MIPS: Add generic QEMU PRid and cpu type identifiers
[linux-2.6-block.git] / arch / mips / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
36ccf1c0 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
1da177e4
LT
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
60b0d655 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
2a0b24f5 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
b08a9c95 13 * Copyright (C) 2014, Imagination Technologies Ltd.
1da177e4 14 */
8e8a52ed 15#include <linux/bug.h>
60b0d655 16#include <linux/compiler.h>
c3fc5cd5 17#include <linux/context_tracking.h>
ae4ce454 18#include <linux/cpu_pm.h>
7aa1c8f4 19#include <linux/kexec.h>
1da177e4 20#include <linux/init.h>
8742cd23 21#include <linux/kernel.h>
f9ded569 22#include <linux/module.h>
1da177e4 23#include <linux/mm.h>
1da177e4
LT
24#include <linux/sched.h>
25#include <linux/smp.h>
1da177e4
LT
26#include <linux/spinlock.h>
27#include <linux/kallsyms.h>
e01402b1 28#include <linux/bootmem.h>
d4fd1989 29#include <linux/interrupt.h>
39b8d525 30#include <linux/ptrace.h>
88547001
JW
31#include <linux/kgdb.h>
32#include <linux/kdebug.h>
c1bf207d 33#include <linux/kprobes.h>
69f3a7de 34#include <linux/notifier.h>
5dd11d5d 35#include <linux/kdb.h>
ca4d3e67 36#include <linux/irq.h>
7f788d2d 37#include <linux/perf_event.h>
1da177e4
LT
38
39#include <asm/bootinfo.h>
40#include <asm/branch.h>
41#include <asm/break.h>
69f3a7de 42#include <asm/cop2.h>
1da177e4 43#include <asm/cpu.h>
69f24d17 44#include <asm/cpu-type.h>
e50c0a8f 45#include <asm/dsp.h>
1da177e4 46#include <asm/fpu.h>
ba3049ed 47#include <asm/fpu_emulator.h>
bdc92d74 48#include <asm/idle.h>
340ee4b9
RB
49#include <asm/mipsregs.h>
50#include <asm/mipsmtregs.h>
1da177e4 51#include <asm/module.h>
1db1af84 52#include <asm/msa.h>
1da177e4
LT
53#include <asm/pgtable.h>
54#include <asm/ptrace.h>
55#include <asm/sections.h>
1da177e4
LT
56#include <asm/tlbdebug.h>
57#include <asm/traps.h>
58#include <asm/uaccess.h>
b67b2b70 59#include <asm/watch.h>
1da177e4 60#include <asm/mmu_context.h>
1da177e4 61#include <asm/types.h>
1df0f0ff 62#include <asm/stacktrace.h>
92bbe1b9 63#include <asm/uasm.h>
1da177e4 64
c65a5480 65extern void check_wait(void);
c65a5480 66extern asmlinkage void rollback_handle_int(void);
e4ac58af 67extern asmlinkage void handle_int(void);
86a1708a
RB
68extern u32 handle_tlbl[];
69extern u32 handle_tlbs[];
70extern u32 handle_tlbm[];
1da177e4
LT
71extern asmlinkage void handle_adel(void);
72extern asmlinkage void handle_ades(void);
73extern asmlinkage void handle_ibe(void);
74extern asmlinkage void handle_dbe(void);
75extern asmlinkage void handle_sys(void);
76extern asmlinkage void handle_bp(void);
77extern asmlinkage void handle_ri(void);
5b10496b
AN
78extern asmlinkage void handle_ri_rdhwr_vivt(void);
79extern asmlinkage void handle_ri_rdhwr(void);
1da177e4
LT
80extern asmlinkage void handle_cpu(void);
81extern asmlinkage void handle_ov(void);
82extern asmlinkage void handle_tr(void);
2bcb3fbc 83extern asmlinkage void handle_msa_fpe(void);
1da177e4 84extern asmlinkage void handle_fpe(void);
75b5b5e0 85extern asmlinkage void handle_ftlb(void);
1db1af84 86extern asmlinkage void handle_msa(void);
1da177e4
LT
87extern asmlinkage void handle_mdmx(void);
88extern asmlinkage void handle_watch(void);
340ee4b9 89extern asmlinkage void handle_mt(void);
e50c0a8f 90extern asmlinkage void handle_dsp(void);
1da177e4
LT
91extern asmlinkage void handle_mcheck(void);
92extern asmlinkage void handle_reserved(void);
5890f70f 93extern void tlb_do_page_fault_0(void);
1da177e4 94
1da177e4
LT
95void (*board_be_init)(void);
96int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
e01402b1
RB
97void (*board_nmi_handler_setup)(void);
98void (*board_ejtag_handler_setup)(void);
99void (*board_bind_eic_interrupt)(int irq, int regset);
6fb97eff 100void (*board_ebase_setup)(void);
078a55fc 101void(*board_cache_error_setup)(void);
1da177e4 102
4d157d5e 103static void show_raw_backtrace(unsigned long reg29)
e889d78f 104{
39b8d525 105 unsigned long *sp = (unsigned long *)(reg29 & ~3);
e889d78f
AN
106 unsigned long addr;
107
108 printk("Call Trace:");
109#ifdef CONFIG_KALLSYMS
110 printk("\n");
111#endif
10220c88
TB
112 while (!kstack_end(sp)) {
113 unsigned long __user *p =
114 (unsigned long __user *)(unsigned long)sp++;
115 if (__get_user(addr, p)) {
116 printk(" (Bad stack address)");
117 break;
39b8d525 118 }
10220c88
TB
119 if (__kernel_text_address(addr))
120 print_ip_sym(addr);
e889d78f 121 }
10220c88 122 printk("\n");
e889d78f
AN
123}
124
f66686f7 125#ifdef CONFIG_KALLSYMS
1df0f0ff 126int raw_show_trace;
f66686f7
AN
127static int __init set_raw_show_trace(char *str)
128{
129 raw_show_trace = 1;
130 return 1;
131}
132__setup("raw_show_trace", set_raw_show_trace);
1df0f0ff 133#endif
4d157d5e 134
eae23f2c 135static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
f66686f7 136{
4d157d5e
FBH
137 unsigned long sp = regs->regs[29];
138 unsigned long ra = regs->regs[31];
f66686f7 139 unsigned long pc = regs->cp0_epc;
f66686f7 140
e909be82
VW
141 if (!task)
142 task = current;
143
f66686f7 144 if (raw_show_trace || !__kernel_text_address(pc)) {
87151ae3 145 show_raw_backtrace(sp);
f66686f7
AN
146 return;
147 }
148 printk("Call Trace:\n");
4d157d5e 149 do {
87151ae3 150 print_ip_sym(pc);
1924600c 151 pc = unwind_stack(task, &sp, pc, &ra);
4d157d5e 152 } while (pc);
f66686f7
AN
153 printk("\n");
154}
f66686f7 155
1da177e4
LT
156/*
157 * This routine abuses get_user()/put_user() to reference pointers
158 * with at least a bit of error checking ...
159 */
eae23f2c
RB
160static void show_stacktrace(struct task_struct *task,
161 const struct pt_regs *regs)
1da177e4
LT
162{
163 const int field = 2 * sizeof(unsigned long);
164 long stackdata;
165 int i;
5e0373b8 166 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
1da177e4
LT
167
168 printk("Stack :");
169 i = 0;
170 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
171 if (i && ((i % (64 / field)) == 0))
70342287 172 printk("\n ");
1da177e4
LT
173 if (i > 39) {
174 printk(" ...");
175 break;
176 }
177
178 if (__get_user(stackdata, sp++)) {
179 printk(" (Bad stack address)");
180 break;
181 }
182
183 printk(" %0*lx", field, stackdata);
184 i++;
185 }
186 printk("\n");
87151ae3 187 show_backtrace(task, regs);
f66686f7
AN
188}
189
f66686f7
AN
190void show_stack(struct task_struct *task, unsigned long *sp)
191{
192 struct pt_regs regs;
193 if (sp) {
194 regs.regs[29] = (unsigned long)sp;
195 regs.regs[31] = 0;
196 regs.cp0_epc = 0;
197 } else {
198 if (task && task != current) {
199 regs.regs[29] = task->thread.reg29;
200 regs.regs[31] = 0;
201 regs.cp0_epc = task->thread.reg31;
5dd11d5d
JW
202#ifdef CONFIG_KGDB_KDB
203 } else if (atomic_read(&kgdb_active) != -1 &&
204 kdb_current_regs) {
205 memcpy(&regs, kdb_current_regs, sizeof(regs));
206#endif /* CONFIG_KGDB_KDB */
f66686f7
AN
207 } else {
208 prepare_frametrace(&regs);
209 }
210 }
211 show_stacktrace(task, &regs);
1da177e4
LT
212}
213
e1bb8289 214static void show_code(unsigned int __user *pc)
1da177e4
LT
215{
216 long i;
39b8d525 217 unsigned short __user *pc16 = NULL;
1da177e4
LT
218
219 printk("\nCode:");
220
39b8d525
RB
221 if ((unsigned long)pc & 1)
222 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
1da177e4
LT
223 for(i = -3 ; i < 6 ; i++) {
224 unsigned int insn;
39b8d525 225 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
1da177e4
LT
226 printk(" (Bad address in epc)\n");
227 break;
228 }
39b8d525 229 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
1da177e4
LT
230 }
231}
232
eae23f2c 233static void __show_regs(const struct pt_regs *regs)
1da177e4
LT
234{
235 const int field = 2 * sizeof(unsigned long);
236 unsigned int cause = regs->cp0_cause;
237 int i;
238
a43cb95d 239 show_regs_print_info(KERN_DEFAULT);
1da177e4
LT
240
241 /*
242 * Saved main processor registers
243 */
244 for (i = 0; i < 32; ) {
245 if ((i % 4) == 0)
246 printk("$%2d :", i);
247 if (i == 0)
248 printk(" %0*lx", field, 0UL);
249 else if (i == 26 || i == 27)
250 printk(" %*s", field, "");
251 else
252 printk(" %0*lx", field, regs->regs[i]);
253
254 i++;
255 if ((i % 4) == 0)
256 printk("\n");
257 }
258
9693a853
FBH
259#ifdef CONFIG_CPU_HAS_SMARTMIPS
260 printk("Acx : %0*lx\n", field, regs->acx);
261#endif
1da177e4
LT
262 printk("Hi : %0*lx\n", field, regs->hi);
263 printk("Lo : %0*lx\n", field, regs->lo);
264
265 /*
266 * Saved cp0 registers
267 */
b012cffe
RB
268 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
269 (void *) regs->cp0_epc);
1da177e4 270 printk(" %s\n", print_tainted());
b012cffe
RB
271 printk("ra : %0*lx %pS\n", field, regs->regs[31],
272 (void *) regs->regs[31]);
1da177e4 273
70342287 274 printk("Status: %08x ", (uint32_t) regs->cp0_status);
1da177e4 275
1990e542 276 if (cpu_has_3kex) {
3b2396d9
MR
277 if (regs->cp0_status & ST0_KUO)
278 printk("KUo ");
279 if (regs->cp0_status & ST0_IEO)
280 printk("IEo ");
281 if (regs->cp0_status & ST0_KUP)
282 printk("KUp ");
283 if (regs->cp0_status & ST0_IEP)
284 printk("IEp ");
285 if (regs->cp0_status & ST0_KUC)
286 printk("KUc ");
287 if (regs->cp0_status & ST0_IEC)
288 printk("IEc ");
1990e542 289 } else if (cpu_has_4kex) {
3b2396d9
MR
290 if (regs->cp0_status & ST0_KX)
291 printk("KX ");
292 if (regs->cp0_status & ST0_SX)
293 printk("SX ");
294 if (regs->cp0_status & ST0_UX)
295 printk("UX ");
296 switch (regs->cp0_status & ST0_KSU) {
297 case KSU_USER:
298 printk("USER ");
299 break;
300 case KSU_SUPERVISOR:
301 printk("SUPERVISOR ");
302 break;
303 case KSU_KERNEL:
304 printk("KERNEL ");
305 break;
306 default:
307 printk("BAD_MODE ");
308 break;
309 }
310 if (regs->cp0_status & ST0_ERL)
311 printk("ERL ");
312 if (regs->cp0_status & ST0_EXL)
313 printk("EXL ");
314 if (regs->cp0_status & ST0_IE)
315 printk("IE ");
1da177e4 316 }
1da177e4
LT
317 printk("\n");
318
319 printk("Cause : %08x\n", cause);
320
321 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
322 if (1 <= cause && cause <= 5)
323 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
324
9966db25
RB
325 printk("PrId : %08x (%s)\n", read_c0_prid(),
326 cpu_name_string());
1da177e4
LT
327}
328
eae23f2c
RB
329/*
330 * FIXME: really the generic show_regs should take a const pointer argument.
331 */
332void show_regs(struct pt_regs *regs)
333{
334 __show_regs((struct pt_regs *)regs);
335}
336
c1bf207d 337void show_registers(struct pt_regs *regs)
1da177e4 338{
39b8d525 339 const int field = 2 * sizeof(unsigned long);
83e4da1e 340 mm_segment_t old_fs = get_fs();
39b8d525 341
eae23f2c 342 __show_regs(regs);
1da177e4 343 print_modules();
39b8d525
RB
344 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
345 current->comm, current->pid, current_thread_info(), current,
346 field, current_thread_info()->tp_value);
347 if (cpu_has_userlocal) {
348 unsigned long tls;
349
350 tls = read_c0_userlocal();
351 if (tls != current_thread_info()->tp_value)
352 printk("*HwTLS: %0*lx\n", field, tls);
353 }
354
83e4da1e
LY
355 if (!user_mode(regs))
356 /* Necessary for getting the correct stack content */
357 set_fs(KERNEL_DS);
f66686f7 358 show_stacktrace(current, regs);
e1bb8289 359 show_code((unsigned int __user *) regs->cp0_epc);
1da177e4 360 printk("\n");
83e4da1e 361 set_fs(old_fs);
1da177e4
LT
362}
363
70dc6f04
DD
364static int regs_to_trapnr(struct pt_regs *regs)
365{
366 return (regs->cp0_cause >> 2) & 0x1f;
367}
368
4d85f6af 369static DEFINE_RAW_SPINLOCK(die_lock);
1da177e4 370
70dc6f04 371void __noreturn die(const char *str, struct pt_regs *regs)
1da177e4
LT
372{
373 static int die_counter;
ce384d83 374 int sig = SIGSEGV;
1da177e4 375
8742cd23
NL
376 oops_enter();
377
dc73e4c1
RB
378 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
379 SIGSEGV) == NOTIFY_STOP)
10423c91 380 sig = 0;
5dd11d5d 381
1da177e4 382 console_verbose();
4d85f6af 383 raw_spin_lock_irq(&die_lock);
41c594ab 384 bust_spinlocks(1);
ce384d83 385
178086c8 386 printk("%s[#%d]:\n", str, ++die_counter);
1da177e4 387 show_registers(regs);
373d4d09 388 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
4d85f6af 389 raw_spin_unlock_irq(&die_lock);
d4fd1989 390
8742cd23
NL
391 oops_exit();
392
d4fd1989
MB
393 if (in_interrupt())
394 panic("Fatal exception in interrupt");
395
396 if (panic_on_oops) {
ab75dc02 397 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
d4fd1989
MB
398 ssleep(5);
399 panic("Fatal exception");
400 }
401
7aa1c8f4
RB
402 if (regs && kexec_should_crash(current))
403 crash_kexec(regs);
404
ce384d83 405 do_exit(sig);
1da177e4
LT
406}
407
0510617b
TB
408extern struct exception_table_entry __start___dbe_table[];
409extern struct exception_table_entry __stop___dbe_table[];
1da177e4 410
b6dcec9b
RB
411__asm__(
412" .section __dbe_table, \"a\"\n"
413" .previous \n");
1da177e4
LT
414
415/* Given an address, look for it in the exception tables. */
416static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
417{
418 const struct exception_table_entry *e;
419
420 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
421 if (!e)
422 e = search_module_dbetables(addr);
423 return e;
424}
425
426asmlinkage void do_be(struct pt_regs *regs)
427{
428 const int field = 2 * sizeof(unsigned long);
429 const struct exception_table_entry *fixup = NULL;
430 int data = regs->cp0_cause & 4;
431 int action = MIPS_BE_FATAL;
c3fc5cd5 432 enum ctx_state prev_state;
1da177e4 433
c3fc5cd5 434 prev_state = exception_enter();
70342287 435 /* XXX For now. Fixme, this searches the wrong table ... */
1da177e4
LT
436 if (data && !user_mode(regs))
437 fixup = search_dbe_tables(exception_epc(regs));
438
439 if (fixup)
440 action = MIPS_BE_FIXUP;
441
442 if (board_be_handler)
28fc582c 443 action = board_be_handler(regs, fixup != NULL);
1da177e4
LT
444
445 switch (action) {
446 case MIPS_BE_DISCARD:
c3fc5cd5 447 goto out;
1da177e4
LT
448 case MIPS_BE_FIXUP:
449 if (fixup) {
450 regs->cp0_epc = fixup->nextinsn;
c3fc5cd5 451 goto out;
1da177e4
LT
452 }
453 break;
454 default:
455 break;
456 }
457
458 /*
459 * Assume it would be too dangerous to continue ...
460 */
461 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
462 data ? "Data" : "Instruction",
463 field, regs->cp0_epc, field, regs->regs[31]);
dc73e4c1
RB
464 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
465 SIGBUS) == NOTIFY_STOP)
c3fc5cd5 466 goto out;
88547001 467
1da177e4
LT
468 die_if_kernel("Oops", regs);
469 force_sig(SIGBUS, current);
c3fc5cd5
RB
470
471out:
472 exception_exit(prev_state);
1da177e4
LT
473}
474
1da177e4 475/*
60b0d655 476 * ll/sc, rdhwr, sync emulation
1da177e4
LT
477 */
478
479#define OPCODE 0xfc000000
480#define BASE 0x03e00000
481#define RT 0x001f0000
482#define OFFSET 0x0000ffff
483#define LL 0xc0000000
484#define SC 0xe0000000
60b0d655 485#define SPEC0 0x00000000
3c37026d
RB
486#define SPEC3 0x7c000000
487#define RD 0x0000f800
488#define FUNC 0x0000003f
60b0d655 489#define SYNC 0x0000000f
3c37026d 490#define RDHWR 0x0000003b
1da177e4 491
2a0b24f5
SH
492/* microMIPS definitions */
493#define MM_POOL32A_FUNC 0xfc00ffff
494#define MM_RDHWR 0x00006b3c
495#define MM_RS 0x001f0000
496#define MM_RT 0x03e00000
497
1da177e4
LT
498/*
499 * The ll_bit is cleared by r*_switch.S
500 */
501
f1e39a4a
RB
502unsigned int ll_bit;
503struct task_struct *ll_task;
1da177e4 504
60b0d655 505static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
1da177e4 506{
fe00f943 507 unsigned long value, __user *vaddr;
1da177e4 508 long offset;
1da177e4
LT
509
510 /*
511 * analyse the ll instruction that just caused a ri exception
512 * and put the referenced address to addr.
513 */
514
515 /* sign extend offset */
516 offset = opcode & OFFSET;
517 offset <<= 16;
518 offset >>= 16;
519
fe00f943 520 vaddr = (unsigned long __user *)
b9688310 521 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4 522
60b0d655
MR
523 if ((unsigned long)vaddr & 3)
524 return SIGBUS;
525 if (get_user(value, vaddr))
526 return SIGSEGV;
1da177e4
LT
527
528 preempt_disable();
529
530 if (ll_task == NULL || ll_task == current) {
531 ll_bit = 1;
532 } else {
533 ll_bit = 0;
534 }
535 ll_task = current;
536
537 preempt_enable();
538
539 regs->regs[(opcode & RT) >> 16] = value;
540
60b0d655 541 return 0;
1da177e4
LT
542}
543
60b0d655 544static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
1da177e4 545{
fe00f943
RB
546 unsigned long __user *vaddr;
547 unsigned long reg;
1da177e4 548 long offset;
1da177e4
LT
549
550 /*
551 * analyse the sc instruction that just caused a ri exception
552 * and put the referenced address to addr.
553 */
554
555 /* sign extend offset */
556 offset = opcode & OFFSET;
557 offset <<= 16;
558 offset >>= 16;
559
fe00f943 560 vaddr = (unsigned long __user *)
b9688310 561 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
562 reg = (opcode & RT) >> 16;
563
60b0d655
MR
564 if ((unsigned long)vaddr & 3)
565 return SIGBUS;
1da177e4
LT
566
567 preempt_disable();
568
569 if (ll_bit == 0 || ll_task != current) {
570 regs->regs[reg] = 0;
571 preempt_enable();
60b0d655 572 return 0;
1da177e4
LT
573 }
574
575 preempt_enable();
576
60b0d655
MR
577 if (put_user(regs->regs[reg], vaddr))
578 return SIGSEGV;
1da177e4
LT
579
580 regs->regs[reg] = 1;
581
60b0d655 582 return 0;
1da177e4
LT
583}
584
585/*
586 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
587 * opcodes are supposed to result in coprocessor unusable exceptions if
588 * executed on ll/sc-less processors. That's the theory. In practice a
589 * few processors such as NEC's VR4100 throw reserved instruction exceptions
590 * instead, so we're doing the emulation thing in both exception handlers.
591 */
60b0d655 592static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
1da177e4 593{
7f788d2d
DCZ
594 if ((opcode & OPCODE) == LL) {
595 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 596 1, regs, 0);
60b0d655 597 return simulate_ll(regs, opcode);
7f788d2d
DCZ
598 }
599 if ((opcode & OPCODE) == SC) {
600 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 601 1, regs, 0);
60b0d655 602 return simulate_sc(regs, opcode);
7f788d2d 603 }
1da177e4 604
60b0d655 605 return -1; /* Must be something else ... */
1da177e4
LT
606}
607
3c37026d
RB
608/*
609 * Simulate trapping 'rdhwr' instructions to provide user accessible
1f5826bd 610 * registers not implemented in hardware.
3c37026d 611 */
2a0b24f5 612static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
3c37026d 613{
dc8f6029 614 struct thread_info *ti = task_thread_info(current);
3c37026d 615
2a0b24f5
SH
616 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
617 1, regs, 0);
618 switch (rd) {
619 case 0: /* CPU number */
620 regs->regs[rt] = smp_processor_id();
621 return 0;
622 case 1: /* SYNCI length */
623 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
624 current_cpu_data.icache.linesz);
625 return 0;
626 case 2: /* Read count register */
627 regs->regs[rt] = read_c0_count();
628 return 0;
629 case 3: /* Count register resolution */
69f24d17 630 switch (current_cpu_type()) {
2a0b24f5
SH
631 case CPU_20KC:
632 case CPU_25KF:
633 regs->regs[rt] = 1;
634 break;
635 default:
636 regs->regs[rt] = 2;
637 }
638 return 0;
639 case 29:
640 regs->regs[rt] = ti->tp_value;
641 return 0;
642 default:
643 return -1;
644 }
645}
646
647static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
648{
3c37026d
RB
649 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
650 int rd = (opcode & RD) >> 11;
651 int rt = (opcode & RT) >> 16;
2a0b24f5
SH
652
653 simulate_rdhwr(regs, rd, rt);
654 return 0;
655 }
656
657 /* Not ours. */
658 return -1;
659}
660
661static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
662{
663 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
664 int rd = (opcode & MM_RS) >> 16;
665 int rt = (opcode & MM_RT) >> 21;
666 simulate_rdhwr(regs, rd, rt);
667 return 0;
3c37026d
RB
668 }
669
56ebd51b 670 /* Not ours. */
60b0d655
MR
671 return -1;
672}
e5679882 673
60b0d655
MR
674static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
675{
7f788d2d
DCZ
676 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
677 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 678 1, regs, 0);
60b0d655 679 return 0;
7f788d2d 680 }
60b0d655
MR
681
682 return -1; /* Must be something else ... */
3c37026d
RB
683}
684
1da177e4
LT
685asmlinkage void do_ov(struct pt_regs *regs)
686{
c3fc5cd5 687 enum ctx_state prev_state;
1da177e4
LT
688 siginfo_t info;
689
c3fc5cd5 690 prev_state = exception_enter();
36ccf1c0
RB
691 die_if_kernel("Integer overflow", regs);
692
1da177e4
LT
693 info.si_code = FPE_INTOVF;
694 info.si_signo = SIGFPE;
695 info.si_errno = 0;
fe00f943 696 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4 697 force_sig_info(SIGFPE, &info, current);
c3fc5cd5 698 exception_exit(prev_state);
1da177e4
LT
699}
700
102cedc3 701int process_fpemu_return(int sig, void __user *fault_addr)
515b029d
DD
702{
703 if (sig == SIGSEGV || sig == SIGBUS) {
704 struct siginfo si = {0};
705 si.si_addr = fault_addr;
706 si.si_signo = sig;
707 if (sig == SIGSEGV) {
f7a89f1b 708 down_read(&current->mm->mmap_sem);
515b029d
DD
709 if (find_vma(current->mm, (unsigned long)fault_addr))
710 si.si_code = SEGV_ACCERR;
711 else
712 si.si_code = SEGV_MAPERR;
f7a89f1b 713 up_read(&current->mm->mmap_sem);
515b029d
DD
714 } else {
715 si.si_code = BUS_ADRERR;
716 }
717 force_sig_info(sig, &si, current);
718 return 1;
719 } else if (sig) {
720 force_sig(sig, current);
721 return 1;
722 } else {
723 return 0;
724 }
725}
726
4227a2d4
PB
727static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
728 unsigned long old_epc, unsigned long old_ra)
729{
730 union mips_instruction inst = { .word = opcode };
731 void __user *fault_addr = NULL;
732 int sig;
733
734 /* If it's obviously not an FP instruction, skip it */
735 switch (inst.i_format.opcode) {
736 case cop1_op:
737 case cop1x_op:
738 case lwc1_op:
739 case ldc1_op:
740 case swc1_op:
741 case sdc1_op:
742 break;
743
744 default:
745 return -1;
746 }
747
748 /*
749 * do_ri skipped over the instruction via compute_return_epc, undo
750 * that for the FPU emulator.
751 */
752 regs->cp0_epc = old_epc;
753 regs->regs[31] = old_ra;
754
755 /* Save the FP context to struct thread_struct */
756 lose_fpu(1);
757
758 /* Run the emulator */
759 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
760 &fault_addr);
761
762 /* If something went wrong, signal */
763 process_fpemu_return(sig, fault_addr);
764
765 /* Restore the hardware register state */
766 own_fpu(1);
767
768 return 0;
769}
770
1da177e4
LT
771/*
772 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
773 */
774asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
775{
c3fc5cd5 776 enum ctx_state prev_state;
515b029d 777 siginfo_t info = {0};
948a34cf 778
c3fc5cd5 779 prev_state = exception_enter();
dc73e4c1
RB
780 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
781 SIGFPE) == NOTIFY_STOP)
c3fc5cd5 782 goto out;
57725f9e
CD
783 die_if_kernel("FP exception in kernel code", regs);
784
1da177e4
LT
785 if (fcr31 & FPU_CSR_UNI_X) {
786 int sig;
515b029d 787 void __user *fault_addr = NULL;
1da177e4 788
1da177e4 789 /*
a3dddd56 790 * Unimplemented operation exception. If we've got the full
1da177e4
LT
791 * software emulator on-board, let's use it...
792 *
793 * Force FPU to dump state into task/thread context. We're
794 * moving a lot of data here for what is probably a single
795 * instruction, but the alternative is to pre-decode the FP
796 * register operands before invoking the emulator, which seems
797 * a bit extreme for what should be an infrequent event.
798 */
cd21dfcf 799 /* Ensure 'resume' not overwrite saved fp context again. */
53dc8028 800 lose_fpu(1);
1da177e4
LT
801
802 /* Run the emulator */
515b029d
DD
803 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
804 &fault_addr);
1da177e4
LT
805
806 /*
807 * We can't allow the emulated instruction to leave any of
808 * the cause bit set in $fcr31.
809 */
eae89076 810 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1da177e4
LT
811
812 /* Restore the hardware register state */
70342287 813 own_fpu(1); /* Using the FPU again. */
1da177e4
LT
814
815 /* If something went wrong, signal */
515b029d 816 process_fpemu_return(sig, fault_addr);
1da177e4 817
c3fc5cd5 818 goto out;
948a34cf
TS
819 } else if (fcr31 & FPU_CSR_INV_X)
820 info.si_code = FPE_FLTINV;
821 else if (fcr31 & FPU_CSR_DIV_X)
822 info.si_code = FPE_FLTDIV;
823 else if (fcr31 & FPU_CSR_OVF_X)
824 info.si_code = FPE_FLTOVF;
825 else if (fcr31 & FPU_CSR_UDF_X)
826 info.si_code = FPE_FLTUND;
827 else if (fcr31 & FPU_CSR_INE_X)
828 info.si_code = FPE_FLTRES;
829 else
830 info.si_code = __SI_FAULT;
831 info.si_signo = SIGFPE;
832 info.si_errno = 0;
833 info.si_addr = (void __user *) regs->cp0_epc;
834 force_sig_info(SIGFPE, &info, current);
c3fc5cd5
RB
835
836out:
837 exception_exit(prev_state);
1da177e4
LT
838}
839
df270051
RB
840static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
841 const char *str)
1da177e4 842{
1da177e4 843 siginfo_t info;
df270051 844 char b[40];
1da177e4 845
5dd11d5d 846#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
70dc6f04 847 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
5dd11d5d
JW
848 return;
849#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
850
dc73e4c1
RB
851 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
852 SIGTRAP) == NOTIFY_STOP)
88547001
JW
853 return;
854
1da177e4 855 /*
df270051
RB
856 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
857 * insns, even for trap and break codes that indicate arithmetic
858 * failures. Weird ...
1da177e4
LT
859 * But should we continue the brokenness??? --macro
860 */
df270051
RB
861 switch (code) {
862 case BRK_OVERFLOW:
863 case BRK_DIVZERO:
864 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
865 die_if_kernel(b, regs);
866 if (code == BRK_DIVZERO)
1da177e4
LT
867 info.si_code = FPE_INTDIV;
868 else
869 info.si_code = FPE_INTOVF;
870 info.si_signo = SIGFPE;
871 info.si_errno = 0;
fe00f943 872 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
873 force_sig_info(SIGFPE, &info, current);
874 break;
63dc68a8 875 case BRK_BUG:
df270051
RB
876 die_if_kernel("Kernel bug detected", regs);
877 force_sig(SIGTRAP, current);
63dc68a8 878 break;
ba3049ed
RB
879 case BRK_MEMU:
880 /*
881 * Address errors may be deliberately induced by the FPU
882 * emulator to retake control of the CPU after executing the
883 * instruction in the delay slot of an emulated branch.
884 *
885 * Terminate if exception was recognized as a delay slot return
886 * otherwise handle as normal.
887 */
888 if (do_dsemulret(regs))
889 return;
890
891 die_if_kernel("Math emu break/trap", regs);
892 force_sig(SIGTRAP, current);
893 break;
1da177e4 894 default:
df270051
RB
895 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
896 die_if_kernel(b, regs);
1da177e4
LT
897 force_sig(SIGTRAP, current);
898 }
df270051
RB
899}
900
901asmlinkage void do_bp(struct pt_regs *regs)
902{
903 unsigned int opcode, bcode;
c3fc5cd5 904 enum ctx_state prev_state;
2a0b24f5
SH
905 unsigned long epc;
906 u16 instr[2];
078dde5e
LY
907 mm_segment_t seg;
908
909 seg = get_fs();
910 if (!user_mode(regs))
911 set_fs(KERNEL_DS);
2a0b24f5 912
c3fc5cd5 913 prev_state = exception_enter();
2a0b24f5
SH
914 if (get_isa16_mode(regs->cp0_epc)) {
915 /* Calculate EPC. */
916 epc = exception_epc(regs);
917 if (cpu_has_mmips) {
918 if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) ||
919 (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2)))))
920 goto out_sigsegv;
b08a9c95 921 opcode = (instr[0] << 16) | instr[1];
2a0b24f5 922 } else {
b08a9c95
MC
923 /* MIPS16e mode */
924 if (__get_user(instr[0],
925 (u16 __user *)msk_isa16_mode(epc)))
2a0b24f5 926 goto out_sigsegv;
b08a9c95
MC
927 bcode = (instr[0] >> 6) & 0x3f;
928 do_trap_or_bp(regs, bcode, "Break");
929 goto out;
2a0b24f5
SH
930 }
931 } else {
b08a9c95
MC
932 if (__get_user(opcode,
933 (unsigned int __user *) exception_epc(regs)))
2a0b24f5
SH
934 goto out_sigsegv;
935 }
df270051
RB
936
937 /*
938 * There is the ancient bug in the MIPS assemblers that the break
939 * code starts left to bit 16 instead to bit 6 in the opcode.
940 * Gas is bug-compatible, but not always, grrr...
941 * We handle both cases with a simple heuristics. --macro
942 */
943 bcode = ((opcode >> 6) & ((1 << 20) - 1));
944 if (bcode >= (1 << 10))
945 bcode >>= 10;
946
c1bf207d
DD
947 /*
948 * notify the kprobe handlers, if instruction is likely to
949 * pertain to them.
950 */
951 switch (bcode) {
952 case BRK_KPROBE_BP:
dc73e4c1
RB
953 if (notify_die(DIE_BREAK, "debug", regs, bcode,
954 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 955 goto out;
c1bf207d
DD
956 else
957 break;
958 case BRK_KPROBE_SSTEPBP:
dc73e4c1
RB
959 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
960 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 961 goto out;
c1bf207d
DD
962 else
963 break;
964 default:
965 break;
966 }
967
df270051 968 do_trap_or_bp(regs, bcode, "Break");
c3fc5cd5
RB
969
970out:
078dde5e 971 set_fs(seg);
c3fc5cd5 972 exception_exit(prev_state);
90fccb13 973 return;
e5679882
RB
974
975out_sigsegv:
976 force_sig(SIGSEGV, current);
c3fc5cd5 977 goto out;
1da177e4
LT
978}
979
980asmlinkage void do_tr(struct pt_regs *regs)
981{
a9a6e7a0 982 u32 opcode, tcode = 0;
c3fc5cd5 983 enum ctx_state prev_state;
2a0b24f5 984 u16 instr[2];
078dde5e 985 mm_segment_t seg;
a9a6e7a0 986 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1da177e4 987
078dde5e
LY
988 seg = get_fs();
989 if (!user_mode(regs))
990 set_fs(get_ds());
991
c3fc5cd5 992 prev_state = exception_enter();
a9a6e7a0
MR
993 if (get_isa16_mode(regs->cp0_epc)) {
994 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
995 __get_user(instr[1], (u16 __user *)(epc + 2)))
2a0b24f5 996 goto out_sigsegv;
a9a6e7a0
MR
997 opcode = (instr[0] << 16) | instr[1];
998 /* Immediate versions don't provide a code. */
999 if (!(opcode & OPCODE))
1000 tcode = (opcode >> 12) & ((1 << 4) - 1);
1001 } else {
1002 if (__get_user(opcode, (u32 __user *)epc))
1003 goto out_sigsegv;
1004 /* Immediate versions don't provide a code. */
1005 if (!(opcode & OPCODE))
1006 tcode = (opcode >> 6) & ((1 << 10) - 1);
2a0b24f5 1007 }
1da177e4 1008
df270051 1009 do_trap_or_bp(regs, tcode, "Trap");
c3fc5cd5
RB
1010
1011out:
078dde5e 1012 set_fs(seg);
c3fc5cd5 1013 exception_exit(prev_state);
90fccb13 1014 return;
e5679882
RB
1015
1016out_sigsegv:
1017 force_sig(SIGSEGV, current);
c3fc5cd5 1018 goto out;
1da177e4
LT
1019}
1020
1021asmlinkage void do_ri(struct pt_regs *regs)
1022{
60b0d655
MR
1023 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1024 unsigned long old_epc = regs->cp0_epc;
2a0b24f5 1025 unsigned long old31 = regs->regs[31];
c3fc5cd5 1026 enum ctx_state prev_state;
60b0d655
MR
1027 unsigned int opcode = 0;
1028 int status = -1;
1da177e4 1029
c3fc5cd5 1030 prev_state = exception_enter();
dc73e4c1
RB
1031 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
1032 SIGILL) == NOTIFY_STOP)
c3fc5cd5 1033 goto out;
88547001 1034
60b0d655 1035 die_if_kernel("Reserved instruction in kernel code", regs);
1da177e4 1036
60b0d655 1037 if (unlikely(compute_return_epc(regs) < 0))
c3fc5cd5 1038 goto out;
3c37026d 1039
2a0b24f5
SH
1040 if (get_isa16_mode(regs->cp0_epc)) {
1041 unsigned short mmop[2] = { 0 };
60b0d655 1042
2a0b24f5
SH
1043 if (unlikely(get_user(mmop[0], epc) < 0))
1044 status = SIGSEGV;
1045 if (unlikely(get_user(mmop[1], epc) < 0))
1046 status = SIGSEGV;
1047 opcode = (mmop[0] << 16) | mmop[1];
60b0d655 1048
2a0b24f5
SH
1049 if (status < 0)
1050 status = simulate_rdhwr_mm(regs, opcode);
1051 } else {
1052 if (unlikely(get_user(opcode, epc) < 0))
1053 status = SIGSEGV;
60b0d655 1054
2a0b24f5
SH
1055 if (!cpu_has_llsc && status < 0)
1056 status = simulate_llsc(regs, opcode);
1057
1058 if (status < 0)
1059 status = simulate_rdhwr_normal(regs, opcode);
1060
1061 if (status < 0)
1062 status = simulate_sync(regs, opcode);
4227a2d4
PB
1063
1064 if (status < 0)
1065 status = simulate_fp(regs, opcode, old_epc, old31);
2a0b24f5 1066 }
60b0d655
MR
1067
1068 if (status < 0)
1069 status = SIGILL;
1070
1071 if (unlikely(status > 0)) {
1072 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1073 regs->regs[31] = old31;
60b0d655
MR
1074 force_sig(status, current);
1075 }
c3fc5cd5
RB
1076
1077out:
1078 exception_exit(prev_state);
1da177e4
LT
1079}
1080
d223a861
RB
1081/*
1082 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1083 * emulated more than some threshold number of instructions, force migration to
1084 * a "CPU" that has FP support.
1085 */
1086static void mt_ase_fp_affinity(void)
1087{
1088#ifdef CONFIG_MIPS_MT_FPAFF
1089 if (mt_fpemul_threshold > 0 &&
1090 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1091 /*
1092 * If there's no FPU present, or if the application has already
1093 * restricted the allowed set to exclude any CPUs with FPUs,
1094 * we'll skip the procedure.
1095 */
1096 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
1097 cpumask_t tmask;
1098
9cc12363
KK
1099 current->thread.user_cpus_allowed
1100 = current->cpus_allowed;
1101 cpus_and(tmask, current->cpus_allowed,
1102 mt_fpu_cpumask);
ed1bbdef 1103 set_cpus_allowed_ptr(current, &tmask);
293c5bd1 1104 set_thread_flag(TIF_FPUBOUND);
d223a861
RB
1105 }
1106 }
1107#endif /* CONFIG_MIPS_MT_FPAFF */
1108}
1109
69f3a7de
RB
1110/*
1111 * No lock; only written during early bootup by CPU 0.
1112 */
1113static RAW_NOTIFIER_HEAD(cu2_chain);
1114
1115int __ref register_cu2_notifier(struct notifier_block *nb)
1116{
1117 return raw_notifier_chain_register(&cu2_chain, nb);
1118}
1119
1120int cu2_notifier_call_chain(unsigned long val, void *v)
1121{
1122 return raw_notifier_call_chain(&cu2_chain, val, v);
1123}
1124
1125static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
70342287 1126 void *data)
69f3a7de
RB
1127{
1128 struct pt_regs *regs = data;
1129
83bee792 1130 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
69f3a7de 1131 "instruction", regs);
83bee792 1132 force_sig(SIGILL, current);
69f3a7de
RB
1133
1134 return NOTIFY_OK;
1135}
1136
9791554b
PB
1137static int wait_on_fp_mode_switch(atomic_t *p)
1138{
1139 /*
1140 * The FP mode for this task is currently being switched. That may
1141 * involve modifications to the format of this tasks FP context which
1142 * make it unsafe to proceed with execution for the moment. Instead,
1143 * schedule some other task.
1144 */
1145 schedule();
1146 return 0;
1147}
1148
1db1af84
PB
1149static int enable_restore_fp_context(int msa)
1150{
c9017757 1151 int err, was_fpu_owner, prior_msa;
1db1af84 1152
9791554b
PB
1153 /*
1154 * If an FP mode switch is currently underway, wait for it to
1155 * complete before proceeding.
1156 */
1157 wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1158 wait_on_fp_mode_switch, TASK_KILLABLE);
1159
1db1af84
PB
1160 if (!used_math()) {
1161 /* First time FP context user. */
762a1f43 1162 preempt_disable();
1db1af84 1163 err = init_fpu();
c9017757 1164 if (msa && !err) {
1db1af84 1165 enable_msa();
c9017757 1166 _init_msa_upper();
732c0c3c
PB
1167 set_thread_flag(TIF_USEDMSA);
1168 set_thread_flag(TIF_MSA_CTX_LIVE);
c9017757 1169 }
762a1f43 1170 preempt_enable();
1db1af84
PB
1171 if (!err)
1172 set_used_math();
1173 return err;
1174 }
1175
1176 /*
1177 * This task has formerly used the FP context.
1178 *
1179 * If this thread has no live MSA vector context then we can simply
1180 * restore the scalar FP context. If it has live MSA vector context
1181 * (that is, it has or may have used MSA since last performing a
1182 * function call) then we'll need to restore the vector context. This
1183 * applies even if we're currently only executing a scalar FP
1184 * instruction. This is because if we were to later execute an MSA
1185 * instruction then we'd either have to:
1186 *
1187 * - Restore the vector context & clobber any registers modified by
1188 * scalar FP instructions between now & then.
1189 *
1190 * or
1191 *
1192 * - Not restore the vector context & lose the most significant bits
1193 * of all vector registers.
1194 *
1195 * Neither of those options is acceptable. We cannot restore the least
1196 * significant bits of the registers now & only restore the most
1197 * significant bits later because the most significant bits of any
1198 * vector registers whose aliased FP register is modified now will have
1199 * been zeroed. We'd have no way to know that when restoring the vector
1200 * context & thus may load an outdated value for the most significant
1201 * bits of a vector register.
1202 */
1203 if (!msa && !thread_msa_context_live())
1204 return own_fpu(1);
1205
1206 /*
1207 * This task is using or has previously used MSA. Thus we require
1208 * that Status.FR == 1.
1209 */
762a1f43 1210 preempt_disable();
1db1af84 1211 was_fpu_owner = is_fpu_owner();
762a1f43 1212 err = own_fpu_inatomic(0);
1db1af84 1213 if (err)
762a1f43 1214 goto out;
1db1af84
PB
1215
1216 enable_msa();
1217 write_msa_csr(current->thread.fpu.msacsr);
1218 set_thread_flag(TIF_USEDMSA);
1219
1220 /*
1221 * If this is the first time that the task is using MSA and it has
1222 * previously used scalar FP in this time slice then we already nave
c9017757
PB
1223 * FP context which we shouldn't clobber. We do however need to clear
1224 * the upper 64b of each vector register so that this task has no
1225 * opportunity to see data left behind by another.
1db1af84 1226 */
c9017757
PB
1227 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1228 if (!prior_msa && was_fpu_owner) {
1229 _init_msa_upper();
762a1f43
PB
1230
1231 goto out;
c9017757 1232 }
1db1af84 1233
c9017757
PB
1234 if (!prior_msa) {
1235 /*
1236 * Restore the least significant 64b of each vector register
1237 * from the existing scalar FP context.
1238 */
1239 _restore_fp(current);
b8340673 1240
c9017757
PB
1241 /*
1242 * The task has not formerly used MSA, so clear the upper 64b
1243 * of each vector register such that it cannot see data left
1244 * behind by another task.
1245 */
1246 _init_msa_upper();
1247 } else {
1248 /* We need to restore the vector context. */
1249 restore_msa(current);
b8340673 1250
c9017757
PB
1251 /* Restore the scalar FP control & status register */
1252 if (!was_fpu_owner)
1253 asm volatile("ctc1 %0, $31" : : "r"(current->thread.fpu.fcr31));
1254 }
762a1f43
PB
1255
1256out:
1257 preempt_enable();
1258
1db1af84
PB
1259 return 0;
1260}
1261
1da177e4
LT
1262asmlinkage void do_cpu(struct pt_regs *regs)
1263{
c3fc5cd5 1264 enum ctx_state prev_state;
60b0d655 1265 unsigned int __user *epc;
2a0b24f5 1266 unsigned long old_epc, old31;
60b0d655 1267 unsigned int opcode;
1da177e4 1268 unsigned int cpid;
597ce172 1269 int status, err;
f9bb4cf3 1270 unsigned long __maybe_unused flags;
1da177e4 1271
c3fc5cd5 1272 prev_state = exception_enter();
1da177e4
LT
1273 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1274
83bee792
J
1275 if (cpid != 2)
1276 die_if_kernel("do_cpu invoked from kernel context!", regs);
1277
1da177e4
LT
1278 switch (cpid) {
1279 case 0:
60b0d655
MR
1280 epc = (unsigned int __user *)exception_epc(regs);
1281 old_epc = regs->cp0_epc;
2a0b24f5 1282 old31 = regs->regs[31];
60b0d655
MR
1283 opcode = 0;
1284 status = -1;
1da177e4 1285
60b0d655 1286 if (unlikely(compute_return_epc(regs) < 0))
c3fc5cd5 1287 goto out;
3c37026d 1288
2a0b24f5
SH
1289 if (get_isa16_mode(regs->cp0_epc)) {
1290 unsigned short mmop[2] = { 0 };
60b0d655 1291
2a0b24f5
SH
1292 if (unlikely(get_user(mmop[0], epc) < 0))
1293 status = SIGSEGV;
1294 if (unlikely(get_user(mmop[1], epc) < 0))
1295 status = SIGSEGV;
1296 opcode = (mmop[0] << 16) | mmop[1];
60b0d655 1297
2a0b24f5
SH
1298 if (status < 0)
1299 status = simulate_rdhwr_mm(regs, opcode);
1300 } else {
1301 if (unlikely(get_user(opcode, epc) < 0))
1302 status = SIGSEGV;
1303
1304 if (!cpu_has_llsc && status < 0)
1305 status = simulate_llsc(regs, opcode);
1306
1307 if (status < 0)
1308 status = simulate_rdhwr_normal(regs, opcode);
1309 }
60b0d655
MR
1310
1311 if (status < 0)
1312 status = SIGILL;
1313
1314 if (unlikely(status > 0)) {
1315 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1316 regs->regs[31] = old31;
60b0d655
MR
1317 force_sig(status, current);
1318 }
1319
c3fc5cd5 1320 goto out;
1da177e4 1321
051ff44a
MR
1322 case 3:
1323 /*
1324 * Old (MIPS I and MIPS II) processors will set this code
1325 * for COP1X opcode instructions that replaced the original
70342287 1326 * COP3 space. We don't limit COP1 space instructions in
051ff44a
MR
1327 * the emulator according to the CPU ISA, so we want to
1328 * treat COP1X instructions consistently regardless of which
70342287 1329 * code the CPU chose. Therefore we redirect this trap to
051ff44a
MR
1330 * the FP emulator too.
1331 *
1332 * Then some newer FPU-less processors use this code
1333 * erroneously too, so they are covered by this choice
1334 * as well.
1335 */
1336 if (raw_cpu_has_fpu)
1337 break;
1338 /* Fall through. */
1339
1da177e4 1340 case 1:
1db1af84 1341 err = enable_restore_fp_context(0);
1da177e4 1342
597ce172 1343 if (!raw_cpu_has_fpu || err) {
e04582b7 1344 int sig;
515b029d 1345 void __user *fault_addr = NULL;
e04582b7 1346 sig = fpu_emulator_cop1Handler(regs,
515b029d
DD
1347 &current->thread.fpu,
1348 0, &fault_addr);
597ce172 1349 if (!process_fpemu_return(sig, fault_addr) && !err)
d223a861 1350 mt_ase_fp_affinity();
1da177e4
LT
1351 }
1352
c3fc5cd5 1353 goto out;
1da177e4
LT
1354
1355 case 2:
69f3a7de 1356 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
c3fc5cd5 1357 goto out;
1da177e4
LT
1358 }
1359
1360 force_sig(SIGILL, current);
c3fc5cd5
RB
1361
1362out:
1363 exception_exit(prev_state);
1da177e4
LT
1364}
1365
2bcb3fbc
PB
1366asmlinkage void do_msa_fpe(struct pt_regs *regs)
1367{
1368 enum ctx_state prev_state;
1369
1370 prev_state = exception_enter();
1371 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1372 force_sig(SIGFPE, current);
1373 exception_exit(prev_state);
1374}
1375
1db1af84
PB
1376asmlinkage void do_msa(struct pt_regs *regs)
1377{
1378 enum ctx_state prev_state;
1379 int err;
1380
1381 prev_state = exception_enter();
1382
1383 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1384 force_sig(SIGILL, current);
1385 goto out;
1386 }
1387
1388 die_if_kernel("do_msa invoked from kernel context!", regs);
1389
1390 err = enable_restore_fp_context(1);
1391 if (err)
1392 force_sig(SIGILL, current);
1393out:
1394 exception_exit(prev_state);
1395}
1396
1da177e4
LT
1397asmlinkage void do_mdmx(struct pt_regs *regs)
1398{
c3fc5cd5
RB
1399 enum ctx_state prev_state;
1400
1401 prev_state = exception_enter();
1da177e4 1402 force_sig(SIGILL, current);
c3fc5cd5 1403 exception_exit(prev_state);
1da177e4
LT
1404}
1405
8bc6d05b
DD
1406/*
1407 * Called with interrupts disabled.
1408 */
1da177e4
LT
1409asmlinkage void do_watch(struct pt_regs *regs)
1410{
c3fc5cd5 1411 enum ctx_state prev_state;
b67b2b70
DD
1412 u32 cause;
1413
c3fc5cd5 1414 prev_state = exception_enter();
1da177e4 1415 /*
b67b2b70
DD
1416 * Clear WP (bit 22) bit of cause register so we don't loop
1417 * forever.
1da177e4 1418 */
b67b2b70
DD
1419 cause = read_c0_cause();
1420 cause &= ~(1 << 22);
1421 write_c0_cause(cause);
1422
1423 /*
1424 * If the current thread has the watch registers loaded, save
1425 * their values and send SIGTRAP. Otherwise another thread
1426 * left the registers set, clear them and continue.
1427 */
1428 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1429 mips_read_watch_registers();
8bc6d05b 1430 local_irq_enable();
b67b2b70 1431 force_sig(SIGTRAP, current);
8bc6d05b 1432 } else {
b67b2b70 1433 mips_clear_watch_registers();
8bc6d05b
DD
1434 local_irq_enable();
1435 }
c3fc5cd5 1436 exception_exit(prev_state);
1da177e4
LT
1437}
1438
1439asmlinkage void do_mcheck(struct pt_regs *regs)
1440{
cac4bcbc
RB
1441 const int field = 2 * sizeof(unsigned long);
1442 int multi_match = regs->cp0_status & ST0_TS;
c3fc5cd5 1443 enum ctx_state prev_state;
cac4bcbc 1444
c3fc5cd5 1445 prev_state = exception_enter();
1da177e4 1446 show_regs(regs);
cac4bcbc
RB
1447
1448 if (multi_match) {
314727fe
MC
1449 pr_err("Index : %0x\n", read_c0_index());
1450 pr_err("Pagemask: %0x\n", read_c0_pagemask());
1451 pr_err("EntryHi : %0*lx\n", field, read_c0_entryhi());
1452 pr_err("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1453 pr_err("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
26b40ef1
MC
1454 pr_err("Wired : %0x\n", read_c0_wired());
1455 pr_err("Pagegrain: %0x\n", read_c0_pagegrain());
31ec86b8
MC
1456 if (cpu_has_htw) {
1457 pr_err("PWField : %0*lx\n", field, read_c0_pwfield());
1458 pr_err("PWSize : %0*lx\n", field, read_c0_pwsize());
1459 pr_err("PWCtl : %0x\n", read_c0_pwctl());
1460 }
314727fe 1461 pr_err("\n");
cac4bcbc
RB
1462 dump_tlb_all();
1463 }
1464
e1bb8289 1465 show_code((unsigned int __user *) regs->cp0_epc);
cac4bcbc 1466
1da177e4
LT
1467 /*
1468 * Some chips may have other causes of machine check (e.g. SB1
1469 * graduation timer)
1470 */
1471 panic("Caught Machine Check exception - %scaused by multiple "
1472 "matching entries in the TLB.",
cac4bcbc 1473 (multi_match) ? "" : "not ");
1da177e4
LT
1474}
1475
340ee4b9
RB
1476asmlinkage void do_mt(struct pt_regs *regs)
1477{
41c594ab
RB
1478 int subcode;
1479
41c594ab
RB
1480 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1481 >> VPECONTROL_EXCPT_SHIFT;
1482 switch (subcode) {
1483 case 0:
e35a5e35 1484 printk(KERN_DEBUG "Thread Underflow\n");
41c594ab
RB
1485 break;
1486 case 1:
e35a5e35 1487 printk(KERN_DEBUG "Thread Overflow\n");
41c594ab
RB
1488 break;
1489 case 2:
e35a5e35 1490 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
41c594ab
RB
1491 break;
1492 case 3:
e35a5e35 1493 printk(KERN_DEBUG "Gating Storage Exception\n");
41c594ab
RB
1494 break;
1495 case 4:
e35a5e35 1496 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
41c594ab
RB
1497 break;
1498 case 5:
f232c7e8 1499 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
41c594ab
RB
1500 break;
1501 default:
e35a5e35 1502 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
41c594ab
RB
1503 subcode);
1504 break;
1505 }
340ee4b9
RB
1506 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1507
1508 force_sig(SIGILL, current);
1509}
1510
1511
e50c0a8f
RB
1512asmlinkage void do_dsp(struct pt_regs *regs)
1513{
1514 if (cpu_has_dsp)
ab75dc02 1515 panic("Unexpected DSP exception");
e50c0a8f
RB
1516
1517 force_sig(SIGILL, current);
1518}
1519
1da177e4
LT
1520asmlinkage void do_reserved(struct pt_regs *regs)
1521{
1522 /*
70342287 1523 * Game over - no way to handle this if it ever occurs. Most probably
1da177e4
LT
1524 * caused by a new unknown cpu type or after another deadly
1525 * hard/software error.
1526 */
1527 show_regs(regs);
1528 panic("Caught reserved exception %ld - should not happen.",
1529 (regs->cp0_cause & 0x7f) >> 2);
1530}
1531
39b8d525
RB
1532static int __initdata l1parity = 1;
1533static int __init nol1parity(char *s)
1534{
1535 l1parity = 0;
1536 return 1;
1537}
1538__setup("nol1par", nol1parity);
1539static int __initdata l2parity = 1;
1540static int __init nol2parity(char *s)
1541{
1542 l2parity = 0;
1543 return 1;
1544}
1545__setup("nol2par", nol2parity);
1546
1da177e4
LT
1547/*
1548 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1549 * it different ways.
1550 */
1551static inline void parity_protection_init(void)
1552{
10cc3529 1553 switch (current_cpu_type()) {
1da177e4 1554 case CPU_24K:
98a41de9 1555 case CPU_34K:
39b8d525
RB
1556 case CPU_74K:
1557 case CPU_1004K:
442e14a2 1558 case CPU_1074K:
26ab96df 1559 case CPU_INTERAPTIV:
708ac4b8 1560 case CPU_PROAPTIV:
aced4cbd 1561 case CPU_P5600:
39b8d525
RB
1562 {
1563#define ERRCTL_PE 0x80000000
1564#define ERRCTL_L2P 0x00800000
1565 unsigned long errctl;
1566 unsigned int l1parity_present, l2parity_present;
1567
1568 errctl = read_c0_ecc();
1569 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1570
1571 /* probe L1 parity support */
1572 write_c0_ecc(errctl | ERRCTL_PE);
1573 back_to_back_c0_hazard();
1574 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1575
1576 /* probe L2 parity support */
1577 write_c0_ecc(errctl|ERRCTL_L2P);
1578 back_to_back_c0_hazard();
1579 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1580
1581 if (l1parity_present && l2parity_present) {
1582 if (l1parity)
1583 errctl |= ERRCTL_PE;
1584 if (l1parity ^ l2parity)
1585 errctl |= ERRCTL_L2P;
1586 } else if (l1parity_present) {
1587 if (l1parity)
1588 errctl |= ERRCTL_PE;
1589 } else if (l2parity_present) {
1590 if (l2parity)
1591 errctl |= ERRCTL_L2P;
1592 } else {
1593 /* No parity available */
1594 }
1595
1596 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1597
1598 write_c0_ecc(errctl);
1599 back_to_back_c0_hazard();
1600 errctl = read_c0_ecc();
1601 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1602
1603 if (l1parity_present)
1604 printk(KERN_INFO "Cache parity protection %sabled\n",
1605 (errctl & ERRCTL_PE) ? "en" : "dis");
1606
1607 if (l2parity_present) {
1608 if (l1parity_present && l1parity)
1609 errctl ^= ERRCTL_L2P;
1610 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1611 (errctl & ERRCTL_L2P) ? "en" : "dis");
1612 }
1613 }
1614 break;
1615
1da177e4 1616 case CPU_5KC:
78d4803f 1617 case CPU_5KE:
2fa36399 1618 case CPU_LOONGSON1:
14f18b7f
RB
1619 write_c0_ecc(0x80000000);
1620 back_to_back_c0_hazard();
1621 /* Set the PE bit (bit 31) in the c0_errctl register. */
1622 printk(KERN_INFO "Cache parity protection %sabled\n",
1623 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1da177e4
LT
1624 break;
1625 case CPU_20KC:
1626 case CPU_25KF:
1627 /* Clear the DE bit (bit 16) in the c0_status register. */
1628 printk(KERN_INFO "Enable cache parity protection for "
1629 "MIPS 20KC/25KF CPUs.\n");
1630 clear_c0_status(ST0_DE);
1631 break;
1632 default:
1633 break;
1634 }
1635}
1636
1637asmlinkage void cache_parity_error(void)
1638{
1639 const int field = 2 * sizeof(unsigned long);
1640 unsigned int reg_val;
1641
1642 /* For the moment, report the problem and hang. */
1643 printk("Cache error exception:\n");
1644 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1645 reg_val = read_c0_cacheerr();
1646 printk("c0_cacheerr == %08x\n", reg_val);
1647
1648 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1649 reg_val & (1<<30) ? "secondary" : "primary",
1650 reg_val & (1<<31) ? "data" : "insn");
6de20451 1651 if (cpu_has_mips_r2 &&
721a9205 1652 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
6de20451
LY
1653 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1654 reg_val & (1<<29) ? "ED " : "",
1655 reg_val & (1<<28) ? "ET " : "",
1656 reg_val & (1<<27) ? "ES " : "",
1657 reg_val & (1<<26) ? "EE " : "",
1658 reg_val & (1<<25) ? "EB " : "",
1659 reg_val & (1<<24) ? "EI " : "",
1660 reg_val & (1<<23) ? "E1 " : "",
1661 reg_val & (1<<22) ? "E0 " : "");
1662 } else {
1663 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1664 reg_val & (1<<29) ? "ED " : "",
1665 reg_val & (1<<28) ? "ET " : "",
1666 reg_val & (1<<26) ? "EE " : "",
1667 reg_val & (1<<25) ? "EB " : "",
1668 reg_val & (1<<24) ? "EI " : "",
1669 reg_val & (1<<23) ? "E1 " : "",
1670 reg_val & (1<<22) ? "E0 " : "");
1671 }
1da177e4
LT
1672 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1673
ec917c2c 1674#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1da177e4
LT
1675 if (reg_val & (1<<22))
1676 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1677
1678 if (reg_val & (1<<23))
1679 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1680#endif
1681
1682 panic("Can't handle the cache error!");
1683}
1684
75b5b5e0
LY
1685asmlinkage void do_ftlb(void)
1686{
1687 const int field = 2 * sizeof(unsigned long);
1688 unsigned int reg_val;
1689
1690 /* For the moment, report the problem and hang. */
1691 if (cpu_has_mips_r2 &&
721a9205 1692 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
75b5b5e0
LY
1693 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1694 read_c0_ecc());
1695 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1696 reg_val = read_c0_cacheerr();
1697 pr_err("c0_cacheerr == %08x\n", reg_val);
1698
1699 if ((reg_val & 0xc0000000) == 0xc0000000) {
1700 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1701 } else {
1702 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1703 reg_val & (1<<30) ? "secondary" : "primary",
1704 reg_val & (1<<31) ? "data" : "insn");
1705 }
1706 } else {
1707 pr_err("FTLB error exception\n");
1708 }
1709 /* Just print the cacheerr bits for now */
1710 cache_parity_error();
1711}
1712
1da177e4
LT
1713/*
1714 * SDBBP EJTAG debug exception handler.
1715 * We skip the instruction and return to the next instruction.
1716 */
1717void ejtag_exception_handler(struct pt_regs *regs)
1718{
1719 const int field = 2 * sizeof(unsigned long);
2a0b24f5 1720 unsigned long depc, old_epc, old_ra;
1da177e4
LT
1721 unsigned int debug;
1722
70ae6126 1723 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1da177e4
LT
1724 depc = read_c0_depc();
1725 debug = read_c0_debug();
70ae6126 1726 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1da177e4
LT
1727 if (debug & 0x80000000) {
1728 /*
1729 * In branch delay slot.
1730 * We cheat a little bit here and use EPC to calculate the
1731 * debug return address (DEPC). EPC is restored after the
1732 * calculation.
1733 */
1734 old_epc = regs->cp0_epc;
2a0b24f5 1735 old_ra = regs->regs[31];
1da177e4 1736 regs->cp0_epc = depc;
2a0b24f5 1737 compute_return_epc(regs);
1da177e4
LT
1738 depc = regs->cp0_epc;
1739 regs->cp0_epc = old_epc;
2a0b24f5 1740 regs->regs[31] = old_ra;
1da177e4
LT
1741 } else
1742 depc += 4;
1743 write_c0_depc(depc);
1744
1745#if 0
70ae6126 1746 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1da177e4
LT
1747 write_c0_debug(debug | 0x100);
1748#endif
1749}
1750
1751/*
1752 * NMI exception handler.
34bd92e2 1753 * No lock; only written during early bootup by CPU 0.
1da177e4 1754 */
34bd92e2
KC
1755static RAW_NOTIFIER_HEAD(nmi_chain);
1756
1757int register_nmi_notifier(struct notifier_block *nb)
1758{
1759 return raw_notifier_chain_register(&nmi_chain, nb);
1760}
1761
ff2d8b19 1762void __noreturn nmi_exception_handler(struct pt_regs *regs)
1da177e4 1763{
83e4da1e
LY
1764 char str[100];
1765
34bd92e2 1766 raw_notifier_call_chain(&nmi_chain, 0, regs);
41c594ab 1767 bust_spinlocks(1);
83e4da1e
LY
1768 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1769 smp_processor_id(), regs->cp0_epc);
1770 regs->cp0_epc = read_c0_errorepc();
1771 die(str, regs);
1da177e4
LT
1772}
1773
e01402b1
RB
1774#define VECTORSPACING 0x100 /* for EI/VI mode */
1775
1776unsigned long ebase;
1da177e4 1777unsigned long exception_handlers[32];
e01402b1 1778unsigned long vi_handlers[64];
1da177e4 1779
2d1b6e95 1780void __init *set_except_vector(int n, void *addr)
1da177e4
LT
1781{
1782 unsigned long handler = (unsigned long) addr;
b22d1b6a 1783 unsigned long old_handler;
1da177e4 1784
2a0b24f5
SH
1785#ifdef CONFIG_CPU_MICROMIPS
1786 /*
1787 * Only the TLB handlers are cache aligned with an even
1788 * address. All other handlers are on an odd address and
1789 * require no modification. Otherwise, MIPS32 mode will
1790 * be entered when handling any TLB exceptions. That
1791 * would be bad...since we must stay in microMIPS mode.
1792 */
1793 if (!(handler & 0x1))
1794 handler |= 1;
1795#endif
b22d1b6a 1796 old_handler = xchg(&exception_handlers[n], handler);
1da177e4 1797
1da177e4 1798 if (n == 0 && cpu_has_divec) {
2a0b24f5
SH
1799#ifdef CONFIG_CPU_MICROMIPS
1800 unsigned long jump_mask = ~((1 << 27) - 1);
1801#else
92bbe1b9 1802 unsigned long jump_mask = ~((1 << 28) - 1);
2a0b24f5 1803#endif
92bbe1b9
FF
1804 u32 *buf = (u32 *)(ebase + 0x200);
1805 unsigned int k0 = 26;
1806 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1807 uasm_i_j(&buf, handler & ~jump_mask);
1808 uasm_i_nop(&buf);
1809 } else {
1810 UASM_i_LA(&buf, k0, handler);
1811 uasm_i_jr(&buf, k0);
1812 uasm_i_nop(&buf);
1813 }
1814 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
e01402b1
RB
1815 }
1816 return (void *)old_handler;
1817}
1818
86a1708a 1819static void do_default_vi(void)
6ba07e59
AN
1820{
1821 show_regs(get_irq_regs());
1822 panic("Caught unexpected vectored interrupt.");
1823}
1824
ef300e42 1825static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
e01402b1
RB
1826{
1827 unsigned long handler;
1828 unsigned long old_handler = vi_handlers[n];
f6771dbb 1829 int srssets = current_cpu_data.srsets;
2a0b24f5 1830 u16 *h;
e01402b1
RB
1831 unsigned char *b;
1832
b72b7092 1833 BUG_ON(!cpu_has_veic && !cpu_has_vint);
e01402b1
RB
1834
1835 if (addr == NULL) {
1836 handler = (unsigned long) do_default_vi;
1837 srs = 0;
41c594ab 1838 } else
e01402b1 1839 handler = (unsigned long) addr;
2a0b24f5 1840 vi_handlers[n] = handler;
e01402b1
RB
1841
1842 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1843
f6771dbb 1844 if (srs >= srssets)
e01402b1
RB
1845 panic("Shadow register set %d not supported", srs);
1846
1847 if (cpu_has_veic) {
1848 if (board_bind_eic_interrupt)
49a89efb 1849 board_bind_eic_interrupt(n, srs);
41c594ab 1850 } else if (cpu_has_vint) {
e01402b1 1851 /* SRSMap is only defined if shadow sets are implemented */
f6771dbb 1852 if (srssets > 1)
49a89efb 1853 change_c0_srsmap(0xf << n*4, srs << n*4);
e01402b1
RB
1854 }
1855
1856 if (srs == 0) {
1857 /*
1858 * If no shadow set is selected then use the default handler
2a0b24f5 1859 * that does normal register saving and standard interrupt exit
e01402b1 1860 */
e01402b1
RB
1861 extern char except_vec_vi, except_vec_vi_lui;
1862 extern char except_vec_vi_ori, except_vec_vi_end;
c65a5480 1863 extern char rollback_except_vec_vi;
f94d9a8e 1864 char *vec_start = using_rollback_handler() ?
c65a5480 1865 &rollback_except_vec_vi : &except_vec_vi;
2a0b24f5
SH
1866#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1867 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1868 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1869#else
c65a5480
AN
1870 const int lui_offset = &except_vec_vi_lui - vec_start;
1871 const int ori_offset = &except_vec_vi_ori - vec_start;
2a0b24f5
SH
1872#endif
1873 const int handler_len = &except_vec_vi_end - vec_start;
e01402b1
RB
1874
1875 if (handler_len > VECTORSPACING) {
1876 /*
1877 * Sigh... panicing won't help as the console
1878 * is probably not configured :(
1879 */
49a89efb 1880 panic("VECTORSPACING too small");
e01402b1
RB
1881 }
1882
2a0b24f5
SH
1883 set_handler(((unsigned long)b - ebase), vec_start,
1884#ifdef CONFIG_CPU_MICROMIPS
1885 (handler_len - 1));
1886#else
1887 handler_len);
1888#endif
2a0b24f5
SH
1889 h = (u16 *)(b + lui_offset);
1890 *h = (handler >> 16) & 0xffff;
1891 h = (u16 *)(b + ori_offset);
1892 *h = (handler & 0xffff);
e0cee3ee
TB
1893 local_flush_icache_range((unsigned long)b,
1894 (unsigned long)(b+handler_len));
e01402b1
RB
1895 }
1896 else {
1897 /*
2a0b24f5
SH
1898 * In other cases jump directly to the interrupt handler. It
1899 * is the handler's responsibility to save registers if required
1900 * (eg hi/lo) and return from the exception using "eret".
e01402b1 1901 */
2a0b24f5
SH
1902 u32 insn;
1903
1904 h = (u16 *)b;
1905 /* j handler */
1906#ifdef CONFIG_CPU_MICROMIPS
1907 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1908#else
1909 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1910#endif
1911 h[0] = (insn >> 16) & 0xffff;
1912 h[1] = insn & 0xffff;
1913 h[2] = 0;
1914 h[3] = 0;
e0cee3ee
TB
1915 local_flush_icache_range((unsigned long)b,
1916 (unsigned long)(b+8));
1da177e4 1917 }
e01402b1 1918
1da177e4
LT
1919 return (void *)old_handler;
1920}
1921
ef300e42 1922void *set_vi_handler(int n, vi_handler_t addr)
e01402b1 1923{
ff3eab2a 1924 return set_vi_srs_handler(n, addr, 0);
e01402b1 1925}
f41ae0b2 1926
1da177e4
LT
1927extern void tlb_init(void);
1928
42f77542
RB
1929/*
1930 * Timer interrupt
1931 */
1932int cp0_compare_irq;
68b6352c 1933EXPORT_SYMBOL_GPL(cp0_compare_irq);
010c108d 1934int cp0_compare_irq_shift;
42f77542
RB
1935
1936/*
1937 * Performance counter IRQ or -1 if shared with timer
1938 */
1939int cp0_perfcount_irq;
1940EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1941
078a55fc 1942static int noulri;
bdc94eb4
CD
1943
1944static int __init ulri_disable(char *s)
1945{
1946 pr_info("Disabling ulri\n");
1947 noulri = 1;
1948
1949 return 1;
1950}
1951__setup("noulri", ulri_disable);
1952
ae4ce454
JH
1953/* configure STATUS register */
1954static void configure_status(void)
1da177e4 1955{
1da177e4
LT
1956 /*
1957 * Disable coprocessors and select 32-bit or 64-bit addressing
1958 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1959 * flag that some firmware may have left set and the TS bit (for
1960 * IP27). Set XX for ISA IV code to work.
1961 */
ae4ce454 1962 unsigned int status_set = ST0_CU0;
875d43e7 1963#ifdef CONFIG_64BIT
1da177e4
LT
1964 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1965#endif
adb37892 1966 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1da177e4 1967 status_set |= ST0_XX;
bbaf238b
CD
1968 if (cpu_has_dsp)
1969 status_set |= ST0_MX;
1970
b38c7399 1971 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1da177e4 1972 status_set);
ae4ce454
JH
1973}
1974
1975/* configure HWRENA register */
1976static void configure_hwrena(void)
1977{
1978 unsigned int hwrena = cpu_hwrena_impl_bits;
1da177e4 1979
18d693b3
KC
1980 if (cpu_has_mips_r2)
1981 hwrena |= 0x0000000f;
a3692020 1982
18d693b3
KC
1983 if (!noulri && cpu_has_userlocal)
1984 hwrena |= (1 << 29);
a3692020 1985
18d693b3
KC
1986 if (hwrena)
1987 write_c0_hwrena(hwrena);
ae4ce454 1988}
e01402b1 1989
ae4ce454
JH
1990static void configure_exception_vector(void)
1991{
e01402b1 1992 if (cpu_has_veic || cpu_has_vint) {
9fb4c2b9 1993 unsigned long sr = set_c0_status(ST0_BEV);
49a89efb 1994 write_c0_ebase(ebase);
9fb4c2b9 1995 write_c0_status(sr);
e01402b1 1996 /* Setting vector spacing enables EI/VI mode */
49a89efb 1997 change_c0_intctl(0x3e0, VECTORSPACING);
e01402b1 1998 }
d03d0a57
RB
1999 if (cpu_has_divec) {
2000 if (cpu_has_mipsmt) {
2001 unsigned int vpflags = dvpe();
2002 set_c0_cause(CAUSEF_IV);
2003 evpe(vpflags);
2004 } else
2005 set_c0_cause(CAUSEF_IV);
2006 }
ae4ce454
JH
2007}
2008
2009void per_cpu_trap_init(bool is_boot_cpu)
2010{
2011 unsigned int cpu = smp_processor_id();
ae4ce454
JH
2012
2013 configure_status();
2014 configure_hwrena();
2015
ae4ce454 2016 configure_exception_vector();
3b1d4ed5
RB
2017
2018 /*
2019 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2020 *
2021 * o read IntCtl.IPTI to determine the timer interrupt
2022 * o read IntCtl.IPPCI to determine the performance counter interrupt
2023 */
2024 if (cpu_has_mips_r2) {
010c108d
DV
2025 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2026 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2027 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
c3e838a2 2028 if (cp0_perfcount_irq == cp0_compare_irq)
3b1d4ed5 2029 cp0_perfcount_irq = -1;
c3e838a2
CD
2030 } else {
2031 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
c6a4ebb9 2032 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
c3e838a2 2033 cp0_perfcount_irq = -1;
3b1d4ed5
RB
2034 }
2035
48c4ac97
DD
2036 if (!cpu_data[cpu].asid_cache)
2037 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1da177e4
LT
2038
2039 atomic_inc(&init_mm.mm_count);
2040 current->active_mm = &init_mm;
2041 BUG_ON(current->mm);
2042 enter_lazy_tlb(&init_mm, current);
2043
6650df3c
DD
2044 /* Boot CPU's cache setup in setup_arch(). */
2045 if (!is_boot_cpu)
2046 cpu_cache_init();
41c594ab 2047 tlb_init();
3d8bfdd0 2048 TLBMISS_HANDLER_SETUP();
1da177e4
LT
2049}
2050
e01402b1 2051/* Install CPU exception handler */
078a55fc 2052void set_handler(unsigned long offset, void *addr, unsigned long size)
e01402b1 2053{
2a0b24f5
SH
2054#ifdef CONFIG_CPU_MICROMIPS
2055 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2056#else
e01402b1 2057 memcpy((void *)(ebase + offset), addr, size);
2a0b24f5 2058#endif
e0cee3ee 2059 local_flush_icache_range(ebase + offset, ebase + offset + size);
e01402b1
RB
2060}
2061
078a55fc 2062static char panic_null_cerr[] =
641e97f3
RB
2063 "Trying to set NULL cache error exception handler";
2064
42fe7ee3
RB
2065/*
2066 * Install uncached CPU exception handler.
2067 * This is suitable only for the cache error exception which is the only
2068 * exception handler that is being run uncached.
2069 */
078a55fc 2070void set_uncached_handler(unsigned long offset, void *addr,
234fcd14 2071 unsigned long size)
e01402b1 2072{
4f81b01a 2073 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
e01402b1 2074
641e97f3
RB
2075 if (!addr)
2076 panic(panic_null_cerr);
2077
e01402b1
RB
2078 memcpy((void *)(uncached_ebase + offset), addr, size);
2079}
2080
5b10496b
AN
2081static int __initdata rdhwr_noopt;
2082static int __init set_rdhwr_noopt(char *str)
2083{
2084 rdhwr_noopt = 1;
2085 return 1;
2086}
2087
2088__setup("rdhwr_noopt", set_rdhwr_noopt);
2089
1da177e4
LT
2090void __init trap_init(void)
2091{
2a0b24f5 2092 extern char except_vec3_generic;
1da177e4 2093 extern char except_vec4;
2a0b24f5 2094 extern char except_vec3_r4000;
1da177e4 2095 unsigned long i;
c65a5480
AN
2096
2097 check_wait();
1da177e4 2098
88547001
JW
2099#if defined(CONFIG_KGDB)
2100 if (kgdb_early_setup)
70342287 2101 return; /* Already done */
88547001
JW
2102#endif
2103
9fb4c2b9
CD
2104 if (cpu_has_veic || cpu_has_vint) {
2105 unsigned long size = 0x200 + VECTORSPACING*64;
2106 ebase = (unsigned long)
2107 __alloc_bootmem(size, 1 << fls(size), 0);
2108 } else {
9843b030
SL
2109#ifdef CONFIG_KVM_GUEST
2110#define KVM_GUEST_KSEG0 0x40000000
2111 ebase = KVM_GUEST_KSEG0;
2112#else
2113 ebase = CKSEG0;
2114#endif
566f74f6
DD
2115 if (cpu_has_mips_r2)
2116 ebase += (read_c0_ebase() & 0x3ffff000);
2117 }
e01402b1 2118
c6213c6c
SH
2119 if (cpu_has_mmips) {
2120 unsigned int config3 = read_c0_config3();
2121
2122 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2123 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2124 else
2125 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2126 }
2127
6fb97eff
KC
2128 if (board_ebase_setup)
2129 board_ebase_setup();
6650df3c 2130 per_cpu_trap_init(true);
1da177e4
LT
2131
2132 /*
2133 * Copy the generic exception handlers to their final destination.
2134 * This will be overriden later as suitable for a particular
2135 * configuration.
2136 */
e01402b1 2137 set_handler(0x180, &except_vec3_generic, 0x80);
1da177e4
LT
2138
2139 /*
2140 * Setup default vectors
2141 */
2142 for (i = 0; i <= 31; i++)
2143 set_except_vector(i, handle_reserved);
2144
2145 /*
2146 * Copy the EJTAG debug exception vector handler code to it's final
2147 * destination.
2148 */
e01402b1 2149 if (cpu_has_ejtag && board_ejtag_handler_setup)
49a89efb 2150 board_ejtag_handler_setup();
1da177e4
LT
2151
2152 /*
2153 * Only some CPUs have the watch exceptions.
2154 */
2155 if (cpu_has_watch)
2156 set_except_vector(23, handle_watch);
2157
2158 /*
e01402b1 2159 * Initialise interrupt handlers
1da177e4 2160 */
e01402b1
RB
2161 if (cpu_has_veic || cpu_has_vint) {
2162 int nvec = cpu_has_veic ? 64 : 8;
2163 for (i = 0; i < nvec; i++)
ff3eab2a 2164 set_vi_handler(i, NULL);
e01402b1
RB
2165 }
2166 else if (cpu_has_divec)
2167 set_handler(0x200, &except_vec4, 0x8);
1da177e4
LT
2168
2169 /*
2170 * Some CPUs can enable/disable for cache parity detection, but does
2171 * it different ways.
2172 */
2173 parity_protection_init();
2174
2175 /*
2176 * The Data Bus Errors / Instruction Bus Errors are signaled
2177 * by external hardware. Therefore these two exceptions
2178 * may have board specific handlers.
2179 */
2180 if (board_be_init)
2181 board_be_init();
2182
f94d9a8e
RB
2183 set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2184 : handle_int);
1da177e4
LT
2185 set_except_vector(1, handle_tlbm);
2186 set_except_vector(2, handle_tlbl);
2187 set_except_vector(3, handle_tlbs);
2188
2189 set_except_vector(4, handle_adel);
2190 set_except_vector(5, handle_ades);
2191
2192 set_except_vector(6, handle_ibe);
2193 set_except_vector(7, handle_dbe);
2194
2195 set_except_vector(8, handle_sys);
2196 set_except_vector(9, handle_bp);
5b10496b
AN
2197 set_except_vector(10, rdhwr_noopt ? handle_ri :
2198 (cpu_has_vtag_icache ?
2199 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1da177e4
LT
2200 set_except_vector(11, handle_cpu);
2201 set_except_vector(12, handle_ov);
2202 set_except_vector(13, handle_tr);
2bcb3fbc 2203 set_except_vector(14, handle_msa_fpe);
1da177e4 2204
10cc3529
RB
2205 if (current_cpu_type() == CPU_R6000 ||
2206 current_cpu_type() == CPU_R6000A) {
1da177e4
LT
2207 /*
2208 * The R6000 is the only R-series CPU that features a machine
2209 * check exception (similar to the R4000 cache error) and
2210 * unaligned ldc1/sdc1 exception. The handlers have not been
70342287 2211 * written yet. Well, anyway there is no R6000 machine on the
1da177e4
LT
2212 * current list of targets for Linux/MIPS.
2213 * (Duh, crap, there is someone with a triple R6k machine)
2214 */
2215 //set_except_vector(14, handle_mc);
2216 //set_except_vector(15, handle_ndc);
2217 }
2218
e01402b1
RB
2219
2220 if (board_nmi_handler_setup)
2221 board_nmi_handler_setup();
2222
e50c0a8f
RB
2223 if (cpu_has_fpu && !cpu_has_nofpuex)
2224 set_except_vector(15, handle_fpe);
2225
75b5b5e0 2226 set_except_vector(16, handle_ftlb);
5890f70f
LY
2227
2228 if (cpu_has_rixiex) {
2229 set_except_vector(19, tlb_do_page_fault_0);
2230 set_except_vector(20, tlb_do_page_fault_0);
2231 }
2232
1db1af84 2233 set_except_vector(21, handle_msa);
e50c0a8f
RB
2234 set_except_vector(22, handle_mdmx);
2235
2236 if (cpu_has_mcheck)
2237 set_except_vector(24, handle_mcheck);
2238
340ee4b9
RB
2239 if (cpu_has_mipsmt)
2240 set_except_vector(25, handle_mt);
2241
acaec427 2242 set_except_vector(26, handle_dsp);
e50c0a8f 2243
fcbf1dfd
DD
2244 if (board_cache_error_setup)
2245 board_cache_error_setup();
2246
e50c0a8f
RB
2247 if (cpu_has_vce)
2248 /* Special exception: R4[04]00 uses also the divec space. */
2a0b24f5 2249 set_handler(0x180, &except_vec3_r4000, 0x100);
e50c0a8f 2250 else if (cpu_has_4kex)
2a0b24f5 2251 set_handler(0x180, &except_vec3_generic, 0x80);
e50c0a8f 2252 else
2a0b24f5 2253 set_handler(0x080, &except_vec3_generic, 0x80);
e50c0a8f 2254
e0cee3ee 2255 local_flush_icache_range(ebase, ebase + 0x400);
0510617b
TB
2256
2257 sort_extable(__start___dbe_table, __stop___dbe_table);
69f3a7de 2258
4483b159 2259 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
1da177e4 2260}
ae4ce454
JH
2261
2262static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2263 void *v)
2264{
2265 switch (cmd) {
2266 case CPU_PM_ENTER_FAILED:
2267 case CPU_PM_EXIT:
2268 configure_status();
2269 configure_hwrena();
2270 configure_exception_vector();
2271
2272 /* Restore register with CPU number for TLB handlers */
2273 TLBMISS_HANDLER_RESTORE();
2274
2275 break;
2276 }
2277
2278 return NOTIFY_OK;
2279}
2280
2281static struct notifier_block trap_pm_notifier_block = {
2282 .notifier_call = trap_pm_notifier,
2283};
2284
2285static int __init trap_pm_init(void)
2286{
2287 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2288}
2289arch_initcall(trap_pm_init);