[MIPS] Protect more of timer_interrupt() by xtime_lock.
[linux-block.git] / arch / mips / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright 2001 MontaVista Software Inc.
3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4 * Copyright (c) 2003, 2004 Maciej W. Rozycki
5 *
6 * Common time service routines for MIPS machines. See
7 * Documentation/mips/time.README.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 */
bdf21b18 14#include <linux/config.h>
1da177e4
LT
15#include <linux/types.h>
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/sched.h>
19#include <linux/param.h>
20#include <linux/time.h>
21#include <linux/timex.h>
22#include <linux/smp.h>
23#include <linux/kernel_stat.h>
24#include <linux/spinlock.h>
25#include <linux/interrupt.h>
26#include <linux/module.h>
27
28#include <asm/bootinfo.h>
ec74e361 29#include <asm/cache.h>
1da177e4
LT
30#include <asm/compiler.h>
31#include <asm/cpu.h>
32#include <asm/cpu-features.h>
33#include <asm/div64.h>
34#include <asm/sections.h>
35#include <asm/time.h>
36
37/*
38 * The integer part of the number of usecs per jiffy is taken from tick,
39 * but the fractional part is not recorded, so we calculate it using the
40 * initial value of HZ. This aids systems where tick isn't really an
41 * integer (e.g. for HZ = 128).
42 */
43#define USECS_PER_JIFFY TICK_SIZE
44#define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
45
46#define TICK_SIZE (tick_nsec / 1000)
47
1da177e4
LT
48/*
49 * forward reference
50 */
51extern volatile unsigned long wall_jiffies;
52
53DEFINE_SPINLOCK(rtc_lock);
54
55/*
56 * By default we provide the null RTC ops
57 */
58static unsigned long null_rtc_get_time(void)
59{
60 return mktime(2000, 1, 1, 0, 0, 0);
61}
62
63static int null_rtc_set_time(unsigned long sec)
64{
65 return 0;
66}
67
68unsigned long (*rtc_get_time)(void) = null_rtc_get_time;
69int (*rtc_set_time)(unsigned long) = null_rtc_set_time;
70int (*rtc_set_mmss)(unsigned long);
71
72
73/* usecs per counter cycle, shifted to left by 32 bits */
74static unsigned int sll32_usecs_per_cycle;
75
76/* how many counter cycles in a jiffy */
ec74e361 77static unsigned long cycles_per_jiffy __read_mostly;
1da177e4
LT
78
79/* Cycle counter value at the previous timer interrupt.. */
80static unsigned int timerhi, timerlo;
81
82/* expirelo is the count value for next CPU timer interrupt */
83static unsigned int expirelo;
84
85
86/*
87 * Null timer ack for systems not needing one (e.g. i8254).
88 */
89static void null_timer_ack(void) { /* nothing */ }
90
91/*
92 * Null high precision timer functions for systems lacking one.
93 */
94static unsigned int null_hpt_read(void)
95{
96 return 0;
97}
98
ec74e361
RB
99static void null_hpt_init(unsigned int count)
100{
101 /* nothing */
102}
1da177e4
LT
103
104
105/*
106 * Timer ack for an R4k-compatible timer of a known frequency.
107 */
108static void c0_timer_ack(void)
109{
110 unsigned int count;
111
bdf21b18 112#ifndef CONFIG_SOC_PNX8550 /* pnx8550 resets to zero */
1da177e4
LT
113 /* Ack this timer interrupt and set the next one. */
114 expirelo += cycles_per_jiffy;
bdf21b18 115#endif
1da177e4
LT
116 write_c0_compare(expirelo);
117
118 /* Check to see if we have missed any timer interrupts. */
119 count = read_c0_count();
120 if ((count - expirelo) < 0x7fffffff) {
121 /* missed_timer_count++; */
122 expirelo = count + cycles_per_jiffy;
123 write_c0_compare(expirelo);
124 }
125}
126
127/*
128 * High precision timer functions for a R4k-compatible timer.
129 */
130static unsigned int c0_hpt_read(void)
131{
132 return read_c0_count();
133}
134
135/* For use solely as a high precision timer. */
136static void c0_hpt_init(unsigned int count)
137{
138 write_c0_count(read_c0_count() - count);
139}
140
141/* For use both as a high precision timer and an interrupt source. */
142static void c0_hpt_timer_init(unsigned int count)
143{
144 count = read_c0_count() - count;
145 expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
146 write_c0_count(expirelo - cycles_per_jiffy);
147 write_c0_compare(expirelo);
148 write_c0_count(count);
149}
150
151int (*mips_timer_state)(void);
152void (*mips_timer_ack)(void);
153unsigned int (*mips_hpt_read)(void);
154void (*mips_hpt_init)(unsigned int);
155
156
157/*
158 * This version of gettimeofday has microsecond resolution and better than
159 * microsecond precision on fast machines with cycle counter.
160 */
161void do_gettimeofday(struct timeval *tv)
162{
163 unsigned long seq;
164 unsigned long lost;
165 unsigned long usec, sec;
800d1142 166 unsigned long max_ntp_tick;
1da177e4
LT
167
168 do {
169 seq = read_seqbegin(&xtime_lock);
170
171 usec = do_gettimeoffset();
172
173 lost = jiffies - wall_jiffies;
174
175 /*
176 * If time_adjust is negative then NTP is slowing the clock
177 * so make sure not to go into next possible interval.
178 * Better to lose some accuracy than have time go backwards..
179 */
180 if (unlikely(time_adjust < 0)) {
800d1142 181 max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj;
1da177e4
LT
182 usec = min(usec, max_ntp_tick);
183
184 if (lost)
185 usec += lost * max_ntp_tick;
186 } else if (unlikely(lost))
800d1142 187 usec += lost * (USEC_PER_SEC / HZ);
1da177e4
LT
188
189 sec = xtime.tv_sec;
190 usec += (xtime.tv_nsec / 1000);
191
192 } while (read_seqretry(&xtime_lock, seq));
193
194 while (usec >= 1000000) {
195 usec -= 1000000;
196 sec++;
197 }
198
199 tv->tv_sec = sec;
200 tv->tv_usec = usec;
201}
202
203EXPORT_SYMBOL(do_gettimeofday);
204
205int do_settimeofday(struct timespec *tv)
206{
207 time_t wtm_sec, sec = tv->tv_sec;
208 long wtm_nsec, nsec = tv->tv_nsec;
209
210 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
211 return -EINVAL;
212
213 write_seqlock_irq(&xtime_lock);
214
215 /*
216 * This is revolting. We need to set "xtime" correctly. However,
217 * the value in this location is the value at the most recent update
218 * of wall time. Discover what correction gettimeofday() would have
219 * made, and then undo it!
220 */
221 nsec -= do_gettimeoffset() * NSEC_PER_USEC;
222 nsec -= (jiffies - wall_jiffies) * tick_nsec;
223
224 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
225 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
226
227 set_normalized_timespec(&xtime, sec, nsec);
228 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
229
b149ee22 230 ntp_clear();
1da177e4
LT
231 write_sequnlock_irq(&xtime_lock);
232 clock_was_set();
233 return 0;
234}
235
236EXPORT_SYMBOL(do_settimeofday);
237
238/*
239 * Gettimeoffset routines. These routines returns the time duration
240 * since last timer interrupt in usecs.
241 *
242 * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
243 * Otherwise use calibrate_gettimeoffset()
244 *
245 * If the CPU does not have the counter register, you can either supply
246 * your own gettimeoffset() routine, or use null_gettimeoffset(), which
247 * gives the same resolution as HZ.
248 */
249
250static unsigned long null_gettimeoffset(void)
251{
252 return 0;
253}
254
255
256/* The function pointer to one of the gettimeoffset funcs. */
257unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
258
259
260static unsigned long fixed_rate_gettimeoffset(void)
261{
262 u32 count;
263 unsigned long res;
264
265 /* Get last timer tick in absolute kernel time */
266 count = mips_hpt_read();
267
268 /* .. relative to previous jiffy (32 bits is enough) */
269 count -= timerlo;
270
271 __asm__("multu %1,%2"
272 : "=h" (res)
273 : "r" (count), "r" (sll32_usecs_per_cycle)
274 : "lo", GCC_REG_ACCUM);
275
276 /*
277 * Due to possible jiffies inconsistencies, we need to check
278 * the result so that we'll get a timer that is monotonic.
279 */
280 if (res >= USECS_PER_JIFFY)
281 res = USECS_PER_JIFFY - 1;
282
283 return res;
284}
285
286
287/*
288 * Cached "1/(clocks per usec) * 2^32" value.
289 * It has to be recalculated once each jiffy.
290 */
291static unsigned long cached_quotient;
292
293/* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
294static unsigned long last_jiffies;
295
296/*
297 * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
298 */
299static unsigned long calibrate_div32_gettimeoffset(void)
300{
301 u32 count;
302 unsigned long res, tmp;
303 unsigned long quotient;
304
305 tmp = jiffies;
306
307 quotient = cached_quotient;
308
309 if (last_jiffies != tmp) {
310 last_jiffies = tmp;
311 if (last_jiffies != 0) {
312 unsigned long r0;
313 do_div64_32(r0, timerhi, timerlo, tmp);
314 do_div64_32(quotient, USECS_PER_JIFFY,
315 USECS_PER_JIFFY_FRAC, r0);
316 cached_quotient = quotient;
317 }
318 }
319
320 /* Get last timer tick in absolute kernel time */
321 count = mips_hpt_read();
322
323 /* .. relative to previous jiffy (32 bits is enough) */
324 count -= timerlo;
325
326 __asm__("multu %1,%2"
327 : "=h" (res)
328 : "r" (count), "r" (quotient)
329 : "lo", GCC_REG_ACCUM);
330
331 /*
332 * Due to possible jiffies inconsistencies, we need to check
333 * the result so that we'll get a timer that is monotonic.
334 */
335 if (res >= USECS_PER_JIFFY)
336 res = USECS_PER_JIFFY - 1;
337
338 return res;
339}
340
341static unsigned long calibrate_div64_gettimeoffset(void)
342{
343 u32 count;
344 unsigned long res, tmp;
345 unsigned long quotient;
346
347 tmp = jiffies;
348
349 quotient = cached_quotient;
350
351 if (last_jiffies != tmp) {
352 last_jiffies = tmp;
353 if (last_jiffies) {
354 unsigned long r0;
355 __asm__(".set push\n\t"
356 ".set mips3\n\t"
357 "lwu %0,%3\n\t"
358 "dsll32 %1,%2,0\n\t"
359 "or %1,%1,%0\n\t"
360 "ddivu $0,%1,%4\n\t"
361 "mflo %1\n\t"
362 "dsll32 %0,%5,0\n\t"
363 "or %0,%0,%6\n\t"
364 "ddivu $0,%0,%1\n\t"
365 "mflo %0\n\t"
366 ".set pop"
367 : "=&r" (quotient), "=&r" (r0)
368 : "r" (timerhi), "m" (timerlo),
369 "r" (tmp), "r" (USECS_PER_JIFFY),
370 "r" (USECS_PER_JIFFY_FRAC)
371 : "hi", "lo", GCC_REG_ACCUM);
372 cached_quotient = quotient;
373 }
374 }
375
376 /* Get last timer tick in absolute kernel time */
377 count = mips_hpt_read();
378
379 /* .. relative to previous jiffy (32 bits is enough) */
380 count -= timerlo;
381
382 __asm__("multu %1,%2"
383 : "=h" (res)
384 : "r" (count), "r" (quotient)
385 : "lo", GCC_REG_ACCUM);
386
387 /*
388 * Due to possible jiffies inconsistencies, we need to check
389 * the result so that we'll get a timer that is monotonic.
390 */
391 if (res >= USECS_PER_JIFFY)
392 res = USECS_PER_JIFFY - 1;
393
394 return res;
395}
396
397
398/* last time when xtime and rtc are sync'ed up */
399static long last_rtc_update;
400
401/*
402 * local_timer_interrupt() does profiling and process accounting
403 * on a per-CPU basis.
404 *
405 * In UP mode, it is invoked from the (global) timer_interrupt.
406 *
407 * In SMP mode, it might invoked by per-CPU timer interrupt, or
408 * a broadcasted inter-processor interrupt which itself is triggered
409 * by the global timer interrupt.
410 */
411void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
412{
413 if (current->pid)
414 profile_tick(CPU_PROFILING, regs);
415 update_process_times(user_mode(regs));
416}
417
418/*
419 * High-level timer interrupt service routines. This function
420 * is set as irqaction->handler and is invoked through do_IRQ.
421 */
422irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
423{
424 unsigned long j;
425 unsigned int count;
426
d6bd0e6b
RB
427 write_seqlock(&xtime_lock);
428
1da177e4
LT
429 count = mips_hpt_read();
430 mips_timer_ack();
431
432 /* Update timerhi/timerlo for intra-jiffy calibration. */
433 timerhi += count < timerlo; /* Wrap around */
434 timerlo = count;
435
436 /*
437 * call the generic timer interrupt handling
438 */
439 do_timer(regs);
440
441 /*
442 * If we have an externally synchronized Linux clock, then update
443 * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be
444 * called as close as possible to 500 ms before the new second starts.
445 */
b149ee22 446 if (ntp_synced() &&
1da177e4
LT
447 xtime.tv_sec > last_rtc_update + 660 &&
448 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
449 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
450 if (rtc_set_mmss(xtime.tv_sec) == 0) {
451 last_rtc_update = xtime.tv_sec;
452 } else {
453 /* do it again in 60 s */
454 last_rtc_update = xtime.tv_sec - 600;
455 }
456 }
1da177e4
LT
457
458 /*
459 * If jiffies has overflown in this timer_interrupt, we must
460 * update the timer[hi]/[lo] to make fast gettimeoffset funcs
461 * quotient calc still valid. -arca
462 *
463 * The first timer interrupt comes late as interrupts are
464 * enabled long after timers are initialized. Therefore the
465 * high precision timer is fast, leading to wrong gettimeoffset()
466 * calculations. We deal with it by setting it based on the
467 * number of its ticks between the second and the third interrupt.
468 * That is still somewhat imprecise, but it's a good estimate.
469 * --macro
470 */
471 j = jiffies;
472 if (j < 4) {
473 static unsigned int prev_count;
474 static int hpt_initialized;
475
476 switch (j) {
477 case 0:
478 timerhi = timerlo = 0;
479 mips_hpt_init(count);
480 break;
481 case 2:
482 prev_count = count;
483 break;
484 case 3:
485 if (!hpt_initialized) {
486 unsigned int c3 = 3 * (count - prev_count);
487
488 timerhi = 0;
489 timerlo = c3;
490 mips_hpt_init(count - c3);
491 hpt_initialized = 1;
492 }
493 break;
494 default:
495 break;
496 }
497 }
498
d6bd0e6b
RB
499 write_sequnlock(&xtime_lock);
500
1da177e4
LT
501 /*
502 * In UP mode, we call local_timer_interrupt() to do profiling
503 * and process accouting.
504 *
505 * In SMP mode, local_timer_interrupt() is invoked by appropriate
506 * low-level local timer interrupt handler.
507 */
508 local_timer_interrupt(irq, dev_id, regs);
509
510 return IRQ_HANDLED;
511}
512
ba339c03
RB
513int null_perf_irq(struct pt_regs *regs)
514{
515 return 0;
516}
517
518int (*perf_irq)(struct pt_regs *regs) = null_perf_irq;
519
520EXPORT_SYMBOL(null_perf_irq);
521EXPORT_SYMBOL(perf_irq);
522
1da177e4
LT
523asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
524{
ba339c03
RB
525 int r2 = cpu_has_mips_r2;
526
1da177e4
LT
527 irq_enter();
528 kstat_this_cpu.irqs[irq]++;
529
ba339c03
RB
530 /*
531 * Suckage alert:
532 * Before R2 of the architecture there was no way to see if a
533 * performance counter interrupt was pending, so we have to run the
534 * performance counter interrupt handler anyway.
535 */
536 if (!r2 || (read_c0_cause() & (1 << 26)))
537 if (perf_irq(regs))
538 goto out;
539
1da177e4 540 /* we keep interrupt disabled all the time */
ba339c03
RB
541 if (!r2 || (read_c0_cause() & (1 << 30)))
542 timer_interrupt(irq, NULL, regs);
1da177e4 543
ba339c03 544out:
1da177e4
LT
545 irq_exit();
546}
547
548asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
549{
550 irq_enter();
551 if (smp_processor_id() != 0)
552 kstat_this_cpu.irqs[irq]++;
553
554 /* we keep interrupt disabled all the time */
555 local_timer_interrupt(irq, NULL, regs);
556
557 irq_exit();
558}
559
560/*
561 * time_init() - it does the following things.
562 *
563 * 1) board_time_init() -
564 * a) (optional) set up RTC routines,
565 * b) (optional) calibrate and set the mips_hpt_frequency
566 * (only needed if you intended to use fixed_rate_gettimeoffset
567 * or use cpu counter as timer interrupt source)
568 * 2) setup xtime based on rtc_get_time().
569 * 3) choose a appropriate gettimeoffset routine.
570 * 4) calculate a couple of cached variables for later usage
571 * 5) board_timer_setup() -
572 * a) (optional) over-write any choices made above by time_init().
573 * b) machine specific code should setup the timer irqaction.
574 * c) enable the timer interrupt
575 */
576
577void (*board_time_init)(void);
578void (*board_timer_setup)(struct irqaction *irq);
579
580unsigned int mips_hpt_frequency;
581
582static struct irqaction timer_irqaction = {
583 .handler = timer_interrupt,
584 .flags = SA_INTERRUPT,
585 .name = "timer",
586};
587
588static unsigned int __init calibrate_hpt(void)
589{
590 u64 frequency;
591 u32 hpt_start, hpt_end, hpt_count, hz;
592
593 const int loops = HZ / 10;
594 int log_2_loops = 0;
595 int i;
596
597 /*
598 * We want to calibrate for 0.1s, but to avoid a 64-bit
599 * division we round the number of loops up to the nearest
600 * power of 2.
601 */
602 while (loops > 1 << log_2_loops)
603 log_2_loops++;
604 i = 1 << log_2_loops;
605
606 /*
607 * Wait for a rising edge of the timer interrupt.
608 */
609 while (mips_timer_state());
610 while (!mips_timer_state());
611
612 /*
613 * Now see how many high precision timer ticks happen
614 * during the calculated number of periods between timer
615 * interrupts.
616 */
617 hpt_start = mips_hpt_read();
618 do {
619 while (mips_timer_state());
620 while (!mips_timer_state());
621 } while (--i);
622 hpt_end = mips_hpt_read();
623
624 hpt_count = hpt_end - hpt_start;
625 hz = HZ;
626 frequency = (u64)hpt_count * (u64)hz;
627
628 return frequency >> log_2_loops;
629}
630
631void __init time_init(void)
632{
633 if (board_time_init)
634 board_time_init();
635
636 if (!rtc_set_mmss)
637 rtc_set_mmss = rtc_set_time;
638
639 xtime.tv_sec = rtc_get_time();
640 xtime.tv_nsec = 0;
641
642 set_normalized_timespec(&wall_to_monotonic,
643 -xtime.tv_sec, -xtime.tv_nsec);
644
645 /* Choose appropriate high precision timer routines. */
646 if (!cpu_has_counter && !mips_hpt_read) {
647 /* No high precision timer -- sorry. */
648 mips_hpt_read = null_hpt_read;
649 mips_hpt_init = null_hpt_init;
650 } else if (!mips_hpt_frequency && !mips_timer_state) {
651 /* A high precision timer of unknown frequency. */
652 if (!mips_hpt_read) {
653 /* No external high precision timer -- use R4k. */
654 mips_hpt_read = c0_hpt_read;
655 mips_hpt_init = c0_hpt_init;
656 }
657
b4672d37
RB
658 if (cpu_has_mips32r1 || cpu_has_mips32r2 ||
659 (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
660 (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
1da177e4
LT
661 /*
662 * We need to calibrate the counter but we don't have
663 * 64-bit division.
664 */
665 do_gettimeoffset = calibrate_div32_gettimeoffset;
666 else
667 /*
668 * We need to calibrate the counter but we *do* have
669 * 64-bit division.
670 */
671 do_gettimeoffset = calibrate_div64_gettimeoffset;
672 } else {
673 /* We know counter frequency. Or we can get it. */
674 if (!mips_hpt_read) {
675 /* No external high precision timer -- use R4k. */
676 mips_hpt_read = c0_hpt_read;
677
678 if (mips_timer_state)
679 mips_hpt_init = c0_hpt_init;
680 else {
681 /* No external timer interrupt -- use R4k. */
682 mips_hpt_init = c0_hpt_timer_init;
683 mips_timer_ack = c0_timer_ack;
684 }
685 }
686 if (!mips_hpt_frequency)
687 mips_hpt_frequency = calibrate_hpt();
688
689 do_gettimeoffset = fixed_rate_gettimeoffset;
690
691 /* Calculate cache parameters. */
692 cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
693
694 /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */
695 do_div64_32(sll32_usecs_per_cycle,
696 1000000, mips_hpt_frequency / 2,
697 mips_hpt_frequency);
698
699 /* Report the high precision timer rate for a reference. */
700 printk("Using %u.%03u MHz high precision timer.\n",
701 ((mips_hpt_frequency + 500) / 1000) / 1000,
702 ((mips_hpt_frequency + 500) / 1000) % 1000);
703 }
704
705 if (!mips_timer_ack)
706 /* No timer interrupt ack (e.g. i8254). */
707 mips_timer_ack = null_timer_ack;
708
709 /* This sets up the high precision timer for the first interrupt. */
710 mips_hpt_init(mips_hpt_read());
711
712 /*
713 * Call board specific timer interrupt setup.
714 *
715 * this pointer must be setup in machine setup routine.
716 *
717 * Even if a machine chooses to use a low-level timer interrupt,
718 * it still needs to setup the timer_irqaction.
719 * In that case, it might be better to set timer_irqaction.handler
720 * to be NULL function so that we are sure the high-level code
721 * is not invoked accidentally.
722 */
723 board_timer_setup(&timer_irqaction);
724}
725
726#define FEBRUARY 2
727#define STARTOFTIME 1970
728#define SECDAY 86400L
729#define SECYR (SECDAY * 365)
730#define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
731#define days_in_year(y) (leapyear(y) ? 366 : 365)
732#define days_in_month(m) (month_days[(m) - 1])
733
734static int month_days[12] = {
735 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
736};
737
738void to_tm(unsigned long tim, struct rtc_time *tm)
739{
740 long hms, day, gday;
741 int i;
742
743 gday = day = tim / SECDAY;
744 hms = tim % SECDAY;
745
746 /* Hours, minutes, seconds are easy */
747 tm->tm_hour = hms / 3600;
748 tm->tm_min = (hms % 3600) / 60;
749 tm->tm_sec = (hms % 3600) % 60;
750
751 /* Number of years in days */
752 for (i = STARTOFTIME; day >= days_in_year(i); i++)
753 day -= days_in_year(i);
754 tm->tm_year = i;
755
756 /* Number of months in days left */
757 if (leapyear(tm->tm_year))
758 days_in_month(FEBRUARY) = 29;
759 for (i = 1; day >= days_in_month(i); i++)
760 day -= days_in_month(i);
761 days_in_month(FEBRUARY) = 28;
762 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
763
764 /* Days are what is left over (+1) from all that. */
765 tm->tm_mday = day + 1;
766
767 /*
768 * Determine the day of week
769 */
770 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
771}
772
773EXPORT_SYMBOL(rtc_lock);
774EXPORT_SYMBOL(to_tm);
775EXPORT_SYMBOL(rtc_set_time);
776EXPORT_SYMBOL(rtc_get_time);
777
778unsigned long long sched_clock(void)
779{
780 return (unsigned long long)jiffies*(1000000000/HZ);
781}