cpu_trap_init();
1440
1441 /*
1442 * Copy the generic exception handlers to their final destination.
1443 * This will be overriden later as suitable for a particular
1444 * configuration.
1445 */
e01402b1 1446 set_handler(0x180, &except_vec3_generic, 0x80);
1da177e4
LT
1447
1448 /*
1449 * Setup default vectors
1450 */
1451 for (i = 0; i <= 31; i++)
1452 set_except_vector(i, handle_reserved);
1453
1454 /*
1455 * Copy the EJTAG debug exception vector handler code to it's final
1456 * destination.
1457 */
e01402b1
RB
1458 if (cpu_has_ejtag && board_ejtag_handler_setup)
1459 board_ejtag_handler_setup ();
1da177e4
LT
1460
1461 /*
1462 * Only some CPUs have the watch exceptions.
1463 */
1464 if (cpu_has_watch)
1465 set_except_vector(23, handle_watch);
1466
1467 /*
e01402b1 1468 * Initialise interrupt handlers
1da177e4 1469 */
e01402b1
RB
1470 if (cpu_has_veic || cpu_has_vint) {
1471 int nvec = cpu_has_veic ? 64 : 8;
1472 for (i = 0; i < nvec; i++)
ff3eab2a 1473 set_vi_handler(i, NULL);
e01402b1
RB
1474 }
1475 else if (cpu_has_divec)
1476 set_handler(0x200, &except_vec4, 0x8);
1da177e4
LT
1477
1478 /*
1479 * Some CPUs can enable/disable for cache parity detection, but does
1480 * it different ways.
1481 */
1482 parity_protection_init();
1483
1484 /*
1485 * The Data Bus Errors / Instruction Bus Errors are signaled
1486 * by external hardware. Therefore these two exceptions
1487 * may have board specific handlers.
1488 */
1489 if (board_be_init)
1490 board_be_init();
1491
e4ac58af 1492 set_except_vector(0, handle_int);
1da177e4
LT
1493 set_except_vector(1, handle_tlbm);
1494 set_except_vector(2, handle_tlbl);
1495 set_except_vector(3, handle_tlbs);
1496
1497 set_except_vector(4, handle_adel);
1498 set_except_vector(5, handle_ades);
1499
1500 set_except_vector(6, handle_ibe);
1501 set_except_vector(7, handle_dbe);
1502
1503 set_except_vector(8, handle_sys);
1504 set_except_vector(9, handle_bp);
1505 set_except_vector(10, handle_ri);
1506 set_except_vector(11, handle_cpu);
1507 set_except_vector(12, handle_ov);
1508 set_except_vector(13, handle_tr);
1da177e4
LT
1509
1510 if (current_cpu_data.cputype == CPU_R6000 ||
1511 current_cpu_data.cputype == CPU_R6000A) {
1512 /*
1513 * The R6000 is the only R-series CPU that features a machine
1514 * check exception (similar to the R4000 cache error) and
1515 * unaligned ldc1/sdc1 exception. The handlers have not been
1516 * written yet. Well, anyway there is no R6000 machine on the
1517 * current list of targets for Linux/MIPS.
1518 * (Duh, crap, there is someone with a triple R6k machine)
1519 */
1520 //set_except_vector(14, handle_mc);
1521 //set_except_vector(15, handle_ndc);
1522 }
1523
e01402b1
RB
1524
1525 if (board_nmi_handler_setup)
1526 board_nmi_handler_setup();
1527
e50c0a8f
RB
1528 if (cpu_has_fpu && !cpu_has_nofpuex)
1529 set_except_vector(15, handle_fpe);
1530
1531 set_except_vector(22, handle_mdmx);
1532
1533 if (cpu_has_mcheck)
1534 set_except_vector(24, handle_mcheck);
1535
340ee4b9
RB
1536 if (cpu_has_mipsmt)
1537 set_except_vector(25, handle_mt);
1538
e50c0a8f
RB
1539 if (cpu_has_dsp)
1540 set_except_vector(26, handle_dsp);
1541
1542 if (cpu_has_vce)
1543 /* Special exception: R4[04]00 uses also the divec space. */
1544 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1545 else if (cpu_has_4kex)
1546 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1547 else
1548 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1549
1da177e4
LT
1550 signal_init();
1551#ifdef CONFIG_MIPS32_COMPAT
1552 signal32_init();
1553#endif
1554
e01402b1 1555 flush_icache_range(ebase, ebase + 0x400);
1d40cfcd 1556 flush_tlb_handlers();
1da177e4 1557}