[MIPS] MT: Improved multithreading support.
[linux-2.6-block.git] / arch / mips / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
36ccf1c0 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
1da177e4
LT
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
3b2396d9 12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
1da177e4
LT
13 */
14#include <linux/config.h>
15#include <linux/init.h>
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/sched.h>
19#include <linux/smp.h>
20#include <linux/smp_lock.h>
21#include <linux/spinlock.h>
22#include <linux/kallsyms.h>
e01402b1 23#include <linux/bootmem.h>
1da177e4
LT
24
25#include <asm/bootinfo.h>
26#include <asm/branch.h>
27#include <asm/break.h>
28#include <asm/cpu.h>
e50c0a8f 29#include <asm/dsp.h>
1da177e4 30#include <asm/fpu.h>
340ee4b9
RB
31#include <asm/mipsregs.h>
32#include <asm/mipsmtregs.h>
1da177e4
LT
33#include <asm/module.h>
34#include <asm/pgtable.h>
35#include <asm/ptrace.h>
36#include <asm/sections.h>
37#include <asm/system.h>
38#include <asm/tlbdebug.h>
39#include <asm/traps.h>
40#include <asm/uaccess.h>
41#include <asm/mmu_context.h>
42#include <asm/watch.h>
43#include <asm/types.h>
44
e4ac58af 45extern asmlinkage void handle_int(void);
1da177e4
LT
46extern asmlinkage void handle_tlbm(void);
47extern asmlinkage void handle_tlbl(void);
48extern asmlinkage void handle_tlbs(void);
49extern asmlinkage void handle_adel(void);
50extern asmlinkage void handle_ades(void);
51extern asmlinkage void handle_ibe(void);
52extern asmlinkage void handle_dbe(void);
53extern asmlinkage void handle_sys(void);
54extern asmlinkage void handle_bp(void);
55extern asmlinkage void handle_ri(void);
56extern asmlinkage void handle_cpu(void);
57extern asmlinkage void handle_ov(void);
58extern asmlinkage void handle_tr(void);
59extern asmlinkage void handle_fpe(void);
60extern asmlinkage void handle_mdmx(void);
61extern asmlinkage void handle_watch(void);
340ee4b9 62extern asmlinkage void handle_mt(void);
e50c0a8f 63extern asmlinkage void handle_dsp(void);
1da177e4
LT
64extern asmlinkage void handle_mcheck(void);
65extern asmlinkage void handle_reserved(void);
66
12616ed2 67extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
1da177e4
LT
68 struct mips_fpu_soft_struct *ctx);
69
70void (*board_be_init)(void);
71int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
e01402b1
RB
72void (*board_nmi_handler_setup)(void);
73void (*board_ejtag_handler_setup)(void);
74void (*board_bind_eic_interrupt)(int irq, int regset);
1da177e4
LT
75
76/*
77 * These constant is for searching for possible module text segments.
78 * MODULE_RANGE is a guess of how much space is likely to be vmalloced.
79 */
80#define MODULE_RANGE (8*1024*1024)
81
82/*
83 * This routine abuses get_user()/put_user() to reference pointers
84 * with at least a bit of error checking ...
85 */
86void show_stack(struct task_struct *task, unsigned long *sp)
87{
88 const int field = 2 * sizeof(unsigned long);
89 long stackdata;
90 int i;
91
92 if (!sp) {
93 if (task && task != current)
94 sp = (unsigned long *) task->thread.reg29;
95 else
96 sp = (unsigned long *) &sp;
97 }
98
99 printk("Stack :");
100 i = 0;
101 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
102 if (i && ((i % (64 / field)) == 0))
103 printk("\n ");
104 if (i > 39) {
105 printk(" ...");
106 break;
107 }
108
109 if (__get_user(stackdata, sp++)) {
110 printk(" (Bad stack address)");
111 break;
112 }
113
114 printk(" %0*lx", field, stackdata);
115 i++;
116 }
117 printk("\n");
118}
119
120void show_trace(struct task_struct *task, unsigned long *stack)
121{
122 const int field = 2 * sizeof(unsigned long);
123 unsigned long addr;
124
125 if (!stack) {
126 if (task && task != current)
127 stack = (unsigned long *) task->thread.reg29;
128 else
129 stack = (unsigned long *) &stack;
130 }
131
132 printk("Call Trace:");
133#ifdef CONFIG_KALLSYMS
134 printk("\n");
135#endif
136 while (!kstack_end(stack)) {
137 addr = *stack++;
138 if (__kernel_text_address(addr)) {
139 printk(" [<%0*lx>] ", field, addr);
140 print_symbol("%s\n", addr);
141 }
142 }
143 printk("\n");
144}
145
146/*
147 * The architecture-independent dump_stack generator
148 */
149void dump_stack(void)
150{
151 unsigned long stack;
152
153 show_trace(current, &stack);
154}
155
156EXPORT_SYMBOL(dump_stack);
157
158void show_code(unsigned int *pc)
159{
160 long i;
161
162 printk("\nCode:");
163
164 for(i = -3 ; i < 6 ; i++) {
165 unsigned int insn;
166 if (__get_user(insn, pc + i)) {
167 printk(" (Bad address in epc)\n");
168 break;
169 }
170 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
171 }
172}
173
174void show_regs(struct pt_regs *regs)
175{
176 const int field = 2 * sizeof(unsigned long);
177 unsigned int cause = regs->cp0_cause;
178 int i;
179
180 printk("Cpu %d\n", smp_processor_id());
181
182 /*
183 * Saved main processor registers
184 */
185 for (i = 0; i < 32; ) {
186 if ((i % 4) == 0)
187 printk("$%2d :", i);
188 if (i == 0)
189 printk(" %0*lx", field, 0UL);
190 else if (i == 26 || i == 27)
191 printk(" %*s", field, "");
192 else
193 printk(" %0*lx", field, regs->regs[i]);
194
195 i++;
196 if ((i % 4) == 0)
197 printk("\n");
198 }
199
200 printk("Hi : %0*lx\n", field, regs->hi);
201 printk("Lo : %0*lx\n", field, regs->lo);
202
203 /*
204 * Saved cp0 registers
205 */
206 printk("epc : %0*lx ", field, regs->cp0_epc);
207 print_symbol("%s ", regs->cp0_epc);
208 printk(" %s\n", print_tainted());
209 printk("ra : %0*lx ", field, regs->regs[31]);
210 print_symbol("%s\n", regs->regs[31]);
211
212 printk("Status: %08x ", (uint32_t) regs->cp0_status);
213
3b2396d9
MR
214 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
215 if (regs->cp0_status & ST0_KUO)
216 printk("KUo ");
217 if (regs->cp0_status & ST0_IEO)
218 printk("IEo ");
219 if (regs->cp0_status & ST0_KUP)
220 printk("KUp ");
221 if (regs->cp0_status & ST0_IEP)
222 printk("IEp ");
223 if (regs->cp0_status & ST0_KUC)
224 printk("KUc ");
225 if (regs->cp0_status & ST0_IEC)
226 printk("IEc ");
227 } else {
228 if (regs->cp0_status & ST0_KX)
229 printk("KX ");
230 if (regs->cp0_status & ST0_SX)
231 printk("SX ");
232 if (regs->cp0_status & ST0_UX)
233 printk("UX ");
234 switch (regs->cp0_status & ST0_KSU) {
235 case KSU_USER:
236 printk("USER ");
237 break;
238 case KSU_SUPERVISOR:
239 printk("SUPERVISOR ");
240 break;
241 case KSU_KERNEL:
242 printk("KERNEL ");
243 break;
244 default:
245 printk("BAD_MODE ");
246 break;
247 }
248 if (regs->cp0_status & ST0_ERL)
249 printk("ERL ");
250 if (regs->cp0_status & ST0_EXL)
251 printk("EXL ");
252 if (regs->cp0_status & ST0_IE)
253 printk("IE ");
1da177e4 254 }
1da177e4
LT
255 printk("\n");
256
257 printk("Cause : %08x\n", cause);
258
259 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
260 if (1 <= cause && cause <= 5)
261 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
262
263 printk("PrId : %08x\n", read_c0_prid());
264}
265
266void show_registers(struct pt_regs *regs)
267{
268 show_regs(regs);
269 print_modules();
270 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
271 current->comm, current->pid, current_thread_info(), current);
272 show_stack(current, (long *) regs->regs[29]);
273 show_trace(current, (long *) regs->regs[29]);
274 show_code((unsigned int *) regs->cp0_epc);
275 printk("\n");
276}
277
278static DEFINE_SPINLOCK(die_lock);
279
178086c8 280NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs)
1da177e4
LT
281{
282 static int die_counter;
41c594ab
RB
283#ifdef CONFIG_MIPS_MT_SMTC
284 unsigned long dvpret = dvpe();
285#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
286
287 console_verbose();
288 spin_lock_irq(&die_lock);
41c594ab
RB
289 bust_spinlocks(1);
290#ifdef CONFIG_MIPS_MT_SMTC
291 mips_mt_regdump(dvpret);
292#endif /* CONFIG_MIPS_MT_SMTC */
178086c8 293 printk("%s[#%d]:\n", str, ++die_counter);
1da177e4
LT
294 show_registers(regs);
295 spin_unlock_irq(&die_lock);
296 do_exit(SIGSEGV);
297}
298
1da177e4
LT
299extern const struct exception_table_entry __start___dbe_table[];
300extern const struct exception_table_entry __stop___dbe_table[];
301
302void __declare_dbe_table(void)
303{
304 __asm__ __volatile__(
305 ".section\t__dbe_table,\"a\"\n\t"
306 ".previous"
307 );
308}
309
310/* Given an address, look for it in the exception tables. */
311static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
312{
313 const struct exception_table_entry *e;
314
315 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
316 if (!e)
317 e = search_module_dbetables(addr);
318 return e;
319}
320
321asmlinkage void do_be(struct pt_regs *regs)
322{
323 const int field = 2 * sizeof(unsigned long);
324 const struct exception_table_entry *fixup = NULL;
325 int data = regs->cp0_cause & 4;
326 int action = MIPS_BE_FATAL;
327
328 /* XXX For now. Fixme, this searches the wrong table ... */
329 if (data && !user_mode(regs))
330 fixup = search_dbe_tables(exception_epc(regs));
331
332 if (fixup)
333 action = MIPS_BE_FIXUP;
334
335 if (board_be_handler)
336 action = board_be_handler(regs, fixup != 0);
337
338 switch (action) {
339 case MIPS_BE_DISCARD:
340 return;
341 case MIPS_BE_FIXUP:
342 if (fixup) {
343 regs->cp0_epc = fixup->nextinsn;
344 return;
345 }
346 break;
347 default:
348 break;
349 }
350
351 /*
352 * Assume it would be too dangerous to continue ...
353 */
354 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
355 data ? "Data" : "Instruction",
356 field, regs->cp0_epc, field, regs->regs[31]);
357 die_if_kernel("Oops", regs);
358 force_sig(SIGBUS, current);
359}
360
361static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
362{
fe00f943 363 unsigned int __user *epc;
1da177e4 364
fe00f943 365 epc = (unsigned int __user *) regs->cp0_epc +
1da177e4
LT
366 ((regs->cp0_cause & CAUSEF_BD) != 0);
367 if (!get_user(*opcode, epc))
368 return 0;
369
370 force_sig(SIGSEGV, current);
371 return 1;
372}
373
374/*
375 * ll/sc emulation
376 */
377
378#define OPCODE 0xfc000000
379#define BASE 0x03e00000
380#define RT 0x001f0000
381#define OFFSET 0x0000ffff
382#define LL 0xc0000000
383#define SC 0xe0000000
3c37026d
RB
384#define SPEC3 0x7c000000
385#define RD 0x0000f800
386#define FUNC 0x0000003f
387#define RDHWR 0x0000003b
1da177e4
LT
388
389/*
390 * The ll_bit is cleared by r*_switch.S
391 */
392
393unsigned long ll_bit;
394
395static struct task_struct *ll_task = NULL;
396
397static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
398{
fe00f943 399 unsigned long value, __user *vaddr;
1da177e4
LT
400 long offset;
401 int signal = 0;
402
403 /*
404 * analyse the ll instruction that just caused a ri exception
405 * and put the referenced address to addr.
406 */
407
408 /* sign extend offset */
409 offset = opcode & OFFSET;
410 offset <<= 16;
411 offset >>= 16;
412
fe00f943
RB
413 vaddr = (unsigned long __user *)
414 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
415
416 if ((unsigned long)vaddr & 3) {
417 signal = SIGBUS;
418 goto sig;
419 }
420 if (get_user(value, vaddr)) {
421 signal = SIGSEGV;
422 goto sig;
423 }
424
425 preempt_disable();
426
427 if (ll_task == NULL || ll_task == current) {
428 ll_bit = 1;
429 } else {
430 ll_bit = 0;
431 }
432 ll_task = current;
433
434 preempt_enable();
435
6dd04688
RB
436 compute_return_epc(regs);
437
1da177e4
LT
438 regs->regs[(opcode & RT) >> 16] = value;
439
1da177e4
LT
440 return;
441
442sig:
443 force_sig(signal, current);
444}
445
446static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
447{
fe00f943
RB
448 unsigned long __user *vaddr;
449 unsigned long reg;
1da177e4
LT
450 long offset;
451 int signal = 0;
452
453 /*
454 * analyse the sc instruction that just caused a ri exception
455 * and put the referenced address to addr.
456 */
457
458 /* sign extend offset */
459 offset = opcode & OFFSET;
460 offset <<= 16;
461 offset >>= 16;
462
fe00f943
RB
463 vaddr = (unsigned long __user *)
464 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
465 reg = (opcode & RT) >> 16;
466
467 if ((unsigned long)vaddr & 3) {
468 signal = SIGBUS;
469 goto sig;
470 }
471
472 preempt_disable();
473
474 if (ll_bit == 0 || ll_task != current) {
05b8042a 475 compute_return_epc(regs);
1da177e4
LT
476 regs->regs[reg] = 0;
477 preempt_enable();
1da177e4
LT
478 return;
479 }
480
481 preempt_enable();
482
483 if (put_user(regs->regs[reg], vaddr)) {
484 signal = SIGSEGV;
485 goto sig;
486 }
487
6dd04688 488 compute_return_epc(regs);
1da177e4
LT
489 regs->regs[reg] = 1;
490
1da177e4
LT
491 return;
492
493sig:
494 force_sig(signal, current);
495}
496
497/*
498 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
499 * opcodes are supposed to result in coprocessor unusable exceptions if
500 * executed on ll/sc-less processors. That's the theory. In practice a
501 * few processors such as NEC's VR4100 throw reserved instruction exceptions
502 * instead, so we're doing the emulation thing in both exception handlers.
503 */
504static inline int simulate_llsc(struct pt_regs *regs)
505{
506 unsigned int opcode;
507
508 if (unlikely(get_insn_opcode(regs, &opcode)))
509 return -EFAULT;
510
511 if ((opcode & OPCODE) == LL) {
512 simulate_ll(regs, opcode);
513 return 0;
514 }
515 if ((opcode & OPCODE) == SC) {
516 simulate_sc(regs, opcode);
517 return 0;
518 }
519
520 return -EFAULT; /* Strange things going on ... */
521}
522
3c37026d
RB
523/*
524 * Simulate trapping 'rdhwr' instructions to provide user accessible
525 * registers not implemented in hardware. The only current use of this
526 * is the thread area pointer.
527 */
528static inline int simulate_rdhwr(struct pt_regs *regs)
529{
dc8f6029 530 struct thread_info *ti = task_thread_info(current);
3c37026d
RB
531 unsigned int opcode;
532
533 if (unlikely(get_insn_opcode(regs, &opcode)))
534 return -EFAULT;
535
536 if (unlikely(compute_return_epc(regs)))
537 return -EFAULT;
538
539 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
540 int rd = (opcode & RD) >> 11;
541 int rt = (opcode & RT) >> 16;
542 switch (rd) {
543 case 29:
544 regs->regs[rt] = ti->tp_value;
56ebd51b 545 return 0;
3c37026d
RB
546 default:
547 return -EFAULT;
548 }
549 }
550
56ebd51b
DJ
551 /* Not ours. */
552 return -EFAULT;
3c37026d
RB
553}
554
1da177e4
LT
555asmlinkage void do_ov(struct pt_regs *regs)
556{
557 siginfo_t info;
558
36ccf1c0
RB
559 die_if_kernel("Integer overflow", regs);
560
1da177e4
LT
561 info.si_code = FPE_INTOVF;
562 info.si_signo = SIGFPE;
563 info.si_errno = 0;
fe00f943 564 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
565 force_sig_info(SIGFPE, &info, current);
566}
567
568/*
569 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
570 */
571asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
572{
573 if (fcr31 & FPU_CSR_UNI_X) {
574 int sig;
575
576 preempt_disable();
577
cd21dfcf
RB
578#ifdef CONFIG_PREEMPT
579 if (!is_fpu_owner()) {
580 /* We might lose fpu before disabling preempt... */
581 own_fpu();
582 BUG_ON(!used_math());
583 restore_fp(current);
584 }
585#endif
1da177e4 586 /*
a3dddd56 587 * Unimplemented operation exception. If we've got the full
1da177e4
LT
588 * software emulator on-board, let's use it...
589 *
590 * Force FPU to dump state into task/thread context. We're
591 * moving a lot of data here for what is probably a single
592 * instruction, but the alternative is to pre-decode the FP
593 * register operands before invoking the emulator, which seems
594 * a bit extreme for what should be an infrequent event.
595 */
596 save_fp(current);
cd21dfcf
RB
597 /* Ensure 'resume' not overwrite saved fp context again. */
598 lose_fpu();
599
600 preempt_enable();
1da177e4
LT
601
602 /* Run the emulator */
12616ed2 603 sig = fpu_emulator_cop1Handler (regs,
1da177e4
LT
604 &current->thread.fpu.soft);
605
cd21dfcf
RB
606 preempt_disable();
607
608 own_fpu(); /* Using the FPU again. */
1da177e4
LT
609 /*
610 * We can't allow the emulated instruction to leave any of
611 * the cause bit set in $fcr31.
612 */
613 current->thread.fpu.soft.fcr31 &= ~FPU_CSR_ALL_X;
614
615 /* Restore the hardware register state */
616 restore_fp(current);
617
618 preempt_enable();
619
620 /* If something went wrong, signal */
621 if (sig)
622 force_sig(sig, current);
623
624 return;
625 }
626
627 force_sig(SIGFPE, current);
628}
629
630asmlinkage void do_bp(struct pt_regs *regs)
631{
632 unsigned int opcode, bcode;
633 siginfo_t info;
634
635 die_if_kernel("Break instruction in kernel code", regs);
636
637 if (get_insn_opcode(regs, &opcode))
638 return;
639
640 /*
641 * There is the ancient bug in the MIPS assemblers that the break
642 * code starts left to bit 16 instead to bit 6 in the opcode.
643 * Gas is bug-compatible, but not always, grrr...
644 * We handle both cases with a simple heuristics. --macro
645 */
646 bcode = ((opcode >> 6) & ((1 << 20) - 1));
647 if (bcode < (1 << 10))
648 bcode <<= 10;
649
650 /*
651 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
652 * insns, even for break codes that indicate arithmetic failures.
653 * Weird ...)
654 * But should we continue the brokenness??? --macro
655 */
656 switch (bcode) {
657 case BRK_OVERFLOW << 10:
658 case BRK_DIVZERO << 10:
659 if (bcode == (BRK_DIVZERO << 10))
660 info.si_code = FPE_INTDIV;
661 else
662 info.si_code = FPE_INTOVF;
663 info.si_signo = SIGFPE;
664 info.si_errno = 0;
fe00f943 665 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
666 force_sig_info(SIGFPE, &info, current);
667 break;
668 default:
669 force_sig(SIGTRAP, current);
670 }
671}
672
673asmlinkage void do_tr(struct pt_regs *regs)
674{
675 unsigned int opcode, tcode = 0;
676 siginfo_t info;
677
678 die_if_kernel("Trap instruction in kernel code", regs);
679
680 if (get_insn_opcode(regs, &opcode))
681 return;
682
683 /* Immediate versions don't provide a code. */
684 if (!(opcode & OPCODE))
685 tcode = ((opcode >> 6) & ((1 << 10) - 1));
686
687 /*
688 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
689 * insns, even for trap codes that indicate arithmetic failures.
690 * Weird ...)
691 * But should we continue the brokenness??? --macro
692 */
693 switch (tcode) {
694 case BRK_OVERFLOW:
695 case BRK_DIVZERO:
696 if (tcode == BRK_DIVZERO)
697 info.si_code = FPE_INTDIV;
698 else
699 info.si_code = FPE_INTOVF;
700 info.si_signo = SIGFPE;
701 info.si_errno = 0;
fe00f943 702 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
703 force_sig_info(SIGFPE, &info, current);
704 break;
705 default:
706 force_sig(SIGTRAP, current);
707 }
708}
709
710asmlinkage void do_ri(struct pt_regs *regs)
711{
712 die_if_kernel("Reserved instruction in kernel code", regs);
713
714 if (!cpu_has_llsc)
715 if (!simulate_llsc(regs))
716 return;
717
3c37026d
RB
718 if (!simulate_rdhwr(regs))
719 return;
720
1da177e4
LT
721 force_sig(SIGILL, current);
722}
723
724asmlinkage void do_cpu(struct pt_regs *regs)
725{
726 unsigned int cpid;
727
728 die_if_kernel("do_cpu invoked from kernel context!", regs);
729
730 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
731
732 switch (cpid) {
733 case 0:
3c37026d
RB
734 if (!cpu_has_llsc)
735 if (!simulate_llsc(regs))
736 return;
1da177e4 737
3c37026d 738 if (!simulate_rdhwr(regs))
1da177e4 739 return;
3c37026d 740
1da177e4
LT
741 break;
742
743 case 1:
744 preempt_disable();
745
746 own_fpu();
747 if (used_math()) { /* Using the FPU again. */
748 restore_fp(current);
749 } else { /* First time FPU user. */
750 init_fpu();
751 set_used_math();
752 }
753
cd21dfcf
RB
754 preempt_enable();
755
1da177e4 756 if (!cpu_has_fpu) {
12616ed2 757 int sig = fpu_emulator_cop1Handler(regs,
1da177e4
LT
758 &current->thread.fpu.soft);
759 if (sig)
760 force_sig(sig, current);
761 }
762
1da177e4
LT
763 return;
764
765 case 2:
766 case 3:
41c594ab 767 die_if_kernel("do_cpu invoked from kernel context!", regs);
1da177e4
LT
768 break;
769 }
770
771 force_sig(SIGILL, current);
772}
773
774asmlinkage void do_mdmx(struct pt_regs *regs)
775{
776 force_sig(SIGILL, current);
777}
778
779asmlinkage void do_watch(struct pt_regs *regs)
780{
781 /*
782 * We use the watch exception where available to detect stack
783 * overflows.
784 */
785 dump_tlb_all();
786 show_regs(regs);
787 panic("Caught WATCH exception - probably caused by stack overflow.");
788}
789
790asmlinkage void do_mcheck(struct pt_regs *regs)
791{
792 show_regs(regs);
793 dump_tlb_all();
794 /*
795 * Some chips may have other causes of machine check (e.g. SB1
796 * graduation timer)
797 */
798 panic("Caught Machine Check exception - %scaused by multiple "
799 "matching entries in the TLB.",
800 (regs->cp0_status & ST0_TS) ? "" : "not ");
801}
802
340ee4b9
RB
803asmlinkage void do_mt(struct pt_regs *regs)
804{
41c594ab
RB
805 int subcode;
806
807 die_if_kernel("MIPS MT Thread exception in kernel", regs);
808
809 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
810 >> VPECONTROL_EXCPT_SHIFT;
811 switch (subcode) {
812 case 0:
813 printk(KERN_ERR "Thread Underflow\n");
814 break;
815 case 1:
816 printk(KERN_ERR "Thread Overflow\n");
817 break;
818 case 2:
819 printk(KERN_ERR "Invalid YIELD Qualifier\n");
820 break;
821 case 3:
822 printk(KERN_ERR "Gating Storage Exception\n");
823 break;
824 case 4:
825 printk(KERN_ERR "YIELD Scheduler Exception\n");
826 break;
827 case 5:
828 printk(KERN_ERR "Gating Storage Schedulier Exception\n");
829 break;
830 default:
831 printk(KERN_ERR "*** UNKNOWN THREAD EXCEPTION %d ***\n",
832 subcode);
833 break;
834 }
340ee4b9
RB
835 die_if_kernel("MIPS MT Thread exception in kernel", regs);
836
837 force_sig(SIGILL, current);
838}
839
840
e50c0a8f
RB
841asmlinkage void do_dsp(struct pt_regs *regs)
842{
843 if (cpu_has_dsp)
844 panic("Unexpected DSP exception\n");
845
846 force_sig(SIGILL, current);
847}
848
1da177e4
LT
849asmlinkage void do_reserved(struct pt_regs *regs)
850{
851 /*
852 * Game over - no way to handle this if it ever occurs. Most probably
853 * caused by a new unknown cpu type or after another deadly
854 * hard/software error.
855 */
856 show_regs(regs);
857 panic("Caught reserved exception %ld - should not happen.",
858 (regs->cp0_cause & 0x7f) >> 2);
859}
860
e01402b1
RB
861asmlinkage void do_default_vi(struct pt_regs *regs)
862{
863 show_regs(regs);
864 panic("Caught unexpected vectored interrupt.");
865}
866
1da177e4
LT
867/*
868 * Some MIPS CPUs can enable/disable for cache parity detection, but do
869 * it different ways.
870 */
871static inline void parity_protection_init(void)
872{
873 switch (current_cpu_data.cputype) {
874 case CPU_24K:
1da177e4 875 case CPU_5KC:
14f18b7f
RB
876 write_c0_ecc(0x80000000);
877 back_to_back_c0_hazard();
878 /* Set the PE bit (bit 31) in the c0_errctl register. */
879 printk(KERN_INFO "Cache parity protection %sabled\n",
880 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1da177e4
LT
881 break;
882 case CPU_20KC:
883 case CPU_25KF:
884 /* Clear the DE bit (bit 16) in the c0_status register. */
885 printk(KERN_INFO "Enable cache parity protection for "
886 "MIPS 20KC/25KF CPUs.\n");
887 clear_c0_status(ST0_DE);
888 break;
889 default:
890 break;
891 }
892}
893
894asmlinkage void cache_parity_error(void)
895{
896 const int field = 2 * sizeof(unsigned long);
897 unsigned int reg_val;
898
899 /* For the moment, report the problem and hang. */
900 printk("Cache error exception:\n");
901 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
902 reg_val = read_c0_cacheerr();
903 printk("c0_cacheerr == %08x\n", reg_val);
904
905 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
906 reg_val & (1<<30) ? "secondary" : "primary",
907 reg_val & (1<<31) ? "data" : "insn");
908 printk("Error bits: %s%s%s%s%s%s%s\n",
909 reg_val & (1<<29) ? "ED " : "",
910 reg_val & (1<<28) ? "ET " : "",
911 reg_val & (1<<26) ? "EE " : "",
912 reg_val & (1<<25) ? "EB " : "",
913 reg_val & (1<<24) ? "EI " : "",
914 reg_val & (1<<23) ? "E1 " : "",
915 reg_val & (1<<22) ? "E0 " : "");
916 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
917
ec917c2c 918#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1da177e4
LT
919 if (reg_val & (1<<22))
920 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
921
922 if (reg_val & (1<<23))
923 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
924#endif
925
926 panic("Can't handle the cache error!");
927}
928
929/*
930 * SDBBP EJTAG debug exception handler.
931 * We skip the instruction and return to the next instruction.
932 */
933void ejtag_exception_handler(struct pt_regs *regs)
934{
935 const int field = 2 * sizeof(unsigned long);
936 unsigned long depc, old_epc;
937 unsigned int debug;
938
939 printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
940 depc = read_c0_depc();
941 debug = read_c0_debug();
942 printk("c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
943 if (debug & 0x80000000) {
944 /*
945 * In branch delay slot.
946 * We cheat a little bit here and use EPC to calculate the
947 * debug return address (DEPC). EPC is restored after the
948 * calculation.
949 */
950 old_epc = regs->cp0_epc;
951 regs->cp0_epc = depc;
952 __compute_return_epc(regs);
953 depc = regs->cp0_epc;
954 regs->cp0_epc = old_epc;
955 } else
956 depc += 4;
957 write_c0_depc(depc);
958
959#if 0
960 printk("\n\n----- Enable EJTAG single stepping ----\n\n");
961 write_c0_debug(debug | 0x100);
962#endif
963}
964
965/*
966 * NMI exception handler.
967 */
968void nmi_exception_handler(struct pt_regs *regs)
969{
41c594ab
RB
970#ifdef CONFIG_MIPS_MT_SMTC
971 unsigned long dvpret = dvpe();
972 bust_spinlocks(1);
973 printk("NMI taken!!!!\n");
974 mips_mt_regdump(dvpret);
975#else
976 bust_spinlocks(1);
1da177e4 977 printk("NMI taken!!!!\n");
41c594ab 978#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
979 die("NMI", regs);
980 while(1) ;
981}
982
e01402b1
RB
983#define VECTORSPACING 0x100 /* for EI/VI mode */
984
985unsigned long ebase;
1da177e4 986unsigned long exception_handlers[32];
e01402b1 987unsigned long vi_handlers[64];
1da177e4
LT
988
989/*
990 * As a side effect of the way this is implemented we're limited
991 * to interrupt handlers in the address range from
992 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
993 */
994void *set_except_vector(int n, void *addr)
995{
996 unsigned long handler = (unsigned long) addr;
997 unsigned long old_handler = exception_handlers[n];
998
999 exception_handlers[n] = handler;
1000 if (n == 0 && cpu_has_divec) {
e01402b1 1001 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
1da177e4 1002 (0x03ffffff & (handler >> 2));
e01402b1
RB
1003 flush_icache_range(ebase + 0x200, ebase + 0x204);
1004 }
1005 return (void *)old_handler;
1006}
1007
1008#ifdef CONFIG_CPU_MIPSR2
1009/*
193dd2ce 1010 * MIPSR2 shadow register set allocation
e01402b1
RB
1011 * FIXME: SMP...
1012 */
1013
193dd2ce
RB
1014static struct shadow_registers {
1015 /*
1016 * Number of shadow register sets supported
1017 */
1018 unsigned long sr_supported;
1019 /*
1020 * Bitmap of allocated shadow registers
1021 */
1022 unsigned long sr_allocated;
e01402b1
RB
1023} shadow_registers;
1024
1025void mips_srs_init(void)
1026{
1027#ifdef CONFIG_CPU_MIPSR2_SRS
1028 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
7acb783e
RB
1029 printk(KERN_INFO "%d MIPSR2 register sets available\n",
1030 shadow_registers.sr_supported);
e01402b1
RB
1031#endif
1032 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
e01402b1
RB
1033}
1034
1035int mips_srs_max(void)
1036{
1037 return shadow_registers.sr_supported;
1038}
1039
ff3eab2a 1040int mips_srs_alloc(void)
e01402b1
RB
1041{
1042 struct shadow_registers *sr = &shadow_registers;
e01402b1
RB
1043 int set;
1044
193dd2ce
RB
1045again:
1046 set = find_first_zero_bit(&sr->sr_allocated, sr->sr_supported);
1047 if (set >= sr->sr_supported)
1048 return -1;
e01402b1 1049
193dd2ce
RB
1050 if (test_and_set_bit(set, &sr->sr_allocated))
1051 goto again;
e01402b1 1052
193dd2ce 1053 return set;
e01402b1
RB
1054}
1055
41c594ab 1056void mips_srs_free(int set)
e01402b1
RB
1057{
1058 struct shadow_registers *sr = &shadow_registers;
e01402b1 1059
193dd2ce 1060 clear_bit(set, &sr->sr_allocated);
e01402b1
RB
1061}
1062
b4d05cb9 1063static void *set_vi_srs_handler(int n, void *addr, int srs)
e01402b1
RB
1064{
1065 unsigned long handler;
1066 unsigned long old_handler = vi_handlers[n];
1067 u32 *w;
1068 unsigned char *b;
1069
1070 if (!cpu_has_veic && !cpu_has_vint)
1071 BUG();
1072
1073 if (addr == NULL) {
1074 handler = (unsigned long) do_default_vi;
1075 srs = 0;
41c594ab 1076 } else
e01402b1
RB
1077 handler = (unsigned long) addr;
1078 vi_handlers[n] = (unsigned long) addr;
1079
1080 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1081
1082 if (srs >= mips_srs_max())
1083 panic("Shadow register set %d not supported", srs);
1084
1085 if (cpu_has_veic) {
1086 if (board_bind_eic_interrupt)
1087 board_bind_eic_interrupt (n, srs);
41c594ab 1088 } else if (cpu_has_vint) {
e01402b1
RB
1089 /* SRSMap is only defined if shadow sets are implemented */
1090 if (mips_srs_max() > 1)
1091 change_c0_srsmap (0xf << n*4, srs << n*4);
1092 }
1093
1094 if (srs == 0) {
1095 /*
1096 * If no shadow set is selected then use the default handler
1097 * that does normal register saving and a standard interrupt exit
1098 */
1099
1100 extern char except_vec_vi, except_vec_vi_lui;
1101 extern char except_vec_vi_ori, except_vec_vi_end;
41c594ab
RB
1102#ifdef CONFIG_MIPS_MT_SMTC
1103 /*
1104 * We need to provide the SMTC vectored interrupt handler
1105 * not only with the address of the handler, but with the
1106 * Status.IM bit to be masked before going there.
1107 */
1108 extern char except_vec_vi_mori;
1109 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1110#endif /* CONFIG_MIPS_MT_SMTC */
e01402b1
RB
1111 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1112 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1113 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1114
1115 if (handler_len > VECTORSPACING) {
1116 /*
1117 * Sigh... panicing won't help as the console
1118 * is probably not configured :(
1119 */
1120 panic ("VECTORSPACING too small");
1121 }
1122
1123 memcpy (b, &except_vec_vi, handler_len);
41c594ab
RB
1124#ifdef CONFIG_MIPS_MT_SMTC
1125 if (n > 7)
1126 printk("Vector index %d exceeds SMTC maximum\n", n);
1127 w = (u32 *)(b + mori_offset);
1128 *w = (*w & 0xffff0000) | (0x100 << n);
1129#endif /* CONFIG_MIPS_MT_SMTC */
e01402b1
RB
1130 w = (u32 *)(b + lui_offset);
1131 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1132 w = (u32 *)(b + ori_offset);
1133 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1134 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1135 }
1136 else {
1137 /*
1138 * In other cases jump directly to the interrupt handler
1139 *
1140 * It is the handlers responsibility to save registers if required
1141 * (eg hi/lo) and return from the exception using "eret"
1142 */
1143 w = (u32 *)b;
1144 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1145 *w = 0;
1146 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1da177e4 1147 }
e01402b1 1148
1da177e4
LT
1149 return (void *)old_handler;
1150}
1151
41c594ab 1152void *set_vi_handler(int n, void *addr)
e01402b1 1153{
ff3eab2a 1154 return set_vi_srs_handler(n, addr, 0);
e01402b1
RB
1155}
1156#endif
1157
1da177e4
LT
1158/*
1159 * This is used by native signal handling
1160 */
1161asmlinkage int (*save_fp_context)(struct sigcontext *sc);
1162asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
1163
1164extern asmlinkage int _save_fp_context(struct sigcontext *sc);
1165extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
1166
1167extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
1168extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
1169
41c594ab
RB
1170#ifdef CONFIG_SMP
1171static int smp_save_fp_context(struct sigcontext *sc)
1172{
1173 return cpu_has_fpu
1174 ? _save_fp_context(sc)
1175 : fpu_emulator_save_context(sc);
1176}
1177
1178static int smp_restore_fp_context(struct sigcontext *sc)
1179{
1180 return cpu_has_fpu
1181 ? _restore_fp_context(sc)
1182 : fpu_emulator_restore_context(sc);
1183}
1184#endif
1185
1da177e4
LT
1186static inline void signal_init(void)
1187{
41c594ab
RB
1188#ifdef CONFIG_SMP
1189 /* For now just do the cpu_has_fpu check when the functions are invoked */
1190 save_fp_context = smp_save_fp_context;
1191 restore_fp_context = smp_restore_fp_context;
1192#else
1da177e4
LT
1193 if (cpu_has_fpu) {
1194 save_fp_context = _save_fp_context;
1195 restore_fp_context = _restore_fp_context;
1196 } else {
1197 save_fp_context = fpu_emulator_save_context;
1198 restore_fp_context = fpu_emulator_restore_context;
1199 }
41c594ab 1200#endif
1da177e4
LT
1201}
1202
1203#ifdef CONFIG_MIPS32_COMPAT
1204
1205/*
1206 * This is used by 32-bit signal stuff on the 64-bit kernel
1207 */
1208asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
1209asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
1210
1211extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
1212extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
1213
1214extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
1215extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
1216
1217static inline void signal32_init(void)
1218{
1219 if (cpu_has_fpu) {
1220 save_fp_context32 = _save_fp_context32;
1221 restore_fp_context32 = _restore_fp_context32;
1222 } else {
1223 save_fp_context32 = fpu_emulator_save_context32;
1224 restore_fp_context32 = fpu_emulator_restore_context32;
1225 }
1226}
1227#endif
1228
1229extern void cpu_cache_init(void);
1230extern void tlb_init(void);
1d40cfcd 1231extern void flush_tlb_handlers(void);
1da177e4
LT
1232
1233void __init per_cpu_trap_init(void)
1234{
1235 unsigned int cpu = smp_processor_id();
1236 unsigned int status_set = ST0_CU0;
41c594ab
RB
1237#ifdef CONFIG_MIPS_MT_SMTC
1238 int secondaryTC = 0;
1239 int bootTC = (cpu == 0);
1240
1241 /*
1242 * Only do per_cpu_trap_init() for first TC of Each VPE.
1243 * Note that this hack assumes that the SMTC init code
1244 * assigns TCs consecutively and in ascending order.
1245 */
1246
1247 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1248 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1249 secondaryTC = 1;
1250#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1251
1252 /*
1253 * Disable coprocessors and select 32-bit or 64-bit addressing
1254 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1255 * flag that some firmware may have left set and the TS bit (for
1256 * IP27). Set XX for ISA IV code to work.
1257 */
875d43e7 1258#ifdef CONFIG_64BIT
1da177e4
LT
1259 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1260#endif
1261 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1262 status_set |= ST0_XX;
b38c7399 1263 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1da177e4
LT
1264 status_set);
1265
e50c0a8f
RB
1266 if (cpu_has_dsp)
1267 set_c0_status(ST0_MX);
1268
e01402b1
RB
1269#ifdef CONFIG_CPU_MIPSR2
1270 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1271#endif
1272
41c594ab
RB
1273#ifdef CONFIG_MIPS_MT_SMTC
1274 if (!secondaryTC) {
1275#endif /* CONFIG_MIPS_MT_SMTC */
1276
1da177e4 1277 /*
e01402b1 1278 * Interrupt handling.
1da177e4 1279 */
e01402b1
RB
1280 if (cpu_has_veic || cpu_has_vint) {
1281 write_c0_ebase (ebase);
1282 /* Setting vector spacing enables EI/VI mode */
1283 change_c0_intctl (0x3e0, VECTORSPACING);
1284 }
d03d0a57
RB
1285 if (cpu_has_divec) {
1286 if (cpu_has_mipsmt) {
1287 unsigned int vpflags = dvpe();
1288 set_c0_cause(CAUSEF_IV);
1289 evpe(vpflags);
1290 } else
1291 set_c0_cause(CAUSEF_IV);
1292 }
41c594ab
RB
1293#ifdef CONFIG_MIPS_MT_SMTC
1294 }
1295#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1296
1297 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1298 TLBMISS_HANDLER_SETUP();
1299
1300 atomic_inc(&init_mm.mm_count);
1301 current->active_mm = &init_mm;
1302 BUG_ON(current->mm);
1303 enter_lazy_tlb(&init_mm, current);
1304
41c594ab
RB
1305#ifdef CONFIG_MIPS_MT_SMTC
1306 if (bootTC) {
1307#endif /* CONFIG_MIPS_MT_SMTC */
1308 cpu_cache_init();
1309 tlb_init();
1310#ifdef CONFIG_MIPS_MT_SMTC
1311 }
1312#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1313}
1314
e01402b1
RB
1315/* Install CPU exception handler */
1316void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1317{
1318 memcpy((void *)(ebase + offset), addr, size);
1319 flush_icache_range(ebase + offset, ebase + offset + size);
1320}
1321
1322/* Install uncached CPU exception handler */
1323void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1324{
1325#ifdef CONFIG_32BIT
1326 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1327#endif
1328#ifdef CONFIG_64BIT
1329 unsigned long uncached_ebase = TO_UNCAC(ebase);
1330#endif
1331
1332 memcpy((void *)(uncached_ebase + offset), addr, size);
1333}
1334
1da177e4
LT
1335void __init trap_init(void)
1336{
1337 extern char except_vec3_generic, except_vec3_r4000;
1da177e4
LT
1338 extern char except_vec4;
1339 unsigned long i;
1340
e01402b1
RB
1341 if (cpu_has_veic || cpu_has_vint)
1342 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1343 else
1344 ebase = CAC_BASE;
1345
1346#ifdef CONFIG_CPU_MIPSR2
1347 mips_srs_init();
1348#endif
1349
1da177e4
LT
1350 per_cpu_trap_init();
1351
1352 /*
1353 * Copy the generic exception handlers to their final destination.
1354 * This will be overriden later as suitable for a particular
1355 * configuration.
1356 */
e01402b1 1357 set_handler(0x180, &except_vec3_generic, 0x80);
1da177e4
LT
1358
1359 /*
1360 * Setup default vectors
1361 */
1362 for (i = 0; i <= 31; i++)
1363 set_except_vector(i, handle_reserved);
1364
1365 /*
1366 * Copy the EJTAG debug exception vector handler code to it's final
1367 * destination.
1368 */
e01402b1
RB
1369 if (cpu_has_ejtag && board_ejtag_handler_setup)
1370 board_ejtag_handler_setup ();
1da177e4
LT
1371
1372 /*
1373 * Only some CPUs have the watch exceptions.
1374 */
1375 if (cpu_has_watch)
1376 set_except_vector(23, handle_watch);
1377
1378 /*
e01402b1 1379 * Initialise interrupt handlers
1da177e4 1380 */
e01402b1
RB
1381 if (cpu_has_veic || cpu_has_vint) {
1382 int nvec = cpu_has_veic ? 64 : 8;
1383 for (i = 0; i < nvec; i++)
ff3eab2a 1384 set_vi_handler(i, NULL);
e01402b1
RB
1385 }
1386 else if (cpu_has_divec)
1387 set_handler(0x200, &except_vec4, 0x8);
1da177e4
LT
1388
1389 /*
1390 * Some CPUs can enable/disable for cache parity detection, but does
1391 * it different ways.
1392 */
1393 parity_protection_init();
1394
1395 /*
1396 * The Data Bus Errors / Instruction Bus Errors are signaled
1397 * by external hardware. Therefore these two exceptions
1398 * may have board specific handlers.
1399 */
1400 if (board_be_init)
1401 board_be_init();
1402
e4ac58af 1403 set_except_vector(0, handle_int);
1da177e4
LT
1404 set_except_vector(1, handle_tlbm);
1405 set_except_vector(2, handle_tlbl);
1406 set_except_vector(3, handle_tlbs);
1407
1408 set_except_vector(4, handle_adel);
1409 set_except_vector(5, handle_ades);
1410
1411 set_except_vector(6, handle_ibe);
1412 set_except_vector(7, handle_dbe);
1413
1414 set_except_vector(8, handle_sys);
1415 set_except_vector(9, handle_bp);
1416 set_except_vector(10, handle_ri);
1417 set_except_vector(11, handle_cpu);
1418 set_except_vector(12, handle_ov);
1419 set_except_vector(13, handle_tr);
1da177e4
LT
1420
1421 if (current_cpu_data.cputype == CPU_R6000 ||
1422 current_cpu_data.cputype == CPU_R6000A) {
1423 /*
1424 * The R6000 is the only R-series CPU that features a machine
1425 * check exception (similar to the R4000 cache error) and
1426 * unaligned ldc1/sdc1 exception. The handlers have not been
1427 * written yet. Well, anyway there is no R6000 machine on the
1428 * current list of targets for Linux/MIPS.
1429 * (Duh, crap, there is someone with a triple R6k machine)
1430 */
1431 //set_except_vector(14, handle_mc);
1432 //set_except_vector(15, handle_ndc);
1433 }
1434
e01402b1
RB
1435
1436 if (board_nmi_handler_setup)
1437 board_nmi_handler_setup();
1438
e50c0a8f
RB
1439 if (cpu_has_fpu && !cpu_has_nofpuex)
1440 set_except_vector(15, handle_fpe);
1441
1442 set_except_vector(22, handle_mdmx);
1443
1444 if (cpu_has_mcheck)
1445 set_except_vector(24, handle_mcheck);
1446
340ee4b9
RB
1447 if (cpu_has_mipsmt)
1448 set_except_vector(25, handle_mt);
1449
e50c0a8f
RB
1450 if (cpu_has_dsp)
1451 set_except_vector(26, handle_dsp);
1452
1453 if (cpu_has_vce)
1454 /* Special exception: R4[04]00 uses also the divec space. */
1455 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1456 else if (cpu_has_4kex)
1457 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1458 else
1459 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1460
1da177e4
LT
1461 signal_init();
1462#ifdef CONFIG_MIPS32_COMPAT
1463 signal32_init();
1464#endif
1465
e01402b1 1466 flush_icache_range(ebase, ebase + 0x400);
1d40cfcd 1467 flush_tlb_handlers();
1da177e4 1468}