[MIPS] Fix marking buddy of pte global for MIPS32 w/36-bit physical address
[linux-2.6-block.git] / arch / mips / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
36ccf1c0 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
1da177e4
LT
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
3b2396d9 12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
1da177e4
LT
13 */
14#include <linux/config.h>
15#include <linux/init.h>
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/sched.h>
19#include <linux/smp.h>
20#include <linux/smp_lock.h>
21#include <linux/spinlock.h>
22#include <linux/kallsyms.h>
e01402b1 23#include <linux/bootmem.h>
1da177e4
LT
24
25#include <asm/bootinfo.h>
26#include <asm/branch.h>
27#include <asm/break.h>
28#include <asm/cpu.h>
e50c0a8f 29#include <asm/dsp.h>
1da177e4 30#include <asm/fpu.h>
340ee4b9
RB
31#include <asm/mipsregs.h>
32#include <asm/mipsmtregs.h>
1da177e4
LT
33#include <asm/module.h>
34#include <asm/pgtable.h>
35#include <asm/ptrace.h>
36#include <asm/sections.h>
37#include <asm/system.h>
38#include <asm/tlbdebug.h>
39#include <asm/traps.h>
40#include <asm/uaccess.h>
41#include <asm/mmu_context.h>
42#include <asm/watch.h>
43#include <asm/types.h>
44
e4ac58af 45extern asmlinkage void handle_int(void);
1da177e4
LT
46extern asmlinkage void handle_tlbm(void);
47extern asmlinkage void handle_tlbl(void);
48extern asmlinkage void handle_tlbs(void);
49extern asmlinkage void handle_adel(void);
50extern asmlinkage void handle_ades(void);
51extern asmlinkage void handle_ibe(void);
52extern asmlinkage void handle_dbe(void);
53extern asmlinkage void handle_sys(void);
54extern asmlinkage void handle_bp(void);
55extern asmlinkage void handle_ri(void);
56extern asmlinkage void handle_cpu(void);
57extern asmlinkage void handle_ov(void);
58extern asmlinkage void handle_tr(void);
59extern asmlinkage void handle_fpe(void);
60extern asmlinkage void handle_mdmx(void);
61extern asmlinkage void handle_watch(void);
340ee4b9 62extern asmlinkage void handle_mt(void);
e50c0a8f 63extern asmlinkage void handle_dsp(void);
1da177e4
LT
64extern asmlinkage void handle_mcheck(void);
65extern asmlinkage void handle_reserved(void);
66
12616ed2 67extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
1da177e4
LT
68 struct mips_fpu_soft_struct *ctx);
69
70void (*board_be_init)(void);
71int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
e01402b1
RB
72void (*board_nmi_handler_setup)(void);
73void (*board_ejtag_handler_setup)(void);
74void (*board_bind_eic_interrupt)(int irq, int regset);
1da177e4
LT
75
76/*
77 * These constant is for searching for possible module text segments.
78 * MODULE_RANGE is a guess of how much space is likely to be vmalloced.
79 */
80#define MODULE_RANGE (8*1024*1024)
81
82/*
83 * This routine abuses get_user()/put_user() to reference pointers
84 * with at least a bit of error checking ...
85 */
86void show_stack(struct task_struct *task, unsigned long *sp)
87{
88 const int field = 2 * sizeof(unsigned long);
89 long stackdata;
90 int i;
91
92 if (!sp) {
93 if (task && task != current)
94 sp = (unsigned long *) task->thread.reg29;
95 else
96 sp = (unsigned long *) &sp;
97 }
98
99 printk("Stack :");
100 i = 0;
101 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
102 if (i && ((i % (64 / field)) == 0))
103 printk("\n ");
104 if (i > 39) {
105 printk(" ...");
106 break;
107 }
108
109 if (__get_user(stackdata, sp++)) {
110 printk(" (Bad stack address)");
111 break;
112 }
113
114 printk(" %0*lx", field, stackdata);
115 i++;
116 }
117 printk("\n");
118}
119
120void show_trace(struct task_struct *task, unsigned long *stack)
121{
122 const int field = 2 * sizeof(unsigned long);
123 unsigned long addr;
124
125 if (!stack) {
126 if (task && task != current)
127 stack = (unsigned long *) task->thread.reg29;
128 else
129 stack = (unsigned long *) &stack;
130 }
131
132 printk("Call Trace:");
133#ifdef CONFIG_KALLSYMS
134 printk("\n");
135#endif
136 while (!kstack_end(stack)) {
137 addr = *stack++;
138 if (__kernel_text_address(addr)) {
139 printk(" [<%0*lx>] ", field, addr);
140 print_symbol("%s\n", addr);
141 }
142 }
143 printk("\n");
144}
145
146/*
147 * The architecture-independent dump_stack generator
148 */
149void dump_stack(void)
150{
151 unsigned long stack;
152
153 show_trace(current, &stack);
154}
155
156EXPORT_SYMBOL(dump_stack);
157
158void show_code(unsigned int *pc)
159{
160 long i;
161
162 printk("\nCode:");
163
164 for(i = -3 ; i < 6 ; i++) {
165 unsigned int insn;
166 if (__get_user(insn, pc + i)) {
167 printk(" (Bad address in epc)\n");
168 break;
169 }
170 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
171 }
172}
173
174void show_regs(struct pt_regs *regs)
175{
176 const int field = 2 * sizeof(unsigned long);
177 unsigned int cause = regs->cp0_cause;
178 int i;
179
180 printk("Cpu %d\n", smp_processor_id());
181
182 /*
183 * Saved main processor registers
184 */
185 for (i = 0; i < 32; ) {
186 if ((i % 4) == 0)
187 printk("$%2d :", i);
188 if (i == 0)
189 printk(" %0*lx", field, 0UL);
190 else if (i == 26 || i == 27)
191 printk(" %*s", field, "");
192 else
193 printk(" %0*lx", field, regs->regs[i]);
194
195 i++;
196 if ((i % 4) == 0)
197 printk("\n");
198 }
199
200 printk("Hi : %0*lx\n", field, regs->hi);
201 printk("Lo : %0*lx\n", field, regs->lo);
202
203 /*
204 * Saved cp0 registers
205 */
206 printk("epc : %0*lx ", field, regs->cp0_epc);
207 print_symbol("%s ", regs->cp0_epc);
208 printk(" %s\n", print_tainted());
209 printk("ra : %0*lx ", field, regs->regs[31]);
210 print_symbol("%s\n", regs->regs[31]);
211
212 printk("Status: %08x ", (uint32_t) regs->cp0_status);
213
3b2396d9
MR
214 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
215 if (regs->cp0_status & ST0_KUO)
216 printk("KUo ");
217 if (regs->cp0_status & ST0_IEO)
218 printk("IEo ");
219 if (regs->cp0_status & ST0_KUP)
220 printk("KUp ");
221 if (regs->cp0_status & ST0_IEP)
222 printk("IEp ");
223 if (regs->cp0_status & ST0_KUC)
224 printk("KUc ");
225 if (regs->cp0_status & ST0_IEC)
226 printk("IEc ");
227 } else {
228 if (regs->cp0_status & ST0_KX)
229 printk("KX ");
230 if (regs->cp0_status & ST0_SX)
231 printk("SX ");
232 if (regs->cp0_status & ST0_UX)
233 printk("UX ");
234 switch (regs->cp0_status & ST0_KSU) {
235 case KSU_USER:
236 printk("USER ");
237 break;
238 case KSU_SUPERVISOR:
239 printk("SUPERVISOR ");
240 break;
241 case KSU_KERNEL:
242 printk("KERNEL ");
243 break;
244 default:
245 printk("BAD_MODE ");
246 break;
247 }
248 if (regs->cp0_status & ST0_ERL)
249 printk("ERL ");
250 if (regs->cp0_status & ST0_EXL)
251 printk("EXL ");
252 if (regs->cp0_status & ST0_IE)
253 printk("IE ");
1da177e4 254 }
1da177e4
LT
255 printk("\n");
256
257 printk("Cause : %08x\n", cause);
258
259 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
260 if (1 <= cause && cause <= 5)
261 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
262
263 printk("PrId : %08x\n", read_c0_prid());
264}
265
266void show_registers(struct pt_regs *regs)
267{
268 show_regs(regs);
269 print_modules();
270 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
271 current->comm, current->pid, current_thread_info(), current);
272 show_stack(current, (long *) regs->regs[29]);
273 show_trace(current, (long *) regs->regs[29]);
274 show_code((unsigned int *) regs->cp0_epc);
275 printk("\n");
276}
277
278static DEFINE_SPINLOCK(die_lock);
279
178086c8 280NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs)
1da177e4
LT
281{
282 static int die_counter;
41c594ab
RB
283#ifdef CONFIG_MIPS_MT_SMTC
284 unsigned long dvpret = dvpe();
285#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
286
287 console_verbose();
288 spin_lock_irq(&die_lock);
41c594ab
RB
289 bust_spinlocks(1);
290#ifdef CONFIG_MIPS_MT_SMTC
291 mips_mt_regdump(dvpret);
292#endif /* CONFIG_MIPS_MT_SMTC */
178086c8 293 printk("%s[#%d]:\n", str, ++die_counter);
1da177e4
LT
294 show_registers(regs);
295 spin_unlock_irq(&die_lock);
296 do_exit(SIGSEGV);
297}
298
1da177e4
LT
299extern const struct exception_table_entry __start___dbe_table[];
300extern const struct exception_table_entry __stop___dbe_table[];
301
302void __declare_dbe_table(void)
303{
304 __asm__ __volatile__(
305 ".section\t__dbe_table,\"a\"\n\t"
306 ".previous"
307 );
308}
309
310/* Given an address, look for it in the exception tables. */
311static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
312{
313 const struct exception_table_entry *e;
314
315 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
316 if (!e)
317 e = search_module_dbetables(addr);
318 return e;
319}
320
321asmlinkage void do_be(struct pt_regs *regs)
322{
323 const int field = 2 * sizeof(unsigned long);
324 const struct exception_table_entry *fixup = NULL;
325 int data = regs->cp0_cause & 4;
326 int action = MIPS_BE_FATAL;
327
328 /* XXX For now. Fixme, this searches the wrong table ... */
329 if (data && !user_mode(regs))
330 fixup = search_dbe_tables(exception_epc(regs));
331
332 if (fixup)
333 action = MIPS_BE_FIXUP;
334
335 if (board_be_handler)
336 action = board_be_handler(regs, fixup != 0);
337
338 switch (action) {
339 case MIPS_BE_DISCARD:
340 return;
341 case MIPS_BE_FIXUP:
342 if (fixup) {
343 regs->cp0_epc = fixup->nextinsn;
344 return;
345 }
346 break;
347 default:
348 break;
349 }
350
351 /*
352 * Assume it would be too dangerous to continue ...
353 */
354 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
355 data ? "Data" : "Instruction",
356 field, regs->cp0_epc, field, regs->regs[31]);
357 die_if_kernel("Oops", regs);
358 force_sig(SIGBUS, current);
359}
360
361static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
362{
fe00f943 363 unsigned int __user *epc;
1da177e4 364
fe00f943 365 epc = (unsigned int __user *) regs->cp0_epc +
1da177e4
LT
366 ((regs->cp0_cause & CAUSEF_BD) != 0);
367 if (!get_user(*opcode, epc))
368 return 0;
369
370 force_sig(SIGSEGV, current);
371 return 1;
372}
373
374/*
375 * ll/sc emulation
376 */
377
378#define OPCODE 0xfc000000
379#define BASE 0x03e00000
380#define RT 0x001f0000
381#define OFFSET 0x0000ffff
382#define LL 0xc0000000
383#define SC 0xe0000000
3c37026d
RB
384#define SPEC3 0x7c000000
385#define RD 0x0000f800
386#define FUNC 0x0000003f
387#define RDHWR 0x0000003b
1da177e4
LT
388
389/*
390 * The ll_bit is cleared by r*_switch.S
391 */
392
393unsigned long ll_bit;
394
395static struct task_struct *ll_task = NULL;
396
397static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
398{
fe00f943 399 unsigned long value, __user *vaddr;
1da177e4
LT
400 long offset;
401 int signal = 0;
402
403 /*
404 * analyse the ll instruction that just caused a ri exception
405 * and put the referenced address to addr.
406 */
407
408 /* sign extend offset */
409 offset = opcode & OFFSET;
410 offset <<= 16;
411 offset >>= 16;
412
fe00f943
RB
413 vaddr = (unsigned long __user *)
414 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
415
416 if ((unsigned long)vaddr & 3) {
417 signal = SIGBUS;
418 goto sig;
419 }
420 if (get_user(value, vaddr)) {
421 signal = SIGSEGV;
422 goto sig;
423 }
424
425 preempt_disable();
426
427 if (ll_task == NULL || ll_task == current) {
428 ll_bit = 1;
429 } else {
430 ll_bit = 0;
431 }
432 ll_task = current;
433
434 preempt_enable();
435
6dd04688
RB
436 compute_return_epc(regs);
437
1da177e4
LT
438 regs->regs[(opcode & RT) >> 16] = value;
439
1da177e4
LT
440 return;
441
442sig:
443 force_sig(signal, current);
444}
445
446static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
447{
fe00f943
RB
448 unsigned long __user *vaddr;
449 unsigned long reg;
1da177e4
LT
450 long offset;
451 int signal = 0;
452
453 /*
454 * analyse the sc instruction that just caused a ri exception
455 * and put the referenced address to addr.
456 */
457
458 /* sign extend offset */
459 offset = opcode & OFFSET;
460 offset <<= 16;
461 offset >>= 16;
462
fe00f943
RB
463 vaddr = (unsigned long __user *)
464 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
465 reg = (opcode & RT) >> 16;
466
467 if ((unsigned long)vaddr & 3) {
468 signal = SIGBUS;
469 goto sig;
470 }
471
472 preempt_disable();
473
474 if (ll_bit == 0 || ll_task != current) {
05b8042a 475 compute_return_epc(regs);
1da177e4
LT
476 regs->regs[reg] = 0;
477 preempt_enable();
1da177e4
LT
478 return;
479 }
480
481 preempt_enable();
482
483 if (put_user(regs->regs[reg], vaddr)) {
484 signal = SIGSEGV;
485 goto sig;
486 }
487
6dd04688 488 compute_return_epc(regs);
1da177e4
LT
489 regs->regs[reg] = 1;
490
1da177e4
LT
491 return;
492
493sig:
494 force_sig(signal, current);
495}
496
497/*
498 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
499 * opcodes are supposed to result in coprocessor unusable exceptions if
500 * executed on ll/sc-less processors. That's the theory. In practice a
501 * few processors such as NEC's VR4100 throw reserved instruction exceptions
502 * instead, so we're doing the emulation thing in both exception handlers.
503 */
504static inline int simulate_llsc(struct pt_regs *regs)
505{
506 unsigned int opcode;
507
508 if (unlikely(get_insn_opcode(regs, &opcode)))
509 return -EFAULT;
510
511 if ((opcode & OPCODE) == LL) {
512 simulate_ll(regs, opcode);
513 return 0;
514 }
515 if ((opcode & OPCODE) == SC) {
516 simulate_sc(regs, opcode);
517 return 0;
518 }
519
520 return -EFAULT; /* Strange things going on ... */
521}
522
3c37026d
RB
523/*
524 * Simulate trapping 'rdhwr' instructions to provide user accessible
525 * registers not implemented in hardware. The only current use of this
526 * is the thread area pointer.
527 */
528static inline int simulate_rdhwr(struct pt_regs *regs)
529{
dc8f6029 530 struct thread_info *ti = task_thread_info(current);
3c37026d
RB
531 unsigned int opcode;
532
533 if (unlikely(get_insn_opcode(regs, &opcode)))
534 return -EFAULT;
535
536 if (unlikely(compute_return_epc(regs)))
537 return -EFAULT;
538
539 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
540 int rd = (opcode & RD) >> 11;
541 int rt = (opcode & RT) >> 16;
542 switch (rd) {
543 case 29:
544 regs->regs[rt] = ti->tp_value;
56ebd51b 545 return 0;
3c37026d
RB
546 default:
547 return -EFAULT;
548 }
549 }
550
56ebd51b
DJ
551 /* Not ours. */
552 return -EFAULT;
3c37026d
RB
553}
554
1da177e4
LT
555asmlinkage void do_ov(struct pt_regs *regs)
556{
557 siginfo_t info;
558
36ccf1c0
RB
559 die_if_kernel("Integer overflow", regs);
560
1da177e4
LT
561 info.si_code = FPE_INTOVF;
562 info.si_signo = SIGFPE;
563 info.si_errno = 0;
fe00f943 564 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
565 force_sig_info(SIGFPE, &info, current);
566}
567
568/*
569 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
570 */
571asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
572{
573 if (fcr31 & FPU_CSR_UNI_X) {
574 int sig;
575
576 preempt_disable();
577
cd21dfcf
RB
578#ifdef CONFIG_PREEMPT
579 if (!is_fpu_owner()) {
580 /* We might lose fpu before disabling preempt... */
581 own_fpu();
582 BUG_ON(!used_math());
583 restore_fp(current);
584 }
585#endif
1da177e4 586 /*
a3dddd56 587 * Unimplemented operation exception. If we've got the full
1da177e4
LT
588 * software emulator on-board, let's use it...
589 *
590 * Force FPU to dump state into task/thread context. We're
591 * moving a lot of data here for what is probably a single
592 * instruction, but the alternative is to pre-decode the FP
593 * register operands before invoking the emulator, which seems
594 * a bit extreme for what should be an infrequent event.
595 */
596 save_fp(current);
cd21dfcf
RB
597 /* Ensure 'resume' not overwrite saved fp context again. */
598 lose_fpu();
599
600 preempt_enable();
1da177e4
LT
601
602 /* Run the emulator */
12616ed2 603 sig = fpu_emulator_cop1Handler (regs,
1da177e4
LT
604 &current->thread.fpu.soft);
605
cd21dfcf
RB
606 preempt_disable();
607
608 own_fpu(); /* Using the FPU again. */
1da177e4
LT
609 /*
610 * We can't allow the emulated instruction to leave any of
611 * the cause bit set in $fcr31.
612 */
613 current->thread.fpu.soft.fcr31 &= ~FPU_CSR_ALL_X;
614
615 /* Restore the hardware register state */
616 restore_fp(current);
617
618 preempt_enable();
619
620 /* If something went wrong, signal */
621 if (sig)
622 force_sig(sig, current);
623
624 return;
625 }
626
627 force_sig(SIGFPE, current);
628}
629
630asmlinkage void do_bp(struct pt_regs *regs)
631{
632 unsigned int opcode, bcode;
633 siginfo_t info;
634
635 die_if_kernel("Break instruction in kernel code", regs);
636
637 if (get_insn_opcode(regs, &opcode))
638 return;
639
640 /*
641 * There is the ancient bug in the MIPS assemblers that the break
642 * code starts left to bit 16 instead to bit 6 in the opcode.
643 * Gas is bug-compatible, but not always, grrr...
644 * We handle both cases with a simple heuristics. --macro
645 */
646 bcode = ((opcode >> 6) & ((1 << 20) - 1));
647 if (bcode < (1 << 10))
648 bcode <<= 10;
649
650 /*
651 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
652 * insns, even for break codes that indicate arithmetic failures.
653 * Weird ...)
654 * But should we continue the brokenness??? --macro
655 */
656 switch (bcode) {
657 case BRK_OVERFLOW << 10:
658 case BRK_DIVZERO << 10:
659 if (bcode == (BRK_DIVZERO << 10))
660 info.si_code = FPE_INTDIV;
661 else
662 info.si_code = FPE_INTOVF;
663 info.si_signo = SIGFPE;
664 info.si_errno = 0;
fe00f943 665 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
666 force_sig_info(SIGFPE, &info, current);
667 break;
668 default:
669 force_sig(SIGTRAP, current);
670 }
671}
672
673asmlinkage void do_tr(struct pt_regs *regs)
674{
675 unsigned int opcode, tcode = 0;
676 siginfo_t info;
677
678 die_if_kernel("Trap instruction in kernel code", regs);
679
680 if (get_insn_opcode(regs, &opcode))
681 return;
682
683 /* Immediate versions don't provide a code. */
684 if (!(opcode & OPCODE))
685 tcode = ((opcode >> 6) & ((1 << 10) - 1));
686
687 /*
688 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
689 * insns, even for trap codes that indicate arithmetic failures.
690 * Weird ...)
691 * But should we continue the brokenness??? --macro
692 */
693 switch (tcode) {
694 case BRK_OVERFLOW:
695 case BRK_DIVZERO:
696 if (tcode == BRK_DIVZERO)
697 info.si_code = FPE_INTDIV;
698 else
699 info.si_code = FPE_INTOVF;
700 info.si_signo = SIGFPE;
701 info.si_errno = 0;
fe00f943 702 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
703 force_sig_info(SIGFPE, &info, current);
704 break;
705 default:
706 force_sig(SIGTRAP, current);
707 }
708}
709
710asmlinkage void do_ri(struct pt_regs *regs)
711{
712 die_if_kernel("Reserved instruction in kernel code", regs);
713
714 if (!cpu_has_llsc)
715 if (!simulate_llsc(regs))
716 return;
717
3c37026d
RB
718 if (!simulate_rdhwr(regs))
719 return;
720
1da177e4
LT
721 force_sig(SIGILL, current);
722}
723
724asmlinkage void do_cpu(struct pt_regs *regs)
725{
726 unsigned int cpid;
727
728 die_if_kernel("do_cpu invoked from kernel context!", regs);
729
730 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
731
732 switch (cpid) {
733 case 0:
3c37026d
RB
734 if (!cpu_has_llsc)
735 if (!simulate_llsc(regs))
736 return;
1da177e4 737
3c37026d 738 if (!simulate_rdhwr(regs))
1da177e4 739 return;
3c37026d 740
1da177e4
LT
741 break;
742
743 case 1:
744 preempt_disable();
745
746 own_fpu();
747 if (used_math()) { /* Using the FPU again. */
748 restore_fp(current);
749 } else { /* First time FPU user. */
750 init_fpu();
751 set_used_math();
752 }
753
cd21dfcf
RB
754 preempt_enable();
755
1da177e4 756 if (!cpu_has_fpu) {
12616ed2 757 int sig = fpu_emulator_cop1Handler(regs,
1da177e4
LT
758 &current->thread.fpu.soft);
759 if (sig)
760 force_sig(sig, current);
f088fc84
RB
761#ifdef CONFIG_MIPS_MT_FPAFF
762 else {
763 /*
764 * MIPS MT processors may have fewer FPU contexts
765 * than CPU threads. If we've emulated more than
766 * some threshold number of instructions, force
767 * migration to a "CPU" that has FP support.
768 */
769 if(mt_fpemul_threshold > 0
770 && ((current->thread.emulated_fp++
771 > mt_fpemul_threshold))) {
772 /*
773 * If there's no FPU present, or if the
774 * application has already restricted
775 * the allowed set to exclude any CPUs
776 * with FPUs, we'll skip the procedure.
777 */
778 if (cpus_intersects(current->cpus_allowed,
779 mt_fpu_cpumask)) {
780 cpumask_t tmask;
781
782 cpus_and(tmask,
783 current->thread.user_cpus_allowed,
784 mt_fpu_cpumask);
785 set_cpus_allowed(current, tmask);
786 current->thread.mflags |= MF_FPUBOUND;
787 }
788 }
789 }
790#endif /* CONFIG_MIPS_MT_FPAFF */
1da177e4
LT
791 }
792
1da177e4
LT
793 return;
794
795 case 2:
796 case 3:
41c594ab 797 die_if_kernel("do_cpu invoked from kernel context!", regs);
1da177e4
LT
798 break;
799 }
800
801 force_sig(SIGILL, current);
802}
803
804asmlinkage void do_mdmx(struct pt_regs *regs)
805{
806 force_sig(SIGILL, current);
807}
808
809asmlinkage void do_watch(struct pt_regs *regs)
810{
811 /*
812 * We use the watch exception where available to detect stack
813 * overflows.
814 */
815 dump_tlb_all();
816 show_regs(regs);
817 panic("Caught WATCH exception - probably caused by stack overflow.");
818}
819
820asmlinkage void do_mcheck(struct pt_regs *regs)
821{
822 show_regs(regs);
823 dump_tlb_all();
824 /*
825 * Some chips may have other causes of machine check (e.g. SB1
826 * graduation timer)
827 */
828 panic("Caught Machine Check exception - %scaused by multiple "
829 "matching entries in the TLB.",
830 (regs->cp0_status & ST0_TS) ? "" : "not ");
831}
832
340ee4b9
RB
833asmlinkage void do_mt(struct pt_regs *regs)
834{
41c594ab
RB
835 int subcode;
836
837 die_if_kernel("MIPS MT Thread exception in kernel", regs);
838
839 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
840 >> VPECONTROL_EXCPT_SHIFT;
841 switch (subcode) {
842 case 0:
843 printk(KERN_ERR "Thread Underflow\n");
844 break;
845 case 1:
846 printk(KERN_ERR "Thread Overflow\n");
847 break;
848 case 2:
849 printk(KERN_ERR "Invalid YIELD Qualifier\n");
850 break;
851 case 3:
852 printk(KERN_ERR "Gating Storage Exception\n");
853 break;
854 case 4:
855 printk(KERN_ERR "YIELD Scheduler Exception\n");
856 break;
857 case 5:
858 printk(KERN_ERR "Gating Storage Schedulier Exception\n");
859 break;
860 default:
861 printk(KERN_ERR "*** UNKNOWN THREAD EXCEPTION %d ***\n",
862 subcode);
863 break;
864 }
340ee4b9
RB
865 die_if_kernel("MIPS MT Thread exception in kernel", regs);
866
867 force_sig(SIGILL, current);
868}
869
870
e50c0a8f
RB
871asmlinkage void do_dsp(struct pt_regs *regs)
872{
873 if (cpu_has_dsp)
874 panic("Unexpected DSP exception\n");
875
876 force_sig(SIGILL, current);
877}
878
1da177e4
LT
879asmlinkage void do_reserved(struct pt_regs *regs)
880{
881 /*
882 * Game over - no way to handle this if it ever occurs. Most probably
883 * caused by a new unknown cpu type or after another deadly
884 * hard/software error.
885 */
886 show_regs(regs);
887 panic("Caught reserved exception %ld - should not happen.",
888 (regs->cp0_cause & 0x7f) >> 2);
889}
890
e01402b1
RB
891asmlinkage void do_default_vi(struct pt_regs *regs)
892{
893 show_regs(regs);
894 panic("Caught unexpected vectored interrupt.");
895}
896
1da177e4
LT
897/*
898 * Some MIPS CPUs can enable/disable for cache parity detection, but do
899 * it different ways.
900 */
901static inline void parity_protection_init(void)
902{
903 switch (current_cpu_data.cputype) {
904 case CPU_24K:
1da177e4 905 case CPU_5KC:
14f18b7f
RB
906 write_c0_ecc(0x80000000);
907 back_to_back_c0_hazard();
908 /* Set the PE bit (bit 31) in the c0_errctl register. */
909 printk(KERN_INFO "Cache parity protection %sabled\n",
910 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1da177e4
LT
911 break;
912 case CPU_20KC:
913 case CPU_25KF:
914 /* Clear the DE bit (bit 16) in the c0_status register. */
915 printk(KERN_INFO "Enable cache parity protection for "
916 "MIPS 20KC/25KF CPUs.\n");
917 clear_c0_status(ST0_DE);
918 break;
919 default:
920 break;
921 }
922}
923
924asmlinkage void cache_parity_error(void)
925{
926 const int field = 2 * sizeof(unsigned long);
927 unsigned int reg_val;
928
929 /* For the moment, report the problem and hang. */
930 printk("Cache error exception:\n");
931 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
932 reg_val = read_c0_cacheerr();
933 printk("c0_cacheerr == %08x\n", reg_val);
934
935 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
936 reg_val & (1<<30) ? "secondary" : "primary",
937 reg_val & (1<<31) ? "data" : "insn");
938 printk("Error bits: %s%s%s%s%s%s%s\n",
939 reg_val & (1<<29) ? "ED " : "",
940 reg_val & (1<<28) ? "ET " : "",
941 reg_val & (1<<26) ? "EE " : "",
942 reg_val & (1<<25) ? "EB " : "",
943 reg_val & (1<<24) ? "EI " : "",
944 reg_val & (1<<23) ? "E1 " : "",
945 reg_val & (1<<22) ? "E0 " : "");
946 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
947
ec917c2c 948#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1da177e4
LT
949 if (reg_val & (1<<22))
950 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
951
952 if (reg_val & (1<<23))
953 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
954#endif
955
956 panic("Can't handle the cache error!");
957}
958
959/*
960 * SDBBP EJTAG debug exception handler.
961 * We skip the instruction and return to the next instruction.
962 */
963void ejtag_exception_handler(struct pt_regs *regs)
964{
965 const int field = 2 * sizeof(unsigned long);
966 unsigned long depc, old_epc;
967 unsigned int debug;
968
969 printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
970 depc = read_c0_depc();
971 debug = read_c0_debug();
972 printk("c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
973 if (debug & 0x80000000) {
974 /*
975 * In branch delay slot.
976 * We cheat a little bit here and use EPC to calculate the
977 * debug return address (DEPC). EPC is restored after the
978 * calculation.
979 */
980 old_epc = regs->cp0_epc;
981 regs->cp0_epc = depc;
982 __compute_return_epc(regs);
983 depc = regs->cp0_epc;
984 regs->cp0_epc = old_epc;
985 } else
986 depc += 4;
987 write_c0_depc(depc);
988
989#if 0
990 printk("\n\n----- Enable EJTAG single stepping ----\n\n");
991 write_c0_debug(debug | 0x100);
992#endif
993}
994
995/*
996 * NMI exception handler.
997 */
998void nmi_exception_handler(struct pt_regs *regs)
999{
41c594ab
RB
1000#ifdef CONFIG_MIPS_MT_SMTC
1001 unsigned long dvpret = dvpe();
1002 bust_spinlocks(1);
1003 printk("NMI taken!!!!\n");
1004 mips_mt_regdump(dvpret);
1005#else
1006 bust_spinlocks(1);
1da177e4 1007 printk("NMI taken!!!!\n");
41c594ab 1008#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1009 die("NMI", regs);
1010 while(1) ;
1011}
1012
e01402b1
RB
1013#define VECTORSPACING 0x100 /* for EI/VI mode */
1014
1015unsigned long ebase;
1da177e4 1016unsigned long exception_handlers[32];
e01402b1 1017unsigned long vi_handlers[64];
1da177e4
LT
1018
1019/*
1020 * As a side effect of the way this is implemented we're limited
1021 * to interrupt handlers in the address range from
1022 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1023 */
1024void *set_except_vector(int n, void *addr)
1025{
1026 unsigned long handler = (unsigned long) addr;
1027 unsigned long old_handler = exception_handlers[n];
1028
1029 exception_handlers[n] = handler;
1030 if (n == 0 && cpu_has_divec) {
e01402b1 1031 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
1da177e4 1032 (0x03ffffff & (handler >> 2));
e01402b1
RB
1033 flush_icache_range(ebase + 0x200, ebase + 0x204);
1034 }
1035 return (void *)old_handler;
1036}
1037
1038#ifdef CONFIG_CPU_MIPSR2
1039/*
193dd2ce 1040 * MIPSR2 shadow register set allocation
e01402b1
RB
1041 * FIXME: SMP...
1042 */
1043
193dd2ce
RB
1044static struct shadow_registers {
1045 /*
1046 * Number of shadow register sets supported
1047 */
1048 unsigned long sr_supported;
1049 /*
1050 * Bitmap of allocated shadow registers
1051 */
1052 unsigned long sr_allocated;
e01402b1
RB
1053} shadow_registers;
1054
bb12d612 1055static void mips_srs_init(void)
e01402b1
RB
1056{
1057#ifdef CONFIG_CPU_MIPSR2_SRS
1058 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
7acb783e
RB
1059 printk(KERN_INFO "%d MIPSR2 register sets available\n",
1060 shadow_registers.sr_supported);
e01402b1
RB
1061#endif
1062 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
e01402b1
RB
1063}
1064
1065int mips_srs_max(void)
1066{
1067 return shadow_registers.sr_supported;
1068}
1069
ff3eab2a 1070int mips_srs_alloc(void)
e01402b1
RB
1071{
1072 struct shadow_registers *sr = &shadow_registers;
e01402b1
RB
1073 int set;
1074
193dd2ce
RB
1075again:
1076 set = find_first_zero_bit(&sr->sr_allocated, sr->sr_supported);
1077 if (set >= sr->sr_supported)
1078 return -1;
e01402b1 1079
193dd2ce
RB
1080 if (test_and_set_bit(set, &sr->sr_allocated))
1081 goto again;
e01402b1 1082
193dd2ce 1083 return set;
e01402b1
RB
1084}
1085
41c594ab 1086void mips_srs_free(int set)
e01402b1
RB
1087{
1088 struct shadow_registers *sr = &shadow_registers;
e01402b1 1089
193dd2ce 1090 clear_bit(set, &sr->sr_allocated);
e01402b1
RB
1091}
1092
b4d05cb9 1093static void *set_vi_srs_handler(int n, void *addr, int srs)
e01402b1
RB
1094{
1095 unsigned long handler;
1096 unsigned long old_handler = vi_handlers[n];
1097 u32 *w;
1098 unsigned char *b;
1099
1100 if (!cpu_has_veic && !cpu_has_vint)
1101 BUG();
1102
1103 if (addr == NULL) {
1104 handler = (unsigned long) do_default_vi;
1105 srs = 0;
41c594ab 1106 } else
e01402b1
RB
1107 handler = (unsigned long) addr;
1108 vi_handlers[n] = (unsigned long) addr;
1109
1110 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1111
1112 if (srs >= mips_srs_max())
1113 panic("Shadow register set %d not supported", srs);
1114
1115 if (cpu_has_veic) {
1116 if (board_bind_eic_interrupt)
1117 board_bind_eic_interrupt (n, srs);
41c594ab 1118 } else if (cpu_has_vint) {
e01402b1
RB
1119 /* SRSMap is only defined if shadow sets are implemented */
1120 if (mips_srs_max() > 1)
1121 change_c0_srsmap (0xf << n*4, srs << n*4);
1122 }
1123
1124 if (srs == 0) {
1125 /*
1126 * If no shadow set is selected then use the default handler
1127 * that does normal register saving and a standard interrupt exit
1128 */
1129
1130 extern char except_vec_vi, except_vec_vi_lui;
1131 extern char except_vec_vi_ori, except_vec_vi_end;
41c594ab
RB
1132#ifdef CONFIG_MIPS_MT_SMTC
1133 /*
1134 * We need to provide the SMTC vectored interrupt handler
1135 * not only with the address of the handler, but with the
1136 * Status.IM bit to be masked before going there.
1137 */
1138 extern char except_vec_vi_mori;
1139 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1140#endif /* CONFIG_MIPS_MT_SMTC */
e01402b1
RB
1141 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1142 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1143 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1144
1145 if (handler_len > VECTORSPACING) {
1146 /*
1147 * Sigh... panicing won't help as the console
1148 * is probably not configured :(
1149 */
1150 panic ("VECTORSPACING too small");
1151 }
1152
1153 memcpy (b, &except_vec_vi, handler_len);
41c594ab
RB
1154#ifdef CONFIG_MIPS_MT_SMTC
1155 if (n > 7)
1156 printk("Vector index %d exceeds SMTC maximum\n", n);
1157 w = (u32 *)(b + mori_offset);
1158 *w = (*w & 0xffff0000) | (0x100 << n);
1159#endif /* CONFIG_MIPS_MT_SMTC */
e01402b1
RB
1160 w = (u32 *)(b + lui_offset);
1161 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1162 w = (u32 *)(b + ori_offset);
1163 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1164 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1165 }
1166 else {
1167 /*
1168 * In other cases jump directly to the interrupt handler
1169 *
1170 * It is the handlers responsibility to save registers if required
1171 * (eg hi/lo) and return from the exception using "eret"
1172 */
1173 w = (u32 *)b;
1174 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1175 *w = 0;
1176 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1da177e4 1177 }
e01402b1 1178
1da177e4
LT
1179 return (void *)old_handler;
1180}
1181
41c594ab 1182void *set_vi_handler(int n, void *addr)
e01402b1 1183{
ff3eab2a 1184 return set_vi_srs_handler(n, addr, 0);
e01402b1
RB
1185}
1186#endif
1187
1da177e4
LT
1188/*
1189 * This is used by native signal handling
1190 */
1191asmlinkage int (*save_fp_context)(struct sigcontext *sc);
1192asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
1193
1194extern asmlinkage int _save_fp_context(struct sigcontext *sc);
1195extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
1196
1197extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
1198extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
1199
41c594ab
RB
1200#ifdef CONFIG_SMP
1201static int smp_save_fp_context(struct sigcontext *sc)
1202{
1203 return cpu_has_fpu
1204 ? _save_fp_context(sc)
1205 : fpu_emulator_save_context(sc);
1206}
1207
1208static int smp_restore_fp_context(struct sigcontext *sc)
1209{
1210 return cpu_has_fpu
1211 ? _restore_fp_context(sc)
1212 : fpu_emulator_restore_context(sc);
1213}
1214#endif
1215
1da177e4
LT
1216static inline void signal_init(void)
1217{
41c594ab
RB
1218#ifdef CONFIG_SMP
1219 /* For now just do the cpu_has_fpu check when the functions are invoked */
1220 save_fp_context = smp_save_fp_context;
1221 restore_fp_context = smp_restore_fp_context;
1222#else
1da177e4
LT
1223 if (cpu_has_fpu) {
1224 save_fp_context = _save_fp_context;
1225 restore_fp_context = _restore_fp_context;
1226 } else {
1227 save_fp_context = fpu_emulator_save_context;
1228 restore_fp_context = fpu_emulator_restore_context;
1229 }
41c594ab 1230#endif
1da177e4
LT
1231}
1232
1233#ifdef CONFIG_MIPS32_COMPAT
1234
1235/*
1236 * This is used by 32-bit signal stuff on the 64-bit kernel
1237 */
1238asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
1239asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
1240
1241extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
1242extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
1243
1244extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
1245extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
1246
1247static inline void signal32_init(void)
1248{
1249 if (cpu_has_fpu) {
1250 save_fp_context32 = _save_fp_context32;
1251 restore_fp_context32 = _restore_fp_context32;
1252 } else {
1253 save_fp_context32 = fpu_emulator_save_context32;
1254 restore_fp_context32 = fpu_emulator_restore_context32;
1255 }
1256}
1257#endif
1258
1259extern void cpu_cache_init(void);
1260extern void tlb_init(void);
1d40cfcd 1261extern void flush_tlb_handlers(void);
1da177e4
LT
1262
1263void __init per_cpu_trap_init(void)
1264{
1265 unsigned int cpu = smp_processor_id();
1266 unsigned int status_set = ST0_CU0;
41c594ab
RB
1267#ifdef CONFIG_MIPS_MT_SMTC
1268 int secondaryTC = 0;
1269 int bootTC = (cpu == 0);
1270
1271 /*
1272 * Only do per_cpu_trap_init() for first TC of Each VPE.
1273 * Note that this hack assumes that the SMTC init code
1274 * assigns TCs consecutively and in ascending order.
1275 */
1276
1277 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1278 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1279 secondaryTC = 1;
1280#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1281
1282 /*
1283 * Disable coprocessors and select 32-bit or 64-bit addressing
1284 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1285 * flag that some firmware may have left set and the TS bit (for
1286 * IP27). Set XX for ISA IV code to work.
1287 */
875d43e7 1288#ifdef CONFIG_64BIT
1da177e4
LT
1289 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1290#endif
1291 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1292 status_set |= ST0_XX;
b38c7399 1293 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1da177e4
LT
1294 status_set);
1295
e50c0a8f
RB
1296 if (cpu_has_dsp)
1297 set_c0_status(ST0_MX);
1298
e01402b1
RB
1299#ifdef CONFIG_CPU_MIPSR2
1300 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1301#endif
1302
41c594ab
RB
1303#ifdef CONFIG_MIPS_MT_SMTC
1304 if (!secondaryTC) {
1305#endif /* CONFIG_MIPS_MT_SMTC */
1306
1da177e4 1307 /*
e01402b1 1308 * Interrupt handling.
1da177e4 1309 */
e01402b1
RB
1310 if (cpu_has_veic || cpu_has_vint) {
1311 write_c0_ebase (ebase);
1312 /* Setting vector spacing enables EI/VI mode */
1313 change_c0_intctl (0x3e0, VECTORSPACING);
1314 }
d03d0a57
RB
1315 if (cpu_has_divec) {
1316 if (cpu_has_mipsmt) {
1317 unsigned int vpflags = dvpe();
1318 set_c0_cause(CAUSEF_IV);
1319 evpe(vpflags);
1320 } else
1321 set_c0_cause(CAUSEF_IV);
1322 }
41c594ab
RB
1323#ifdef CONFIG_MIPS_MT_SMTC
1324 }
1325#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1326
1327 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1328 TLBMISS_HANDLER_SETUP();
1329
1330 atomic_inc(&init_mm.mm_count);
1331 current->active_mm = &init_mm;
1332 BUG_ON(current->mm);
1333 enter_lazy_tlb(&init_mm, current);
1334
41c594ab
RB
1335#ifdef CONFIG_MIPS_MT_SMTC
1336 if (bootTC) {
1337#endif /* CONFIG_MIPS_MT_SMTC */
1338 cpu_cache_init();
1339 tlb_init();
1340#ifdef CONFIG_MIPS_MT_SMTC
1341 }
1342#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1343}
1344
e01402b1
RB
1345/* Install CPU exception handler */
1346void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1347{
1348 memcpy((void *)(ebase + offset), addr, size);
1349 flush_icache_range(ebase + offset, ebase + offset + size);
1350}
1351
1352/* Install uncached CPU exception handler */
1353void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1354{
1355#ifdef CONFIG_32BIT
1356 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1357#endif
1358#ifdef CONFIG_64BIT
1359 unsigned long uncached_ebase = TO_UNCAC(ebase);
1360#endif
1361
1362 memcpy((void *)(uncached_ebase + offset), addr, size);
1363}
1364
1da177e4
LT
1365void __init trap_init(void)
1366{
1367 extern char except_vec3_generic, except_vec3_r4000;
1da177e4
LT
1368 extern char except_vec4;
1369 unsigned long i;
1370
e01402b1
RB
1371 if (cpu_has_veic || cpu_has_vint)
1372 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1373 else
1374 ebase = CAC_BASE;
1375
1376#ifdef CONFIG_CPU_MIPSR2
1377 mips_srs_init();
1378#endif
1379
1da177e4
LT
1380 per_cpu_trap_init();
1381
1382 /*
1383 * Copy the generic exception handlers to their final destination.
1384 * This will be overriden later as suitable for a particular
1385 * configuration.
1386 */
e01402b1 1387 set_handler(0x180, &except_vec3_generic, 0x80);
1da177e4
LT
1388
1389 /*
1390 * Setup default vectors
1391 */
1392 for (i = 0; i <= 31; i++)
1393 set_except_vector(i, handle_reserved);
1394
1395 /*
1396 * Copy the EJTAG debug exception vector handler code to it's final
1397 * destination.
1398 */
e01402b1
RB
1399 if (cpu_has_ejtag && board_ejtag_handler_setup)
1400 board_ejtag_handler_setup ();
1da177e4
LT
1401
1402 /*
1403 * Only some CPUs have the watch exceptions.
1404 */
1405 if (cpu_has_watch)
1406 set_except_vector(23, handle_watch);
1407
1408 /*
e01402b1 1409 * Initialise interrupt handlers
1da177e4 1410 */
e01402b1
RB
1411 if (cpu_has_veic || cpu_has_vint) {
1412 int nvec = cpu_has_veic ? 64 : 8;
1413 for (i = 0; i < nvec; i++)
ff3eab2a 1414 set_vi_handler(i, NULL);
e01402b1
RB
1415 }
1416 else if (cpu_has_divec)
1417 set_handler(0x200, &except_vec4, 0x8);
1da177e4
LT
1418
1419 /*
1420 * Some CPUs can enable/disable for cache parity detection, but does
1421 * it different ways.
1422 */
1423 parity_protection_init();
1424
1425 /*
1426 * The Data Bus Errors / Instruction Bus Errors are signaled
1427 * by external hardware. Therefore these two exceptions
1428 * may have board specific handlers.
1429 */
1430 if (board_be_init)
1431 board_be_init();
1432
e4ac58af 1433 set_except_vector(0, handle_int);
1da177e4
LT
1434 set_except_vector(1, handle_tlbm);
1435 set_except_vector(2, handle_tlbl);
1436 set_except_vector(3, handle_tlbs);
1437
1438 set_except_vector(4, handle_adel);
1439 set_except_vector(5, handle_ades);
1440
1441 set_except_vector(6, handle_ibe);
1442 set_except_vector(7, handle_dbe);
1443
1444 set_except_vector(8, handle_sys);
1445 set_except_vector(9, handle_bp);
1446 set_except_vector(10, handle_ri);
1447 set_except_vector(11, handle_cpu);
1448 set_except_vector(12, handle_ov);
1449 set_except_vector(13, handle_tr);
1da177e4
LT
1450
1451 if (current_cpu_data.cputype == CPU_R6000 ||
1452 current_cpu_data.cputype == CPU_R6000A) {
1453 /*
1454 * The R6000 is the only R-series CPU that features a machine
1455 * check exception (similar to the R4000 cache error) and
1456 * unaligned ldc1/sdc1 exception. The handlers have not been
1457 * written yet. Well, anyway there is no R6000 machine on the
1458 * current list of targets for Linux/MIPS.
1459 * (Duh, crap, there is someone with a triple R6k machine)
1460 */
1461 //set_except_vector(14, handle_mc);
1462 //set_except_vector(15, handle_ndc);
1463 }
1464
e01402b1
RB
1465
1466 if (board_nmi_handler_setup)
1467 board_nmi_handler_setup();
1468
e50c0a8f
RB
1469 if (cpu_has_fpu && !cpu_has_nofpuex)
1470 set_except_vector(15, handle_fpe);
1471
1472 set_except_vector(22, handle_mdmx);
1473
1474 if (cpu_has_mcheck)
1475 set_except_vector(24, handle_mcheck);
1476
340ee4b9
RB
1477 if (cpu_has_mipsmt)
1478 set_except_vector(25, handle_mt);
1479
e50c0a8f
RB
1480 if (cpu_has_dsp)
1481 set_except_vector(26, handle_dsp);
1482
1483 if (cpu_has_vce)
1484 /* Special exception: R4[04]00 uses also the divec space. */
1485 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1486 else if (cpu_has_4kex)
1487 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1488 else
1489 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1490
1da177e4
LT
1491 signal_init();
1492#ifdef CONFIG_MIPS32_COMPAT
1493 signal32_init();
1494#endif
1495
e01402b1 1496 flush_icache_range(ebase, ebase + 0x400);
1d40cfcd 1497 flush_tlb_handlers();
1da177e4 1498}