MIPS: Build fix - include <linux/smp.h> into all smp_processor_id() users.
[linux-2.6-block.git] / arch / mips / kernel / cevt-smtc.c
CommitLineData
8531a35e
KK
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2007 MIPS Technologies, Inc.
7 * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org>
8 * Copyright (C) 2008 Kevin D. Kissell, Paralogos sarl
9 */
10#include <linux/clockchips.h>
11#include <linux/interrupt.h>
12#include <linux/percpu.h>
631330f5 13#include <linux/smp.h>
8531a35e
KK
14
15#include <asm/smtc_ipi.h>
16#include <asm/time.h>
17#include <asm/cevt-r4k.h>
18
19/*
20 * Variant clock event timer support for SMTC on MIPS 34K, 1004K
21 * or other MIPS MT cores.
22 *
23 * Notes on SMTC Support:
24 *
25 * SMTC has multiple microthread TCs pretending to be Linux CPUs.
26 * But there's only one Count/Compare pair per VPE, and Compare
27 * interrupts are taken opportunisitically by available TCs
28 * bound to the VPE with the Count register. The new timer
29 * framework provides for global broadcasts, but we really
30 * want VPE-level multicasts for best behavior. So instead
31 * of invoking the high-level clock-event broadcast code,
32 * this version of SMTC support uses the historical SMTC
33 * multicast mechanisms "under the hood", appearing to the
34 * generic clock layer as if the interrupts are per-CPU.
35 *
36 * The approach taken here is to maintain a set of NR_CPUS
37 * virtual timers, and track which "CPU" needs to be alerted
38 * at each event.
39 *
40 * It's unlikely that we'll see a MIPS MT core with more than
41 * 2 VPEs, but we *know* that we won't need to handle more
42 * VPEs than we have "CPUs". So NCPUs arrays of NCPUs elements
43 * is always going to be overkill, but always going to be enough.
44 */
45
46unsigned long smtc_nexttime[NR_CPUS][NR_CPUS];
47static int smtc_nextinvpe[NR_CPUS];
48
49/*
50 * Timestamps stored are absolute values to be programmed
51 * into Count register. Valid timestamps will never be zero.
52 * If a Zero Count value is actually calculated, it is converted
53 * to be a 1, which will introduce 1 or two CPU cycles of error
54 * roughly once every four billion events, which at 1000 HZ means
55 * about once every 50 days. If that's actually a problem, one
56 * could alternate squashing 0 to 1 and to -1.
57 */
58
59#define MAKEVALID(x) (((x) == 0L) ? 1L : (x))
60#define ISVALID(x) ((x) != 0L)
61
62/*
63 * Time comparison is subtle, as it's really truncated
64 * modular arithmetic.
65 */
66
67#define IS_SOONER(a, b, reference) \
68 (((a) - (unsigned long)(reference)) < ((b) - (unsigned long)(reference)))
69
70/*
71 * CATCHUP_INCREMENT, used when the function falls behind the counter.
72 * Could be an increasing function instead of a constant;
73 */
74
75#define CATCHUP_INCREMENT 64
76
77static int mips_next_event(unsigned long delta,
78 struct clock_event_device *evt)
79{
80 unsigned long flags;
81 unsigned int mtflags;
82 unsigned long timestamp, reference, previous;
83 unsigned long nextcomp = 0L;
84 int vpe = current_cpu_data.vpe_id;
85 int cpu = smp_processor_id();
86 local_irq_save(flags);
87 mtflags = dmt();
88
89 /*
90 * Maintain the per-TC virtual timer
91 * and program the per-VPE shared Count register
92 * as appropriate here...
93 */
94 reference = (unsigned long)read_c0_count();
95 timestamp = MAKEVALID(reference + delta);
96 /*
97 * To really model the clock, we have to catch the case
98 * where the current next-in-VPE timestamp is the old
99 * timestamp for the calling CPE, but the new value is
100 * in fact later. In that case, we have to do a full
101 * scan and discover the new next-in-VPE CPU id and
102 * timestamp.
103 */
104 previous = smtc_nexttime[vpe][cpu];
105 if (cpu == smtc_nextinvpe[vpe] && ISVALID(previous)
106 && IS_SOONER(previous, timestamp, reference)) {
107 int i;
108 int soonest = cpu;
109
110 /*
111 * Update timestamp array here, so that new
112 * value gets considered along with those of
113 * other virtual CPUs on the VPE.
114 */
115 smtc_nexttime[vpe][cpu] = timestamp;
116 for_each_online_cpu(i) {
117 if (ISVALID(smtc_nexttime[vpe][i])
118 && IS_SOONER(smtc_nexttime[vpe][i],
119 smtc_nexttime[vpe][soonest], reference)) {
120 soonest = i;
121 }
122 }
123 smtc_nextinvpe[vpe] = soonest;
124 nextcomp = smtc_nexttime[vpe][soonest];
125 /*
126 * Otherwise, we don't have to process the whole array rank,
127 * we just have to see if the event horizon has gotten closer.
128 */
129 } else {
130 if (!ISVALID(smtc_nexttime[vpe][smtc_nextinvpe[vpe]]) ||
131 IS_SOONER(timestamp,
132 smtc_nexttime[vpe][smtc_nextinvpe[vpe]], reference)) {
133 smtc_nextinvpe[vpe] = cpu;
134 nextcomp = timestamp;
135 }
136 /*
137 * Since next-in-VPE may me the same as the executing
138 * virtual CPU, we update the array *after* checking
139 * its value.
140 */
141 smtc_nexttime[vpe][cpu] = timestamp;
142 }
143
144 /*
145 * It may be that, in fact, we don't need to update Compare,
146 * but if we do, we want to make sure we didn't fall into
147 * a crack just behind Count.
148 */
149 if (ISVALID(nextcomp)) {
150 write_c0_compare(nextcomp);
151 ehb();
152 /*
153 * We never return an error, we just make sure
154 * that we trigger the handlers as quickly as
155 * we can if we fell behind.
156 */
157 while ((nextcomp - (unsigned long)read_c0_count())
158 > (unsigned long)LONG_MAX) {
159 nextcomp += CATCHUP_INCREMENT;
160 write_c0_compare(nextcomp);
161 ehb();
162 }
163 }
164 emt(mtflags);
165 local_irq_restore(flags);
166 return 0;
167}
168
169
170void smtc_distribute_timer(int vpe)
171{
172 unsigned long flags;
173 unsigned int mtflags;
174 int cpu;
175 struct clock_event_device *cd;
176 unsigned long nextstamp = 0L;
177 unsigned long reference;
178
179
180repeat:
181 for_each_online_cpu(cpu) {
182 /*
183 * Find virtual CPUs within the current VPE who have
184 * unserviced timer requests whose time is now past.
185 */
186 local_irq_save(flags);
187 mtflags = dmt();
188 if (cpu_data[cpu].vpe_id == vpe &&
189 ISVALID(smtc_nexttime[vpe][cpu])) {
190 reference = (unsigned long)read_c0_count();
191 if ((smtc_nexttime[vpe][cpu] - reference)
192 > (unsigned long)LONG_MAX) {
193 smtc_nexttime[vpe][cpu] = 0L;
194 emt(mtflags);
195 local_irq_restore(flags);
196 /*
197 * We don't send IPIs to ourself.
198 */
199 if (cpu != smp_processor_id()) {
200 smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
201 } else {
202 cd = &per_cpu(mips_clockevent_device, cpu);
203 cd->event_handler(cd);
204 }
205 } else {
206 /* Local to VPE but Valid Time not yet reached. */
207 if (!ISVALID(nextstamp) ||
208 IS_SOONER(smtc_nexttime[vpe][cpu], nextstamp,
209 reference)) {
210 smtc_nextinvpe[vpe] = cpu;
211 nextstamp = smtc_nexttime[vpe][cpu];
212 }
213 emt(mtflags);
214 local_irq_restore(flags);
215 }
216 } else {
217 emt(mtflags);
218 local_irq_restore(flags);
219
220 }
221 }
222 /* Reprogram for interrupt at next soonest timestamp for VPE */
223 if (ISVALID(nextstamp)) {
224 write_c0_compare(nextstamp);
225 ehb();
226 if ((nextstamp - (unsigned long)read_c0_count())
227 > (unsigned long)LONG_MAX)
228 goto repeat;
229 }
230}
231
232
233irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
234{
235 int cpu = smp_processor_id();
236
237 /* If we're running SMTC, we've got MIPS MT and therefore MIPS32R2 */
238 handle_perf_irq(1);
239
240 if (read_c0_cause() & (1 << 30)) {
241 /* Clear Count/Compare Interrupt */
242 write_c0_compare(read_c0_compare());
243 smtc_distribute_timer(cpu_data[cpu].vpe_id);
244 }
245 return IRQ_HANDLED;
246}
247
248
bcf11801 249int __cpuinit smtc_clockevent_init(void)
8531a35e
KK
250{
251 uint64_t mips_freq = mips_hpt_frequency;
252 unsigned int cpu = smp_processor_id();
253 struct clock_event_device *cd;
254 unsigned int irq;
255 int i;
256 int j;
257
258 if (!cpu_has_counter || !mips_hpt_frequency)
259 return -ENXIO;
260 if (cpu == 0) {
261 for (i = 0; i < num_possible_cpus(); i++) {
262 smtc_nextinvpe[i] = 0;
263 for (j = 0; j < num_possible_cpus(); j++)
264 smtc_nexttime[i][j] = 0L;
265 }
266 /*
267 * SMTC also can't have the usablility test
268 * run by secondary TCs once Compare is in use.
269 */
270 if (!c0_compare_int_usable())
271 return -ENXIO;
272 }
273
274 /*
275 * With vectored interrupts things are getting platform specific.
276 * get_c0_compare_int is a hook to allow a platform to return the
277 * interrupt number of it's liking.
278 */
279 irq = MIPS_CPU_IRQ_BASE + cp0_compare_irq;
280 if (get_c0_compare_int)
281 irq = get_c0_compare_int();
282
283 cd = &per_cpu(mips_clockevent_device, cpu);
284
285 cd->name = "MIPS";
286 cd->features = CLOCK_EVT_FEAT_ONESHOT;
287
288 /* Calculate the min / max delta */
289 cd->mult = div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32);
290 cd->shift = 32;
291 cd->max_delta_ns = clockevent_delta2ns(0x7fffffff, cd);
292 cd->min_delta_ns = clockevent_delta2ns(0x300, cd);
293
294 cd->rating = 300;
295 cd->irq = irq;
320ab2b0 296 cd->cpumask = cpumask_of(cpu);
8531a35e
KK
297 cd->set_next_event = mips_next_event;
298 cd->set_mode = mips_set_clock_mode;
299 cd->event_handler = mips_event_handler;
300
301 clockevents_register_device(cd);
302
303 /*
304 * On SMTC we only want to do the data structure
305 * initialization and IRQ setup once.
306 */
307 if (cpu)
308 return 0;
309 /*
310 * And we need the hwmask associated with the c0_compare
311 * vector to be initialized.
312 */
313 irq_hwmask[irq] = (0x100 << cp0_compare_irq);
314 if (cp0_timer_irq_installed)
315 return 0;
316
317 cp0_timer_irq_installed = 1;
318
319 setup_irq(irq, &c0_compare_irqaction);
320
321 return 0;
322}