Merge refs/heads/upstream from master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[linux-2.6-block.git] / arch / ia64 / kernel / smpboot.c
CommitLineData
1da177e4
LT
1/*
2 * SMP boot-related support
3 *
82975115 4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
1da177e4 5 * David Mosberger-Tang <davidm@hpl.hp.com>
e927ecb0
SS
6 * Copyright (C) 2001, 2004-2005 Intel Corp
7 * Rohit Seth <rohit.seth@intel.com>
8 * Suresh Siddha <suresh.b.siddha@intel.com>
9 * Gordon Jin <gordon.jin@intel.com>
10 * Ashok Raj <ashok.raj@intel.com>
1da177e4
LT
11 *
12 * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
13 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
14 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
15 * smp_boot_cpus()/smp_commence() is replaced by
16 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
b8d8b883 17 * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
e927ecb0
SS
18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
20 * Add multi-threading and multi-core detection
21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
22 * Setup cpu_sibling_map and cpu_core_map
1da177e4
LT
23 */
24#include <linux/config.h>
25
26#include <linux/module.h>
27#include <linux/acpi.h>
28#include <linux/bootmem.h>
29#include <linux/cpu.h>
30#include <linux/delay.h>
31#include <linux/init.h>
32#include <linux/interrupt.h>
33#include <linux/irq.h>
34#include <linux/kernel.h>
35#include <linux/kernel_stat.h>
36#include <linux/mm.h>
37#include <linux/notifier.h>
38#include <linux/smp.h>
39#include <linux/smp_lock.h>
40#include <linux/spinlock.h>
41#include <linux/efi.h>
42#include <linux/percpu.h>
43#include <linux/bitops.h>
44
45#include <asm/atomic.h>
46#include <asm/cache.h>
47#include <asm/current.h>
48#include <asm/delay.h>
49#include <asm/ia32.h>
50#include <asm/io.h>
51#include <asm/irq.h>
52#include <asm/machvec.h>
53#include <asm/mca.h>
54#include <asm/page.h>
55#include <asm/pgalloc.h>
56#include <asm/pgtable.h>
57#include <asm/processor.h>
58#include <asm/ptrace.h>
59#include <asm/sal.h>
60#include <asm/system.h>
61#include <asm/tlbflush.h>
62#include <asm/unistd.h>
63
64#define SMP_DEBUG 0
65
66#if SMP_DEBUG
67#define Dprintk(x...) printk(x)
68#else
69#define Dprintk(x...)
70#endif
71
b8d8b883
AR
72#ifdef CONFIG_HOTPLUG_CPU
73/*
74 * Store all idle threads, this can be reused instead of creating
75 * a new thread. Also avoids complicated thread destroy functionality
76 * for idle threads.
77 */
78struct task_struct *idle_thread_array[NR_CPUS];
79
80/*
81 * Global array allocated for NR_CPUS at boot time
82 */
83struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
84
85/*
86 * start_ap in head.S uses this to store current booting cpu
87 * info.
88 */
89struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
90
91#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
92
93#define get_idle_for_cpu(x) (idle_thread_array[(x)])
94#define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
95
96#else
97
98#define get_idle_for_cpu(x) (NULL)
99#define set_idle_for_cpu(x,p)
100#define set_brendez_area(x)
101#endif
102
1da177e4
LT
103
104/*
105 * ITC synchronization related stuff:
106 */
107#define MASTER 0
108#define SLAVE (SMP_CACHE_BYTES/8)
109
110#define NUM_ROUNDS 64 /* magic value */
111#define NUM_ITERS 5 /* likewise */
112
113static DEFINE_SPINLOCK(itc_sync_lock);
114static volatile unsigned long go[SLAVE + 1];
115
116#define DEBUG_ITC_SYNC 0
117
118extern void __devinit calibrate_delay (void);
119extern void start_ap (void);
120extern unsigned long ia64_iobase;
121
122task_t *task_for_booting_cpu;
123
124/*
125 * State for each CPU
126 */
127DEFINE_PER_CPU(int, cpu_state);
128
129/* Bitmasks of currently online, and possible CPUs */
130cpumask_t cpu_online_map;
131EXPORT_SYMBOL(cpu_online_map);
132cpumask_t cpu_possible_map;
133EXPORT_SYMBOL(cpu_possible_map);
134
e927ecb0
SS
135cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
136cpumask_t cpu_sibling_map[NR_CPUS] __cacheline_aligned;
137int smp_num_siblings = 1;
138int smp_num_cpucores = 1;
139
1da177e4
LT
140/* which logical CPU number maps to which CPU (physical APIC ID) */
141volatile int ia64_cpu_to_sapicid[NR_CPUS];
142EXPORT_SYMBOL(ia64_cpu_to_sapicid);
143
144static volatile cpumask_t cpu_callin_map;
145
146struct smp_boot_data smp_boot_data __initdata;
147
148unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
149
150char __initdata no_int_routing;
151
152unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
153
154static int __init
155nointroute (char *str)
156{
157 no_int_routing = 1;
158 printk ("no_int_routing on\n");
159 return 1;
160}
161
162__setup("nointroute", nointroute);
163
164void
165sync_master (void *arg)
166{
167 unsigned long flags, i;
168
169 go[MASTER] = 0;
170
171 local_irq_save(flags);
172 {
173 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
82975115
DMT
174 while (!go[MASTER])
175 cpu_relax();
1da177e4
LT
176 go[MASTER] = 0;
177 go[SLAVE] = ia64_get_itc();
178 }
179 }
180 local_irq_restore(flags);
181}
182
183/*
184 * Return the number of cycles by which our itc differs from the itc on the master
185 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
186 * negative that it is behind.
187 */
188static inline long
189get_delta (long *rt, long *master)
190{
191 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
192 unsigned long tcenter, t0, t1, tm;
193 long i;
194
195 for (i = 0; i < NUM_ITERS; ++i) {
196 t0 = ia64_get_itc();
197 go[MASTER] = 1;
82975115
DMT
198 while (!(tm = go[SLAVE]))
199 cpu_relax();
1da177e4
LT
200 go[SLAVE] = 0;
201 t1 = ia64_get_itc();
202
203 if (t1 - t0 < best_t1 - best_t0)
204 best_t0 = t0, best_t1 = t1, best_tm = tm;
205 }
206
207 *rt = best_t1 - best_t0;
208 *master = best_tm - best_t0;
209
210 /* average best_t0 and best_t1 without overflow: */
211 tcenter = (best_t0/2 + best_t1/2);
212 if (best_t0 % 2 + best_t1 % 2 == 2)
213 ++tcenter;
214 return tcenter - best_tm;
215}
216
217/*
218 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
219 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
220 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
221 * step). The basic idea is for the slave to ask the master what itc value it has and to
222 * read its own itc before and after the master responds. Each iteration gives us three
223 * timestamps:
224 *
225 * slave master
226 *
227 * t0 ---\
228 * ---\
229 * --->
230 * tm
231 * /---
232 * /---
233 * t1 <---
234 *
235 *
236 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
237 * and t1. If we achieve this, the clocks are synchronized provided the interconnect
238 * between the slave and the master is symmetric. Even if the interconnect were
239 * asymmetric, we would still know that the synchronization error is smaller than the
240 * roundtrip latency (t0 - t1).
241 *
242 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
243 * within one or two cycles. However, we can only *guarantee* that the synchronization is
244 * accurate to within a round-trip time, which is typically in the range of several
245 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
246 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
247 * than half a micro second or so.
248 */
249void
250ia64_sync_itc (unsigned int master)
251{
252 long i, delta, adj, adjust_latency = 0, done = 0;
253 unsigned long flags, rt, master_time_stamp, bound;
254#if DEBUG_ITC_SYNC
255 struct {
256 long rt; /* roundtrip time */
257 long master; /* master's timestamp */
258 long diff; /* difference between midpoint and master's timestamp */
259 long lat; /* estimate of itc adjustment latency */
260 } t[NUM_ROUNDS];
261#endif
262
263 /*
264 * Make sure local timer ticks are disabled while we sync. If
265 * they were enabled, we'd have to worry about nasty issues
266 * like setting the ITC ahead of (or a long time before) the
267 * next scheduled tick.
268 */
269 BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
270
271 go[MASTER] = 1;
272
273 if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
274 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
275 return;
276 }
277
82975115
DMT
278 while (go[MASTER])
279 cpu_relax(); /* wait for master to be ready */
1da177e4
LT
280
281 spin_lock_irqsave(&itc_sync_lock, flags);
282 {
283 for (i = 0; i < NUM_ROUNDS; ++i) {
284 delta = get_delta(&rt, &master_time_stamp);
285 if (delta == 0) {
286 done = 1; /* let's lock on to this... */
287 bound = rt;
288 }
289
290 if (!done) {
291 if (i > 0) {
292 adjust_latency += -delta;
293 adj = -delta + adjust_latency/4;
294 } else
295 adj = -delta;
296
297 ia64_set_itc(ia64_get_itc() + adj);
298 }
299#if DEBUG_ITC_SYNC
300 t[i].rt = rt;
301 t[i].master = master_time_stamp;
302 t[i].diff = delta;
303 t[i].lat = adjust_latency/4;
304#endif
305 }
306 }
307 spin_unlock_irqrestore(&itc_sync_lock, flags);
308
309#if DEBUG_ITC_SYNC
310 for (i = 0; i < NUM_ROUNDS; ++i)
311 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
312 t[i].rt, t[i].master, t[i].diff, t[i].lat);
313#endif
314
315 printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
316 "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
317}
318
319/*
320 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
321 */
322static inline void __devinit
323smp_setup_percpu_timer (void)
324{
325}
326
327static void __devinit
328smp_callin (void)
329{
330 int cpuid, phys_id;
331 extern void ia64_init_itm(void);
332
333#ifdef CONFIG_PERFMON
334 extern void pfm_init_percpu(void);
335#endif
336
337 cpuid = smp_processor_id();
338 phys_id = hard_smp_processor_id();
339
340 if (cpu_online(cpuid)) {
341 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
342 phys_id, cpuid);
343 BUG();
344 }
345
346 lock_ipi_calllock();
347 cpu_set(cpuid, cpu_online_map);
348 unlock_ipi_calllock();
a9fa06c2 349 per_cpu(cpu_state, cpuid) = CPU_ONLINE;
1da177e4
LT
350
351 smp_setup_percpu_timer();
352
353 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
354
355#ifdef CONFIG_PERFMON
356 pfm_init_percpu();
357#endif
358
359 local_irq_enable();
360
361 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
362 /*
363 * Synchronize the ITC with the BP. Need to do this after irqs are
364 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
365 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
366 * local_bh_enable(), which bugs out if irqs are not enabled...
367 */
368 Dprintk("Going to syncup ITC with BP.\n");
369 ia64_sync_itc(0);
370 }
371
372 /*
373 * Get our bogomips.
374 */
375 ia64_init_itm();
376 calibrate_delay();
377 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
378
379#ifdef CONFIG_IA32_SUPPORT
380 ia32_gdt_init();
381#endif
382
383 /*
384 * Allow the master to continue.
385 */
386 cpu_set(cpuid, cpu_callin_map);
387 Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
388}
389
390
391/*
392 * Activate a secondary processor. head.S calls this.
393 */
394int __devinit
395start_secondary (void *unused)
396{
397 /* Early console may use I/O ports */
398 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
1da177e4
LT
399 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
400 efi_map_pal_code();
401 cpu_init();
402 smp_callin();
403
404 cpu_idle();
405 return 0;
406}
407
408struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
409{
410 return NULL;
411}
412
413struct create_idle {
414 struct task_struct *idle;
415 struct completion done;
416 int cpu;
417};
418
419void
420do_fork_idle(void *_c_idle)
421{
422 struct create_idle *c_idle = _c_idle;
423
424 c_idle->idle = fork_idle(c_idle->cpu);
425 complete(&c_idle->done);
426}
427
428static int __devinit
429do_boot_cpu (int sapicid, int cpu)
430{
431 int timeout;
432 struct create_idle c_idle = {
433 .cpu = cpu,
434 .done = COMPLETION_INITIALIZER(c_idle.done),
435 };
436 DECLARE_WORK(work, do_fork_idle, &c_idle);
b8d8b883
AR
437
438 c_idle.idle = get_idle_for_cpu(cpu);
439 if (c_idle.idle) {
440 init_idle(c_idle.idle, cpu);
441 goto do_rest;
442 }
443
1da177e4
LT
444 /*
445 * We can't use kernel_thread since we must avoid to reschedule the child.
446 */
447 if (!keventd_up() || current_is_keventd())
448 work.func(work.data);
449 else {
450 schedule_work(&work);
451 wait_for_completion(&c_idle.done);
452 }
453
454 if (IS_ERR(c_idle.idle))
455 panic("failed fork for CPU %d", cpu);
b8d8b883
AR
456
457 set_idle_for_cpu(cpu, c_idle.idle);
458
459do_rest:
1da177e4
LT
460 task_for_booting_cpu = c_idle.idle;
461
462 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
463
b8d8b883 464 set_brendez_area(cpu);
1da177e4
LT
465 platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
466
467 /*
468 * Wait 10s total for the AP to start
469 */
470 Dprintk("Waiting on callin_map ...");
471 for (timeout = 0; timeout < 100000; timeout++) {
472 if (cpu_isset(cpu, cpu_callin_map))
473 break; /* It has booted */
474 udelay(100);
475 }
476 Dprintk("\n");
477
478 if (!cpu_isset(cpu, cpu_callin_map)) {
479 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
480 ia64_cpu_to_sapicid[cpu] = -1;
481 cpu_clear(cpu, cpu_online_map); /* was set in smp_callin() */
482 return -EINVAL;
483 }
484 return 0;
485}
486
487static int __init
488decay (char *str)
489{
490 int ticks;
491 get_option (&str, &ticks);
492 return 1;
493}
494
495__setup("decay=", decay);
496
497/*
498 * Initialize the logical CPU number to SAPICID mapping
499 */
500void __init
501smp_build_cpu_map (void)
502{
503 int sapicid, cpu, i;
504 int boot_cpu_id = hard_smp_processor_id();
505
506 for (cpu = 0; cpu < NR_CPUS; cpu++) {
507 ia64_cpu_to_sapicid[cpu] = -1;
508#ifdef CONFIG_HOTPLUG_CPU
509 cpu_set(cpu, cpu_possible_map);
510#endif
511 }
512
513 ia64_cpu_to_sapicid[0] = boot_cpu_id;
514 cpus_clear(cpu_present_map);
515 cpu_set(0, cpu_present_map);
516 cpu_set(0, cpu_possible_map);
517 for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
518 sapicid = smp_boot_data.cpu_phys_id[i];
519 if (sapicid == boot_cpu_id)
520 continue;
521 cpu_set(cpu, cpu_present_map);
522 cpu_set(cpu, cpu_possible_map);
523 ia64_cpu_to_sapicid[cpu] = sapicid;
524 cpu++;
525 }
526}
527
1da177e4
LT
528/*
529 * Cycle through the APs sending Wakeup IPIs to boot each.
530 */
531void __init
532smp_prepare_cpus (unsigned int max_cpus)
533{
534 int boot_cpu_id = hard_smp_processor_id();
535
536 /*
537 * Initialize the per-CPU profiling counter/multiplier
538 */
539
540 smp_setup_percpu_timer();
541
542 /*
543 * We have the boot CPU online for sure.
544 */
545 cpu_set(0, cpu_online_map);
546 cpu_set(0, cpu_callin_map);
547
548 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
549 ia64_cpu_to_sapicid[0] = boot_cpu_id;
550
551 printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
552
553 current_thread_info()->cpu = 0;
554
555 /*
556 * If SMP should be disabled, then really disable it!
557 */
558 if (!max_cpus) {
559 printk(KERN_INFO "SMP mode deactivated.\n");
560 cpus_clear(cpu_online_map);
561 cpus_clear(cpu_present_map);
562 cpus_clear(cpu_possible_map);
563 cpu_set(0, cpu_online_map);
564 cpu_set(0, cpu_present_map);
565 cpu_set(0, cpu_possible_map);
566 return;
567 }
568}
569
570void __devinit smp_prepare_boot_cpu(void)
571{
572 cpu_set(smp_processor_id(), cpu_online_map);
573 cpu_set(smp_processor_id(), cpu_callin_map);
a9fa06c2 574 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
1da177e4
LT
575}
576
e927ecb0
SS
577/*
578 * mt_info[] is a temporary store for all info returned by
579 * PAL_LOGICAL_TO_PHYSICAL, to be copied into cpuinfo_ia64 when the
580 * specific cpu comes.
581 */
582static struct {
583 __u32 socket_id;
584 __u16 core_id;
585 __u16 thread_id;
586 __u16 proc_fixed_addr;
587 __u8 valid;
66302f21 588} mt_info[NR_CPUS] __devinitdata;
e927ecb0 589
1da177e4 590#ifdef CONFIG_HOTPLUG_CPU
e927ecb0
SS
591static inline void
592remove_from_mtinfo(int cpu)
593{
594 int i;
595
596 for_each_cpu(i)
597 if (mt_info[i].valid && mt_info[i].socket_id ==
598 cpu_data(cpu)->socket_id)
599 mt_info[i].valid = 0;
600}
601
602static inline void
603clear_cpu_sibling_map(int cpu)
604{
605 int i;
606
607 for_each_cpu_mask(i, cpu_sibling_map[cpu])
608 cpu_clear(cpu, cpu_sibling_map[i]);
609 for_each_cpu_mask(i, cpu_core_map[cpu])
610 cpu_clear(cpu, cpu_core_map[i]);
611
612 cpu_sibling_map[cpu] = cpu_core_map[cpu] = CPU_MASK_NONE;
613}
614
615static void
616remove_siblinginfo(int cpu)
617{
618 int last = 0;
619
620 if (cpu_data(cpu)->threads_per_core == 1 &&
621 cpu_data(cpu)->cores_per_socket == 1) {
622 cpu_clear(cpu, cpu_core_map[cpu]);
623 cpu_clear(cpu, cpu_sibling_map[cpu]);
624 return;
625 }
626
627 last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
628
629 /* remove it from all sibling map's */
630 clear_cpu_sibling_map(cpu);
631
632 /* if this cpu is the last in the core group, remove all its info
633 * from mt_info structure
634 */
635 if (last)
636 remove_from_mtinfo(cpu);
637}
638
1da177e4
LT
639extern void fixup_irqs(void);
640/* must be called with cpucontrol mutex held */
1da177e4
LT
641int __cpu_disable(void)
642{
643 int cpu = smp_processor_id();
644
645 /*
646 * dont permit boot processor for now
647 */
648 if (cpu == 0)
649 return -EBUSY;
650
e927ecb0 651 remove_siblinginfo(cpu);
f3705136 652 cpu_clear(cpu, cpu_online_map);
1da177e4
LT
653 fixup_irqs();
654 local_flush_tlb_all();
b8d8b883 655 cpu_clear(cpu, cpu_callin_map);
1da177e4
LT
656 return 0;
657}
658
659void __cpu_die(unsigned int cpu)
660{
661 unsigned int i;
662
663 for (i = 0; i < 100; i++) {
664 /* They ack this in play_dead by setting CPU_DEAD */
665 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
666 {
b8d8b883 667 printk ("CPU %d is now offline\n", cpu);
1da177e4
LT
668 return;
669 }
670 msleep(100);
671 }
672 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
673}
674#else /* !CONFIG_HOTPLUG_CPU */
1da177e4
LT
675int __cpu_disable(void)
676{
677 return -ENOSYS;
678}
679
680void __cpu_die(unsigned int cpu)
681{
682 /* We said "no" in __cpu_disable */
683 BUG();
684}
685#endif /* CONFIG_HOTPLUG_CPU */
686
687void
688smp_cpus_done (unsigned int dummy)
689{
690 int cpu;
691 unsigned long bogosum = 0;
692
693 /*
694 * Allow the user to impress friends.
695 */
696
697 for (cpu = 0; cpu < NR_CPUS; cpu++)
698 if (cpu_online(cpu))
699 bogosum += cpu_data(cpu)->loops_per_jiffy;
700
701 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
702 (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
703}
704
e927ecb0
SS
705static inline void __devinit
706set_cpu_sibling_map(int cpu)
707{
708 int i;
709
710 for_each_online_cpu(i) {
711 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
712 cpu_set(i, cpu_core_map[cpu]);
713 cpu_set(cpu, cpu_core_map[i]);
714 if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
715 cpu_set(i, cpu_sibling_map[cpu]);
716 cpu_set(cpu, cpu_sibling_map[i]);
717 }
718 }
719 }
720}
721
1da177e4
LT
722int __devinit
723__cpu_up (unsigned int cpu)
724{
725 int ret;
726 int sapicid;
727
728 sapicid = ia64_cpu_to_sapicid[cpu];
729 if (sapicid == -1)
730 return -EINVAL;
731
732 /*
b8d8b883
AR
733 * Already booted cpu? not valid anymore since we dont
734 * do idle loop tightspin anymore.
1da177e4
LT
735 */
736 if (cpu_isset(cpu, cpu_callin_map))
b8d8b883
AR
737 return -EINVAL;
738
a9fa06c2 739 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1da177e4
LT
740 /* Processor goes to start_secondary(), sets online flag */
741 ret = do_boot_cpu(sapicid, cpu);
742 if (ret < 0)
743 return ret;
744
e927ecb0
SS
745 if (cpu_data(cpu)->threads_per_core == 1 &&
746 cpu_data(cpu)->cores_per_socket == 1) {
747 cpu_set(cpu, cpu_sibling_map[cpu]);
748 cpu_set(cpu, cpu_core_map[cpu]);
749 return 0;
750 }
751
752 set_cpu_sibling_map(cpu);
753
1da177e4
LT
754 return 0;
755}
756
757/*
758 * Assume that CPU's have been discovered by some platform-dependent interface. For
759 * SoftSDV/Lion, that would be ACPI.
760 *
761 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
762 */
763void __init
764init_smp_config(void)
765{
766 struct fptr {
767 unsigned long fp;
768 unsigned long gp;
769 } *ap_startup;
770 long sal_ret;
771
772 /* Tell SAL where to drop the AP's. */
773 ap_startup = (struct fptr *) start_ap;
774 sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
775 ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
776 if (sal_ret < 0)
777 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
778 ia64_sal_strerror(sal_ret));
779}
780
e927ecb0
SS
781static inline int __devinit
782check_for_mtinfo_index(void)
783{
784 int i;
785
786 for_each_cpu(i)
787 if (!mt_info[i].valid)
788 return i;
789
790 return -1;
791}
792
793/*
794 * Search the mt_info to find out if this socket's cid/tid information is
795 * cached or not. If the socket exists, fill in the core_id and thread_id
796 * in cpuinfo
797 */
798static int __devinit
799check_for_new_socket(__u16 logical_address, struct cpuinfo_ia64 *c)
800{
801 int i;
802 __u32 sid = c->socket_id;
803
804 for_each_cpu(i) {
805 if (mt_info[i].valid && mt_info[i].proc_fixed_addr == logical_address
806 && mt_info[i].socket_id == sid) {
807 c->core_id = mt_info[i].core_id;
808 c->thread_id = mt_info[i].thread_id;
809 return 1; /* not a new socket */
810 }
811 }
812 return 0;
813}
814
815/*
816 * identify_siblings(cpu) gets called from identify_cpu. This populates the
817 * information related to logical execution units in per_cpu_data structure.
818 */
819void __devinit
820identify_siblings(struct cpuinfo_ia64 *c)
821{
822 s64 status;
823 u16 pltid;
824 u64 proc_fixed_addr;
825 int count, i;
826 pal_logical_to_physical_t info;
827
828 if (smp_num_cpucores == 1 && smp_num_siblings == 1)
829 return;
830
831 if ((status = ia64_pal_logical_to_phys(0, &info)) != PAL_STATUS_SUCCESS) {
832 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
833 status);
834 return;
835 }
836 if ((status = ia64_sal_physical_id_info(&pltid)) != PAL_STATUS_SUCCESS) {
837 printk(KERN_ERR "ia64_sal_pltid failed with %ld\n", status);
838 return;
839 }
840 if ((status = ia64_pal_fixed_addr(&proc_fixed_addr)) != PAL_STATUS_SUCCESS) {
841 printk(KERN_ERR "ia64_pal_fixed_addr failed with %ld\n", status);
842 return;
843 }
844
845 c->socket_id = (pltid << 8) | info.overview_ppid;
846 c->cores_per_socket = info.overview_cpp;
847 c->threads_per_core = info.overview_tpc;
848 count = c->num_log = info.overview_num_log;
849
850 /* If the thread and core id information is already cached, then
851 * we will simply update cpu_info and return. Otherwise, we will
852 * do the PAL calls and cache core and thread id's of all the siblings.
853 */
854 if (check_for_new_socket(proc_fixed_addr, c))
855 return;
856
857 for (i = 0; i < count; i++) {
858 int index;
859
860 if (i && (status = ia64_pal_logical_to_phys(i, &info))
861 != PAL_STATUS_SUCCESS) {
862 printk(KERN_ERR "ia64_pal_logical_to_phys failed"
863 " with %ld\n", status);
864 return;
865 }
866 if (info.log2_la == proc_fixed_addr) {
867 c->core_id = info.log1_cid;
868 c->thread_id = info.log1_tid;
869 }
870
871 index = check_for_mtinfo_index();
872 /* We will not do the mt_info caching optimization in this case.
873 */
874 if (index < 0)
875 continue;
876
877 mt_info[index].valid = 1;
878 mt_info[index].socket_id = c->socket_id;
879 mt_info[index].core_id = info.log1_cid;
880 mt_info[index].thread_id = info.log1_tid;
881 mt_info[index].proc_fixed_addr = info.log2_la;
882 }
883}