mm: rename memmap_init() and memmap_init_zone()
[linux-block.git] / arch / ia64 / mm / init.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * Initialize MMU support.
4 *
5 * Copyright (C) 1998-2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 */
1da177e4
LT
8#include <linux/kernel.h>
9#include <linux/init.h>
10
9f4df96b 11#include <linux/dma-map-ops.h>
974f83ec 12#include <linux/dmar.h>
1da177e4
LT
13#include <linux/efi.h>
14#include <linux/elf.h>
98e4ae8a 15#include <linux/memblock.h>
1da177e4 16#include <linux/mm.h>
3f07c014 17#include <linux/sched/signal.h>
1da177e4
LT
18#include <linux/mmzone.h>
19#include <linux/module.h>
20#include <linux/personality.h>
21#include <linux/reboot.h>
22#include <linux/slab.h>
23#include <linux/swap.h>
24#include <linux/proc_fs.h>
25#include <linux/bitops.h>
139b8304 26#include <linux/kexec.h>
974f83ec 27#include <linux/swiotlb.h>
1da177e4 28
1da177e4 29#include <asm/dma.h>
8ff059b8 30#include <asm/efi.h>
1da177e4 31#include <asm/io.h>
1da177e4
LT
32#include <asm/numa.h>
33#include <asm/patch.h>
34#include <asm/pgalloc.h>
35#include <asm/sal.h>
36#include <asm/sections.h>
1da177e4 37#include <asm/tlb.h>
7c0f6ba6 38#include <linux/uaccess.h>
1da177e4
LT
39#include <asm/unistd.h>
40#include <asm/mca.h>
41
1da177e4
LT
42extern void ia64_tlb_init (void);
43
44unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
45
46#ifdef CONFIG_VIRTUAL_MEM_MAP
126b3fcd
TH
47unsigned long VMALLOC_END = VMALLOC_END_INIT;
48EXPORT_SYMBOL(VMALLOC_END);
1da177e4
LT
49struct page *vmem_map;
50EXPORT_SYMBOL(vmem_map);
51#endif
52
fde740e4 53struct page *zero_page_memmap_ptr; /* map entry for zero page */
1da177e4
LT
54EXPORT_SYMBOL(zero_page_memmap_ptr);
55
1da177e4 56void
954ffcb3 57__ia64_sync_icache_dcache (pte_t pte)
1da177e4
LT
58{
59 unsigned long addr;
60 struct page *page;
61
1da177e4
LT
62 page = pte_page(pte);
63 addr = (unsigned long) page_address(page);
64
65 if (test_bit(PG_arch_1, &page->flags))
66 return; /* i-cache is already coherent with d-cache */
67
a50b854e 68 flush_icache_range(addr, addr + page_size(page));
1da177e4
LT
69 set_bit(PG_arch_1, &page->flags); /* mark page as clean */
70}
71
cde14bbf
JB
72/*
73 * Since DMA is i-cache coherent, any (complete) pages that were written via
74 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
75 * flush them when they get mapped into an executable vm-area.
76 */
abdaf11a 77void arch_dma_mark_clean(phys_addr_t paddr, size_t size)
cde14bbf 78{
68c60834
CH
79 unsigned long pfn = PHYS_PFN(paddr);
80
81 do {
82 set_bit(PG_arch_1, &pfn_to_page(pfn)->flags);
83 } while (++pfn <= PHYS_PFN(paddr + size - 1));
cde14bbf
JB
84}
85
1da177e4
LT
86inline void
87ia64_set_rbs_bot (void)
88{
02b763b8 89 unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
1da177e4
LT
90
91 if (stack_size > MAX_USER_STACK_SIZE)
92 stack_size = MAX_USER_STACK_SIZE;
83d2cd3d 93 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
1da177e4
LT
94}
95
96/*
97 * This performs some platform-dependent address space initialization.
98 * On IA-64, we want to setup the VM area for the register backing
99 * store (which grows upwards) and install the gateway page which is
100 * used for signal trampolines, etc.
101 */
102void
103ia64_init_addr_space (void)
104{
105 struct vm_area_struct *vma;
106
107 ia64_set_rbs_bot();
108
109 /*
110 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
111 * the problem. When the process attempts to write to the register backing store
112 * for the first time, it will get a SEGFAULT in this case.
113 */
490fc053 114 vma = vm_area_alloc(current->mm);
1da177e4 115 if (vma) {
ebad825c 116 vma_set_anonymous(vma);
1da177e4
LT
117 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
118 vma->vm_end = vma->vm_start + PAGE_SIZE;
46dea3d0 119 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
3ed75eb8 120 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
d8ed45c5 121 mmap_write_lock(current->mm);
1da177e4 122 if (insert_vm_struct(current->mm, vma)) {
d8ed45c5 123 mmap_write_unlock(current->mm);
3928d4f5 124 vm_area_free(vma);
1da177e4
LT
125 return;
126 }
d8ed45c5 127 mmap_write_unlock(current->mm);
1da177e4
LT
128 }
129
130 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
131 if (!(current->personality & MMAP_PAGE_ZERO)) {
490fc053 132 vma = vm_area_alloc(current->mm);
1da177e4 133 if (vma) {
ebad825c 134 vma_set_anonymous(vma);
1da177e4
LT
135 vma->vm_end = PAGE_SIZE;
136 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
314e51b9
KK
137 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
138 VM_DONTEXPAND | VM_DONTDUMP;
d8ed45c5 139 mmap_write_lock(current->mm);
1da177e4 140 if (insert_vm_struct(current->mm, vma)) {
d8ed45c5 141 mmap_write_unlock(current->mm);
3928d4f5 142 vm_area_free(vma);
1da177e4
LT
143 return;
144 }
d8ed45c5 145 mmap_write_unlock(current->mm);
1da177e4
LT
146 }
147 }
148}
149
150void
151free_initmem (void)
152{
11199692 153 free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
dbe67df4 154 -1, "unused kernel");
1da177e4
LT
155}
156
dae28066 157void __init
1da177e4
LT
158free_initrd_mem (unsigned long start, unsigned long end)
159{
1da177e4
LT
160 /*
161 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
162 * Thus EFI and the kernel may have different page sizes. It is
163 * therefore possible to have the initrd share the same page as
164 * the end of the kernel (given current setup).
165 *
166 * To avoid freeing/using the wrong page (kernel sized) we:
167 * - align up the beginning of initrd
168 * - align down the end of initrd
169 *
170 * | |
171 * |=============| a000
172 * | |
173 * | |
174 * | | 9000
175 * |/////////////|
176 * |/////////////|
177 * |=============| 8000
178 * |///INITRD////|
179 * |/////////////|
180 * |/////////////| 7000
181 * | |
182 * |KKKKKKKKKKKKK|
183 * |=============| 6000
184 * |KKKKKKKKKKKKK|
185 * |KKKKKKKKKKKKK|
186 * K=kernel using 8KB pages
187 *
188 * In this example, we must free page 8000 ONLY. So we must align up
189 * initrd_start and keep initrd_end as is.
190 */
191 start = PAGE_ALIGN(start);
192 end = end & PAGE_MASK;
193
194 if (start < end)
195 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
196
197 for (; start < end; start += PAGE_SIZE) {
198 if (!virt_addr_valid(start))
199 continue;
66f62594 200 free_reserved_page(virt_to_page(start));
1da177e4
LT
201 }
202}
203
204/*
205 * This installs a clean page in the kernel's page table.
206 */
dae28066 207static struct page * __init
1da177e4
LT
208put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
209{
210 pgd_t *pgd;
c03ab9e3 211 p4d_t *p4d;
1da177e4
LT
212 pud_t *pud;
213 pmd_t *pmd;
214 pte_t *pte;
215
1da177e4
LT
216 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
217
1da177e4 218 {
c03ab9e3
MR
219 p4d = p4d_alloc(&init_mm, pgd, address);
220 if (!p4d)
221 goto out;
222 pud = pud_alloc(&init_mm, p4d, address);
1da177e4
LT
223 if (!pud)
224 goto out;
1da177e4
LT
225 pmd = pmd_alloc(&init_mm, pud, address);
226 if (!pmd)
227 goto out;
872fec16 228 pte = pte_alloc_kernel(pmd, address);
1da177e4
LT
229 if (!pte)
230 goto out;
872fec16 231 if (!pte_none(*pte))
1da177e4 232 goto out;
1da177e4 233 set_pte(pte, mk_pte(page, pgprot));
1da177e4 234 }
872fec16 235 out:
1da177e4
LT
236 /* no need for flush_tlb */
237 return page;
238}
239
914a4ea4 240static void __init
1da177e4
LT
241setup_gate (void)
242{
243 struct page *page;
244
245 /*
ad597bd5
DMT
246 * Map the gate page twice: once read-only to export the ELF
247 * headers etc. and once execute-only page to enable
248 * privilege-promotion via "epc":
1da177e4 249 */
e55645ec 250 page = virt_to_page(ia64_imva(__start_gate_section));
1da177e4
LT
251 put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
252#ifdef HAVE_BUGGY_SEGREL
e55645ec 253 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
1da177e4
LT
254 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
255#else
256 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
ad597bd5
DMT
257 /* Fill in the holes (if any) with read-only zero pages: */
258 {
259 unsigned long addr;
260
261 for (addr = GATE_ADDR + PAGE_SIZE;
262 addr < GATE_ADDR + PERCPU_PAGE_SIZE;
263 addr += PAGE_SIZE)
264 {
265 put_kernel_page(ZERO_PAGE(0), addr,
266 PAGE_READONLY);
267 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
268 PAGE_READONLY);
269 }
270 }
1da177e4
LT
271#endif
272 ia64_patch_gate();
273}
274
a6c19dfe
AL
275static struct vm_area_struct gate_vma;
276
277static int __init gate_vma_init(void)
278{
2c4541e2 279 vma_init(&gate_vma, NULL);
a6c19dfe
AL
280 gate_vma.vm_start = FIXADDR_USER_START;
281 gate_vma.vm_end = FIXADDR_USER_END;
282 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
283 gate_vma.vm_page_prot = __P101;
284
285 return 0;
286}
287__initcall(gate_vma_init);
288
289struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
290{
291 return &gate_vma;
292}
293
294int in_gate_area_no_mm(unsigned long addr)
295{
296 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
297 return 1;
298 return 0;
299}
300
301int in_gate_area(struct mm_struct *mm, unsigned long addr)
302{
303 return in_gate_area_no_mm(addr);
304}
305
5b5e76e9 306void ia64_mmu_init(void *my_cpu_data)
1da177e4 307{
00b65985 308 unsigned long pta, impl_va_bits;
5b5e76e9 309 extern void tlb_init(void);
1da177e4
LT
310
311#ifdef CONFIG_DISABLE_VHPT
312# define VHPT_ENABLE_BIT 0
313#else
314# define VHPT_ENABLE_BIT 1
315#endif
316
1da177e4
LT
317 /*
318 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
319 * address space. The IA-64 architecture guarantees that at least 50 bits of
320 * virtual address space are implemented but if we pick a large enough page size
321 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
322 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
323 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
324 * problem in practice. Alternatively, we could truncate the top of the mapped
325 * address space to not permit mappings that would overlap with the VMLPT.
326 * --davidm 00/12/06
327 */
328# define pte_bits 3
329# define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
330 /*
331 * The virtual page table has to cover the entire implemented address space within
332 * a region even though not all of this space may be mappable. The reason for
333 * this is that the Access bit and Dirty bit fault handlers perform
334 * non-speculative accesses to the virtual page table, so the address range of the
335 * virtual page table itself needs to be covered by virtual page table.
336 */
337# define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
338# define POW2(n) (1ULL << (n))
339
340 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
341
342 if (impl_va_bits < 51 || impl_va_bits > 61)
343 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
6cf07a8c
PC
344 /*
345 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
346 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
347 * the test makes sure that our mapped space doesn't overlap the
348 * unimplemented hole in the middle of the region.
349 */
350 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
351 (mapped_space_bits > impl_va_bits - 1))
352 panic("Cannot build a big enough virtual-linear page table"
353 " to cover mapped address space.\n"
354 " Try using a smaller page size.\n");
355
1da177e4
LT
356
357 /* place the VMLPT at the end of each page-table mapped region: */
358 pta = POW2(61) - POW2(vmlpt_bits);
359
1da177e4
LT
360 /*
361 * Set the (virtually mapped linear) page table address. Bit
362 * 8 selects between the short and long format, bits 2-7 the
363 * size of the table, and bit 0 whether the VHPT walker is
364 * enabled.
365 */
366 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
367
368 ia64_tlb_init();
369
370#ifdef CONFIG_HUGETLB_PAGE
371 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
372 ia64_srlz_d();
373#endif
374}
375
376#ifdef CONFIG_VIRTUAL_MEM_MAP
e44e41d0
BP
377int vmemmap_find_next_valid_pfn(int node, int i)
378{
379 unsigned long end_address, hole_next_pfn;
380 unsigned long stop_address;
381 pg_data_t *pgdat = NODE_DATA(node);
382
383 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
384 end_address = PAGE_ALIGN(end_address);
6408068e 385 stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
e44e41d0
BP
386
387 do {
388 pgd_t *pgd;
c03ab9e3 389 p4d_t *p4d;
e44e41d0
BP
390 pud_t *pud;
391 pmd_t *pmd;
392 pte_t *pte;
393
394 pgd = pgd_offset_k(end_address);
395 if (pgd_none(*pgd)) {
396 end_address += PGDIR_SIZE;
397 continue;
398 }
399
c03ab9e3
MR
400 p4d = p4d_offset(pgd, end_address);
401 if (p4d_none(*p4d)) {
402 end_address += P4D_SIZE;
403 continue;
404 }
405
406 pud = pud_offset(p4d, end_address);
e44e41d0
BP
407 if (pud_none(*pud)) {
408 end_address += PUD_SIZE;
409 continue;
410 }
411
412 pmd = pmd_offset(pud, end_address);
413 if (pmd_none(*pmd)) {
414 end_address += PMD_SIZE;
415 continue;
416 }
417
418 pte = pte_offset_kernel(pmd, end_address);
419retry_pte:
420 if (pte_none(*pte)) {
421 end_address += PAGE_SIZE;
422 pte++;
423 if ((end_address < stop_address) &&
424 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
425 goto retry_pte;
426 continue;
427 }
428 /* Found next valid vmem_map page */
429 break;
430 } while (end_address < stop_address);
431
432 end_address = min(end_address, stop_address);
433 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
434 hole_next_pfn = end_address / sizeof(struct page);
435 return hole_next_pfn - pgdat->node_start_pfn;
436}
1da177e4 437
e088a4ad 438int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
1da177e4
LT
439{
440 unsigned long address, start_page, end_page;
441 struct page *map_start, *map_end;
442 int node;
443 pgd_t *pgd;
c03ab9e3 444 p4d_t *p4d;
1da177e4
LT
445 pud_t *pud;
446 pmd_t *pmd;
447 pte_t *pte;
448
449 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
450 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
451
452 start_page = (unsigned long) map_start & PAGE_MASK;
453 end_page = PAGE_ALIGN((unsigned long) map_end);
454 node = paddr_to_nid(__pa(start));
455
456 for (address = start_page; address < end_page; address += PAGE_SIZE) {
457 pgd = pgd_offset_k(address);
d80db5c1 458 if (pgd_none(*pgd)) {
c03ab9e3
MR
459 p4d = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
460 if (!p4d)
461 goto err_alloc;
462 pgd_populate(&init_mm, pgd, p4d);
463 }
464 p4d = p4d_offset(pgd, address);
465
466 if (p4d_none(*p4d)) {
d80db5c1
MR
467 pud = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
468 if (!pud)
469 goto err_alloc;
c03ab9e3 470 p4d_populate(&init_mm, p4d, pud);
d80db5c1 471 }
c03ab9e3 472 pud = pud_offset(p4d, address);
1da177e4 473
d80db5c1
MR
474 if (pud_none(*pud)) {
475 pmd = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
476 if (!pmd)
477 goto err_alloc;
478 pud_populate(&init_mm, pud, pmd);
479 }
1da177e4
LT
480 pmd = pmd_offset(pud, address);
481
d80db5c1
MR
482 if (pmd_none(*pmd)) {
483 pte = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
484 if (!pte)
485 goto err_alloc;
486 pmd_populate_kernel(&init_mm, pmd, pte);
487 }
1da177e4
LT
488 pte = pte_offset_kernel(pmd, address);
489
d80db5c1
MR
490 if (pte_none(*pte)) {
491 void *page = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE,
492 node);
493 if (!page)
494 goto err_alloc;
495 set_pte(pte, pfn_pte(__pa(page) >> PAGE_SHIFT,
1da177e4 496 PAGE_KERNEL));
d80db5c1 497 }
1da177e4
LT
498 }
499 return 0;
d80db5c1
MR
500
501err_alloc:
502 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d\n",
503 __func__, PAGE_SIZE, PAGE_SIZE, node);
504 return -ENOMEM;
1da177e4
LT
505}
506
507struct memmap_init_callback_data {
508 struct page *start;
509 struct page *end;
510 int nid;
511 unsigned long zone;
512};
513
18b8befd 514static int __meminit
e088a4ad 515virtual_memmap_init(u64 start, u64 end, void *arg)
1da177e4
LT
516{
517 struct memmap_init_callback_data *args;
518 struct page *map_start, *map_end;
519
520 args = (struct memmap_init_callback_data *) arg;
521 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
522 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
523
524 if (map_start < args->start)
525 map_start = args->start;
526 if (map_end > args->end)
527 map_end = args->end;
528
529 /*
530 * We have to initialize "out of bounds" struct page elements that fit completely
531 * on the same pages that were allocated for the "in bounds" elements because they
532 * may be referenced later (and found to be "reserved").
533 */
534 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
535 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
536 / sizeof(struct page));
537
538 if (map_start < map_end)
ab28cb6e 539 memmap_init_range((unsigned long)(map_end - map_start),
dc2da7b4 540 args->nid, args->zone, page_to_pfn(map_start), page_to_pfn(map_end),
d882c006 541 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
1da177e4
LT
542 return 0;
543}
544
18b8befd 545void __meminit
ab28cb6e 546memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
547 unsigned long start_pfn)
548{
a99583e7 549 if (!vmem_map) {
ab28cb6e 550 memmap_init_range(size, nid, zone, start_pfn, start_pfn + size,
d882c006 551 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
a99583e7 552 } else {
1da177e4
LT
553 struct page *start;
554 struct memmap_init_callback_data args;
555
556 start = pfn_to_page(start_pfn);
557 args.start = start;
558 args.end = start + size;
559 args.nid = nid;
560 args.zone = zone;
561
562 efi_memmap_walk(virtual_memmap_init, &args);
563 }
564}
565
566int
567ia64_pfn_valid (unsigned long pfn)
568{
569 char byte;
570 struct page *pg = pfn_to_page(pfn);
571
572 return (__get_user(byte, (char __user *) pg) == 0)
573 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
574 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
575}
576EXPORT_SYMBOL(ia64_pfn_valid);
577
139b8304
BP
578#endif /* CONFIG_VIRTUAL_MEM_MAP */
579
e088a4ad 580int __init register_active_ranges(u64 start, u64 len, int nid)
05e0caad 581{
98075d24 582 u64 end = start + len;
139b8304 583
139b8304
BP
584#ifdef CONFIG_KEXEC
585 if (start > crashk_res.start && start < crashk_res.end)
586 start = crashk_res.end;
587 if (end > crashk_res.start && end < crashk_res.end)
588 end = crashk_res.start;
589#endif
590
591 if (start < end)
98e4ae8a 592 memblock_add_node(__pa(start), end - start, nid);
05e0caad
MG
593 return 0;
594}
1da177e4 595
a3f5c338 596int
e088a4ad 597find_max_min_low_pfn (u64 start, u64 end, void *arg)
a3f5c338
ZN
598{
599 unsigned long pfn_start, pfn_end;
600#ifdef CONFIG_FLATMEM
601 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
602 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
603#else
604 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
605 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
606#endif
607 min_low_pfn = min(min_low_pfn, pfn_start);
608 max_low_pfn = max(max_low_pfn, pfn_end);
609 return 0;
610}
611
1da177e4
LT
612/*
613 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
614 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
615 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
616 * useful for performance testing, but conceivably could also come in handy for debugging
617 * purposes.
618 */
619
03906ea0 620static int nolwsys __initdata;
1da177e4
LT
621
622static int __init
623nolwsys_setup (char *s)
624{
625 nolwsys = 1;
626 return 1;
627}
628
629__setup("nolwsys", nolwsys_setup);
630
dae28066 631void __init
1da177e4
LT
632mem_init (void)
633{
1da177e4 634 int i;
1da177e4 635
fde740e4
RH
636 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
637 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
638 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
639
1da177e4 640 /*
974f83ec
CH
641 * This needs to be called _after_ the command line has been parsed but
642 * _before_ any drivers that may need the PCI DMA interface are
643 * initialized or bootmem has been freed.
1da177e4 644 */
974f83ec
CH
645#ifdef CONFIG_INTEL_IOMMU
646 detect_intel_iommu();
647 if (!iommu_detected)
648#endif
649#ifdef CONFIG_SWIOTLB
650 swiotlb_init(1);
651#endif
1da177e4 652
2d4b1fa2 653#ifdef CONFIG_FLATMEM
80a03e29 654 BUG_ON(!mem_map);
1da177e4
LT
655#endif
656
b57b63a2 657 set_max_mapnr(max_low_pfn);
1da177e4 658 high_memory = __va(max_low_pfn * PAGE_SIZE);
c6ffc5ca 659 memblock_free_all();
de4bcddc 660 mem_init_print_info(NULL);
1da177e4
LT
661
662 /*
663 * For fsyscall entrpoints with no light-weight handler, use the ordinary
664 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
665 * code can tell them apart.
666 */
667 for (i = 0; i < NR_syscalls; ++i) {
e55645ec 668 extern unsigned long fsyscall_table[NR_syscalls];
1da177e4
LT
669 extern unsigned long sys_call_table[NR_syscalls];
670
671 if (!fsyscall_table[i] || nolwsys)
672 fsyscall_table[i] = sys_call_table[i] | 1;
673 }
674 setup_gate();
1da177e4 675}
1681b8e1
YG
676
677#ifdef CONFIG_MEMORY_HOTPLUG
940519f0 678int arch_add_memory(int nid, u64 start, u64 size,
f5637d3b 679 struct mhp_params *params)
1681b8e1 680{
1681b8e1
YG
681 unsigned long start_pfn = start >> PAGE_SHIFT;
682 unsigned long nr_pages = size >> PAGE_SHIFT;
683 int ret;
684
bfeb022f
LG
685 if (WARN_ON_ONCE(params->pgprot.pgprot != PAGE_KERNEL.pgprot))
686 return -EINVAL;
687
f5637d3b 688 ret = __add_pages(nid, start_pfn, nr_pages, params);
1681b8e1
YG
689 if (ret)
690 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
d4ed8084 691 __func__, ret);
1681b8e1
YG
692
693 return ret;
694}
24d335ca 695
ac5c9426
DH
696void arch_remove_memory(int nid, u64 start, u64 size,
697 struct vmem_altmap *altmap)
24d335ca
WC
698{
699 unsigned long start_pfn = start >> PAGE_SHIFT;
700 unsigned long nr_pages = size >> PAGE_SHIFT;
24d335ca 701
feee6b29 702 __remove_pages(start_pfn, nr_pages, altmap);
24d335ca
WC
703}
704#endif