Fix common misspellings
[linux-2.6-block.git] / arch / mips / kernel / perf_event_mipsxx.c
CommitLineData
3a9ab99e
DCZ
1#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) || \
2 defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_SB1)
3
4#define M_CONFIG1_PC (1 << 4)
5
6#define M_PERFCTL_EXL (1UL << 0)
7#define M_PERFCTL_KERNEL (1UL << 1)
8#define M_PERFCTL_SUPERVISOR (1UL << 2)
9#define M_PERFCTL_USER (1UL << 3)
10#define M_PERFCTL_INTERRUPT_ENABLE (1UL << 4)
11#define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
12#define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
13#define M_PERFCTL_MT_EN(filter) ((filter) << 20)
14#define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
15#define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
16#define M_TC_EN_TC M_PERFCTL_MT_EN(2)
17#define M_PERFCTL_TCID(tcid) ((tcid) << 22)
18#define M_PERFCTL_WIDE (1UL << 30)
19#define M_PERFCTL_MORE (1UL << 31)
20
21#define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
22 M_PERFCTL_KERNEL | \
23 M_PERFCTL_USER | \
24 M_PERFCTL_SUPERVISOR | \
25 M_PERFCTL_INTERRUPT_ENABLE)
26
27#ifdef CONFIG_MIPS_MT_SMP
28#define M_PERFCTL_CONFIG_MASK 0x3fff801f
29#else
30#define M_PERFCTL_CONFIG_MASK 0x1f
31#endif
32#define M_PERFCTL_EVENT_MASK 0xfe0
33
34#define M_COUNTER_OVERFLOW (1UL << 31)
35
36#ifdef CONFIG_MIPS_MT_SMP
37static int cpu_has_mipsmt_pertccounters;
38
39/*
40 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
41 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
42 */
43#if defined(CONFIG_HW_PERF_EVENTS)
44#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
45 0 : smp_processor_id())
46#else
47#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
48 0 : cpu_data[smp_processor_id()].vpe_id)
49#endif
50
51/* Copied from op_model_mipsxx.c */
52static inline unsigned int vpe_shift(void)
53{
54 if (num_possible_cpus() > 1)
55 return 1;
56
57 return 0;
58}
59#else /* !CONFIG_MIPS_MT_SMP */
60#define vpe_id() 0
61
62static inline unsigned int vpe_shift(void)
63{
64 return 0;
65}
66#endif /* CONFIG_MIPS_MT_SMP */
67
68static inline unsigned int
69counters_total_to_per_cpu(unsigned int counters)
70{
71 return counters >> vpe_shift();
72}
73
74static inline unsigned int
75counters_per_cpu_to_total(unsigned int counters)
76{
77 return counters << vpe_shift();
78}
79
80#define __define_perf_accessors(r, n, np) \
81 \
82static inline unsigned int r_c0_ ## r ## n(void) \
83{ \
84 unsigned int cpu = vpe_id(); \
85 \
86 switch (cpu) { \
87 case 0: \
88 return read_c0_ ## r ## n(); \
89 case 1: \
90 return read_c0_ ## r ## np(); \
91 default: \
92 BUG(); \
93 } \
94 return 0; \
95} \
96 \
97static inline void w_c0_ ## r ## n(unsigned int value) \
98{ \
99 unsigned int cpu = vpe_id(); \
100 \
101 switch (cpu) { \
102 case 0: \
103 write_c0_ ## r ## n(value); \
104 return; \
105 case 1: \
106 write_c0_ ## r ## np(value); \
107 return; \
108 default: \
109 BUG(); \
110 } \
111 return; \
112} \
113
114__define_perf_accessors(perfcntr, 0, 2)
115__define_perf_accessors(perfcntr, 1, 3)
116__define_perf_accessors(perfcntr, 2, 0)
117__define_perf_accessors(perfcntr, 3, 1)
118
119__define_perf_accessors(perfctrl, 0, 2)
120__define_perf_accessors(perfctrl, 1, 3)
121__define_perf_accessors(perfctrl, 2, 0)
122__define_perf_accessors(perfctrl, 3, 1)
123
124static inline int __n_counters(void)
125{
126 if (!(read_c0_config1() & M_CONFIG1_PC))
127 return 0;
128 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
129 return 1;
130 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
131 return 2;
132 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
133 return 3;
134
135 return 4;
136}
137
138static inline int n_counters(void)
139{
140 int counters;
141
142 switch (current_cpu_type()) {
143 case CPU_R10000:
144 counters = 2;
145 break;
146
147 case CPU_R12000:
148 case CPU_R14000:
149 counters = 4;
150 break;
151
152 default:
153 counters = __n_counters();
154 }
155
156 return counters;
157}
158
159static void reset_counters(void *arg)
160{
161 int counters = (int)(long)arg;
162 switch (counters) {
163 case 4:
164 w_c0_perfctrl3(0);
165 w_c0_perfcntr3(0);
166 case 3:
167 w_c0_perfctrl2(0);
168 w_c0_perfcntr2(0);
169 case 2:
170 w_c0_perfctrl1(0);
171 w_c0_perfcntr1(0);
172 case 1:
173 w_c0_perfctrl0(0);
174 w_c0_perfcntr0(0);
175 }
176}
177
178static inline u64
179mipsxx_pmu_read_counter(unsigned int idx)
180{
181 switch (idx) {
182 case 0:
183 return r_c0_perfcntr0();
184 case 1:
185 return r_c0_perfcntr1();
186 case 2:
187 return r_c0_perfcntr2();
188 case 3:
189 return r_c0_perfcntr3();
190 default:
191 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
192 return 0;
193 }
194}
195
196static inline void
197mipsxx_pmu_write_counter(unsigned int idx, u64 val)
198{
199 switch (idx) {
200 case 0:
201 w_c0_perfcntr0(val);
202 return;
203 case 1:
204 w_c0_perfcntr1(val);
205 return;
206 case 2:
207 w_c0_perfcntr2(val);
208 return;
209 case 3:
210 w_c0_perfcntr3(val);
211 return;
212 }
213}
214
215static inline unsigned int
216mipsxx_pmu_read_control(unsigned int idx)
217{
218 switch (idx) {
219 case 0:
220 return r_c0_perfctrl0();
221 case 1:
222 return r_c0_perfctrl1();
223 case 2:
224 return r_c0_perfctrl2();
225 case 3:
226 return r_c0_perfctrl3();
227 default:
228 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
229 return 0;
230 }
231}
232
233static inline void
234mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
235{
236 switch (idx) {
237 case 0:
238 w_c0_perfctrl0(val);
239 return;
240 case 1:
241 w_c0_perfctrl1(val);
242 return;
243 case 2:
244 w_c0_perfctrl2(val);
245 return;
246 case 3:
247 w_c0_perfctrl3(val);
248 return;
249 }
250}
251
252#ifdef CONFIG_MIPS_MT_SMP
253static DEFINE_RWLOCK(pmuint_rwlock);
254#endif
255
256/* 24K/34K/1004K cores can share the same event map. */
257static const struct mips_perf_event mipsxxcore_event_map
258 [PERF_COUNT_HW_MAX] = {
259 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
260 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
261 [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
262 [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
263 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
264 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
265 [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
266};
267
268/* 74K core has different branch event code. */
269static const struct mips_perf_event mipsxx74Kcore_event_map
270 [PERF_COUNT_HW_MAX] = {
271 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
272 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
273 [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
274 [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
275 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
276 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
277 [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
278};
279
280/* 24K/34K/1004K cores can share the same cache event map. */
281static const struct mips_perf_event mipsxxcore_cache_map
282 [PERF_COUNT_HW_CACHE_MAX]
283 [PERF_COUNT_HW_CACHE_OP_MAX]
284 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
285[C(L1D)] = {
286 /*
287 * Like some other architectures (e.g. ARM), the performance
288 * counters don't differentiate between read and write
289 * accesses/misses, so this isn't strictly correct, but it's the
290 * best we can do. Writes and reads get combined.
291 */
292 [C(OP_READ)] = {
293 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
294 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
295 },
296 [C(OP_WRITE)] = {
297 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
298 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
299 },
300 [C(OP_PREFETCH)] = {
301 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
302 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
303 },
304},
305[C(L1I)] = {
306 [C(OP_READ)] = {
307 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
308 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
309 },
310 [C(OP_WRITE)] = {
311 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
312 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
313 },
314 [C(OP_PREFETCH)] = {
315 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
316 /*
317 * Note that MIPS has only "hit" events countable for
318 * the prefetch operation.
319 */
320 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
321 },
322},
323[C(LL)] = {
324 [C(OP_READ)] = {
325 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
326 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
327 },
328 [C(OP_WRITE)] = {
329 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
330 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
331 },
332 [C(OP_PREFETCH)] = {
333 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
334 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
335 },
336},
337[C(DTLB)] = {
338 [C(OP_READ)] = {
339 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
340 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
341 },
342 [C(OP_WRITE)] = {
343 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
344 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
345 },
346 [C(OP_PREFETCH)] = {
347 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
348 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
349 },
350},
351[C(ITLB)] = {
352 [C(OP_READ)] = {
353 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
354 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
355 },
356 [C(OP_WRITE)] = {
357 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
358 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
359 },
360 [C(OP_PREFETCH)] = {
361 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
362 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
363 },
364},
365[C(BPU)] = {
366 /* Using the same code for *HW_BRANCH* */
367 [C(OP_READ)] = {
368 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
369 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
370 },
371 [C(OP_WRITE)] = {
372 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
373 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
374 },
375 [C(OP_PREFETCH)] = {
376 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
377 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
378 },
379},
380};
381
382/* 74K core has completely different cache event map. */
383static const struct mips_perf_event mipsxx74Kcore_cache_map
384 [PERF_COUNT_HW_CACHE_MAX]
385 [PERF_COUNT_HW_CACHE_OP_MAX]
386 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
387[C(L1D)] = {
388 /*
389 * Like some other architectures (e.g. ARM), the performance
390 * counters don't differentiate between read and write
391 * accesses/misses, so this isn't strictly correct, but it's the
392 * best we can do. Writes and reads get combined.
393 */
394 [C(OP_READ)] = {
395 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
396 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
397 },
398 [C(OP_WRITE)] = {
399 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
400 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
401 },
402 [C(OP_PREFETCH)] = {
403 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
404 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
405 },
406},
407[C(L1I)] = {
408 [C(OP_READ)] = {
409 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
410 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
411 },
412 [C(OP_WRITE)] = {
413 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
414 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
415 },
416 [C(OP_PREFETCH)] = {
417 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
418 /*
419 * Note that MIPS has only "hit" events countable for
420 * the prefetch operation.
421 */
422 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
423 },
424},
425[C(LL)] = {
426 [C(OP_READ)] = {
427 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
428 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
429 },
430 [C(OP_WRITE)] = {
431 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
432 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
433 },
434 [C(OP_PREFETCH)] = {
435 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
436 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
437 },
438},
439[C(DTLB)] = {
440 /* 74K core does not have specific DTLB events. */
441 [C(OP_READ)] = {
442 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
443 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
444 },
445 [C(OP_WRITE)] = {
446 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
447 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
448 },
449 [C(OP_PREFETCH)] = {
450 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
451 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
452 },
453},
454[C(ITLB)] = {
455 [C(OP_READ)] = {
456 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
457 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
458 },
459 [C(OP_WRITE)] = {
460 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
461 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
462 },
463 [C(OP_PREFETCH)] = {
464 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
465 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
466 },
467},
468[C(BPU)] = {
469 /* Using the same code for *HW_BRANCH* */
470 [C(OP_READ)] = {
471 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
472 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
473 },
474 [C(OP_WRITE)] = {
475 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
476 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
477 },
478 [C(OP_PREFETCH)] = {
479 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
480 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
481 },
482},
483};
484
485#ifdef CONFIG_MIPS_MT_SMP
486static void
487check_and_calc_range(struct perf_event *event,
488 const struct mips_perf_event *pev)
489{
490 struct hw_perf_event *hwc = &event->hw;
491
492 if (event->cpu >= 0) {
493 if (pev->range > V) {
494 /*
495 * The user selected an event that is processor
496 * wide, while expecting it to be VPE wide.
497 */
498 hwc->config_base |= M_TC_EN_ALL;
499 } else {
500 /*
501 * FIXME: cpu_data[event->cpu].vpe_id reports 0
502 * for both CPUs.
503 */
504 hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
505 hwc->config_base |= M_TC_EN_VPE;
506 }
507 } else
508 hwc->config_base |= M_TC_EN_ALL;
509}
510#else
511static void
512check_and_calc_range(struct perf_event *event,
513 const struct mips_perf_event *pev)
514{
515}
516#endif
517
518static int __hw_perf_event_init(struct perf_event *event)
519{
520 struct perf_event_attr *attr = &event->attr;
521 struct hw_perf_event *hwc = &event->hw;
522 const struct mips_perf_event *pev;
523 int err;
524
525 /* Returning MIPS event descriptor for generic perf event. */
526 if (PERF_TYPE_HARDWARE == event->attr.type) {
527 if (event->attr.config >= PERF_COUNT_HW_MAX)
528 return -EINVAL;
529 pev = mipspmu_map_general_event(event->attr.config);
530 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
531 pev = mipspmu_map_cache_event(event->attr.config);
532 } else if (PERF_TYPE_RAW == event->attr.type) {
533 /* We are working on the global raw event. */
534 mutex_lock(&raw_event_mutex);
535 pev = mipspmu->map_raw_event(event->attr.config);
536 } else {
537 /* The event type is not (yet) supported. */
538 return -EOPNOTSUPP;
539 }
540
541 if (IS_ERR(pev)) {
542 if (PERF_TYPE_RAW == event->attr.type)
543 mutex_unlock(&raw_event_mutex);
544 return PTR_ERR(pev);
545 }
546
547 /*
548 * We allow max flexibility on how each individual counter shared
549 * by the single CPU operates (the mode exclusion and the range).
550 */
551 hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
552
553 /* Calculate range bits and validate it. */
554 if (num_possible_cpus() > 1)
555 check_and_calc_range(event, pev);
556
557 hwc->event_base = mipspmu_perf_event_encode(pev);
558 if (PERF_TYPE_RAW == event->attr.type)
559 mutex_unlock(&raw_event_mutex);
560
561 if (!attr->exclude_user)
562 hwc->config_base |= M_PERFCTL_USER;
563 if (!attr->exclude_kernel) {
564 hwc->config_base |= M_PERFCTL_KERNEL;
565 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
566 hwc->config_base |= M_PERFCTL_EXL;
567 }
568 if (!attr->exclude_hv)
569 hwc->config_base |= M_PERFCTL_SUPERVISOR;
570
571 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
572 /*
573 * The event can belong to another cpu. We do not assign a local
574 * counter for it for now.
575 */
576 hwc->idx = -1;
577 hwc->config = 0;
578
579 if (!hwc->sample_period) {
580 hwc->sample_period = MAX_PERIOD;
581 hwc->last_period = hwc->sample_period;
582 local64_set(&hwc->period_left, hwc->sample_period);
583 }
584
585 err = 0;
586 if (event->group_leader != event) {
587 err = validate_group(event);
588 if (err)
589 return -EINVAL;
590 }
591
592 event->destroy = hw_perf_event_destroy;
593
594 return err;
595}
596
597static void pause_local_counters(void)
598{
599 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
600 int counters = mipspmu->num_counters;
601 unsigned long flags;
602
603 local_irq_save(flags);
604 switch (counters) {
605 case 4:
606 cpuc->saved_ctrl[3] = r_c0_perfctrl3();
607 w_c0_perfctrl3(cpuc->saved_ctrl[3] &
608 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
609 case 3:
610 cpuc->saved_ctrl[2] = r_c0_perfctrl2();
611 w_c0_perfctrl2(cpuc->saved_ctrl[2] &
612 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
613 case 2:
614 cpuc->saved_ctrl[1] = r_c0_perfctrl1();
615 w_c0_perfctrl1(cpuc->saved_ctrl[1] &
616 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
617 case 1:
618 cpuc->saved_ctrl[0] = r_c0_perfctrl0();
619 w_c0_perfctrl0(cpuc->saved_ctrl[0] &
620 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
621 }
622 local_irq_restore(flags);
623}
624
625static void resume_local_counters(void)
626{
627 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
628 int counters = mipspmu->num_counters;
629 unsigned long flags;
630
631 local_irq_save(flags);
632 switch (counters) {
633 case 4:
634 w_c0_perfctrl3(cpuc->saved_ctrl[3]);
635 case 3:
636 w_c0_perfctrl2(cpuc->saved_ctrl[2]);
637 case 2:
638 w_c0_perfctrl1(cpuc->saved_ctrl[1]);
639 case 1:
640 w_c0_perfctrl0(cpuc->saved_ctrl[0]);
641 }
642 local_irq_restore(flags);
643}
644
645static int mipsxx_pmu_handle_shared_irq(void)
646{
647 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
648 struct perf_sample_data data;
649 unsigned int counters = mipspmu->num_counters;
650 unsigned int counter;
651 int handled = IRQ_NONE;
652 struct pt_regs *regs;
653
654 if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
655 return handled;
656
657 /*
658 * First we pause the local counters, so that when we are locked
659 * here, the counters are all paused. When it gets locked due to
660 * perf_disable(), the timer interrupt handler will be delayed.
661 *
662 * See also mipsxx_pmu_start().
663 */
664 pause_local_counters();
665#ifdef CONFIG_MIPS_MT_SMP
666 read_lock(&pmuint_rwlock);
667#endif
668
669 regs = get_irq_regs();
670
671 perf_sample_data_init(&data, 0);
672
673 switch (counters) {
674#define HANDLE_COUNTER(n) \
675 case n + 1: \
676 if (test_bit(n, cpuc->used_mask)) { \
677 counter = r_c0_perfcntr ## n(); \
678 if (counter & M_COUNTER_OVERFLOW) { \
679 w_c0_perfcntr ## n(counter & \
680 VALID_COUNT); \
681 if (test_and_change_bit(n, cpuc->msbs)) \
682 handle_associated_event(cpuc, \
683 n, &data, regs); \
684 handled = IRQ_HANDLED; \
685 } \
686 }
687 HANDLE_COUNTER(3)
688 HANDLE_COUNTER(2)
689 HANDLE_COUNTER(1)
690 HANDLE_COUNTER(0)
691 }
692
693 /*
694 * Do all the work for the pending perf events. We can do this
695 * in here because the performance counter interrupt is a regular
696 * interrupt, not NMI.
697 */
698 if (handled == IRQ_HANDLED)
91f01737 699 irq_work_run();
3a9ab99e
DCZ
700
701#ifdef CONFIG_MIPS_MT_SMP
702 read_unlock(&pmuint_rwlock);
703#endif
704 resume_local_counters();
705 return handled;
706}
707
708static irqreturn_t
709mipsxx_pmu_handle_irq(int irq, void *dev)
710{
711 return mipsxx_pmu_handle_shared_irq();
712}
713
714static void mipsxx_pmu_start(void)
715{
716#ifdef CONFIG_MIPS_MT_SMP
717 write_unlock(&pmuint_rwlock);
718#endif
719 resume_local_counters();
720}
721
722/*
723 * MIPS performance counters can be per-TC. The control registers can
25985edc 724 * not be directly accessed across CPUs. Hence if we want to do global
3a9ab99e
DCZ
725 * control, we need cross CPU calls. on_each_cpu() can help us, but we
726 * can not make sure this function is called with interrupts enabled. So
727 * here we pause local counters and then grab a rwlock and leave the
728 * counters on other CPUs alone. If any counter interrupt raises while
729 * we own the write lock, simply pause local counters on that CPU and
730 * spin in the handler. Also we know we won't be switched to another
731 * CPU after pausing local counters and before grabbing the lock.
732 */
733static void mipsxx_pmu_stop(void)
734{
735 pause_local_counters();
736#ifdef CONFIG_MIPS_MT_SMP
737 write_lock(&pmuint_rwlock);
738#endif
739}
740
741static int
742mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
743 struct hw_perf_event *hwc)
744{
745 int i;
746
747 /*
748 * We only need to care the counter mask. The range has been
749 * checked definitely.
750 */
751 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
752
753 for (i = mipspmu->num_counters - 1; i >= 0; i--) {
754 /*
755 * Note that some MIPS perf events can be counted by both
756 * even and odd counters, wheresas many other are only by
757 * even _or_ odd counters. This introduces an issue that
758 * when the former kind of event takes the counter the
759 * latter kind of event wants to use, then the "counter
760 * allocation" for the latter event will fail. In fact if
761 * they can be dynamically swapped, they both feel happy.
762 * But here we leave this issue alone for now.
763 */
764 if (test_bit(i, &cntr_mask) &&
765 !test_and_set_bit(i, cpuc->used_mask))
766 return i;
767 }
768
769 return -EAGAIN;
770}
771
772static void
773mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
774{
775 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
776 unsigned long flags;
777
778 WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
779
780 local_irq_save(flags);
781 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
782 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
783 /* Make sure interrupt enabled. */
784 M_PERFCTL_INTERRUPT_ENABLE;
785 /*
786 * We do not actually let the counter run. Leave it until start().
787 */
788 local_irq_restore(flags);
789}
790
791static void
792mipsxx_pmu_disable_event(int idx)
793{
794 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
795 unsigned long flags;
796
797 WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
798
799 local_irq_save(flags);
800 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
801 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
802 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
803 local_irq_restore(flags);
804}
805
806/* 24K */
807#define IS_UNSUPPORTED_24K_EVENT(r, b) \
808 ((b) == 12 || (r) == 151 || (r) == 152 || (b) == 26 || \
809 (b) == 27 || (r) == 28 || (r) == 158 || (b) == 31 || \
810 (b) == 32 || (b) == 34 || (b) == 36 || (r) == 168 || \
811 (r) == 172 || (b) == 47 || ((b) >= 56 && (b) <= 63) || \
812 ((b) >= 68 && (b) <= 127))
813#define IS_BOTH_COUNTERS_24K_EVENT(b) \
814 ((b) == 0 || (b) == 1 || (b) == 11)
815
816/* 34K */
817#define IS_UNSUPPORTED_34K_EVENT(r, b) \
818 ((b) == 12 || (r) == 27 || (r) == 158 || (b) == 36 || \
819 (b) == 38 || (r) == 175 || ((b) >= 56 && (b) <= 63) || \
820 ((b) >= 68 && (b) <= 127))
821#define IS_BOTH_COUNTERS_34K_EVENT(b) \
822 ((b) == 0 || (b) == 1 || (b) == 11)
823#ifdef CONFIG_MIPS_MT_SMP
824#define IS_RANGE_P_34K_EVENT(r, b) \
825 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
826 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
827 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
828 ((b) >= 64 && (b) <= 67))
829#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
830#endif
831
832/* 74K */
833#define IS_UNSUPPORTED_74K_EVENT(r, b) \
834 ((r) == 5 || ((r) >= 135 && (r) <= 137) || \
835 ((b) >= 10 && (b) <= 12) || (b) == 22 || (b) == 27 || \
836 (b) == 33 || (b) == 34 || ((b) >= 47 && (b) <= 49) || \
837 (r) == 178 || (b) == 55 || (b) == 57 || (b) == 60 || \
838 (b) == 61 || (r) == 62 || (r) == 191 || \
839 ((b) >= 64 && (b) <= 127))
840#define IS_BOTH_COUNTERS_74K_EVENT(b) \
841 ((b) == 0 || (b) == 1)
842
843/* 1004K */
844#define IS_UNSUPPORTED_1004K_EVENT(r, b) \
845 ((b) == 12 || (r) == 27 || (r) == 158 || (b) == 38 || \
846 (r) == 175 || (b) == 63 || ((b) >= 68 && (b) <= 127))
847#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
848 ((b) == 0 || (b) == 1 || (b) == 11)
849#ifdef CONFIG_MIPS_MT_SMP
850#define IS_RANGE_P_1004K_EVENT(r, b) \
851 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
852 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
853 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
854 (r) == 188 || (b) == 61 || (b) == 62 || \
855 ((b) >= 64 && (b) <= 67))
856#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
857#endif
858
859/*
860 * User can use 0-255 raw events, where 0-127 for the events of even
861 * counters, and 128-255 for odd counters. Note that bit 7 is used to
862 * indicate the parity. So, for example, when user wants to take the
863 * Event Num of 15 for odd counters (by referring to the user manual),
864 * then 128 needs to be added to 15 as the input for the event config,
865 * i.e., 143 (0x8F) to be used.
866 */
867static const struct mips_perf_event *
868mipsxx_pmu_map_raw_event(u64 config)
869{
870 unsigned int raw_id = config & 0xff;
871 unsigned int base_id = raw_id & 0x7f;
872
873 switch (current_cpu_type()) {
874 case CPU_24K:
875 if (IS_UNSUPPORTED_24K_EVENT(raw_id, base_id))
876 return ERR_PTR(-EOPNOTSUPP);
877 raw_event.event_id = base_id;
878 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
879 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
880 else
881 raw_event.cntr_mask =
882 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
883#ifdef CONFIG_MIPS_MT_SMP
884 /*
885 * This is actually doing nothing. Non-multithreading
886 * CPUs will not check and calculate the range.
887 */
888 raw_event.range = P;
889#endif
890 break;
891 case CPU_34K:
892 if (IS_UNSUPPORTED_34K_EVENT(raw_id, base_id))
893 return ERR_PTR(-EOPNOTSUPP);
894 raw_event.event_id = base_id;
895 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
896 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
897 else
898 raw_event.cntr_mask =
899 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
900#ifdef CONFIG_MIPS_MT_SMP
901 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
902 raw_event.range = P;
903 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
904 raw_event.range = V;
905 else
906 raw_event.range = T;
907#endif
908 break;
909 case CPU_74K:
910 if (IS_UNSUPPORTED_74K_EVENT(raw_id, base_id))
911 return ERR_PTR(-EOPNOTSUPP);
912 raw_event.event_id = base_id;
913 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
914 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
915 else
916 raw_event.cntr_mask =
917 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
918#ifdef CONFIG_MIPS_MT_SMP
919 raw_event.range = P;
920#endif
921 break;
922 case CPU_1004K:
923 if (IS_UNSUPPORTED_1004K_EVENT(raw_id, base_id))
924 return ERR_PTR(-EOPNOTSUPP);
925 raw_event.event_id = base_id;
926 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
927 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
928 else
929 raw_event.cntr_mask =
930 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
931#ifdef CONFIG_MIPS_MT_SMP
932 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
933 raw_event.range = P;
934 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
935 raw_event.range = V;
936 else
937 raw_event.range = T;
938#endif
939 break;
940 }
941
942 return &raw_event;
943}
944
945static struct mips_pmu mipsxxcore_pmu = {
946 .handle_irq = mipsxx_pmu_handle_irq,
947 .handle_shared_irq = mipsxx_pmu_handle_shared_irq,
948 .start = mipsxx_pmu_start,
949 .stop = mipsxx_pmu_stop,
950 .alloc_counter = mipsxx_pmu_alloc_counter,
951 .read_counter = mipsxx_pmu_read_counter,
952 .write_counter = mipsxx_pmu_write_counter,
953 .enable_event = mipsxx_pmu_enable_event,
954 .disable_event = mipsxx_pmu_disable_event,
955 .map_raw_event = mipsxx_pmu_map_raw_event,
956 .general_event_map = &mipsxxcore_event_map,
957 .cache_event_map = &mipsxxcore_cache_map,
958};
959
960static struct mips_pmu mipsxx74Kcore_pmu = {
961 .handle_irq = mipsxx_pmu_handle_irq,
962 .handle_shared_irq = mipsxx_pmu_handle_shared_irq,
963 .start = mipsxx_pmu_start,
964 .stop = mipsxx_pmu_stop,
965 .alloc_counter = mipsxx_pmu_alloc_counter,
966 .read_counter = mipsxx_pmu_read_counter,
967 .write_counter = mipsxx_pmu_write_counter,
968 .enable_event = mipsxx_pmu_enable_event,
969 .disable_event = mipsxx_pmu_disable_event,
970 .map_raw_event = mipsxx_pmu_map_raw_event,
971 .general_event_map = &mipsxx74Kcore_event_map,
972 .cache_event_map = &mipsxx74Kcore_cache_map,
973};
974
975static int __init
976init_hw_perf_events(void)
977{
978 int counters, irq;
979
980 pr_info("Performance counters: ");
981
982 counters = n_counters();
983 if (counters == 0) {
984 pr_cont("No available PMU.\n");
985 return -ENODEV;
986 }
987
988#ifdef CONFIG_MIPS_MT_SMP
989 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
990 if (!cpu_has_mipsmt_pertccounters)
991 counters = counters_total_to_per_cpu(counters);
992#endif
993
994#ifdef MSC01E_INT_BASE
995 if (cpu_has_veic) {
996 /*
997 * Using platform specific interrupt controller defines.
998 */
999 irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1000 } else {
1001#endif
1002 if (cp0_perfcount_irq >= 0)
1003 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1004 else
1005 irq = -1;
1006#ifdef MSC01E_INT_BASE
1007 }
1008#endif
1009
1010 on_each_cpu(reset_counters, (void *)(long)counters, 1);
1011
1012 switch (current_cpu_type()) {
1013 case CPU_24K:
1014 mipsxxcore_pmu.name = "mips/24K";
1015 mipsxxcore_pmu.num_counters = counters;
1016 mipsxxcore_pmu.irq = irq;
1017 mipspmu = &mipsxxcore_pmu;
1018 break;
1019 case CPU_34K:
1020 mipsxxcore_pmu.name = "mips/34K";
1021 mipsxxcore_pmu.num_counters = counters;
1022 mipsxxcore_pmu.irq = irq;
1023 mipspmu = &mipsxxcore_pmu;
1024 break;
1025 case CPU_74K:
1026 mipsxx74Kcore_pmu.name = "mips/74K";
1027 mipsxx74Kcore_pmu.num_counters = counters;
1028 mipsxx74Kcore_pmu.irq = irq;
1029 mipspmu = &mipsxx74Kcore_pmu;
1030 break;
1031 case CPU_1004K:
1032 mipsxxcore_pmu.name = "mips/1004K";
1033 mipsxxcore_pmu.num_counters = counters;
1034 mipsxxcore_pmu.irq = irq;
1035 mipspmu = &mipsxxcore_pmu;
1036 break;
1037 default:
1038 pr_cont("Either hardware does not support performance "
1039 "counters, or not yet implemented.\n");
1040 return -ENODEV;
1041 }
1042
1043 if (mipspmu)
1044 pr_cont("%s PMU enabled, %d counters available to each "
1045 "CPU, irq %d%s\n", mipspmu->name, counters, irq,
1046 irq < 0 ? " (share with timer interrupt)" : "");
1047
404ff638
DCZ
1048 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1049
3a9ab99e
DCZ
1050 return 0;
1051}
004417a6 1052early_initcall(init_hw_perf_events);
3a9ab99e
DCZ
1053
1054#endif /* defined(CONFIG_CPU_MIPS32)... */