mm: remove include/linux/bootmem.h
[linux-2.6-block.git] / arch / ia64 / mm / init.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * Initialize MMU support.
4 *
5 * Copyright (C) 1998-2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 */
1da177e4
LT
8#include <linux/kernel.h>
9#include <linux/init.h>
10
1da177e4
LT
11#include <linux/efi.h>
12#include <linux/elf.h>
98e4ae8a 13#include <linux/memblock.h>
1da177e4 14#include <linux/mm.h>
3f07c014 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/mmzone.h>
17#include <linux/module.h>
18#include <linux/personality.h>
19#include <linux/reboot.h>
20#include <linux/slab.h>
21#include <linux/swap.h>
22#include <linux/proc_fs.h>
23#include <linux/bitops.h>
139b8304 24#include <linux/kexec.h>
1da177e4 25
1da177e4 26#include <asm/dma.h>
1da177e4
LT
27#include <asm/io.h>
28#include <asm/machvec.h>
29#include <asm/numa.h>
30#include <asm/patch.h>
31#include <asm/pgalloc.h>
32#include <asm/sal.h>
33#include <asm/sections.h>
1da177e4 34#include <asm/tlb.h>
7c0f6ba6 35#include <linux/uaccess.h>
1da177e4
LT
36#include <asm/unistd.h>
37#include <asm/mca.h>
38
1da177e4
LT
39extern void ia64_tlb_init (void);
40
41unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
42
43#ifdef CONFIG_VIRTUAL_MEM_MAP
126b3fcd
TH
44unsigned long VMALLOC_END = VMALLOC_END_INIT;
45EXPORT_SYMBOL(VMALLOC_END);
1da177e4
LT
46struct page *vmem_map;
47EXPORT_SYMBOL(vmem_map);
48#endif
49
fde740e4 50struct page *zero_page_memmap_ptr; /* map entry for zero page */
1da177e4
LT
51EXPORT_SYMBOL(zero_page_memmap_ptr);
52
1da177e4 53void
954ffcb3 54__ia64_sync_icache_dcache (pte_t pte)
1da177e4
LT
55{
56 unsigned long addr;
57 struct page *page;
58
1da177e4
LT
59 page = pte_page(pte);
60 addr = (unsigned long) page_address(page);
61
62 if (test_bit(PG_arch_1, &page->flags))
63 return; /* i-cache is already coherent with d-cache */
64
273988fa 65 flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
1da177e4
LT
66 set_bit(PG_arch_1, &page->flags); /* mark page as clean */
67}
68
cde14bbf
JB
69/*
70 * Since DMA is i-cache coherent, any (complete) pages that were written via
71 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
72 * flush them when they get mapped into an executable vm-area.
73 */
74void
75dma_mark_clean(void *addr, size_t size)
76{
77 unsigned long pg_addr, end;
78
79 pg_addr = PAGE_ALIGN((unsigned long) addr);
80 end = (unsigned long) addr + size;
81 while (pg_addr + PAGE_SIZE <= end) {
82 struct page *page = virt_to_page(pg_addr);
83 set_bit(PG_arch_1, &page->flags);
84 pg_addr += PAGE_SIZE;
85 }
86}
87
1da177e4
LT
88inline void
89ia64_set_rbs_bot (void)
90{
02b763b8 91 unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
1da177e4
LT
92
93 if (stack_size > MAX_USER_STACK_SIZE)
94 stack_size = MAX_USER_STACK_SIZE;
83d2cd3d 95 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
1da177e4
LT
96}
97
98/*
99 * This performs some platform-dependent address space initialization.
100 * On IA-64, we want to setup the VM area for the register backing
101 * store (which grows upwards) and install the gateway page which is
102 * used for signal trampolines, etc.
103 */
104void
105ia64_init_addr_space (void)
106{
107 struct vm_area_struct *vma;
108
109 ia64_set_rbs_bot();
110
111 /*
112 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
113 * the problem. When the process attempts to write to the register backing store
114 * for the first time, it will get a SEGFAULT in this case.
115 */
490fc053 116 vma = vm_area_alloc(current->mm);
1da177e4 117 if (vma) {
ebad825c 118 vma_set_anonymous(vma);
1da177e4
LT
119 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
120 vma->vm_end = vma->vm_start + PAGE_SIZE;
46dea3d0 121 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
3ed75eb8 122 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
1da177e4
LT
123 down_write(&current->mm->mmap_sem);
124 if (insert_vm_struct(current->mm, vma)) {
125 up_write(&current->mm->mmap_sem);
3928d4f5 126 vm_area_free(vma);
1da177e4
LT
127 return;
128 }
129 up_write(&current->mm->mmap_sem);
130 }
131
132 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
133 if (!(current->personality & MMAP_PAGE_ZERO)) {
490fc053 134 vma = vm_area_alloc(current->mm);
1da177e4 135 if (vma) {
ebad825c 136 vma_set_anonymous(vma);
1da177e4
LT
137 vma->vm_end = PAGE_SIZE;
138 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
314e51b9
KK
139 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
140 VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
141 down_write(&current->mm->mmap_sem);
142 if (insert_vm_struct(current->mm, vma)) {
143 up_write(&current->mm->mmap_sem);
3928d4f5 144 vm_area_free(vma);
1da177e4
LT
145 return;
146 }
147 up_write(&current->mm->mmap_sem);
148 }
149 }
150}
151
152void
153free_initmem (void)
154{
11199692 155 free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
dbe67df4 156 -1, "unused kernel");
1da177e4
LT
157}
158
dae28066 159void __init
1da177e4
LT
160free_initrd_mem (unsigned long start, unsigned long end)
161{
1da177e4
LT
162 /*
163 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
164 * Thus EFI and the kernel may have different page sizes. It is
165 * therefore possible to have the initrd share the same page as
166 * the end of the kernel (given current setup).
167 *
168 * To avoid freeing/using the wrong page (kernel sized) we:
169 * - align up the beginning of initrd
170 * - align down the end of initrd
171 *
172 * | |
173 * |=============| a000
174 * | |
175 * | |
176 * | | 9000
177 * |/////////////|
178 * |/////////////|
179 * |=============| 8000
180 * |///INITRD////|
181 * |/////////////|
182 * |/////////////| 7000
183 * | |
184 * |KKKKKKKKKKKKK|
185 * |=============| 6000
186 * |KKKKKKKKKKKKK|
187 * |KKKKKKKKKKKKK|
188 * K=kernel using 8KB pages
189 *
190 * In this example, we must free page 8000 ONLY. So we must align up
191 * initrd_start and keep initrd_end as is.
192 */
193 start = PAGE_ALIGN(start);
194 end = end & PAGE_MASK;
195
196 if (start < end)
197 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
198
199 for (; start < end; start += PAGE_SIZE) {
200 if (!virt_addr_valid(start))
201 continue;
66f62594 202 free_reserved_page(virt_to_page(start));
1da177e4
LT
203 }
204}
205
206/*
207 * This installs a clean page in the kernel's page table.
208 */
dae28066 209static struct page * __init
1da177e4
LT
210put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
211{
212 pgd_t *pgd;
213 pud_t *pud;
214 pmd_t *pmd;
215 pte_t *pte;
216
1da177e4
LT
217 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
218
1da177e4
LT
219 {
220 pud = pud_alloc(&init_mm, pgd, address);
221 if (!pud)
222 goto out;
1da177e4
LT
223 pmd = pmd_alloc(&init_mm, pud, address);
224 if (!pmd)
225 goto out;
872fec16 226 pte = pte_alloc_kernel(pmd, address);
1da177e4
LT
227 if (!pte)
228 goto out;
872fec16 229 if (!pte_none(*pte))
1da177e4 230 goto out;
1da177e4 231 set_pte(pte, mk_pte(page, pgprot));
1da177e4 232 }
872fec16 233 out:
1da177e4
LT
234 /* no need for flush_tlb */
235 return page;
236}
237
914a4ea4 238static void __init
1da177e4
LT
239setup_gate (void)
240{
241 struct page *page;
242
243 /*
ad597bd5
DMT
244 * Map the gate page twice: once read-only to export the ELF
245 * headers etc. and once execute-only page to enable
246 * privilege-promotion via "epc":
1da177e4 247 */
e55645ec 248 page = virt_to_page(ia64_imva(__start_gate_section));
1da177e4
LT
249 put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
250#ifdef HAVE_BUGGY_SEGREL
e55645ec 251 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
1da177e4
LT
252 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
253#else
254 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
ad597bd5
DMT
255 /* Fill in the holes (if any) with read-only zero pages: */
256 {
257 unsigned long addr;
258
259 for (addr = GATE_ADDR + PAGE_SIZE;
260 addr < GATE_ADDR + PERCPU_PAGE_SIZE;
261 addr += PAGE_SIZE)
262 {
263 put_kernel_page(ZERO_PAGE(0), addr,
264 PAGE_READONLY);
265 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
266 PAGE_READONLY);
267 }
268 }
1da177e4
LT
269#endif
270 ia64_patch_gate();
271}
272
a6c19dfe
AL
273static struct vm_area_struct gate_vma;
274
275static int __init gate_vma_init(void)
276{
2c4541e2 277 vma_init(&gate_vma, NULL);
a6c19dfe
AL
278 gate_vma.vm_start = FIXADDR_USER_START;
279 gate_vma.vm_end = FIXADDR_USER_END;
280 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
281 gate_vma.vm_page_prot = __P101;
282
283 return 0;
284}
285__initcall(gate_vma_init);
286
287struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
288{
289 return &gate_vma;
290}
291
292int in_gate_area_no_mm(unsigned long addr)
293{
294 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
295 return 1;
296 return 0;
297}
298
299int in_gate_area(struct mm_struct *mm, unsigned long addr)
300{
301 return in_gate_area_no_mm(addr);
302}
303
5b5e76e9 304void ia64_mmu_init(void *my_cpu_data)
1da177e4 305{
00b65985 306 unsigned long pta, impl_va_bits;
5b5e76e9 307 extern void tlb_init(void);
1da177e4
LT
308
309#ifdef CONFIG_DISABLE_VHPT
310# define VHPT_ENABLE_BIT 0
311#else
312# define VHPT_ENABLE_BIT 1
313#endif
314
1da177e4
LT
315 /*
316 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
317 * address space. The IA-64 architecture guarantees that at least 50 bits of
318 * virtual address space are implemented but if we pick a large enough page size
319 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
320 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
321 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
322 * problem in practice. Alternatively, we could truncate the top of the mapped
323 * address space to not permit mappings that would overlap with the VMLPT.
324 * --davidm 00/12/06
325 */
326# define pte_bits 3
327# define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
328 /*
329 * The virtual page table has to cover the entire implemented address space within
330 * a region even though not all of this space may be mappable. The reason for
331 * this is that the Access bit and Dirty bit fault handlers perform
332 * non-speculative accesses to the virtual page table, so the address range of the
333 * virtual page table itself needs to be covered by virtual page table.
334 */
335# define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
336# define POW2(n) (1ULL << (n))
337
338 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
339
340 if (impl_va_bits < 51 || impl_va_bits > 61)
341 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
6cf07a8c
PC
342 /*
343 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
344 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
345 * the test makes sure that our mapped space doesn't overlap the
346 * unimplemented hole in the middle of the region.
347 */
348 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
349 (mapped_space_bits > impl_va_bits - 1))
350 panic("Cannot build a big enough virtual-linear page table"
351 " to cover mapped address space.\n"
352 " Try using a smaller page size.\n");
353
1da177e4
LT
354
355 /* place the VMLPT at the end of each page-table mapped region: */
356 pta = POW2(61) - POW2(vmlpt_bits);
357
1da177e4
LT
358 /*
359 * Set the (virtually mapped linear) page table address. Bit
360 * 8 selects between the short and long format, bits 2-7 the
361 * size of the table, and bit 0 whether the VHPT walker is
362 * enabled.
363 */
364 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
365
366 ia64_tlb_init();
367
368#ifdef CONFIG_HUGETLB_PAGE
369 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
370 ia64_srlz_d();
371#endif
372}
373
374#ifdef CONFIG_VIRTUAL_MEM_MAP
e44e41d0
BP
375int vmemmap_find_next_valid_pfn(int node, int i)
376{
377 unsigned long end_address, hole_next_pfn;
378 unsigned long stop_address;
379 pg_data_t *pgdat = NODE_DATA(node);
380
381 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
382 end_address = PAGE_ALIGN(end_address);
6408068e 383 stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
e44e41d0
BP
384
385 do {
386 pgd_t *pgd;
387 pud_t *pud;
388 pmd_t *pmd;
389 pte_t *pte;
390
391 pgd = pgd_offset_k(end_address);
392 if (pgd_none(*pgd)) {
393 end_address += PGDIR_SIZE;
394 continue;
395 }
396
397 pud = pud_offset(pgd, end_address);
398 if (pud_none(*pud)) {
399 end_address += PUD_SIZE;
400 continue;
401 }
402
403 pmd = pmd_offset(pud, end_address);
404 if (pmd_none(*pmd)) {
405 end_address += PMD_SIZE;
406 continue;
407 }
408
409 pte = pte_offset_kernel(pmd, end_address);
410retry_pte:
411 if (pte_none(*pte)) {
412 end_address += PAGE_SIZE;
413 pte++;
414 if ((end_address < stop_address) &&
415 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
416 goto retry_pte;
417 continue;
418 }
419 /* Found next valid vmem_map page */
420 break;
421 } while (end_address < stop_address);
422
423 end_address = min(end_address, stop_address);
424 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
425 hole_next_pfn = end_address / sizeof(struct page);
426 return hole_next_pfn - pgdat->node_start_pfn;
427}
1da177e4 428
e088a4ad 429int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
1da177e4
LT
430{
431 unsigned long address, start_page, end_page;
432 struct page *map_start, *map_end;
433 int node;
434 pgd_t *pgd;
435 pud_t *pud;
436 pmd_t *pmd;
437 pte_t *pte;
438
439 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
440 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
441
442 start_page = (unsigned long) map_start & PAGE_MASK;
443 end_page = PAGE_ALIGN((unsigned long) map_end);
444 node = paddr_to_nid(__pa(start));
445
446 for (address = start_page; address < end_page; address += PAGE_SIZE) {
447 pgd = pgd_offset_k(address);
448 if (pgd_none(*pgd))
64c0066c 449 pgd_populate(&init_mm, pgd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
1da177e4
LT
450 pud = pud_offset(pgd, address);
451
452 if (pud_none(*pud))
64c0066c 453 pud_populate(&init_mm, pud, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
1da177e4
LT
454 pmd = pmd_offset(pud, address);
455
456 if (pmd_none(*pmd))
64c0066c 457 pmd_populate_kernel(&init_mm, pmd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
1da177e4
LT
458 pte = pte_offset_kernel(pmd, address);
459
460 if (pte_none(*pte))
64c0066c 461 set_pte(pte, pfn_pte(__pa(memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node)) >> PAGE_SHIFT,
1da177e4
LT
462 PAGE_KERNEL));
463 }
464 return 0;
465}
466
467struct memmap_init_callback_data {
468 struct page *start;
469 struct page *end;
470 int nid;
471 unsigned long zone;
472};
473
18b8befd 474static int __meminit
e088a4ad 475virtual_memmap_init(u64 start, u64 end, void *arg)
1da177e4
LT
476{
477 struct memmap_init_callback_data *args;
478 struct page *map_start, *map_end;
479
480 args = (struct memmap_init_callback_data *) arg;
481 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
482 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
483
484 if (map_start < args->start)
485 map_start = args->start;
486 if (map_end > args->end)
487 map_end = args->end;
488
489 /*
490 * We have to initialize "out of bounds" struct page elements that fit completely
491 * on the same pages that were allocated for the "in bounds" elements because they
492 * may be referenced later (and found to be "reserved").
493 */
494 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
495 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
496 / sizeof(struct page));
497
498 if (map_start < map_end)
499 memmap_init_zone((unsigned long)(map_end - map_start),
a2f3aa02 500 args->nid, args->zone, page_to_pfn(map_start),
a99583e7 501 MEMMAP_EARLY, NULL);
1da177e4
LT
502 return 0;
503}
504
18b8befd 505void __meminit
1da177e4
LT
506memmap_init (unsigned long size, int nid, unsigned long zone,
507 unsigned long start_pfn)
508{
a99583e7
CH
509 if (!vmem_map) {
510 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY,
511 NULL);
512 } else {
1da177e4
LT
513 struct page *start;
514 struct memmap_init_callback_data args;
515
516 start = pfn_to_page(start_pfn);
517 args.start = start;
518 args.end = start + size;
519 args.nid = nid;
520 args.zone = zone;
521
522 efi_memmap_walk(virtual_memmap_init, &args);
523 }
524}
525
526int
527ia64_pfn_valid (unsigned long pfn)
528{
529 char byte;
530 struct page *pg = pfn_to_page(pfn);
531
532 return (__get_user(byte, (char __user *) pg) == 0)
533 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
534 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
535}
536EXPORT_SYMBOL(ia64_pfn_valid);
537
e088a4ad 538int __init find_largest_hole(u64 start, u64 end, void *arg)
1da177e4
LT
539{
540 u64 *max_gap = arg;
541
542 static u64 last_end = PAGE_OFFSET;
543
544 /* NOTE: this algorithm assumes efi memmap table is ordered */
545
546 if (*max_gap < (start - last_end))
547 *max_gap = start - last_end;
548 last_end = end;
549 return 0;
550}
05e0caad 551
139b8304
BP
552#endif /* CONFIG_VIRTUAL_MEM_MAP */
553
e088a4ad 554int __init register_active_ranges(u64 start, u64 len, int nid)
05e0caad 555{
98075d24 556 u64 end = start + len;
139b8304 557
139b8304
BP
558#ifdef CONFIG_KEXEC
559 if (start > crashk_res.start && start < crashk_res.end)
560 start = crashk_res.end;
561 if (end > crashk_res.start && end < crashk_res.end)
562 end = crashk_res.start;
563#endif
564
565 if (start < end)
98e4ae8a 566 memblock_add_node(__pa(start), end - start, nid);
05e0caad
MG
567 return 0;
568}
1da177e4 569
a3f5c338 570int
e088a4ad 571find_max_min_low_pfn (u64 start, u64 end, void *arg)
a3f5c338
ZN
572{
573 unsigned long pfn_start, pfn_end;
574#ifdef CONFIG_FLATMEM
575 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
576 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
577#else
578 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
579 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
580#endif
581 min_low_pfn = min(min_low_pfn, pfn_start);
582 max_low_pfn = max(max_low_pfn, pfn_end);
583 return 0;
584}
585
1da177e4
LT
586/*
587 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
588 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
589 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
590 * useful for performance testing, but conceivably could also come in handy for debugging
591 * purposes.
592 */
593
03906ea0 594static int nolwsys __initdata;
1da177e4
LT
595
596static int __init
597nolwsys_setup (char *s)
598{
599 nolwsys = 1;
600 return 1;
601}
602
603__setup("nolwsys", nolwsys_setup);
604
dae28066 605void __init
1da177e4
LT
606mem_init (void)
607{
1da177e4 608 int i;
1da177e4 609
fde740e4
RH
610 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
611 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
612 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
613
1da177e4
LT
614#ifdef CONFIG_PCI
615 /*
616 * This needs to be called _after_ the command line has been parsed but _before_
617 * any drivers that may need the PCI DMA interface are initialized or bootmem has
618 * been freed.
619 */
620 platform_dma_init();
621#endif
622
2d4b1fa2 623#ifdef CONFIG_FLATMEM
80a03e29 624 BUG_ON(!mem_map);
1da177e4
LT
625#endif
626
b57b63a2 627 set_max_mapnr(max_low_pfn);
1da177e4 628 high_memory = __va(max_low_pfn * PAGE_SIZE);
c6ffc5ca 629 memblock_free_all();
de4bcddc 630 mem_init_print_info(NULL);
1da177e4
LT
631
632 /*
633 * For fsyscall entrpoints with no light-weight handler, use the ordinary
634 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
635 * code can tell them apart.
636 */
637 for (i = 0; i < NR_syscalls; ++i) {
e55645ec 638 extern unsigned long fsyscall_table[NR_syscalls];
1da177e4
LT
639 extern unsigned long sys_call_table[NR_syscalls];
640
641 if (!fsyscall_table[i] || nolwsys)
642 fsyscall_table[i] = sys_call_table[i] | 1;
643 }
644 setup_gate();
1da177e4 645}
1681b8e1
YG
646
647#ifdef CONFIG_MEMORY_HOTPLUG
24e6d5a5
CH
648int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap,
649 bool want_memblock)
1681b8e1 650{
1681b8e1
YG
651 unsigned long start_pfn = start >> PAGE_SHIFT;
652 unsigned long nr_pages = size >> PAGE_SHIFT;
653 int ret;
654
24e6d5a5 655 ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
1681b8e1
YG
656 if (ret)
657 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
d4ed8084 658 __func__, ret);
1681b8e1
YG
659
660 return ret;
661}
24d335ca
WC
662
663#ifdef CONFIG_MEMORY_HOTREMOVE
da024512 664int arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
24d335ca
WC
665{
666 unsigned long start_pfn = start >> PAGE_SHIFT;
667 unsigned long nr_pages = size >> PAGE_SHIFT;
668 struct zone *zone;
669 int ret;
670
671 zone = page_zone(pfn_to_page(start_pfn));
da024512 672 ret = __remove_pages(zone, start_pfn, nr_pages, altmap);
24d335ca
WC
673 if (ret)
674 pr_warn("%s: Problem encountered in __remove_pages() as"
675 " ret=%d\n", __func__, ret);
676
677 return ret;
678}
679#endif
1681b8e1 680#endif