Merge tag 'printk-for-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/printk...
[linux-block.git] / arch / mips / kernel / smp-bmips.c
CommitLineData
df0ac8a4
KC
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7 *
8 * SMP support for BMIPS
9 */
10
df0ac8a4
KC
11#include <linux/init.h>
12#include <linux/sched.h>
ef8bd77f 13#include <linux/sched/hotplug.h>
fc69910f 14#include <linux/sched/task_stack.h>
df0ac8a4
KC
15#include <linux/mm.h>
16#include <linux/delay.h>
17#include <linux/smp.h>
18#include <linux/interrupt.h>
19#include <linux/spinlock.h>
df0ac8a4
KC
20#include <linux/cpu.h>
21#include <linux/cpumask.h>
22#include <linux/reboot.h>
23#include <linux/io.h>
24#include <linux/compiler.h>
25#include <linux/linkage.h>
26#include <linux/bug.h>
27#include <linux/kernel.h>
62cac480 28#include <linux/kexec.h>
df0ac8a4
KC
29
30#include <asm/time.h>
df0ac8a4 31#include <asm/processor.h>
df0ac8a4 32#include <asm/bootinfo.h>
df0ac8a4
KC
33#include <asm/cacheflush.h>
34#include <asm/tlbflush.h>
35#include <asm/mipsregs.h>
36#include <asm/bmips.h>
37#include <asm/traps.h>
38#include <asm/barrier.h>
fc455787 39#include <asm/cpu-features.h>
df0ac8a4
KC
40
41static int __maybe_unused max_cpus = 1;
42
43/* these may be configured by the platform code */
44int bmips_smp_enabled = 1;
45int bmips_cpu_offset;
46cpumask_t bmips_booted_mask;
d8010ceb 47unsigned long bmips_tp1_irqs = IE_IRQ1;
df0ac8a4 48
fc455787
KC
49#define RESET_FROM_KSEG0 0x80080800
50#define RESET_FROM_KSEG1 0xa0080800
51
3677a283
KC
52static void bmips_set_reset_vec(int cpu, u32 val);
53
df0ac8a4
KC
54#ifdef CONFIG_SMP
55
56/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
57unsigned long bmips_smp_boot_sp;
58unsigned long bmips_smp_boot_gp;
59
6465460c
JG
60static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
61static void bmips5000_send_ipi_single(int cpu, unsigned int action);
62static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
63static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
df0ac8a4
KC
64
65/* SW interrupts 0,1 are used for interprocessor signaling */
66#define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
67#define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
68
69#define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
70#define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
71#define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
72#define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
73
74static void __init bmips_smp_setup(void)
75{
4df715aa 76 int i, cpu = 1, boot_cpu = 0;
fcfa66de
FF
77 int cpu_hw_intr;
78
6465460c
JG
79 switch (current_cpu_type()) {
80 case CPU_BMIPS4350:
81 case CPU_BMIPS4380:
82 /* arbitration priority */
83 clear_c0_brcm_cmt_ctrl(0x30);
84
85 /* NBK and weak order flags */
86 set_c0_brcm_config_0(0x30000);
87
88 /* Find out if we are running on TP0 or TP1 */
89 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
90
91 /*
92 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
93 * thread
94 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
95 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
96 */
97 if (boot_cpu == 0)
98 cpu_hw_intr = 0x02;
99 else
100 cpu_hw_intr = 0x1d;
101
102 change_c0_brcm_cmt_intr(0xf8018000,
103 (cpu_hw_intr << 27) | (0x03 << 15));
104
105 /* single core, 2 threads (2 pipelines) */
106 max_cpus = 2;
107
108 break;
109 case CPU_BMIPS5000:
110 /* enable raceless SW interrupts */
111 set_c0_brcm_config(0x03 << 22);
112
113 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
114 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
115
116 /* N cores, 2 threads per core */
117 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
118
119 /* clear any pending SW interrupts */
120 for (i = 0; i < max_cpus; i++) {
121 write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
122 write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
123 }
df0ac8a4 124
6465460c
JG
125 break;
126 default:
127 max_cpus = 1;
df0ac8a4 128 }
df0ac8a4
KC
129
130 if (!bmips_smp_enabled)
131 max_cpus = 1;
132
133 /* this can be overridden by the BSP */
134 if (!board_ebase_setup)
135 board_ebase_setup = &bmips_ebase_setup;
136
4df715aa
FF
137 __cpu_number_map[boot_cpu] = 0;
138 __cpu_logical_map[0] = boot_cpu;
139
df0ac8a4 140 for (i = 0; i < max_cpus; i++) {
4df715aa
FF
141 if (i != boot_cpu) {
142 __cpu_number_map[i] = cpu;
143 __cpu_logical_map[cpu] = i;
144 cpu++;
145 }
df0ac8a4
KC
146 set_cpu_possible(i, 1);
147 set_cpu_present(i, 1);
148 }
149}
150
151/*
152 * IPI IRQ setup - runs on CPU0
153 */
154static void bmips_prepare_cpus(unsigned int max_cpus)
155{
6465460c
JG
156 irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
157
158 switch (current_cpu_type()) {
159 case CPU_BMIPS4350:
160 case CPU_BMIPS4380:
161 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
162 break;
163 case CPU_BMIPS5000:
164 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
165 break;
166 default:
167 return;
168 }
169
06a3f0c9
JC
170 if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
171 IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
f7777dcc 172 panic("Can't request IPI0 interrupt");
06a3f0c9
JC
173 if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
174 IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
f7777dcc 175 panic("Can't request IPI1 interrupt");
df0ac8a4
KC
176}
177
178/*
179 * Tell the hardware to boot CPUx - runs on CPU0
180 */
d595d423 181static int bmips_boot_secondary(int cpu, struct task_struct *idle)
df0ac8a4
KC
182{
183 bmips_smp_boot_sp = __KSTK_TOS(idle);
184 bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
185 mb();
186
187 /*
188 * Initial boot sequence for secondary CPU:
189 * bmips_reset_nmi_vec @ a000_0000 ->
190 * bmips_smp_entry ->
191 * plat_wired_tlb_setup (cached function call; optional) ->
192 * start_secondary (cached jump)
193 *
194 * Warm restart sequence:
195 * play_dead WAIT loop ->
196 * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
197 * eret to play_dead ->
198 * bmips_secondary_reentry ->
199 * start_secondary
200 */
201
202 pr_info("SMP: Booting CPU%d...\n", cpu);
203
6465460c 204 if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
3677a283
KC
205 /* kseg1 might not exist if this CPU enabled XKS01 */
206 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
207
6465460c
JG
208 switch (current_cpu_type()) {
209 case CPU_BMIPS4350:
210 case CPU_BMIPS4380:
211 bmips43xx_send_ipi_single(cpu, 0);
212 break;
213 case CPU_BMIPS5000:
214 bmips5000_send_ipi_single(cpu, 0);
215 break;
216 }
3677a283
KC
217 } else {
218 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
219
6465460c
JG
220 switch (current_cpu_type()) {
221 case CPU_BMIPS4350:
222 case CPU_BMIPS4380:
223 /* Reset slave TP1 if booting from TP0 */
224 if (cpu_logical_map(cpu) == 1)
225 set_c0_brcm_cmt_ctrl(0x01);
226 break;
227 case CPU_BMIPS5000:
bdb2e05c 228 write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
6465460c 229 break;
df0ac8a4 230 }
df0ac8a4
KC
231 cpumask_set_cpu(cpu, &bmips_booted_mask);
232 }
d595d423
PB
233
234 return 0;
df0ac8a4
KC
235}
236
237/*
238 * Early setup - runs on secondary CPU after cache probe
239 */
240static void bmips_init_secondary(void)
241{
e14f633b
FF
242 bmips_cpu_setup();
243
6465460c
JG
244 switch (current_cpu_type()) {
245 case CPU_BMIPS4350:
246 case CPU_BMIPS4380:
6465460c
JG
247 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
248 break;
249 case CPU_BMIPS5000:
6465460c 250 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
f875a832 251 cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
6465460c
JG
252 break;
253 }
df0ac8a4
KC
254}
255
256/*
257 * Late setup - runs on secondary CPU before entering the idle loop
258 */
259static void bmips_smp_finish(void)
260{
261 pr_info("SMP: CPU%d is running\n", smp_processor_id());
856ac3c6
YZ
262
263 /* make sure there won't be a timer interrupt for a little while */
264 write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
265
266 irq_enable_hazard();
d8010ceb 267 set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
856ac3c6 268 irq_enable_hazard();
df0ac8a4
KC
269}
270
df0ac8a4
KC
271/*
272 * BMIPS5000 raceless IPIs
273 *
274 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
275 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
276 * IPI1 is used for SMP_CALL_FUNCTION
277 */
278
6465460c 279static void bmips5000_send_ipi_single(int cpu, unsigned int action)
df0ac8a4
KC
280{
281 write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
282}
283
6465460c 284static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
df0ac8a4
KC
285{
286 int action = irq - IPI0_IRQ;
287
288 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
289
290 if (action == 0)
291 scheduler_ipi();
292 else
4ace6139 293 generic_smp_call_function_interrupt();
df0ac8a4
KC
294
295 return IRQ_HANDLED;
296}
297
6465460c
JG
298static void bmips5000_send_ipi_mask(const struct cpumask *mask,
299 unsigned int action)
300{
301 unsigned int i;
302
303 for_each_cpu(i, mask)
304 bmips5000_send_ipi_single(i, action);
305}
df0ac8a4
KC
306
307/*
308 * BMIPS43xx racey IPIs
309 *
310 * We use one inbound SW IRQ for each CPU.
311 *
312 * A spinlock must be held in order to keep CPUx from accidentally clearing
313 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
314 * same spinlock is used to protect the action masks.
315 */
316
317static DEFINE_SPINLOCK(ipi_lock);
318static DEFINE_PER_CPU(int, ipi_action_mask);
319
6465460c 320static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
df0ac8a4
KC
321{
322 unsigned long flags;
323
324 spin_lock_irqsave(&ipi_lock, flags);
325 set_c0_cause(cpu ? C_SW1 : C_SW0);
326 per_cpu(ipi_action_mask, cpu) |= action;
327 irq_enable_hazard();
328 spin_unlock_irqrestore(&ipi_lock, flags);
329}
330
6465460c 331static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
df0ac8a4
KC
332{
333 unsigned long flags;
334 int action, cpu = irq - IPI0_IRQ;
335
336 spin_lock_irqsave(&ipi_lock, flags);
35898716 337 action = __this_cpu_read(ipi_action_mask);
df0ac8a4
KC
338 per_cpu(ipi_action_mask, cpu) = 0;
339 clear_c0_cause(cpu ? C_SW1 : C_SW0);
340 spin_unlock_irqrestore(&ipi_lock, flags);
341
342 if (action & SMP_RESCHEDULE_YOURSELF)
343 scheduler_ipi();
344 if (action & SMP_CALL_FUNCTION)
4ace6139 345 generic_smp_call_function_interrupt();
df0ac8a4
KC
346
347 return IRQ_HANDLED;
348}
349
6465460c 350static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
df0ac8a4
KC
351 unsigned int action)
352{
353 unsigned int i;
354
355 for_each_cpu(i, mask)
6465460c 356 bmips43xx_send_ipi_single(i, action);
df0ac8a4
KC
357}
358
359#ifdef CONFIG_HOTPLUG_CPU
360
361static int bmips_cpu_disable(void)
362{
363 unsigned int cpu = smp_processor_id();
364
365 if (cpu == 0)
366 return -EBUSY;
367
368 pr_info("SMP: CPU%d is offline\n", cpu);
369
0b5f9c00 370 set_cpu_online(cpu, false);
826e99be 371 calculate_cpu_foreign_map();
51ad4ace 372 irq_cpu_offline();
230b6ff5 373 clear_c0_status(IE_IRQ5);
df0ac8a4
KC
374
375 local_flush_tlb_all();
376 local_flush_icache_range(0, ~0);
377
378 return 0;
379}
380
381static void bmips_cpu_die(unsigned int cpu)
382{
383}
384
385void __ref play_dead(void)
386{
387 idle_task_exit();
388
389 /* flush data cache */
390 _dma_cache_wback_inv(0, ~0);
391
392 /*
393 * Wakeup is on SW0 or SW1; disable everything else
394 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
395 * IRQ handlers; this clears ST0_IE and returns immediately.
396 */
397 clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
d8010ceb
KC
398 change_c0_status(
399 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
df0ac8a4
KC
400 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
401 irq_disable_hazard();
402
403 /*
404 * wait for SW interrupt from bmips_boot_secondary(), then jump
405 * back to start_secondary()
406 */
407 __asm__ __volatile__(
408 " wait\n"
409 " j bmips_secondary_reentry\n"
410 : : : "memory");
411}
412
413#endif /* CONFIG_HOTPLUG_CPU */
414
ff2c8252 415const struct plat_smp_ops bmips43xx_smp_ops = {
6465460c
JG
416 .smp_setup = bmips_smp_setup,
417 .prepare_cpus = bmips_prepare_cpus,
418 .boot_secondary = bmips_boot_secondary,
419 .smp_finish = bmips_smp_finish,
420 .init_secondary = bmips_init_secondary,
6465460c
JG
421 .send_ipi_single = bmips43xx_send_ipi_single,
422 .send_ipi_mask = bmips43xx_send_ipi_mask,
423#ifdef CONFIG_HOTPLUG_CPU
424 .cpu_disable = bmips_cpu_disable,
425 .cpu_die = bmips_cpu_die,
426#endif
62cac480
DZ
427#ifdef CONFIG_KEXEC
428 .kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
429#endif
6465460c
JG
430};
431
ff2c8252 432const struct plat_smp_ops bmips5000_smp_ops = {
df0ac8a4
KC
433 .smp_setup = bmips_smp_setup,
434 .prepare_cpus = bmips_prepare_cpus,
435 .boot_secondary = bmips_boot_secondary,
436 .smp_finish = bmips_smp_finish,
437 .init_secondary = bmips_init_secondary,
6465460c
JG
438 .send_ipi_single = bmips5000_send_ipi_single,
439 .send_ipi_mask = bmips5000_send_ipi_mask,
df0ac8a4
KC
440#ifdef CONFIG_HOTPLUG_CPU
441 .cpu_disable = bmips_cpu_disable,
442 .cpu_die = bmips_cpu_die,
443#endif
62cac480
DZ
444#ifdef CONFIG_KEXEC
445 .kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
446#endif
df0ac8a4
KC
447};
448
449#endif /* CONFIG_SMP */
450
451/***********************************************************************
452 * BMIPS vector relocation
453 * This is primarily used for SMP boot, but it is applicable to some
454 * UP BMIPS systems as well.
455 ***********************************************************************/
456
078a55fc 457static void bmips_wr_vec(unsigned long dst, char *start, char *end)
df0ac8a4
KC
458{
459 memcpy((void *)dst, start, end - start);
57b41758 460 dma_cache_wback(dst, end - start);
df0ac8a4
KC
461 local_flush_icache_range(dst, dst + (end - start));
462 instruction_hazard();
463}
464
078a55fc 465static inline void bmips_nmi_handler_setup(void)
df0ac8a4 466{
e4f5cb1a
JG
467 bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
468 bmips_reset_nmi_vec_end);
469 bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
470 bmips_smp_int_vec_end);
df0ac8a4
KC
471}
472
fc455787
KC
473struct reset_vec_info {
474 int cpu;
475 u32 val;
476};
477
478static void bmips_set_reset_vec_remote(void *vinfo)
479{
480 struct reset_vec_info *info = vinfo;
481 int shift = info->cpu & 0x01 ? 16 : 0;
482 u32 mask = ~(0xffff << shift), val = info->val >> 16;
483
484 preempt_disable();
485 if (smp_processor_id() > 0) {
486 smp_call_function_single(0, &bmips_set_reset_vec_remote,
487 info, 1);
488 } else {
489 if (info->cpu & 0x02) {
490 /* BMIPS5200 "should" use mask/shift, but it's buggy */
491 bmips_write_zscm_reg(0xa0, (val << 16) | val);
492 bmips_read_zscm_reg(0xa0);
493 } else {
494 write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
495 (val << shift));
496 }
497 }
498 preempt_enable();
499}
500
501static void bmips_set_reset_vec(int cpu, u32 val)
502{
503 struct reset_vec_info info;
504
505 if (current_cpu_type() == CPU_BMIPS5000) {
506 /* this needs to run from CPU0 (which is always online) */
507 info.cpu = cpu;
508 info.val = val;
509 bmips_set_reset_vec_remote(&info);
510 } else {
511 void __iomem *cbr = BMIPS_GET_CBR();
512
513 if (cpu == 0)
514 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
515 else {
516 if (current_cpu_type() != CPU_BMIPS4380)
517 return;
518 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
519 }
520 }
521 __sync();
522 back_to_back_c0_hazard();
523}
524
078a55fc 525void bmips_ebase_setup(void)
df0ac8a4
KC
526{
527 unsigned long new_ebase = ebase;
df0ac8a4
KC
528
529 BUG_ON(ebase != CKSEG0);
530
6465460c
JG
531 switch (current_cpu_type()) {
532 case CPU_BMIPS4350:
533 /*
534 * BMIPS4350 cannot relocate the normal vectors, but it
535 * can relocate the BEV=1 vectors. So CPU1 starts up at
536 * the relocated BEV=1, IV=0 general exception vector @
537 * 0xa000_0380.
538 *
539 * set_uncached_handler() is used here because:
540 * - CPU1 will run this from uncached space
541 * - None of the cacheflush functions are set up yet
542 */
543 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
544 &bmips_smp_int_vec, 0x80);
545 __sync();
546 return;
fa010672 547 case CPU_BMIPS3300:
6465460c
JG
548 case CPU_BMIPS4380:
549 /*
550 * 0x8000_0000: reset/NMI (initially in kseg1)
551 * 0x8000_0400: normal vectors
552 */
553 new_ebase = 0x80000400;
fc455787 554 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
6465460c
JG
555 break;
556 case CPU_BMIPS5000:
557 /*
558 * 0x8000_0000: reset/NMI (initially in kseg1)
559 * 0x8000_1000: normal vectors
560 */
561 new_ebase = 0x80001000;
fc455787 562 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
6465460c 563 write_c0_ebase(new_ebase);
6465460c
JG
564 break;
565 default:
566 return;
567 }
568
df0ac8a4
KC
569 board_nmi_handler_setup = &bmips_nmi_handler_setup;
570 ebase = new_ebase;
571}
572
573asmlinkage void __weak plat_wired_tlb_setup(void)
574{
575 /*
576 * Called when starting/restarting a secondary CPU.
577 * Kernel stacks and other important data might only be accessible
578 * once the wired entries are present.
579 */
580}
738a3f79 581
627f4a2b 582void bmips_cpu_setup(void)
738a3f79
FF
583{
584 void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
585 u32 __maybe_unused cfg;
586
587 switch (current_cpu_type()) {
588 case CPU_BMIPS3300:
589 /* Set BIU to async mode */
590 set_c0_brcm_bus_pll(BIT(22));
591 __sync();
592
593 /* put the BIU back in sync mode */
594 clear_c0_brcm_bus_pll(BIT(22));
595
596 /* clear BHTD to enable branch history table */
597 clear_c0_brcm_reset(BIT(16));
598
599 /* Flush and enable RAC */
600 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
ea4b3afe 601 __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
738a3f79
FF
602 __raw_readl(cbr + BMIPS_RAC_CONFIG);
603
604 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
ea4b3afe 605 __raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
738a3f79
FF
606 __raw_readl(cbr + BMIPS_RAC_CONFIG);
607
608 cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
609 __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
610 __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
611 break;
612
613 case CPU_BMIPS4380:
614 /* CBG workaround for early BMIPS4380 CPUs */
615 switch (read_c0_prid()) {
616 case 0x2a040:
617 case 0x2a042:
618 case 0x2a044:
619 case 0x2a060:
620 cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
621 __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
622 __raw_readl(cbr + BMIPS_L2_CONFIG);
623 }
624
625 /* clear BHTD to enable branch history table */
626 clear_c0_brcm_config_0(BIT(21));
627
628 /* XI/ROTR enable */
629 set_c0_brcm_config_0(BIT(23));
630 set_c0_brcm_cmt_ctrl(BIT(15));
631 break;
632
633 case CPU_BMIPS5000:
634 /* enable RDHWR, BRDHWR */
635 set_c0_brcm_config(BIT(17) | BIT(21));
636
637 /* Disable JTB */
638 __asm__ __volatile__(
639 " .set noreorder\n"
640 " li $8, 0x5a455048\n"
641 " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
642 " .word 0x4008b008\n" /* mfc0 t0, $22, 8 */
643 " li $9, 0x00008000\n"
644 " or $8, $8, $9\n"
645 " .word 0x4088b008\n" /* mtc0 t0, $22, 8 */
646 " sync\n"
647 " li $8, 0x0\n"
648 " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
649 " .set reorder\n"
650 : : : "$8", "$9");
651
652 /* XI enable */
653 set_c0_brcm_config(BIT(27));
654
655 /* enable MIPS32R2 ROR instruction for XI TLB handlers */
656 __asm__ __volatile__(
657 " li $8, 0x5a455048\n"
658 " .word 0x4088b00f\n" /* mtc0 $8, $22, 15 */
659 " nop; nop; nop\n"
660 " .word 0x4008b008\n" /* mfc0 $8, $22, 8 */
661 " lui $9, 0x0100\n"
662 " or $8, $9\n"
663 " .word 0x4088b008\n" /* mtc0 $8, $22, 8 */
664 : : : "$8", "$9");
665 break;
666 }
667}