iwlwifi: don't include iwl-dev.h from iwl-devtrace.h
[linux-2.6-block.git] / arch / ia64 / kernel / perfmon.c
CommitLineData
1da177e4
LT
1/*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
a1ecf7f6 14 * Copyright (C) 1999-2005 Hewlett Packard Co
1da177e4
LT
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
1da177e4
LT
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/interrupt.h>
1da177e4
LT
26#include <linux/proc_fs.h>
27#include <linux/seq_file.h>
28#include <linux/init.h>
29#include <linux/vmalloc.h>
30#include <linux/mm.h>
31#include <linux/sysctl.h>
32#include <linux/list.h>
33#include <linux/file.h>
34#include <linux/poll.h>
35#include <linux/vfs.h>
a3bc0dbc 36#include <linux/smp.h>
1da177e4
LT
37#include <linux/pagemap.h>
38#include <linux/mount.h>
1da177e4 39#include <linux/bitops.h>
a9415644 40#include <linux/capability.h>
badf1662 41#include <linux/rcupdate.h>
60f1c444 42#include <linux/completion.h>
f14488cc 43#include <linux/tracehook.h>
1da177e4
LT
44
45#include <asm/errno.h>
46#include <asm/intrinsics.h>
47#include <asm/page.h>
48#include <asm/perfmon.h>
49#include <asm/processor.h>
50#include <asm/signal.h>
51#include <asm/system.h>
52#include <asm/uaccess.h>
53#include <asm/delay.h>
54
55#ifdef CONFIG_PERFMON
56/*
57 * perfmon context state
58 */
59#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60#define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
63
64#define PFM_INVALID_ACTIVATION (~0UL)
65
35589a8f
KA
66#define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
67#define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
68
1da177e4
LT
69/*
70 * depth of message queue
71 */
72#define PFM_MAX_MSGS 32
73#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
74
75/*
76 * type of a PMU register (bitmask).
77 * bitmask structure:
78 * bit0 : register implemented
79 * bit1 : end marker
80 * bit2-3 : reserved
81 * bit4 : pmc has pmc.pm
82 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
83 * bit6-7 : register type
84 * bit8-31: reserved
85 */
86#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
87#define PFM_REG_IMPL 0x1 /* register implemented */
88#define PFM_REG_END 0x2 /* end marker */
89#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
92#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
93#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
94
95#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
96#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
97
98#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
99
100/* i assumed unsigned */
101#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
103
104/* XXX: these assume that register i is implemented */
105#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
108#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
109
110#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
111#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
112#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
113#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
114
115#define PFM_NUM_IBRS IA64_NUM_DBG_REGS
116#define PFM_NUM_DBRS IA64_NUM_DBG_REGS
117
118#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
119#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
120#define PFM_CTX_TASK(h) (h)->ctx_task
121
122#define PMU_PMC_OI 5 /* position of pmc.oi bit */
123
124/* XXX: does not support more than 64 PMDs */
125#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
127
128#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
129
130#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133#define PFM_CODE_RR 0 /* requesting code range restriction */
134#define PFM_DATA_RR 1 /* requestion data range restriction */
135
136#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
138#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
139
140#define RDEP(x) (1UL<<(x))
141
142/*
143 * context protection macros
144 * in SMP:
145 * - we need to protect against CPU concurrency (spin_lock)
146 * - we need to protect against PMU overflow interrupts (local_irq_disable)
147 * in UP:
148 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 *
85d1fe09 150 * spin_lock_irqsave()/spin_unlock_irqrestore():
1da177e4
LT
151 * in SMP: local_irq_disable + spin_lock
152 * in UP : local_irq_disable
153 *
154 * spin_lock()/spin_lock():
155 * in UP : removed automatically
156 * in SMP: protect against context accesses from other CPU. interrupts
157 * are not masked. This is useful for the PMU interrupt handler
158 * because we know we will not get PMU concurrency in that code.
159 */
160#define PROTECT_CTX(c, f) \
161 do { \
19c5870c 162 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
1da177e4 163 spin_lock_irqsave(&(c)->ctx_lock, f); \
19c5870c 164 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
1da177e4
LT
165 } while(0)
166
167#define UNPROTECT_CTX(c, f) \
168 do { \
19c5870c 169 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
1da177e4
LT
170 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
171 } while(0)
172
173#define PROTECT_CTX_NOPRINT(c, f) \
174 do { \
175 spin_lock_irqsave(&(c)->ctx_lock, f); \
176 } while(0)
177
178
179#define UNPROTECT_CTX_NOPRINT(c, f) \
180 do { \
181 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
182 } while(0)
183
184
185#define PROTECT_CTX_NOIRQ(c) \
186 do { \
187 spin_lock(&(c)->ctx_lock); \
188 } while(0)
189
190#define UNPROTECT_CTX_NOIRQ(c) \
191 do { \
192 spin_unlock(&(c)->ctx_lock); \
193 } while(0)
194
195
196#ifdef CONFIG_SMP
197
198#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
199#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
200#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
201
202#else /* !CONFIG_SMP */
203#define SET_ACTIVATION(t) do {} while(0)
204#define GET_ACTIVATION(t) do {} while(0)
205#define INC_ACTIVATION(t) do {} while(0)
206#endif /* CONFIG_SMP */
207
208#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
210#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
211
212#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
214
215#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
216
217/*
218 * cmp0 must be the value of pmc0
219 */
220#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
221
222#define PFMFS_MAGIC 0xa0b4d889
223
224/*
225 * debugging
226 */
227#define PFM_DEBUGGING 1
228#ifdef PFM_DEBUGGING
229#define DPRINT(a) \
230 do { \
d4ed8084 231 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
1da177e4
LT
232 } while (0)
233
234#define DPRINT_ovfl(a) \
235 do { \
d4ed8084 236 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
1da177e4
LT
237 } while (0)
238#endif
239
240/*
241 * 64-bit software counter structure
242 *
243 * the next_reset_type is applied to the next call to pfm_reset_regs()
244 */
245typedef struct {
246 unsigned long val; /* virtual 64bit counter value */
247 unsigned long lval; /* last reset value */
248 unsigned long long_reset; /* reset value on sampling overflow */
249 unsigned long short_reset; /* reset value on overflow */
250 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
251 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
252 unsigned long seed; /* seed for random-number generator */
253 unsigned long mask; /* mask for random-number generator */
254 unsigned int flags; /* notify/do not notify */
255 unsigned long eventid; /* overflow event identifier */
256} pfm_counter_t;
257
258/*
259 * context flags
260 */
261typedef struct {
262 unsigned int block:1; /* when 1, task will blocked on user notifications */
263 unsigned int system:1; /* do system wide monitoring */
264 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
265 unsigned int is_sampling:1; /* true if using a custom format */
266 unsigned int excl_idle:1; /* exclude idle task in system wide session */
267 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
268 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
269 unsigned int no_msg:1; /* no message sent on overflow */
270 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
271 unsigned int reserved:22;
272} pfm_context_flags_t;
273
274#define PFM_TRAP_REASON_NONE 0x0 /* default value */
275#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
276#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
277
278
279/*
280 * perfmon context: encapsulates all the state of a monitoring session
281 */
282
283typedef struct pfm_context {
284 spinlock_t ctx_lock; /* context protection */
285
286 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
287 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
288
289 struct task_struct *ctx_task; /* task to which context is attached */
290
291 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
292
60f1c444 293 struct completion ctx_restart_done; /* use for blocking notification mode */
1da177e4
LT
294
295 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
296 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
297 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
298
299 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
300 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
301 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
302
35589a8f 303 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
1da177e4
LT
304
305 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
306 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
307 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
308 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
309
35589a8f
KA
310 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
311
312 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
313 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
1da177e4 314
e088a4ad 315 unsigned long ctx_saved_psr_up; /* only contains psr.up value */
1da177e4
LT
316
317 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
318 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
319 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
320
321 int ctx_fd; /* file descriptor used my this context */
322 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
323
324 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
325 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
326 unsigned long ctx_smpl_size; /* size of sampling buffer */
327 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
328
329 wait_queue_head_t ctx_msgq_wait;
330 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
331 int ctx_msgq_head;
332 int ctx_msgq_tail;
333 struct fasync_struct *ctx_async_queue;
334
335 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
336} pfm_context_t;
337
338/*
339 * magic number used to verify that structure is really
340 * a perfmon context
341 */
342#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
343
344#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
345
346#ifdef CONFIG_SMP
347#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
348#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
349#else
350#define SET_LAST_CPU(ctx, v) do {} while(0)
351#define GET_LAST_CPU(ctx) do {} while(0)
352#endif
353
354
355#define ctx_fl_block ctx_flags.block
356#define ctx_fl_system ctx_flags.system
357#define ctx_fl_using_dbreg ctx_flags.using_dbreg
358#define ctx_fl_is_sampling ctx_flags.is_sampling
359#define ctx_fl_excl_idle ctx_flags.excl_idle
360#define ctx_fl_going_zombie ctx_flags.going_zombie
361#define ctx_fl_trap_reason ctx_flags.trap_reason
362#define ctx_fl_no_msg ctx_flags.no_msg
363#define ctx_fl_can_restart ctx_flags.can_restart
364
365#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
366#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
367
368/*
369 * global information about all sessions
370 * mostly used to synchronize between system wide and per-process
371 */
372typedef struct {
373 spinlock_t pfs_lock; /* lock the structure */
374
375 unsigned int pfs_task_sessions; /* number of per task sessions */
376 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
377 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
378 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
379 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
380} pfm_session_t;
381
382/*
383 * information about a PMC or PMD.
384 * dep_pmd[]: a bitmask of dependent PMD registers
385 * dep_pmc[]: a bitmask of dependent PMC registers
386 */
387typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
388typedef struct {
389 unsigned int type;
390 int pm_pos;
391 unsigned long default_value; /* power-on default value */
392 unsigned long reserved_mask; /* bitmask of reserved bits */
393 pfm_reg_check_t read_check;
394 pfm_reg_check_t write_check;
395 unsigned long dep_pmd[4];
396 unsigned long dep_pmc[4];
397} pfm_reg_desc_t;
398
399/* assume cnum is a valid monitor */
400#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
401
402/*
403 * This structure is initialized at boot time and contains
404 * a description of the PMU main characteristics.
405 *
406 * If the probe function is defined, detection is based
407 * on its return value:
408 * - 0 means recognized PMU
409 * - anything else means not supported
410 * When the probe function is not defined, then the pmu_family field
411 * is used and it must match the host CPU family such that:
412 * - cpu->family & config->pmu_family != 0
413 */
414typedef struct {
415 unsigned long ovfl_val; /* overflow value for counters */
416
417 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
418 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
419
420 unsigned int num_pmcs; /* number of PMCS: computed at init time */
421 unsigned int num_pmds; /* number of PMDS: computed at init time */
422 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
423 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
424
425 char *pmu_name; /* PMU family name */
426 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
427 unsigned int flags; /* pmu specific flags */
428 unsigned int num_ibrs; /* number of IBRS: computed at init time */
429 unsigned int num_dbrs; /* number of DBRS: computed at init time */
430 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
431 int (*probe)(void); /* customized probe routine */
432 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
433} pmu_config_t;
434/*
435 * PMU specific flags
436 */
437#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
438
439/*
440 * debug register related type definitions
441 */
442typedef struct {
443 unsigned long ibr_mask:56;
444 unsigned long ibr_plm:4;
445 unsigned long ibr_ig:3;
446 unsigned long ibr_x:1;
447} ibr_mask_reg_t;
448
449typedef struct {
450 unsigned long dbr_mask:56;
451 unsigned long dbr_plm:4;
452 unsigned long dbr_ig:2;
453 unsigned long dbr_w:1;
454 unsigned long dbr_r:1;
455} dbr_mask_reg_t;
456
457typedef union {
458 unsigned long val;
459 ibr_mask_reg_t ibr;
460 dbr_mask_reg_t dbr;
461} dbreg_t;
462
463
464/*
465 * perfmon command descriptions
466 */
467typedef struct {
468 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
469 char *cmd_name;
470 int cmd_flags;
471 unsigned int cmd_narg;
472 size_t cmd_argsize;
473 int (*cmd_getsize)(void *arg, size_t *sz);
474} pfm_cmd_desc_t;
475
476#define PFM_CMD_FD 0x01 /* command requires a file descriptor */
477#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
478#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
479#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
480
481
482#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
483#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
487
488#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
489
1da177e4
LT
490typedef struct {
491 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
492 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
493 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
497 unsigned long pfm_smpl_handler_calls;
498 unsigned long pfm_smpl_handler_cycles;
499 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
500} pfm_stats_t;
501
502/*
503 * perfmon internal variables
504 */
505static pfm_stats_t pfm_stats[NR_CPUS];
506static pfm_session_t pfm_sessions; /* global sessions information */
507
a9f6a0dd 508static DEFINE_SPINLOCK(pfm_alt_install_check);
a1ecf7f6
TL
509static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
510
1da177e4
LT
511static struct proc_dir_entry *perfmon_dir;
512static pfm_uuid_t pfm_null_uuid = {0,};
513
514static spinlock_t pfm_buffer_fmt_lock;
515static LIST_HEAD(pfm_buffer_fmt_list);
516
517static pmu_config_t *pmu_conf;
518
519/* sysctl() controls */
4944930a
SE
520pfm_sysctl_t pfm_sysctl;
521EXPORT_SYMBOL(pfm_sysctl);
1da177e4
LT
522
523static ctl_table pfm_ctl_table[]={
4e009901 524 {
4e009901
EB
525 .procname = "debug",
526 .data = &pfm_sysctl.debug,
527 .maxlen = sizeof(int),
528 .mode = 0666,
6d456111 529 .proc_handler = proc_dointvec,
4e009901
EB
530 },
531 {
4e009901
EB
532 .procname = "debug_ovfl",
533 .data = &pfm_sysctl.debug_ovfl,
534 .maxlen = sizeof(int),
535 .mode = 0666,
6d456111 536 .proc_handler = proc_dointvec,
4e009901
EB
537 },
538 {
4e009901
EB
539 .procname = "fastctxsw",
540 .data = &pfm_sysctl.fastctxsw,
541 .maxlen = sizeof(int),
542 .mode = 0600,
6d456111 543 .proc_handler = proc_dointvec,
4e009901
EB
544 },
545 {
4e009901
EB
546 .procname = "expert_mode",
547 .data = &pfm_sysctl.expert_mode,
548 .maxlen = sizeof(int),
549 .mode = 0600,
6d456111 550 .proc_handler = proc_dointvec,
4e009901
EB
551 },
552 {}
1da177e4
LT
553};
554static ctl_table pfm_sysctl_dir[] = {
4e009901 555 {
4e009901 556 .procname = "perfmon",
e3ad42be 557 .mode = 0555,
4e009901
EB
558 .child = pfm_ctl_table,
559 },
560 {}
1da177e4
LT
561};
562static ctl_table pfm_sysctl_root[] = {
4e009901 563 {
4e009901 564 .procname = "kernel",
e3ad42be 565 .mode = 0555,
4e009901
EB
566 .child = pfm_sysctl_dir,
567 },
568 {}
1da177e4
LT
569};
570static struct ctl_table_header *pfm_sysctl_header;
571
572static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
1da177e4
LT
573
574#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
575#define pfm_get_cpu_data(a,b) per_cpu(a, b)
576
577static inline void
578pfm_put_task(struct task_struct *task)
579{
580 if (task != current) put_task_struct(task);
581}
582
1da177e4
LT
583static inline void
584pfm_reserve_page(unsigned long a)
585{
586 SetPageReserved(vmalloc_to_page((void *)a));
587}
588static inline void
589pfm_unreserve_page(unsigned long a)
590{
591 ClearPageReserved(vmalloc_to_page((void*)a));
592}
593
594static inline unsigned long
595pfm_protect_ctx_ctxsw(pfm_context_t *x)
596{
597 spin_lock(&(x)->ctx_lock);
598 return 0UL;
599}
600
24b8e0cc 601static inline void
1da177e4
LT
602pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
603{
604 spin_unlock(&(x)->ctx_lock);
605}
606
607static inline unsigned int
608pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
609{
610 return do_munmap(mm, addr, len);
611}
612
613static inline unsigned long
614pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
615{
616 return get_unmapped_area(file, addr, len, pgoff, flags);
617}
618
619
454e2398
DH
620static int
621pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
622 struct vfsmount *mnt)
1da177e4 623{
454e2398 624 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
1da177e4
LT
625}
626
627static struct file_system_type pfm_fs_type = {
628 .name = "pfmfs",
629 .get_sb = pfmfs_get_sb,
630 .kill_sb = kill_anon_super,
631};
632
633DEFINE_PER_CPU(unsigned long, pfm_syst_info);
634DEFINE_PER_CPU(struct task_struct *, pmu_owner);
635DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
636DEFINE_PER_CPU(unsigned long, pmu_activation_number);
fffcc150 637EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
1da177e4
LT
638
639
640/* forward declaration */
5dfe4c96 641static const struct file_operations pfm_file_ops;
1da177e4
LT
642
643/*
644 * forward declarations
645 */
646#ifndef CONFIG_SMP
647static void pfm_lazy_save_regs (struct task_struct *ta);
648#endif
649
650void dump_pmu_state(const char *);
651static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
652
653#include "perfmon_itanium.h"
654#include "perfmon_mckinley.h"
9179cb65 655#include "perfmon_montecito.h"
1da177e4
LT
656#include "perfmon_generic.h"
657
658static pmu_config_t *pmu_confs[]={
9179cb65 659 &pmu_conf_mont,
1da177e4
LT
660 &pmu_conf_mck,
661 &pmu_conf_ita,
662 &pmu_conf_gen, /* must be last */
663 NULL
664};
665
666
667static int pfm_end_notify_user(pfm_context_t *ctx);
668
669static inline void
670pfm_clear_psr_pp(void)
671{
672 ia64_rsm(IA64_PSR_PP);
673 ia64_srlz_i();
674}
675
676static inline void
677pfm_set_psr_pp(void)
678{
679 ia64_ssm(IA64_PSR_PP);
680 ia64_srlz_i();
681}
682
683static inline void
684pfm_clear_psr_up(void)
685{
686 ia64_rsm(IA64_PSR_UP);
687 ia64_srlz_i();
688}
689
690static inline void
691pfm_set_psr_up(void)
692{
693 ia64_ssm(IA64_PSR_UP);
694 ia64_srlz_i();
695}
696
697static inline unsigned long
698pfm_get_psr(void)
699{
700 unsigned long tmp;
701 tmp = ia64_getreg(_IA64_REG_PSR);
702 ia64_srlz_i();
703 return tmp;
704}
705
706static inline void
707pfm_set_psr_l(unsigned long val)
708{
709 ia64_setreg(_IA64_REG_PSR_L, val);
710 ia64_srlz_i();
711}
712
713static inline void
714pfm_freeze_pmu(void)
715{
716 ia64_set_pmc(0,1UL);
717 ia64_srlz_d();
718}
719
720static inline void
721pfm_unfreeze_pmu(void)
722{
723 ia64_set_pmc(0,0UL);
724 ia64_srlz_d();
725}
726
727static inline void
728pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
729{
730 int i;
731
732 for (i=0; i < nibrs; i++) {
733 ia64_set_ibr(i, ibrs[i]);
734 ia64_dv_serialize_instruction();
735 }
736 ia64_srlz_i();
737}
738
739static inline void
740pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
741{
742 int i;
743
744 for (i=0; i < ndbrs; i++) {
745 ia64_set_dbr(i, dbrs[i]);
746 ia64_dv_serialize_data();
747 }
748 ia64_srlz_d();
749}
750
751/*
752 * PMD[i] must be a counter. no check is made
753 */
754static inline unsigned long
755pfm_read_soft_counter(pfm_context_t *ctx, int i)
756{
757 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
758}
759
760/*
761 * PMD[i] must be a counter. no check is made
762 */
763static inline void
764pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
765{
766 unsigned long ovfl_val = pmu_conf->ovfl_val;
767
768 ctx->ctx_pmds[i].val = val & ~ovfl_val;
769 /*
770 * writing to unimplemented part is ignore, so we do not need to
771 * mask off top part
772 */
773 ia64_set_pmd(i, val & ovfl_val);
774}
775
776static pfm_msg_t *
777pfm_get_new_msg(pfm_context_t *ctx)
778{
779 int idx, next;
780
781 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
782
783 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
784 if (next == ctx->ctx_msgq_head) return NULL;
785
786 idx = ctx->ctx_msgq_tail;
787 ctx->ctx_msgq_tail = next;
788
789 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
790
791 return ctx->ctx_msgq+idx;
792}
793
794static pfm_msg_t *
795pfm_get_next_msg(pfm_context_t *ctx)
796{
797 pfm_msg_t *msg;
798
799 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
800
801 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
802
803 /*
804 * get oldest message
805 */
806 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
807
808 /*
809 * and move forward
810 */
811 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
812
813 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
814
815 return msg;
816}
817
818static void
819pfm_reset_msgq(pfm_context_t *ctx)
820{
821 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
822 DPRINT(("ctx=%p msgq reset\n", ctx));
823}
824
825static void *
826pfm_rvmalloc(unsigned long size)
827{
828 void *mem;
829 unsigned long addr;
830
831 size = PAGE_ALIGN(size);
832 mem = vmalloc(size);
833 if (mem) {
834 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
835 memset(mem, 0, size);
836 addr = (unsigned long)mem;
837 while (size > 0) {
838 pfm_reserve_page(addr);
839 addr+=PAGE_SIZE;
840 size-=PAGE_SIZE;
841 }
842 }
843 return mem;
844}
845
846static void
847pfm_rvfree(void *mem, unsigned long size)
848{
849 unsigned long addr;
850
851 if (mem) {
852 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
853 addr = (unsigned long) mem;
854 while ((long) size > 0) {
855 pfm_unreserve_page(addr);
856 addr+=PAGE_SIZE;
857 size-=PAGE_SIZE;
858 }
859 vfree(mem);
860 }
861 return;
862}
863
864static pfm_context_t *
f8e811b9 865pfm_context_alloc(int ctx_flags)
1da177e4
LT
866{
867 pfm_context_t *ctx;
868
869 /*
870 * allocate context descriptor
871 * must be able to free with interrupts disabled
872 */
52fd9108 873 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
1da177e4 874 if (ctx) {
1da177e4 875 DPRINT(("alloc ctx @%p\n", ctx));
f8e811b9
AV
876
877 /*
878 * init context protection lock
879 */
880 spin_lock_init(&ctx->ctx_lock);
881
882 /*
883 * context is unloaded
884 */
885 ctx->ctx_state = PFM_CTX_UNLOADED;
886
887 /*
888 * initialization of context's flags
889 */
890 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
891 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
892 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
893 /*
894 * will move to set properties
895 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
896 */
897
898 /*
899 * init restart semaphore to locked
900 */
901 init_completion(&ctx->ctx_restart_done);
902
903 /*
904 * activation is used in SMP only
905 */
906 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
907 SET_LAST_CPU(ctx, -1);
908
909 /*
910 * initialize notification message queue
911 */
912 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
913 init_waitqueue_head(&ctx->ctx_msgq_wait);
914 init_waitqueue_head(&ctx->ctx_zombieq);
915
1da177e4
LT
916 }
917 return ctx;
918}
919
920static void
921pfm_context_free(pfm_context_t *ctx)
922{
923 if (ctx) {
924 DPRINT(("free ctx @%p\n", ctx));
925 kfree(ctx);
926 }
927}
928
929static void
930pfm_mask_monitoring(struct task_struct *task)
931{
932 pfm_context_t *ctx = PFM_GET_CTX(task);
1da177e4
LT
933 unsigned long mask, val, ovfl_mask;
934 int i;
935
19c5870c 936 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
1da177e4
LT
937
938 ovfl_mask = pmu_conf->ovfl_val;
939 /*
940 * monitoring can only be masked as a result of a valid
941 * counter overflow. In UP, it means that the PMU still
942 * has an owner. Note that the owner can be different
943 * from the current task. However the PMU state belongs
944 * to the owner.
945 * In SMP, a valid overflow only happens when task is
946 * current. Therefore if we come here, we know that
947 * the PMU state belongs to the current task, therefore
948 * we can access the live registers.
949 *
950 * So in both cases, the live register contains the owner's
951 * state. We can ONLY touch the PMU registers and NOT the PSR.
952 *
35589a8f 953 * As a consequence to this call, the ctx->th_pmds[] array
1da177e4
LT
954 * contains stale information which must be ignored
955 * when context is reloaded AND monitoring is active (see
956 * pfm_restart).
957 */
958 mask = ctx->ctx_used_pmds[0];
959 for (i = 0; mask; i++, mask>>=1) {
960 /* skip non used pmds */
961 if ((mask & 0x1) == 0) continue;
962 val = ia64_get_pmd(i);
963
964 if (PMD_IS_COUNTING(i)) {
965 /*
966 * we rebuild the full 64 bit value of the counter
967 */
968 ctx->ctx_pmds[i].val += (val & ovfl_mask);
969 } else {
970 ctx->ctx_pmds[i].val = val;
971 }
972 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
973 i,
974 ctx->ctx_pmds[i].val,
975 val & ovfl_mask));
976 }
977 /*
978 * mask monitoring by setting the privilege level to 0
979 * we cannot use psr.pp/psr.up for this, it is controlled by
980 * the user
981 *
982 * if task is current, modify actual registers, otherwise modify
983 * thread save state, i.e., what will be restored in pfm_load_regs()
984 */
985 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
986 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
987 if ((mask & 0x1) == 0UL) continue;
35589a8f
KA
988 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
989 ctx->th_pmcs[i] &= ~0xfUL;
990 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1da177e4
LT
991 }
992 /*
993 * make all of this visible
994 */
995 ia64_srlz_d();
996}
997
998/*
999 * must always be done with task == current
1000 *
1001 * context must be in MASKED state when calling
1002 */
1003static void
1004pfm_restore_monitoring(struct task_struct *task)
1005{
1006 pfm_context_t *ctx = PFM_GET_CTX(task);
1da177e4
LT
1007 unsigned long mask, ovfl_mask;
1008 unsigned long psr, val;
1009 int i, is_system;
1010
1011 is_system = ctx->ctx_fl_system;
1012 ovfl_mask = pmu_conf->ovfl_val;
1013
1014 if (task != current) {
19c5870c 1015 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1da177e4
LT
1016 return;
1017 }
1018 if (ctx->ctx_state != PFM_CTX_MASKED) {
1019 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
19c5870c 1020 task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1da177e4
LT
1021 return;
1022 }
1023 psr = pfm_get_psr();
1024 /*
1025 * monitoring is masked via the PMC.
1026 * As we restore their value, we do not want each counter to
1027 * restart right away. We stop monitoring using the PSR,
1028 * restore the PMC (and PMD) and then re-establish the psr
1029 * as it was. Note that there can be no pending overflow at
1030 * this point, because monitoring was MASKED.
1031 *
1032 * system-wide session are pinned and self-monitoring
1033 */
1034 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1035 /* disable dcr pp */
1036 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1037 pfm_clear_psr_pp();
1038 } else {
1039 pfm_clear_psr_up();
1040 }
1041 /*
1042 * first, we restore the PMD
1043 */
1044 mask = ctx->ctx_used_pmds[0];
1045 for (i = 0; mask; i++, mask>>=1) {
1046 /* skip non used pmds */
1047 if ((mask & 0x1) == 0) continue;
1048
1049 if (PMD_IS_COUNTING(i)) {
1050 /*
1051 * we split the 64bit value according to
1052 * counter width
1053 */
1054 val = ctx->ctx_pmds[i].val & ovfl_mask;
1055 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1056 } else {
1057 val = ctx->ctx_pmds[i].val;
1058 }
1059 ia64_set_pmd(i, val);
1060
1061 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1062 i,
1063 ctx->ctx_pmds[i].val,
1064 val));
1065 }
1066 /*
1067 * restore the PMCs
1068 */
1069 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1070 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1071 if ((mask & 0x1) == 0UL) continue;
35589a8f
KA
1072 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1073 ia64_set_pmc(i, ctx->th_pmcs[i]);
19c5870c
AD
1074 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1075 task_pid_nr(task), i, ctx->th_pmcs[i]));
1da177e4
LT
1076 }
1077 ia64_srlz_d();
1078
1079 /*
1080 * must restore DBR/IBR because could be modified while masked
1081 * XXX: need to optimize
1082 */
1083 if (ctx->ctx_fl_using_dbreg) {
1084 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1085 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1086 }
1087
1088 /*
1089 * now restore PSR
1090 */
1091 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1092 /* enable dcr pp */
1093 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1094 ia64_srlz_i();
1095 }
1096 pfm_set_psr_l(psr);
1097}
1098
1099static inline void
1100pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1101{
1102 int i;
1103
1104 ia64_srlz_d();
1105
1106 for (i=0; mask; i++, mask>>=1) {
1107 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1108 }
1109}
1110
1111/*
1112 * reload from thread state (used for ctxw only)
1113 */
1114static inline void
1115pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1116{
1117 int i;
1118 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1119
1120 for (i=0; mask; i++, mask>>=1) {
1121 if ((mask & 0x1) == 0) continue;
1122 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1123 ia64_set_pmd(i, val);
1124 }
1125 ia64_srlz_d();
1126}
1127
1128/*
1129 * propagate PMD from context to thread-state
1130 */
1131static inline void
1132pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1133{
1da177e4
LT
1134 unsigned long ovfl_val = pmu_conf->ovfl_val;
1135 unsigned long mask = ctx->ctx_all_pmds[0];
1136 unsigned long val;
1137 int i;
1138
1139 DPRINT(("mask=0x%lx\n", mask));
1140
1141 for (i=0; mask; i++, mask>>=1) {
1142
1143 val = ctx->ctx_pmds[i].val;
1144
1145 /*
1146 * We break up the 64 bit value into 2 pieces
1147 * the lower bits go to the machine state in the
1148 * thread (will be reloaded on ctxsw in).
1149 * The upper part stays in the soft-counter.
1150 */
1151 if (PMD_IS_COUNTING(i)) {
1152 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1153 val &= ovfl_val;
1154 }
35589a8f 1155 ctx->th_pmds[i] = val;
1da177e4
LT
1156
1157 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1158 i,
35589a8f 1159 ctx->th_pmds[i],
1da177e4
LT
1160 ctx->ctx_pmds[i].val));
1161 }
1162}
1163
1164/*
1165 * propagate PMC from context to thread-state
1166 */
1167static inline void
1168pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1169{
1da177e4
LT
1170 unsigned long mask = ctx->ctx_all_pmcs[0];
1171 int i;
1172
1173 DPRINT(("mask=0x%lx\n", mask));
1174
1175 for (i=0; mask; i++, mask>>=1) {
1176 /* masking 0 with ovfl_val yields 0 */
35589a8f
KA
1177 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1178 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1da177e4
LT
1179 }
1180}
1181
1182
1183
1184static inline void
1185pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1186{
1187 int i;
1188
1189 for (i=0; mask; i++, mask>>=1) {
1190 if ((mask & 0x1) == 0) continue;
1191 ia64_set_pmc(i, pmcs[i]);
1192 }
1193 ia64_srlz_d();
1194}
1195
1196static inline int
1197pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1198{
1199 return memcmp(a, b, sizeof(pfm_uuid_t));
1200}
1201
1202static inline int
1203pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1204{
1205 int ret = 0;
1206 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1207 return ret;
1208}
1209
1210static inline int
1211pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1212{
1213 int ret = 0;
1214 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1215 return ret;
1216}
1217
1218
1219static inline int
1220pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1221 int cpu, void *arg)
1222{
1223 int ret = 0;
1224 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1225 return ret;
1226}
1227
1228static inline int
1229pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1230 int cpu, void *arg)
1231{
1232 int ret = 0;
1233 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1234 return ret;
1235}
1236
1237static inline int
1238pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1239{
1240 int ret = 0;
1241 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1242 return ret;
1243}
1244
1245static inline int
1246pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1247{
1248 int ret = 0;
1249 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1250 return ret;
1251}
1252
1253static pfm_buffer_fmt_t *
1254__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1255{
1256 struct list_head * pos;
1257 pfm_buffer_fmt_t * entry;
1258
1259 list_for_each(pos, &pfm_buffer_fmt_list) {
1260 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1261 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1262 return entry;
1263 }
1264 return NULL;
1265}
1266
1267/*
1268 * find a buffer format based on its uuid
1269 */
1270static pfm_buffer_fmt_t *
1271pfm_find_buffer_fmt(pfm_uuid_t uuid)
1272{
1273 pfm_buffer_fmt_t * fmt;
1274 spin_lock(&pfm_buffer_fmt_lock);
1275 fmt = __pfm_find_buffer_fmt(uuid);
1276 spin_unlock(&pfm_buffer_fmt_lock);
1277 return fmt;
1278}
1279
1280int
1281pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1282{
1283 int ret = 0;
1284
1285 /* some sanity checks */
1286 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1287
1288 /* we need at least a handler */
1289 if (fmt->fmt_handler == NULL) return -EINVAL;
1290
1291 /*
1292 * XXX: need check validity of fmt_arg_size
1293 */
1294
1295 spin_lock(&pfm_buffer_fmt_lock);
1296
1297 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1298 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1299 ret = -EBUSY;
1300 goto out;
1301 }
1302 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1303 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1304
1305out:
1306 spin_unlock(&pfm_buffer_fmt_lock);
1307 return ret;
1308}
1309EXPORT_SYMBOL(pfm_register_buffer_fmt);
1310
1311int
1312pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1313{
1314 pfm_buffer_fmt_t *fmt;
1315 int ret = 0;
1316
1317 spin_lock(&pfm_buffer_fmt_lock);
1318
1319 fmt = __pfm_find_buffer_fmt(uuid);
1320 if (!fmt) {
1321 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1322 ret = -EINVAL;
1323 goto out;
1324 }
1325 list_del_init(&fmt->fmt_list);
1326 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1327
1328out:
1329 spin_unlock(&pfm_buffer_fmt_lock);
1330 return ret;
1331
1332}
1333EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1334
8df5a500
SE
1335extern void update_pal_halt_status(int);
1336
1da177e4
LT
1337static int
1338pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1339{
1340 unsigned long flags;
1341 /*
72fdbdce 1342 * validity checks on cpu_mask have been done upstream
1da177e4
LT
1343 */
1344 LOCK_PFS(flags);
1345
1346 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1347 pfm_sessions.pfs_sys_sessions,
1348 pfm_sessions.pfs_task_sessions,
1349 pfm_sessions.pfs_sys_use_dbregs,
1350 is_syswide,
1351 cpu));
1352
1353 if (is_syswide) {
1354 /*
1355 * cannot mix system wide and per-task sessions
1356 */
1357 if (pfm_sessions.pfs_task_sessions > 0UL) {
1358 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1359 pfm_sessions.pfs_task_sessions));
1360 goto abort;
1361 }
1362
1363 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1364
1365 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1366
1367 pfm_sessions.pfs_sys_session[cpu] = task;
1368
1369 pfm_sessions.pfs_sys_sessions++ ;
1370
1371 } else {
1372 if (pfm_sessions.pfs_sys_sessions) goto abort;
1373 pfm_sessions.pfs_task_sessions++;
1374 }
1375
1376 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1377 pfm_sessions.pfs_sys_sessions,
1378 pfm_sessions.pfs_task_sessions,
1379 pfm_sessions.pfs_sys_use_dbregs,
1380 is_syswide,
1381 cpu));
1382
8df5a500
SE
1383 /*
1384 * disable default_idle() to go to PAL_HALT
1385 */
1386 update_pal_halt_status(0);
1387
1da177e4
LT
1388 UNLOCK_PFS(flags);
1389
1390 return 0;
1391
1392error_conflict:
1393 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
19c5870c 1394 task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
a1ecf7f6 1395 cpu));
1da177e4
LT
1396abort:
1397 UNLOCK_PFS(flags);
1398
1399 return -EBUSY;
1400
1401}
1402
1403static int
1404pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1405{
1406 unsigned long flags;
1407 /*
72fdbdce 1408 * validity checks on cpu_mask have been done upstream
1da177e4
LT
1409 */
1410 LOCK_PFS(flags);
1411
1412 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1413 pfm_sessions.pfs_sys_sessions,
1414 pfm_sessions.pfs_task_sessions,
1415 pfm_sessions.pfs_sys_use_dbregs,
1416 is_syswide,
1417 cpu));
1418
1419
1420 if (is_syswide) {
1421 pfm_sessions.pfs_sys_session[cpu] = NULL;
1422 /*
1423 * would not work with perfmon+more than one bit in cpu_mask
1424 */
1425 if (ctx && ctx->ctx_fl_using_dbreg) {
1426 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1427 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1428 } else {
1429 pfm_sessions.pfs_sys_use_dbregs--;
1430 }
1431 }
1432 pfm_sessions.pfs_sys_sessions--;
1433 } else {
1434 pfm_sessions.pfs_task_sessions--;
1435 }
1436 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1437 pfm_sessions.pfs_sys_sessions,
1438 pfm_sessions.pfs_task_sessions,
1439 pfm_sessions.pfs_sys_use_dbregs,
1440 is_syswide,
1441 cpu));
1442
8df5a500
SE
1443 /*
1444 * if possible, enable default_idle() to go into PAL_HALT
1445 */
1446 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1447 update_pal_halt_status(1);
1448
1da177e4
LT
1449 UNLOCK_PFS(flags);
1450
1451 return 0;
1452}
1453
1454/*
1455 * removes virtual mapping of the sampling buffer.
1456 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1457 * a PROTECT_CTX() section.
1458 */
1459static int
1460pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1461{
1462 int r;
1463
1464 /* sanity checks */
1465 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
19c5870c 1466 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1da177e4
LT
1467 return -EINVAL;
1468 }
1469
1470 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1471
1472 /*
1473 * does the actual unmapping
1474 */
1475 down_write(&task->mm->mmap_sem);
1476
1477 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1478
1479 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1480
1481 up_write(&task->mm->mmap_sem);
1482 if (r !=0) {
19c5870c 1483 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1da177e4
LT
1484 }
1485
1486 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1487
1488 return 0;
1489}
1490
1491/*
1492 * free actual physical storage used by sampling buffer
1493 */
1494#if 0
1495static int
1496pfm_free_smpl_buffer(pfm_context_t *ctx)
1497{
1498 pfm_buffer_fmt_t *fmt;
1499
1500 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1501
1502 /*
1503 * we won't use the buffer format anymore
1504 */
1505 fmt = ctx->ctx_buf_fmt;
1506
1507 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1508 ctx->ctx_smpl_hdr,
1509 ctx->ctx_smpl_size,
1510 ctx->ctx_smpl_vaddr));
1511
1512 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1513
1514 /*
1515 * free the buffer
1516 */
1517 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1518
1519 ctx->ctx_smpl_hdr = NULL;
1520 ctx->ctx_smpl_size = 0UL;
1521
1522 return 0;
1523
1524invalid_free:
19c5870c 1525 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1da177e4
LT
1526 return -EINVAL;
1527}
1528#endif
1529
1530static inline void
1531pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1532{
1533 if (fmt == NULL) return;
1534
1535 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1536
1537}
1538
1539/*
1540 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1541 * no real gain from having the whole whorehouse mounted. So we don't need
1542 * any operations on the root directory. However, we need a non-trivial
1543 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1544 */
1545static struct vfsmount *pfmfs_mnt;
1546
1547static int __init
1548init_pfm_fs(void)
1549{
1550 int err = register_filesystem(&pfm_fs_type);
1551 if (!err) {
1552 pfmfs_mnt = kern_mount(&pfm_fs_type);
1553 err = PTR_ERR(pfmfs_mnt);
1554 if (IS_ERR(pfmfs_mnt))
1555 unregister_filesystem(&pfm_fs_type);
1556 else
1557 err = 0;
1558 }
1559 return err;
1560}
1561
1da177e4
LT
1562static ssize_t
1563pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1564{
1565 pfm_context_t *ctx;
1566 pfm_msg_t *msg;
1567 ssize_t ret;
1568 unsigned long flags;
1569 DECLARE_WAITQUEUE(wait, current);
1570 if (PFM_IS_FILE(filp) == 0) {
19c5870c 1571 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1da177e4
LT
1572 return -EINVAL;
1573 }
1574
1575 ctx = (pfm_context_t *)filp->private_data;
1576 if (ctx == NULL) {
19c5870c 1577 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1da177e4
LT
1578 return -EINVAL;
1579 }
1580
1581 /*
1582 * check even when there is no message
1583 */
1584 if (size < sizeof(pfm_msg_t)) {
1585 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1586 return -EINVAL;
1587 }
1588
1589 PROTECT_CTX(ctx, flags);
1590
1591 /*
1592 * put ourselves on the wait queue
1593 */
1594 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1595
1596
1597 for(;;) {
1598 /*
1599 * check wait queue
1600 */
1601
1602 set_current_state(TASK_INTERRUPTIBLE);
1603
1604 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1605
1606 ret = 0;
1607 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1608
1609 UNPROTECT_CTX(ctx, flags);
1610
1611 /*
1612 * check non-blocking read
1613 */
1614 ret = -EAGAIN;
1615 if(filp->f_flags & O_NONBLOCK) break;
1616
1617 /*
1618 * check pending signals
1619 */
1620 if(signal_pending(current)) {
1621 ret = -EINTR;
1622 break;
1623 }
1624 /*
1625 * no message, so wait
1626 */
1627 schedule();
1628
1629 PROTECT_CTX(ctx, flags);
1630 }
19c5870c 1631 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1da177e4
LT
1632 set_current_state(TASK_RUNNING);
1633 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1634
1635 if (ret < 0) goto abort;
1636
1637 ret = -EINVAL;
1638 msg = pfm_get_next_msg(ctx);
1639 if (msg == NULL) {
19c5870c 1640 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1da177e4
LT
1641 goto abort_locked;
1642 }
1643
4944930a 1644 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1da177e4
LT
1645
1646 ret = -EFAULT;
1647 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1648
1649abort_locked:
1650 UNPROTECT_CTX(ctx, flags);
1651abort:
1652 return ret;
1653}
1654
1655static ssize_t
1656pfm_write(struct file *file, const char __user *ubuf,
1657 size_t size, loff_t *ppos)
1658{
1659 DPRINT(("pfm_write called\n"));
1660 return -EINVAL;
1661}
1662
1663static unsigned int
1664pfm_poll(struct file *filp, poll_table * wait)
1665{
1666 pfm_context_t *ctx;
1667 unsigned long flags;
1668 unsigned int mask = 0;
1669
1670 if (PFM_IS_FILE(filp) == 0) {
19c5870c 1671 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1da177e4
LT
1672 return 0;
1673 }
1674
1675 ctx = (pfm_context_t *)filp->private_data;
1676 if (ctx == NULL) {
19c5870c 1677 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1da177e4
LT
1678 return 0;
1679 }
1680
1681
1682 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1683
1684 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1685
1686 PROTECT_CTX(ctx, flags);
1687
1688 if (PFM_CTXQ_EMPTY(ctx) == 0)
1689 mask = POLLIN | POLLRDNORM;
1690
1691 UNPROTECT_CTX(ctx, flags);
1692
1693 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1694
1695 return mask;
1696}
1697
1698static int
1699pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1700{
1701 DPRINT(("pfm_ioctl called\n"));
1702 return -EINVAL;
1703}
1704
1705/*
1706 * interrupt cannot be masked when coming here
1707 */
1708static inline int
1709pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1710{
1711 int ret;
1712
1713 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1714
1715 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
19c5870c 1716 task_pid_nr(current),
1da177e4
LT
1717 fd,
1718 on,
1719 ctx->ctx_async_queue, ret));
1720
1721 return ret;
1722}
1723
1724static int
1725pfm_fasync(int fd, struct file *filp, int on)
1726{
1727 pfm_context_t *ctx;
1728 int ret;
1729
1730 if (PFM_IS_FILE(filp) == 0) {
19c5870c 1731 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1da177e4
LT
1732 return -EBADF;
1733 }
1734
1735 ctx = (pfm_context_t *)filp->private_data;
1736 if (ctx == NULL) {
19c5870c 1737 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1da177e4
LT
1738 return -EBADF;
1739 }
1740 /*
1741 * we cannot mask interrupts during this call because this may
1742 * may go to sleep if memory is not readily avalaible.
1743 *
1744 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1745 * done in caller. Serialization of this function is ensured by caller.
1746 */
1747 ret = pfm_do_fasync(fd, filp, ctx, on);
1748
1749
1750 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1751 fd,
1752 on,
1753 ctx->ctx_async_queue, ret));
1754
1755 return ret;
1756}
1757
1758#ifdef CONFIG_SMP
1759/*
1760 * this function is exclusively called from pfm_close().
1761 * The context is not protected at that time, nor are interrupts
1762 * on the remote CPU. That's necessary to avoid deadlocks.
1763 */
1764static void
1765pfm_syswide_force_stop(void *info)
1766{
1767 pfm_context_t *ctx = (pfm_context_t *)info;
6450578f 1768 struct pt_regs *regs = task_pt_regs(current);
1da177e4
LT
1769 struct task_struct *owner;
1770 unsigned long flags;
1771 int ret;
1772
1773 if (ctx->ctx_cpu != smp_processor_id()) {
1774 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1775 ctx->ctx_cpu,
1776 smp_processor_id());
1777 return;
1778 }
1779 owner = GET_PMU_OWNER();
1780 if (owner != ctx->ctx_task) {
1781 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1782 smp_processor_id(),
19c5870c 1783 task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1da177e4
LT
1784 return;
1785 }
1786 if (GET_PMU_CTX() != ctx) {
1787 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1788 smp_processor_id(),
1789 GET_PMU_CTX(), ctx);
1790 return;
1791 }
1792
19c5870c 1793 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1da177e4
LT
1794 /*
1795 * the context is already protected in pfm_close(), we simply
1796 * need to mask interrupts to avoid a PMU interrupt race on
1797 * this CPU
1798 */
1799 local_irq_save(flags);
1800
1801 ret = pfm_context_unload(ctx, NULL, 0, regs);
1802 if (ret) {
1803 DPRINT(("context_unload returned %d\n", ret));
1804 }
1805
1806 /*
1807 * unmask interrupts, PMU interrupts are now spurious here
1808 */
1809 local_irq_restore(flags);
1810}
1811
1812static void
1813pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1814{
1815 int ret;
1816
1817 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
8691e5a8 1818 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1da177e4
LT
1819 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1820}
1821#endif /* CONFIG_SMP */
1822
1823/*
1824 * called for each close(). Partially free resources.
1825 * When caller is self-monitoring, the context is unloaded.
1826 */
1827static int
75e1fcc0 1828pfm_flush(struct file *filp, fl_owner_t id)
1da177e4
LT
1829{
1830 pfm_context_t *ctx;
1831 struct task_struct *task;
1832 struct pt_regs *regs;
1833 unsigned long flags;
1834 unsigned long smpl_buf_size = 0UL;
1835 void *smpl_buf_vaddr = NULL;
1836 int state, is_system;
1837
1838 if (PFM_IS_FILE(filp) == 0) {
1839 DPRINT(("bad magic for\n"));
1840 return -EBADF;
1841 }
1842
1843 ctx = (pfm_context_t *)filp->private_data;
1844 if (ctx == NULL) {
19c5870c 1845 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1da177e4
LT
1846 return -EBADF;
1847 }
1848
1849 /*
1850 * remove our file from the async queue, if we use this mode.
1851 * This can be done without the context being protected. We come
72fdbdce 1852 * here when the context has become unreachable by other tasks.
1da177e4
LT
1853 *
1854 * We may still have active monitoring at this point and we may
1855 * end up in pfm_overflow_handler(). However, fasync_helper()
1856 * operates with interrupts disabled and it cleans up the
1857 * queue. If the PMU handler is called prior to entering
1858 * fasync_helper() then it will send a signal. If it is
1859 * invoked after, it will find an empty queue and no
1860 * signal will be sent. In both case, we are safe
1861 */
1da177e4
LT
1862 PROTECT_CTX(ctx, flags);
1863
1864 state = ctx->ctx_state;
1865 is_system = ctx->ctx_fl_system;
1866
1867 task = PFM_CTX_TASK(ctx);
6450578f 1868 regs = task_pt_regs(task);
1da177e4
LT
1869
1870 DPRINT(("ctx_state=%d is_current=%d\n",
1871 state,
1872 task == current ? 1 : 0));
1873
1874 /*
1875 * if state == UNLOADED, then task is NULL
1876 */
1877
1878 /*
1879 * we must stop and unload because we are losing access to the context.
1880 */
1881 if (task == current) {
1882#ifdef CONFIG_SMP
1883 /*
1884 * the task IS the owner but it migrated to another CPU: that's bad
1885 * but we must handle this cleanly. Unfortunately, the kernel does
1886 * not provide a mechanism to block migration (while the context is loaded).
1887 *
1888 * We need to release the resource on the ORIGINAL cpu.
1889 */
1890 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1891
1892 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1893 /*
1894 * keep context protected but unmask interrupt for IPI
1895 */
1896 local_irq_restore(flags);
1897
1898 pfm_syswide_cleanup_other_cpu(ctx);
1899
1900 /*
1901 * restore interrupt masking
1902 */
1903 local_irq_save(flags);
1904
1905 /*
1906 * context is unloaded at this point
1907 */
1908 } else
1909#endif /* CONFIG_SMP */
1910 {
1911
1912 DPRINT(("forcing unload\n"));
1913 /*
1914 * stop and unload, returning with state UNLOADED
1915 * and session unreserved.
1916 */
1917 pfm_context_unload(ctx, NULL, 0, regs);
1918
1919 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1920 }
1921 }
1922
1923 /*
1924 * remove virtual mapping, if any, for the calling task.
1925 * cannot reset ctx field until last user is calling close().
1926 *
1927 * ctx_smpl_vaddr must never be cleared because it is needed
1928 * by every task with access to the context
1929 *
1930 * When called from do_exit(), the mm context is gone already, therefore
1931 * mm is NULL, i.e., the VMA is already gone and we do not have to
1932 * do anything here
1933 */
1934 if (ctx->ctx_smpl_vaddr && current->mm) {
1935 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1936 smpl_buf_size = ctx->ctx_smpl_size;
1937 }
1938
1939 UNPROTECT_CTX(ctx, flags);
1940
1941 /*
1942 * if there was a mapping, then we systematically remove it
1943 * at this point. Cannot be done inside critical section
1944 * because some VM function reenables interrupts.
1945 *
1946 */
1947 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1948
1949 return 0;
1950}
1951/*
1952 * called either on explicit close() or from exit_files().
1953 * Only the LAST user of the file gets to this point, i.e., it is
1954 * called only ONCE.
1955 *
1956 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1957 * (fput()),i.e, last task to access the file. Nobody else can access the
1958 * file at this point.
1959 *
1960 * When called from exit_files(), the VMA has been freed because exit_mm()
1961 * is executed before exit_files().
1962 *
1963 * When called from exit_files(), the current task is not yet ZOMBIE but we
1964 * flush the PMU state to the context.
1965 */
1966static int
1967pfm_close(struct inode *inode, struct file *filp)
1968{
1969 pfm_context_t *ctx;
1970 struct task_struct *task;
1971 struct pt_regs *regs;
1972 DECLARE_WAITQUEUE(wait, current);
1973 unsigned long flags;
1974 unsigned long smpl_buf_size = 0UL;
1975 void *smpl_buf_addr = NULL;
1976 int free_possible = 1;
1977 int state, is_system;
1978
1979 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1980
1981 if (PFM_IS_FILE(filp) == 0) {
1982 DPRINT(("bad magic\n"));
1983 return -EBADF;
1984 }
1985
1986 ctx = (pfm_context_t *)filp->private_data;
1987 if (ctx == NULL) {
19c5870c 1988 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1da177e4
LT
1989 return -EBADF;
1990 }
1991
1992 PROTECT_CTX(ctx, flags);
1993
1994 state = ctx->ctx_state;
1995 is_system = ctx->ctx_fl_system;
1996
1997 task = PFM_CTX_TASK(ctx);
6450578f 1998 regs = task_pt_regs(task);
1da177e4
LT
1999
2000 DPRINT(("ctx_state=%d is_current=%d\n",
2001 state,
2002 task == current ? 1 : 0));
2003
2004 /*
2005 * if task == current, then pfm_flush() unloaded the context
2006 */
2007 if (state == PFM_CTX_UNLOADED) goto doit;
2008
2009 /*
2010 * context is loaded/masked and task != current, we need to
2011 * either force an unload or go zombie
2012 */
2013
2014 /*
2015 * The task is currently blocked or will block after an overflow.
2016 * we must force it to wakeup to get out of the
2017 * MASKED state and transition to the unloaded state by itself.
2018 *
2019 * This situation is only possible for per-task mode
2020 */
2021 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2022
2023 /*
2024 * set a "partial" zombie state to be checked
2025 * upon return from down() in pfm_handle_work().
2026 *
2027 * We cannot use the ZOMBIE state, because it is checked
2028 * by pfm_load_regs() which is called upon wakeup from down().
2029 * In such case, it would free the context and then we would
2030 * return to pfm_handle_work() which would access the
2031 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2032 * but visible to pfm_handle_work().
2033 *
2034 * For some window of time, we have a zombie context with
2035 * ctx_state = MASKED and not ZOMBIE
2036 */
2037 ctx->ctx_fl_going_zombie = 1;
2038
2039 /*
2040 * force task to wake up from MASKED state
2041 */
60f1c444 2042 complete(&ctx->ctx_restart_done);
1da177e4
LT
2043
2044 DPRINT(("waking up ctx_state=%d\n", state));
2045
2046 /*
2047 * put ourself to sleep waiting for the other
2048 * task to report completion
2049 *
2050 * the context is protected by mutex, therefore there
2051 * is no risk of being notified of completion before
2052 * begin actually on the waitq.
2053 */
2054 set_current_state(TASK_INTERRUPTIBLE);
2055 add_wait_queue(&ctx->ctx_zombieq, &wait);
2056
2057 UNPROTECT_CTX(ctx, flags);
2058
2059 /*
2060 * XXX: check for signals :
2061 * - ok for explicit close
2062 * - not ok when coming from exit_files()
2063 */
2064 schedule();
2065
2066
2067 PROTECT_CTX(ctx, flags);
2068
2069
2070 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2071 set_current_state(TASK_RUNNING);
2072
2073 /*
2074 * context is unloaded at this point
2075 */
2076 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2077 }
2078 else if (task != current) {
2079#ifdef CONFIG_SMP
2080 /*
2081 * switch context to zombie state
2082 */
2083 ctx->ctx_state = PFM_CTX_ZOMBIE;
2084
19c5870c 2085 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
1da177e4
LT
2086 /*
2087 * cannot free the context on the spot. deferred until
2088 * the task notices the ZOMBIE state
2089 */
2090 free_possible = 0;
2091#else
2092 pfm_context_unload(ctx, NULL, 0, regs);
2093#endif
2094 }
2095
2096doit:
2097 /* reload state, may have changed during opening of critical section */
2098 state = ctx->ctx_state;
2099
2100 /*
2101 * the context is still attached to a task (possibly current)
2102 * we cannot destroy it right now
2103 */
2104
2105 /*
2106 * we must free the sampling buffer right here because
2107 * we cannot rely on it being cleaned up later by the
2108 * monitored task. It is not possible to free vmalloc'ed
2109 * memory in pfm_load_regs(). Instead, we remove the buffer
2110 * now. should there be subsequent PMU overflow originally
2111 * meant for sampling, the will be converted to spurious
2112 * and that's fine because the monitoring tools is gone anyway.
2113 */
2114 if (ctx->ctx_smpl_hdr) {
2115 smpl_buf_addr = ctx->ctx_smpl_hdr;
2116 smpl_buf_size = ctx->ctx_smpl_size;
2117 /* no more sampling */
2118 ctx->ctx_smpl_hdr = NULL;
2119 ctx->ctx_fl_is_sampling = 0;
2120 }
2121
2122 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2123 state,
2124 free_possible,
2125 smpl_buf_addr,
2126 smpl_buf_size));
2127
2128 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2129
2130 /*
2131 * UNLOADED that the session has already been unreserved.
2132 */
2133 if (state == PFM_CTX_ZOMBIE) {
2134 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2135 }
2136
2137 /*
2138 * disconnect file descriptor from context must be done
2139 * before we unlock.
2140 */
2141 filp->private_data = NULL;
2142
2143 /*
72fdbdce 2144 * if we free on the spot, the context is now completely unreachable
1da177e4
LT
2145 * from the callers side. The monitored task side is also cut, so we
2146 * can freely cut.
2147 *
2148 * If we have a deferred free, only the caller side is disconnected.
2149 */
2150 UNPROTECT_CTX(ctx, flags);
2151
2152 /*
2153 * All memory free operations (especially for vmalloc'ed memory)
2154 * MUST be done with interrupts ENABLED.
2155 */
2156 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2157
2158 /*
2159 * return the memory used by the context
2160 */
2161 if (free_possible) pfm_context_free(ctx);
2162
2163 return 0;
2164}
2165
2166static int
2167pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2168{
2169 DPRINT(("pfm_no_open called\n"));
2170 return -ENXIO;
2171}
2172
2173
2174
5dfe4c96 2175static const struct file_operations pfm_file_ops = {
1da177e4
LT
2176 .llseek = no_llseek,
2177 .read = pfm_read,
2178 .write = pfm_write,
2179 .poll = pfm_poll,
2180 .ioctl = pfm_ioctl,
2181 .open = pfm_no_open, /* special open code to disallow open via /proc */
2182 .fasync = pfm_fasync,
2183 .release = pfm_close,
2184 .flush = pfm_flush
2185};
2186
2187static int
2188pfmfs_delete_dentry(struct dentry *dentry)
2189{
2190 return 1;
2191}
2192
3ba13d17 2193static const struct dentry_operations pfmfs_dentry_operations = {
1da177e4
LT
2194 .d_delete = pfmfs_delete_dentry,
2195};
2196
2197
f8e811b9
AV
2198static struct file *
2199pfm_alloc_file(pfm_context_t *ctx)
1da177e4 2200{
f8e811b9
AV
2201 struct file *file;
2202 struct inode *inode;
2c48b9c4 2203 struct path path;
1da177e4
LT
2204 char name[32];
2205 struct qstr this;
2206
1da177e4
LT
2207 /*
2208 * allocate a new inode
2209 */
2210 inode = new_inode(pfmfs_mnt->mnt_sb);
f8e811b9
AV
2211 if (!inode)
2212 return ERR_PTR(-ENOMEM);
1da177e4
LT
2213
2214 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2215
2216 inode->i_mode = S_IFCHR|S_IRUGO;
ef81ee98
DH
2217 inode->i_uid = current_fsuid();
2218 inode->i_gid = current_fsgid();
1da177e4
LT
2219
2220 sprintf(name, "[%lu]", inode->i_ino);
2221 this.name = name;
2222 this.len = strlen(name);
2223 this.hash = inode->i_ino;
2224
1da177e4
LT
2225 /*
2226 * allocate a new dcache entry
2227 */
2c48b9c4
AV
2228 path.dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2229 if (!path.dentry) {
f8e811b9
AV
2230 iput(inode);
2231 return ERR_PTR(-ENOMEM);
2232 }
2c48b9c4 2233 path.mnt = mntget(pfmfs_mnt);
1da177e4 2234
2c48b9c4
AV
2235 path.dentry->d_op = &pfmfs_dentry_operations;
2236 d_add(path.dentry, inode);
1da177e4 2237
2c48b9c4 2238 file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
f8e811b9 2239 if (!file) {
2c48b9c4 2240 path_put(&path);
f8e811b9
AV
2241 return ERR_PTR(-ENFILE);
2242 }
1da177e4 2243
1da177e4 2244 file->f_flags = O_RDONLY;
f8e811b9 2245 file->private_data = ctx;
1da177e4 2246
f8e811b9 2247 return file;
1da177e4
LT
2248}
2249
2250static int
2251pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2252{
2253 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2254
2255 while (size > 0) {
2256 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2257
2258
2259 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2260 return -ENOMEM;
2261
2262 addr += PAGE_SIZE;
2263 buf += PAGE_SIZE;
2264 size -= PAGE_SIZE;
2265 }
2266 return 0;
2267}
2268
2269/*
2270 * allocate a sampling buffer and remaps it into the user address space of the task
2271 */
2272static int
41d5e5d7 2273pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
1da177e4
LT
2274{
2275 struct mm_struct *mm = task->mm;
2276 struct vm_area_struct *vma = NULL;
2277 unsigned long size;
2278 void *smpl_buf;
2279
2280
2281 /*
2282 * the fixed header + requested size and align to page boundary
2283 */
2284 size = PAGE_ALIGN(rsize);
2285
2286 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2287
2288 /*
2289 * check requested size to avoid Denial-of-service attacks
2290 * XXX: may have to refine this test
2291 * Check against address space limit.
2292 *
2293 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2294 * return -ENOMEM;
2295 */
02b763b8 2296 if (size > task_rlimit(task, RLIMIT_MEMLOCK))
1da177e4
LT
2297 return -ENOMEM;
2298
2299 /*
2300 * We do the easy to undo allocations first.
2301 *
2302 * pfm_rvmalloc(), clears the buffer, so there is no leak
2303 */
2304 smpl_buf = pfm_rvmalloc(size);
2305 if (smpl_buf == NULL) {
2306 DPRINT(("Can't allocate sampling buffer\n"));
2307 return -ENOMEM;
2308 }
2309
2310 DPRINT(("smpl_buf @%p\n", smpl_buf));
2311
2312 /* allocate vma */
c3762229 2313 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1da177e4
LT
2314 if (!vma) {
2315 DPRINT(("Cannot allocate vma\n"));
2316 goto error_kmem;
2317 }
5beb4930 2318 INIT_LIST_HEAD(&vma->anon_vma_chain);
1da177e4
LT
2319
2320 /*
2321 * partially initialize the vma for the sampling buffer
2322 */
2323 vma->vm_mm = mm;
41d5e5d7 2324 vma->vm_file = filp;
1da177e4
LT
2325 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2326 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2327
2328 /*
2329 * Now we have everything we need and we can initialize
2330 * and connect all the data structures
2331 */
2332
2333 ctx->ctx_smpl_hdr = smpl_buf;
2334 ctx->ctx_smpl_size = size; /* aligned size */
2335
2336 /*
2337 * Let's do the difficult operations next.
2338 *
2339 * now we atomically find some area in the address space and
2340 * remap the buffer in it.
2341 */
2342 down_write(&task->mm->mmap_sem);
2343
2344 /* find some free area in address space, must have mmap sem held */
2345 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2346 if (vma->vm_start == 0UL) {
2347 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2348 up_write(&task->mm->mmap_sem);
2349 goto error;
2350 }
2351 vma->vm_end = vma->vm_start + size;
2352 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2353
2354 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2355
2356 /* can only be applied to current task, need to have the mm semaphore held when called */
2357 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2358 DPRINT(("Can't remap buffer\n"));
2359 up_write(&task->mm->mmap_sem);
2360 goto error;
2361 }
2362
41d5e5d7
NP
2363 get_file(filp);
2364
1da177e4
LT
2365 /*
2366 * now insert the vma in the vm list for the process, must be
2367 * done with mmap lock held
2368 */
2369 insert_vm_struct(mm, vma);
2370
2371 mm->total_vm += size >> PAGE_SHIFT;
ab50b8ed
HD
2372 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2373 vma_pages(vma));
1da177e4
LT
2374 up_write(&task->mm->mmap_sem);
2375
2376 /*
2377 * keep track of user level virtual address
2378 */
2379 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2380 *(unsigned long *)user_vaddr = vma->vm_start;
2381
2382 return 0;
2383
2384error:
2385 kmem_cache_free(vm_area_cachep, vma);
2386error_kmem:
2387 pfm_rvfree(smpl_buf, size);
2388
2389 return -ENOMEM;
2390}
2391
2392/*
2393 * XXX: do something better here
2394 */
2395static int
2396pfm_bad_permissions(struct task_struct *task)
2397{
c69e8d9c 2398 const struct cred *tcred;
ef81ee98
DH
2399 uid_t uid = current_uid();
2400 gid_t gid = current_gid();
c69e8d9c
DH
2401 int ret;
2402
2403 rcu_read_lock();
2404 tcred = __task_cred(task);
ef81ee98 2405
1da177e4
LT
2406 /* inspired by ptrace_attach() */
2407 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
ef81ee98
DH
2408 uid,
2409 gid,
c69e8d9c
DH
2410 tcred->euid,
2411 tcred->suid,
2412 tcred->uid,
2413 tcred->egid,
2414 tcred->sgid));
2415
2416 ret = ((uid != tcred->euid)
2417 || (uid != tcred->suid)
2418 || (uid != tcred->uid)
2419 || (gid != tcred->egid)
2420 || (gid != tcred->sgid)
2421 || (gid != tcred->gid)) && !capable(CAP_SYS_PTRACE);
2422
2423 rcu_read_unlock();
2424 return ret;
1da177e4
LT
2425}
2426
2427static int
2428pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2429{
2430 int ctx_flags;
2431
2432 /* valid signal */
2433
2434 ctx_flags = pfx->ctx_flags;
2435
2436 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2437
2438 /*
2439 * cannot block in this mode
2440 */
2441 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2442 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2443 return -EINVAL;
2444 }
2445 } else {
2446 }
2447 /* probably more to add here */
2448
2449 return 0;
2450}
2451
2452static int
41d5e5d7 2453pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
1da177e4
LT
2454 unsigned int cpu, pfarg_context_t *arg)
2455{
2456 pfm_buffer_fmt_t *fmt = NULL;
2457 unsigned long size = 0UL;
2458 void *uaddr = NULL;
2459 void *fmt_arg = NULL;
2460 int ret = 0;
2461#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2462
2463 /* invoke and lock buffer format, if found */
2464 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2465 if (fmt == NULL) {
19c5870c 2466 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
1da177e4
LT
2467 return -EINVAL;
2468 }
2469
2470 /*
2471 * buffer argument MUST be contiguous to pfarg_context_t
2472 */
2473 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2474
2475 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2476
19c5870c 2477 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
1da177e4
LT
2478
2479 if (ret) goto error;
2480
2481 /* link buffer format and context */
2482 ctx->ctx_buf_fmt = fmt;
f8e811b9 2483 ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
1da177e4
LT
2484
2485 /*
2486 * check if buffer format wants to use perfmon buffer allocation/mapping service
2487 */
2488 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2489 if (ret) goto error;
2490
2491 if (size) {
2492 /*
2493 * buffer is always remapped into the caller's address space
2494 */
41d5e5d7 2495 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
1da177e4
LT
2496 if (ret) goto error;
2497
2498 /* keep track of user address of buffer */
2499 arg->ctx_smpl_vaddr = uaddr;
2500 }
2501 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2502
2503error:
2504 return ret;
2505}
2506
2507static void
2508pfm_reset_pmu_state(pfm_context_t *ctx)
2509{
2510 int i;
2511
2512 /*
2513 * install reset values for PMC.
2514 */
2515 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2516 if (PMC_IS_IMPL(i) == 0) continue;
2517 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2518 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2519 }
2520 /*
2521 * PMD registers are set to 0UL when the context in memset()
2522 */
2523
2524 /*
2525 * On context switched restore, we must restore ALL pmc and ALL pmd even
2526 * when they are not actively used by the task. In UP, the incoming process
2527 * may otherwise pick up left over PMC, PMD state from the previous process.
2528 * As opposed to PMD, stale PMC can cause harm to the incoming
2529 * process because they may change what is being measured.
2530 * Therefore, we must systematically reinstall the entire
2531 * PMC state. In SMP, the same thing is possible on the
2532 * same CPU but also on between 2 CPUs.
2533 *
2534 * The problem with PMD is information leaking especially
2535 * to user level when psr.sp=0
2536 *
2537 * There is unfortunately no easy way to avoid this problem
2538 * on either UP or SMP. This definitively slows down the
2539 * pfm_load_regs() function.
2540 */
2541
2542 /*
2543 * bitmask of all PMCs accessible to this context
2544 *
2545 * PMC0 is treated differently.
2546 */
2547 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2548
2549 /*
72fdbdce 2550 * bitmask of all PMDs that are accessible to this context
1da177e4
LT
2551 */
2552 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2553
2554 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2555
2556 /*
2557 * useful in case of re-enable after disable
2558 */
2559 ctx->ctx_used_ibrs[0] = 0UL;
2560 ctx->ctx_used_dbrs[0] = 0UL;
2561}
2562
2563static int
2564pfm_ctx_getsize(void *arg, size_t *sz)
2565{
2566 pfarg_context_t *req = (pfarg_context_t *)arg;
2567 pfm_buffer_fmt_t *fmt;
2568
2569 *sz = 0;
2570
2571 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2572
2573 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2574 if (fmt == NULL) {
2575 DPRINT(("cannot find buffer format\n"));
2576 return -EINVAL;
2577 }
2578 /* get just enough to copy in user parameters */
2579 *sz = fmt->fmt_arg_size;
2580 DPRINT(("arg_size=%lu\n", *sz));
2581
2582 return 0;
2583}
2584
2585
2586
2587/*
2588 * cannot attach if :
2589 * - kernel task
2590 * - task not owned by caller
2591 * - task incompatible with context mode
2592 */
2593static int
2594pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2595{
2596 /*
2597 * no kernel task or task not owner by caller
2598 */
2599 if (task->mm == NULL) {
19c5870c 2600 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
1da177e4
LT
2601 return -EPERM;
2602 }
2603 if (pfm_bad_permissions(task)) {
19c5870c 2604 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
1da177e4
LT
2605 return -EPERM;
2606 }
2607 /*
2608 * cannot block in self-monitoring mode
2609 */
2610 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
19c5870c 2611 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
1da177e4
LT
2612 return -EINVAL;
2613 }
2614
2615 if (task->exit_state == EXIT_ZOMBIE) {
19c5870c 2616 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
1da177e4
LT
2617 return -EBUSY;
2618 }
2619
2620 /*
2621 * always ok for self
2622 */
2623 if (task == current) return 0;
2624
21498223 2625 if (!task_is_stopped_or_traced(task)) {
19c5870c 2626 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
1da177e4
LT
2627 return -EBUSY;
2628 }
2629 /*
2630 * make sure the task is off any CPU
2631 */
85ba2d86 2632 wait_task_inactive(task, 0);
1da177e4
LT
2633
2634 /* more to come... */
2635
2636 return 0;
2637}
2638
2639static int
2640pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2641{
2642 struct task_struct *p = current;
2643 int ret;
2644
2645 /* XXX: need to add more checks here */
2646 if (pid < 2) return -EPERM;
2647
e1b0d4ba 2648 if (pid != task_pid_vnr(current)) {
1da177e4
LT
2649
2650 read_lock(&tasklist_lock);
2651
e1b0d4ba 2652 p = find_task_by_vpid(pid);
1da177e4
LT
2653
2654 /* make sure task cannot go away while we operate on it */
2655 if (p) get_task_struct(p);
2656
2657 read_unlock(&tasklist_lock);
2658
2659 if (p == NULL) return -ESRCH;
2660 }
2661
2662 ret = pfm_task_incompatible(ctx, p);
2663 if (ret == 0) {
2664 *task = p;
2665 } else if (p != current) {
2666 pfm_put_task(p);
2667 }
2668 return ret;
2669}
2670
2671
2672
2673static int
2674pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2675{
2676 pfarg_context_t *req = (pfarg_context_t *)arg;
2677 struct file *filp;
f8e811b9 2678 struct path path;
1da177e4 2679 int ctx_flags;
f8e811b9 2680 int fd;
1da177e4
LT
2681 int ret;
2682
2683 /* let's check the arguments first */
2684 ret = pfarg_is_sane(current, req);
f8e811b9
AV
2685 if (ret < 0)
2686 return ret;
1da177e4
LT
2687
2688 ctx_flags = req->ctx_flags;
2689
2690 ret = -ENOMEM;
2691
f8e811b9
AV
2692 fd = get_unused_fd();
2693 if (fd < 0)
2694 return fd;
1da177e4 2695
f8e811b9
AV
2696 ctx = pfm_context_alloc(ctx_flags);
2697 if (!ctx)
2698 goto error;
1da177e4 2699
f8e811b9
AV
2700 filp = pfm_alloc_file(ctx);
2701 if (IS_ERR(filp)) {
2702 ret = PTR_ERR(filp);
2703 goto error_file;
2704 }
1da177e4 2705
f8e811b9 2706 req->ctx_fd = ctx->ctx_fd = fd;
1da177e4
LT
2707
2708 /*
2709 * does the user want to sample?
2710 */
2711 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
41d5e5d7 2712 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
f8e811b9
AV
2713 if (ret)
2714 goto buffer_error;
1da177e4
LT
2715 }
2716
04157e4c 2717 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
1da177e4
LT
2718 ctx,
2719 ctx_flags,
2720 ctx->ctx_fl_system,
2721 ctx->ctx_fl_block,
2722 ctx->ctx_fl_excl_idle,
2723 ctx->ctx_fl_no_msg,
2724 ctx->ctx_fd));
2725
2726 /*
2727 * initialize soft PMU state
2728 */
2729 pfm_reset_pmu_state(ctx);
2730
f8e811b9
AV
2731 fd_install(fd, filp);
2732
1da177e4
LT
2733 return 0;
2734
2735buffer_error:
f8e811b9
AV
2736 path = filp->f_path;
2737 put_filp(filp);
2738 path_put(&path);
1da177e4
LT
2739
2740 if (ctx->ctx_buf_fmt) {
2741 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2742 }
2743error_file:
2744 pfm_context_free(ctx);
2745
2746error:
f8e811b9 2747 put_unused_fd(fd);
1da177e4
LT
2748 return ret;
2749}
2750
2751static inline unsigned long
2752pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2753{
2754 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2755 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2756 extern unsigned long carta_random32 (unsigned long seed);
2757
2758 if (reg->flags & PFM_REGFL_RANDOM) {
2759 new_seed = carta_random32(old_seed);
2760 val -= (old_seed & mask); /* counter values are negative numbers! */
2761 if ((mask >> 32) != 0)
2762 /* construct a full 64-bit random value: */
2763 new_seed |= carta_random32(old_seed >> 32) << 32;
2764 reg->seed = new_seed;
2765 }
2766 reg->lval = val;
2767 return val;
2768}
2769
2770static void
2771pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2772{
2773 unsigned long mask = ovfl_regs[0];
2774 unsigned long reset_others = 0UL;
2775 unsigned long val;
2776 int i;
2777
2778 /*
2779 * now restore reset value on sampling overflowed counters
2780 */
2781 mask >>= PMU_FIRST_COUNTER;
2782 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2783
2784 if ((mask & 0x1UL) == 0UL) continue;
2785
2786 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2787 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2788
2789 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2790 }
2791
2792 /*
2793 * Now take care of resetting the other registers
2794 */
2795 for(i = 0; reset_others; i++, reset_others >>= 1) {
2796
2797 if ((reset_others & 0x1) == 0) continue;
2798
2799 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2800
2801 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2802 is_long_reset ? "long" : "short", i, val));
2803 }
2804}
2805
2806static void
2807pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2808{
2809 unsigned long mask = ovfl_regs[0];
2810 unsigned long reset_others = 0UL;
2811 unsigned long val;
2812 int i;
2813
2814 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2815
2816 if (ctx->ctx_state == PFM_CTX_MASKED) {
2817 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2818 return;
2819 }
2820
2821 /*
2822 * now restore reset value on sampling overflowed counters
2823 */
2824 mask >>= PMU_FIRST_COUNTER;
2825 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2826
2827 if ((mask & 0x1UL) == 0UL) continue;
2828
2829 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2830 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2831
2832 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2833
2834 pfm_write_soft_counter(ctx, i, val);
2835 }
2836
2837 /*
2838 * Now take care of resetting the other registers
2839 */
2840 for(i = 0; reset_others; i++, reset_others >>= 1) {
2841
2842 if ((reset_others & 0x1) == 0) continue;
2843
2844 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2845
2846 if (PMD_IS_COUNTING(i)) {
2847 pfm_write_soft_counter(ctx, i, val);
2848 } else {
2849 ia64_set_pmd(i, val);
2850 }
2851 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2852 is_long_reset ? "long" : "short", i, val));
2853 }
2854 ia64_srlz_d();
2855}
2856
2857static int
2858pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2859{
1da177e4
LT
2860 struct task_struct *task;
2861 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2862 unsigned long value, pmc_pm;
2863 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2864 unsigned int cnum, reg_flags, flags, pmc_type;
2865 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2866 int is_monitor, is_counting, state;
2867 int ret = -EINVAL;
2868 pfm_reg_check_t wr_func;
2869#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2870
2871 state = ctx->ctx_state;
2872 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2873 is_system = ctx->ctx_fl_system;
2874 task = ctx->ctx_task;
2875 impl_pmds = pmu_conf->impl_pmds[0];
2876
2877 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2878
2879 if (is_loaded) {
1da177e4
LT
2880 /*
2881 * In system wide and when the context is loaded, access can only happen
2882 * when the caller is running on the CPU being monitored by the session.
2883 * It does not have to be the owner (ctx_task) of the context per se.
2884 */
2885 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2886 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2887 return -EBUSY;
2888 }
2889 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2890 }
2891 expert_mode = pfm_sysctl.expert_mode;
2892
2893 for (i = 0; i < count; i++, req++) {
2894
2895 cnum = req->reg_num;
2896 reg_flags = req->reg_flags;
2897 value = req->reg_value;
2898 smpl_pmds = req->reg_smpl_pmds[0];
2899 reset_pmds = req->reg_reset_pmds[0];
2900 flags = 0;
2901
2902
2903 if (cnum >= PMU_MAX_PMCS) {
2904 DPRINT(("pmc%u is invalid\n", cnum));
2905 goto error;
2906 }
2907
2908 pmc_type = pmu_conf->pmc_desc[cnum].type;
2909 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2910 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2911 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2912
2913 /*
2914 * we reject all non implemented PMC as well
2915 * as attempts to modify PMC[0-3] which are used
2916 * as status registers by the PMU
2917 */
2918 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2919 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2920 goto error;
2921 }
2922 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2923 /*
2924 * If the PMC is a monitor, then if the value is not the default:
2925 * - system-wide session: PMCx.pm=1 (privileged monitor)
2926 * - per-task : PMCx.pm=0 (user monitor)
2927 */
2928 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2929 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2930 cnum,
2931 pmc_pm,
2932 is_system));
2933 goto error;
2934 }
2935
2936 if (is_counting) {
2937 /*
2938 * enforce generation of overflow interrupt. Necessary on all
2939 * CPUs.
2940 */
2941 value |= 1 << PMU_PMC_OI;
2942
2943 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2944 flags |= PFM_REGFL_OVFL_NOTIFY;
2945 }
2946
2947 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2948
2949 /* verify validity of smpl_pmds */
2950 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2951 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2952 goto error;
2953 }
2954
2955 /* verify validity of reset_pmds */
2956 if ((reset_pmds & impl_pmds) != reset_pmds) {
2957 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2958 goto error;
2959 }
2960 } else {
2961 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2962 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2963 goto error;
2964 }
2965 /* eventid on non-counting monitors are ignored */
2966 }
2967
2968 /*
2969 * execute write checker, if any
2970 */
2971 if (likely(expert_mode == 0 && wr_func)) {
2972 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2973 if (ret) goto error;
2974 ret = -EINVAL;
2975 }
2976
2977 /*
2978 * no error on this register
2979 */
2980 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2981
2982 /*
2983 * Now we commit the changes to the software state
2984 */
2985
2986 /*
2987 * update overflow information
2988 */
2989 if (is_counting) {
2990 /*
2991 * full flag update each time a register is programmed
2992 */
2993 ctx->ctx_pmds[cnum].flags = flags;
2994
2995 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2996 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2997 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2998
2999 /*
3000 * Mark all PMDS to be accessed as used.
3001 *
3002 * We do not keep track of PMC because we have to
3003 * systematically restore ALL of them.
3004 *
3005 * We do not update the used_monitors mask, because
3006 * if we have not programmed them, then will be in
3007 * a quiescent state, therefore we will not need to
3008 * mask/restore then when context is MASKED.
3009 */
3010 CTX_USED_PMD(ctx, reset_pmds);
3011 CTX_USED_PMD(ctx, smpl_pmds);
3012 /*
3013 * make sure we do not try to reset on
3014 * restart because we have established new values
3015 */
3016 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3017 }
3018 /*
3019 * Needed in case the user does not initialize the equivalent
3020 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3021 * possible leak here.
3022 */
3023 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3024
3025 /*
3026 * keep track of the monitor PMC that we are using.
3027 * we save the value of the pmc in ctx_pmcs[] and if
3028 * the monitoring is not stopped for the context we also
3029 * place it in the saved state area so that it will be
3030 * picked up later by the context switch code.
3031 *
3032 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3033 *
35589a8f 3034 * The value in th_pmcs[] may be modified on overflow, i.e., when
1da177e4
LT
3035 * monitoring needs to be stopped.
3036 */
3037 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3038
3039 /*
3040 * update context state
3041 */
3042 ctx->ctx_pmcs[cnum] = value;
3043
3044 if (is_loaded) {
3045 /*
3046 * write thread state
3047 */
35589a8f 3048 if (is_system == 0) ctx->th_pmcs[cnum] = value;
1da177e4
LT
3049
3050 /*
3051 * write hardware register if we can
3052 */
3053 if (can_access_pmu) {
3054 ia64_set_pmc(cnum, value);
3055 }
3056#ifdef CONFIG_SMP
3057 else {
3058 /*
3059 * per-task SMP only here
3060 *
3061 * we are guaranteed that the task is not running on the other CPU,
3062 * we indicate that this PMD will need to be reloaded if the task
3063 * is rescheduled on the CPU it ran last on.
3064 */
3065 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3066 }
3067#endif
3068 }
3069
3070 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3071 cnum,
3072 value,
3073 is_loaded,
3074 can_access_pmu,
3075 flags,
3076 ctx->ctx_all_pmcs[0],
3077 ctx->ctx_used_pmds[0],
3078 ctx->ctx_pmds[cnum].eventid,
3079 smpl_pmds,
3080 reset_pmds,
3081 ctx->ctx_reload_pmcs[0],
3082 ctx->ctx_used_monitors[0],
3083 ctx->ctx_ovfl_regs[0]));
3084 }
3085
3086 /*
3087 * make sure the changes are visible
3088 */
3089 if (can_access_pmu) ia64_srlz_d();
3090
3091 return 0;
3092error:
3093 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3094 return ret;
3095}
3096
3097static int
3098pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3099{
1da177e4
LT
3100 struct task_struct *task;
3101 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3102 unsigned long value, hw_value, ovfl_mask;
3103 unsigned int cnum;
3104 int i, can_access_pmu = 0, state;
3105 int is_counting, is_loaded, is_system, expert_mode;
3106 int ret = -EINVAL;
3107 pfm_reg_check_t wr_func;
3108
3109
3110 state = ctx->ctx_state;
3111 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3112 is_system = ctx->ctx_fl_system;
3113 ovfl_mask = pmu_conf->ovfl_val;
3114 task = ctx->ctx_task;
3115
3116 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3117
3118 /*
3119 * on both UP and SMP, we can only write to the PMC when the task is
3120 * the owner of the local PMU.
3121 */
3122 if (likely(is_loaded)) {
1da177e4
LT
3123 /*
3124 * In system wide and when the context is loaded, access can only happen
3125 * when the caller is running on the CPU being monitored by the session.
3126 * It does not have to be the owner (ctx_task) of the context per se.
3127 */
3128 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3129 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3130 return -EBUSY;
3131 }
3132 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3133 }
3134 expert_mode = pfm_sysctl.expert_mode;
3135
3136 for (i = 0; i < count; i++, req++) {
3137
3138 cnum = req->reg_num;
3139 value = req->reg_value;
3140
3141 if (!PMD_IS_IMPL(cnum)) {
3142 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3143 goto abort_mission;
3144 }
3145 is_counting = PMD_IS_COUNTING(cnum);
3146 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3147
3148 /*
3149 * execute write checker, if any
3150 */
3151 if (unlikely(expert_mode == 0 && wr_func)) {
3152 unsigned long v = value;
3153
3154 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3155 if (ret) goto abort_mission;
3156
3157 value = v;
3158 ret = -EINVAL;
3159 }
3160
3161 /*
3162 * no error on this register
3163 */
3164 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3165
3166 /*
3167 * now commit changes to software state
3168 */
3169 hw_value = value;
3170
3171 /*
3172 * update virtualized (64bits) counter
3173 */
3174 if (is_counting) {
3175 /*
3176 * write context state
3177 */
3178 ctx->ctx_pmds[cnum].lval = value;
3179
3180 /*
3181 * when context is load we use the split value
3182 */
3183 if (is_loaded) {
3184 hw_value = value & ovfl_mask;
3185 value = value & ~ovfl_mask;
3186 }
3187 }
3188 /*
3189 * update reset values (not just for counters)
3190 */
3191 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3192 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3193
3194 /*
3195 * update randomization parameters (not just for counters)
3196 */
3197 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3198 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3199
3200 /*
3201 * update context value
3202 */
3203 ctx->ctx_pmds[cnum].val = value;
3204
3205 /*
3206 * Keep track of what we use
3207 *
3208 * We do not keep track of PMC because we have to
3209 * systematically restore ALL of them.
3210 */
3211 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3212
3213 /*
3214 * mark this PMD register used as well
3215 */
3216 CTX_USED_PMD(ctx, RDEP(cnum));
3217
3218 /*
3219 * make sure we do not try to reset on
3220 * restart because we have established new values
3221 */
3222 if (is_counting && state == PFM_CTX_MASKED) {
3223 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3224 }
3225
3226 if (is_loaded) {
3227 /*
3228 * write thread state
3229 */
35589a8f 3230 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
1da177e4
LT
3231
3232 /*
3233 * write hardware register if we can
3234 */
3235 if (can_access_pmu) {
3236 ia64_set_pmd(cnum, hw_value);
3237 } else {
3238#ifdef CONFIG_SMP
3239 /*
3240 * we are guaranteed that the task is not running on the other CPU,
3241 * we indicate that this PMD will need to be reloaded if the task
3242 * is rescheduled on the CPU it ran last on.
3243 */
3244 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3245#endif
3246 }
3247 }
3248
3249 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3250 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3251 cnum,
3252 value,
3253 is_loaded,
3254 can_access_pmu,
3255 hw_value,
3256 ctx->ctx_pmds[cnum].val,
3257 ctx->ctx_pmds[cnum].short_reset,
3258 ctx->ctx_pmds[cnum].long_reset,
3259 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3260 ctx->ctx_pmds[cnum].seed,
3261 ctx->ctx_pmds[cnum].mask,
3262 ctx->ctx_used_pmds[0],
3263 ctx->ctx_pmds[cnum].reset_pmds[0],
3264 ctx->ctx_reload_pmds[0],
3265 ctx->ctx_all_pmds[0],
3266 ctx->ctx_ovfl_regs[0]));
3267 }
3268
3269 /*
3270 * make changes visible
3271 */
3272 if (can_access_pmu) ia64_srlz_d();
3273
3274 return 0;
3275
3276abort_mission:
3277 /*
3278 * for now, we have only one possibility for error
3279 */
3280 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3281 return ret;
3282}
3283
3284/*
3285 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3286 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3287 * interrupt is delivered during the call, it will be kept pending until we leave, making
3288 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3289 * guaranteed to return consistent data to the user, it may simply be old. It is not
3290 * trivial to treat the overflow while inside the call because you may end up in
3291 * some module sampling buffer code causing deadlocks.
3292 */
3293static int
3294pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3295{
1da177e4
LT
3296 struct task_struct *task;
3297 unsigned long val = 0UL, lval, ovfl_mask, sval;
3298 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3299 unsigned int cnum, reg_flags = 0;
3300 int i, can_access_pmu = 0, state;
3301 int is_loaded, is_system, is_counting, expert_mode;
3302 int ret = -EINVAL;
3303 pfm_reg_check_t rd_func;
3304
3305 /*
3306 * access is possible when loaded only for
3307 * self-monitoring tasks or in UP mode
3308 */
3309
3310 state = ctx->ctx_state;
3311 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3312 is_system = ctx->ctx_fl_system;
3313 ovfl_mask = pmu_conf->ovfl_val;
3314 task = ctx->ctx_task;
3315
3316 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3317
3318 if (likely(is_loaded)) {
1da177e4
LT
3319 /*
3320 * In system wide and when the context is loaded, access can only happen
3321 * when the caller is running on the CPU being monitored by the session.
3322 * It does not have to be the owner (ctx_task) of the context per se.
3323 */
3324 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3325 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3326 return -EBUSY;
3327 }
3328 /*
3329 * this can be true when not self-monitoring only in UP
3330 */
3331 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3332
3333 if (can_access_pmu) ia64_srlz_d();
3334 }
3335 expert_mode = pfm_sysctl.expert_mode;
3336
3337 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3338 is_loaded,
3339 can_access_pmu,
3340 state));
3341
3342 /*
3343 * on both UP and SMP, we can only read the PMD from the hardware register when
3344 * the task is the owner of the local PMU.
3345 */
3346
3347 for (i = 0; i < count; i++, req++) {
3348
3349 cnum = req->reg_num;
3350 reg_flags = req->reg_flags;
3351
3352 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3353 /*
3354 * we can only read the register that we use. That includes
72fdbdce 3355 * the one we explicitly initialize AND the one we want included
1da177e4
LT
3356 * in the sampling buffer (smpl_regs).
3357 *
3358 * Having this restriction allows optimization in the ctxsw routine
3359 * without compromising security (leaks)
3360 */
3361 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3362
3363 sval = ctx->ctx_pmds[cnum].val;
3364 lval = ctx->ctx_pmds[cnum].lval;
3365 is_counting = PMD_IS_COUNTING(cnum);
3366
3367 /*
3368 * If the task is not the current one, then we check if the
3369 * PMU state is still in the local live register due to lazy ctxsw.
3370 * If true, then we read directly from the registers.
3371 */
3372 if (can_access_pmu){
3373 val = ia64_get_pmd(cnum);
3374 } else {
3375 /*
3376 * context has been saved
3377 * if context is zombie, then task does not exist anymore.
3378 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3379 */
35589a8f 3380 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
1da177e4
LT
3381 }
3382 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3383
3384 if (is_counting) {
3385 /*
3386 * XXX: need to check for overflow when loaded
3387 */
3388 val &= ovfl_mask;
3389 val += sval;
3390 }
3391
3392 /*
3393 * execute read checker, if any
3394 */
3395 if (unlikely(expert_mode == 0 && rd_func)) {
3396 unsigned long v = val;
3397 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3398 if (ret) goto error;
3399 val = v;
3400 ret = -EINVAL;
3401 }
3402
3403 PFM_REG_RETFLAG_SET(reg_flags, 0);
3404
3405 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3406
3407 /*
3408 * update register return value, abort all if problem during copy.
3409 * we only modify the reg_flags field. no check mode is fine because
3410 * access has been verified upfront in sys_perfmonctl().
3411 */
3412 req->reg_value = val;
3413 req->reg_flags = reg_flags;
3414 req->reg_last_reset_val = lval;
3415 }
3416
3417 return 0;
3418
3419error:
3420 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3421 return ret;
3422}
3423
3424int
3425pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3426{
3427 pfm_context_t *ctx;
3428
3429 if (req == NULL) return -EINVAL;
3430
3431 ctx = GET_PMU_CTX();
3432
3433 if (ctx == NULL) return -EINVAL;
3434
3435 /*
3436 * for now limit to current task, which is enough when calling
3437 * from overflow handler
3438 */
3439 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3440
3441 return pfm_write_pmcs(ctx, req, nreq, regs);
3442}
3443EXPORT_SYMBOL(pfm_mod_write_pmcs);
3444
3445int
3446pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3447{
3448 pfm_context_t *ctx;
3449
3450 if (req == NULL) return -EINVAL;
3451
3452 ctx = GET_PMU_CTX();
3453
3454 if (ctx == NULL) return -EINVAL;
3455
3456 /*
3457 * for now limit to current task, which is enough when calling
3458 * from overflow handler
3459 */
3460 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3461
3462 return pfm_read_pmds(ctx, req, nreq, regs);
3463}
3464EXPORT_SYMBOL(pfm_mod_read_pmds);
3465
3466/*
3467 * Only call this function when a process it trying to
3468 * write the debug registers (reading is always allowed)
3469 */
3470int
3471pfm_use_debug_registers(struct task_struct *task)
3472{
3473 pfm_context_t *ctx = task->thread.pfm_context;
3474 unsigned long flags;
3475 int ret = 0;
3476
3477 if (pmu_conf->use_rr_dbregs == 0) return 0;
3478
19c5870c 3479 DPRINT(("called for [%d]\n", task_pid_nr(task)));
1da177e4
LT
3480
3481 /*
3482 * do it only once
3483 */
3484 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3485
3486 /*
3487 * Even on SMP, we do not need to use an atomic here because
3488 * the only way in is via ptrace() and this is possible only when the
3489 * process is stopped. Even in the case where the ctxsw out is not totally
3490 * completed by the time we come here, there is no way the 'stopped' process
3491 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3492 * So this is always safe.
3493 */
3494 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3495
3496 LOCK_PFS(flags);
3497
3498 /*
3499 * We cannot allow setting breakpoints when system wide monitoring
3500 * sessions are using the debug registers.
3501 */
3502 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3503 ret = -1;
3504 else
3505 pfm_sessions.pfs_ptrace_use_dbregs++;
3506
3507 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3508 pfm_sessions.pfs_ptrace_use_dbregs,
3509 pfm_sessions.pfs_sys_use_dbregs,
19c5870c 3510 task_pid_nr(task), ret));
1da177e4
LT
3511
3512 UNLOCK_PFS(flags);
3513
3514 return ret;
3515}
3516
3517/*
3518 * This function is called for every task that exits with the
3519 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3520 * able to use the debug registers for debugging purposes via
3521 * ptrace(). Therefore we know it was not using them for
af901ca1 3522 * performance monitoring, so we only decrement the number
1da177e4
LT
3523 * of "ptraced" debug register users to keep the count up to date
3524 */
3525int
3526pfm_release_debug_registers(struct task_struct *task)
3527{
3528 unsigned long flags;
3529 int ret;
3530
3531 if (pmu_conf->use_rr_dbregs == 0) return 0;
3532
3533 LOCK_PFS(flags);
3534 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
19c5870c 3535 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
1da177e4
LT
3536 ret = -1;
3537 } else {
3538 pfm_sessions.pfs_ptrace_use_dbregs--;
3539 ret = 0;
3540 }
3541 UNLOCK_PFS(flags);
3542
3543 return ret;
3544}
3545
3546static int
3547pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3548{
3549 struct task_struct *task;
3550 pfm_buffer_fmt_t *fmt;
3551 pfm_ovfl_ctrl_t rst_ctrl;
3552 int state, is_system;
3553 int ret = 0;
3554
3555 state = ctx->ctx_state;
3556 fmt = ctx->ctx_buf_fmt;
3557 is_system = ctx->ctx_fl_system;
3558 task = PFM_CTX_TASK(ctx);
3559
3560 switch(state) {
3561 case PFM_CTX_MASKED:
3562 break;
3563 case PFM_CTX_LOADED:
3564 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3565 /* fall through */
3566 case PFM_CTX_UNLOADED:
3567 case PFM_CTX_ZOMBIE:
3568 DPRINT(("invalid state=%d\n", state));
3569 return -EBUSY;
3570 default:
3571 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3572 return -EINVAL;
3573 }
3574
3575 /*
3576 * In system wide and when the context is loaded, access can only happen
3577 * when the caller is running on the CPU being monitored by the session.
3578 * It does not have to be the owner (ctx_task) of the context per se.
3579 */
3580 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3581 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3582 return -EBUSY;
3583 }
3584
3585 /* sanity check */
3586 if (unlikely(task == NULL)) {
19c5870c 3587 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
1da177e4
LT
3588 return -EINVAL;
3589 }
3590
3591 if (task == current || is_system) {
3592
3593 fmt = ctx->ctx_buf_fmt;
3594
3595 DPRINT(("restarting self %d ovfl=0x%lx\n",
19c5870c 3596 task_pid_nr(task),
1da177e4
LT
3597 ctx->ctx_ovfl_regs[0]));
3598
3599 if (CTX_HAS_SMPL(ctx)) {
3600
3601 prefetch(ctx->ctx_smpl_hdr);
3602
3603 rst_ctrl.bits.mask_monitoring = 0;
3604 rst_ctrl.bits.reset_ovfl_pmds = 0;
3605
3606 if (state == PFM_CTX_LOADED)
3607 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3608 else
3609 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3610 } else {
3611 rst_ctrl.bits.mask_monitoring = 0;
3612 rst_ctrl.bits.reset_ovfl_pmds = 1;
3613 }
3614
3615 if (ret == 0) {
3616 if (rst_ctrl.bits.reset_ovfl_pmds)
3617 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3618
3619 if (rst_ctrl.bits.mask_monitoring == 0) {
19c5870c 3620 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
1da177e4
LT
3621
3622 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3623 } else {
19c5870c 3624 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
1da177e4
LT
3625
3626 // cannot use pfm_stop_monitoring(task, regs);
3627 }
3628 }
3629 /*
3630 * clear overflowed PMD mask to remove any stale information
3631 */
3632 ctx->ctx_ovfl_regs[0] = 0UL;
3633
3634 /*
3635 * back to LOADED state
3636 */
3637 ctx->ctx_state = PFM_CTX_LOADED;
3638
3639 /*
3640 * XXX: not really useful for self monitoring
3641 */
3642 ctx->ctx_fl_can_restart = 0;
3643
3644 return 0;
3645 }
3646
3647 /*
3648 * restart another task
3649 */
3650
3651 /*
3652 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3653 * one is seen by the task.
3654 */
3655 if (state == PFM_CTX_MASKED) {
3656 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3657 /*
3658 * will prevent subsequent restart before this one is
3659 * seen by other task
3660 */
3661 ctx->ctx_fl_can_restart = 0;
3662 }
3663
3664 /*
3665 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3666 * the task is blocked or on its way to block. That's the normal
3667 * restart path. If the monitoring is not masked, then the task
3668 * can be actively monitoring and we cannot directly intervene.
3669 * Therefore we use the trap mechanism to catch the task and
3670 * force it to reset the buffer/reset PMDs.
3671 *
3672 * if non-blocking, then we ensure that the task will go into
3673 * pfm_handle_work() before returning to user mode.
3674 *
72fdbdce 3675 * We cannot explicitly reset another task, it MUST always
1da177e4
LT
3676 * be done by the task itself. This works for system wide because
3677 * the tool that is controlling the session is logically doing
3678 * "self-monitoring".
3679 */
3680 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
04157e4c 3681 DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
60f1c444 3682 complete(&ctx->ctx_restart_done);
1da177e4 3683 } else {
19c5870c 3684 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
1da177e4
LT
3685
3686 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3687
3688 PFM_SET_WORK_PENDING(task, 1);
3689
f14488cc 3690 set_notify_resume(task);
1da177e4
LT
3691
3692 /*
3693 * XXX: send reschedule if task runs on another CPU
3694 */
3695 }
3696 return 0;
3697}
3698
3699static int
3700pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3701{
3702 unsigned int m = *(unsigned int *)arg;
3703
3704 pfm_sysctl.debug = m == 0 ? 0 : 1;
3705
1da177e4
LT
3706 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3707
3708 if (m == 0) {
3709 memset(pfm_stats, 0, sizeof(pfm_stats));
3710 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3711 }
3712 return 0;
3713}
3714
3715/*
3716 * arg can be NULL and count can be zero for this function
3717 */
3718static int
3719pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3720{
3721 struct thread_struct *thread = NULL;
3722 struct task_struct *task;
3723 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3724 unsigned long flags;
3725 dbreg_t dbreg;
3726 unsigned int rnum;
3727 int first_time;
3728 int ret = 0, state;
3729 int i, can_access_pmu = 0;
3730 int is_system, is_loaded;
3731
3732 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3733
3734 state = ctx->ctx_state;
3735 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3736 is_system = ctx->ctx_fl_system;
3737 task = ctx->ctx_task;
3738
3739 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3740
3741 /*
3742 * on both UP and SMP, we can only write to the PMC when the task is
3743 * the owner of the local PMU.
3744 */
3745 if (is_loaded) {
3746 thread = &task->thread;
3747 /*
3748 * In system wide and when the context is loaded, access can only happen
3749 * when the caller is running on the CPU being monitored by the session.
3750 * It does not have to be the owner (ctx_task) of the context per se.
3751 */
3752 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3753 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3754 return -EBUSY;
3755 }
3756 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3757 }
3758
3759 /*
3760 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3761 * ensuring that no real breakpoint can be installed via this call.
3762 *
3763 * IMPORTANT: regs can be NULL in this function
3764 */
3765
3766 first_time = ctx->ctx_fl_using_dbreg == 0;
3767
3768 /*
3769 * don't bother if we are loaded and task is being debugged
3770 */
3771 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
19c5870c 3772 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
1da177e4
LT
3773 return -EBUSY;
3774 }
3775
3776 /*
3777 * check for debug registers in system wide mode
3778 *
3779 * If though a check is done in pfm_context_load(),
3780 * we must repeat it here, in case the registers are
3781 * written after the context is loaded
3782 */
3783 if (is_loaded) {
3784 LOCK_PFS(flags);
3785
3786 if (first_time && is_system) {
3787 if (pfm_sessions.pfs_ptrace_use_dbregs)
3788 ret = -EBUSY;
3789 else
3790 pfm_sessions.pfs_sys_use_dbregs++;
3791 }
3792 UNLOCK_PFS(flags);
3793 }
3794
3795 if (ret != 0) return ret;
3796
3797 /*
3798 * mark ourself as user of the debug registers for
3799 * perfmon purposes.
3800 */
3801 ctx->ctx_fl_using_dbreg = 1;
3802
3803 /*
3804 * clear hardware registers to make sure we don't
3805 * pick up stale state.
3806 *
3807 * for a system wide session, we do not use
3808 * thread.dbr, thread.ibr because this process
3809 * never leaves the current CPU and the state
3810 * is shared by all processes running on it
3811 */
3812 if (first_time && can_access_pmu) {
19c5870c 3813 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
1da177e4
LT
3814 for (i=0; i < pmu_conf->num_ibrs; i++) {
3815 ia64_set_ibr(i, 0UL);
3816 ia64_dv_serialize_instruction();
3817 }
3818 ia64_srlz_i();
3819 for (i=0; i < pmu_conf->num_dbrs; i++) {
3820 ia64_set_dbr(i, 0UL);
3821 ia64_dv_serialize_data();
3822 }
3823 ia64_srlz_d();
3824 }
3825
3826 /*
3827 * Now install the values into the registers
3828 */
3829 for (i = 0; i < count; i++, req++) {
3830
3831 rnum = req->dbreg_num;
3832 dbreg.val = req->dbreg_value;
3833
3834 ret = -EINVAL;
3835
3836 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3837 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3838 rnum, dbreg.val, mode, i, count));
3839
3840 goto abort_mission;
3841 }
3842
3843 /*
3844 * make sure we do not install enabled breakpoint
3845 */
3846 if (rnum & 0x1) {
3847 if (mode == PFM_CODE_RR)
3848 dbreg.ibr.ibr_x = 0;
3849 else
3850 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3851 }
3852
3853 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3854
3855 /*
3856 * Debug registers, just like PMC, can only be modified
3857 * by a kernel call. Moreover, perfmon() access to those
3858 * registers are centralized in this routine. The hardware
3859 * does not modify the value of these registers, therefore,
3860 * if we save them as they are written, we can avoid having
3861 * to save them on context switch out. This is made possible
3862 * by the fact that when perfmon uses debug registers, ptrace()
3863 * won't be able to modify them concurrently.
3864 */
3865 if (mode == PFM_CODE_RR) {
3866 CTX_USED_IBR(ctx, rnum);
3867
3868 if (can_access_pmu) {
3869 ia64_set_ibr(rnum, dbreg.val);
3870 ia64_dv_serialize_instruction();
3871 }
3872
3873 ctx->ctx_ibrs[rnum] = dbreg.val;
3874
3875 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3876 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3877 } else {
3878 CTX_USED_DBR(ctx, rnum);
3879
3880 if (can_access_pmu) {
3881 ia64_set_dbr(rnum, dbreg.val);
3882 ia64_dv_serialize_data();
3883 }
3884 ctx->ctx_dbrs[rnum] = dbreg.val;
3885
3886 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3887 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3888 }
3889 }
3890
3891 return 0;
3892
3893abort_mission:
3894 /*
3895 * in case it was our first attempt, we undo the global modifications
3896 */
3897 if (first_time) {
3898 LOCK_PFS(flags);
3899 if (ctx->ctx_fl_system) {
3900 pfm_sessions.pfs_sys_use_dbregs--;
3901 }
3902 UNLOCK_PFS(flags);
3903 ctx->ctx_fl_using_dbreg = 0;
3904 }
3905 /*
3906 * install error return flag
3907 */
3908 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3909
3910 return ret;
3911}
3912
3913static int
3914pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3915{
3916 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3917}
3918
3919static int
3920pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3921{
3922 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3923}
3924
3925int
3926pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3927{
3928 pfm_context_t *ctx;
3929
3930 if (req == NULL) return -EINVAL;
3931
3932 ctx = GET_PMU_CTX();
3933
3934 if (ctx == NULL) return -EINVAL;
3935
3936 /*
3937 * for now limit to current task, which is enough when calling
3938 * from overflow handler
3939 */
3940 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3941
3942 return pfm_write_ibrs(ctx, req, nreq, regs);
3943}
3944EXPORT_SYMBOL(pfm_mod_write_ibrs);
3945
3946int
3947pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3948{
3949 pfm_context_t *ctx;
3950
3951 if (req == NULL) return -EINVAL;
3952
3953 ctx = GET_PMU_CTX();
3954
3955 if (ctx == NULL) return -EINVAL;
3956
3957 /*
3958 * for now limit to current task, which is enough when calling
3959 * from overflow handler
3960 */
3961 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3962
3963 return pfm_write_dbrs(ctx, req, nreq, regs);
3964}
3965EXPORT_SYMBOL(pfm_mod_write_dbrs);
3966
3967
3968static int
3969pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3970{
3971 pfarg_features_t *req = (pfarg_features_t *)arg;
3972
3973 req->ft_version = PFM_VERSION;
3974 return 0;
3975}
3976
3977static int
3978pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3979{
3980 struct pt_regs *tregs;
3981 struct task_struct *task = PFM_CTX_TASK(ctx);
3982 int state, is_system;
3983
3984 state = ctx->ctx_state;
3985 is_system = ctx->ctx_fl_system;
3986
3987 /*
3988 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3989 */
3990 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3991
3992 /*
3993 * In system wide and when the context is loaded, access can only happen
3994 * when the caller is running on the CPU being monitored by the session.
3995 * It does not have to be the owner (ctx_task) of the context per se.
3996 */
3997 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3998 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3999 return -EBUSY;
4000 }
4001 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
19c5870c 4002 task_pid_nr(PFM_CTX_TASK(ctx)),
1da177e4
LT
4003 state,
4004 is_system));
4005 /*
4006 * in system mode, we need to update the PMU directly
4007 * and the user level state of the caller, which may not
4008 * necessarily be the creator of the context.
4009 */
4010 if (is_system) {
4011 /*
4012 * Update local PMU first
4013 *
4014 * disable dcr pp
4015 */
4016 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4017 ia64_srlz_i();
4018
4019 /*
4020 * update local cpuinfo
4021 */
4022 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4023
4024 /*
4025 * stop monitoring, does srlz.i
4026 */
4027 pfm_clear_psr_pp();
4028
4029 /*
4030 * stop monitoring in the caller
4031 */
4032 ia64_psr(regs)->pp = 0;
4033
4034 return 0;
4035 }
4036 /*
4037 * per-task mode
4038 */
4039
4040 if (task == current) {
4041 /* stop monitoring at kernel level */
4042 pfm_clear_psr_up();
4043
4044 /*
4045 * stop monitoring at the user level
4046 */
4047 ia64_psr(regs)->up = 0;
4048 } else {
6450578f 4049 tregs = task_pt_regs(task);
1da177e4
LT
4050
4051 /*
4052 * stop monitoring at the user level
4053 */
4054 ia64_psr(tregs)->up = 0;
4055
4056 /*
4057 * monitoring disabled in kernel at next reschedule
4058 */
4059 ctx->ctx_saved_psr_up = 0;
19c5870c 4060 DPRINT(("task=[%d]\n", task_pid_nr(task)));
1da177e4
LT
4061 }
4062 return 0;
4063}
4064
4065
4066static int
4067pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4068{
4069 struct pt_regs *tregs;
4070 int state, is_system;
4071
4072 state = ctx->ctx_state;
4073 is_system = ctx->ctx_fl_system;
4074
4075 if (state != PFM_CTX_LOADED) return -EINVAL;
4076
4077 /*
4078 * In system wide and when the context is loaded, access can only happen
4079 * when the caller is running on the CPU being monitored by the session.
4080 * It does not have to be the owner (ctx_task) of the context per se.
4081 */
4082 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4083 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4084 return -EBUSY;
4085 }
4086
4087 /*
4088 * in system mode, we need to update the PMU directly
4089 * and the user level state of the caller, which may not
4090 * necessarily be the creator of the context.
4091 */
4092 if (is_system) {
4093
4094 /*
4095 * set user level psr.pp for the caller
4096 */
4097 ia64_psr(regs)->pp = 1;
4098
4099 /*
4100 * now update the local PMU and cpuinfo
4101 */
4102 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4103
4104 /*
4105 * start monitoring at kernel level
4106 */
4107 pfm_set_psr_pp();
4108
4109 /* enable dcr pp */
4110 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4111 ia64_srlz_i();
4112
4113 return 0;
4114 }
4115
4116 /*
4117 * per-process mode
4118 */
4119
4120 if (ctx->ctx_task == current) {
4121
4122 /* start monitoring at kernel level */
4123 pfm_set_psr_up();
4124
4125 /*
4126 * activate monitoring at user level
4127 */
4128 ia64_psr(regs)->up = 1;
4129
4130 } else {
6450578f 4131 tregs = task_pt_regs(ctx->ctx_task);
1da177e4
LT
4132
4133 /*
4134 * start monitoring at the kernel level the next
4135 * time the task is scheduled
4136 */
4137 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4138
4139 /*
4140 * activate monitoring at user level
4141 */
4142 ia64_psr(tregs)->up = 1;
4143 }
4144 return 0;
4145}
4146
4147static int
4148pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4149{
4150 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4151 unsigned int cnum;
4152 int i;
4153 int ret = -EINVAL;
4154
4155 for (i = 0; i < count; i++, req++) {
4156
4157 cnum = req->reg_num;
4158
4159 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4160
4161 req->reg_value = PMC_DFL_VAL(cnum);
4162
4163 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4164
4165 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4166 }
4167 return 0;
4168
4169abort_mission:
4170 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4171 return ret;
4172}
4173
4174static int
4175pfm_check_task_exist(pfm_context_t *ctx)
4176{
4177 struct task_struct *g, *t;
4178 int ret = -ESRCH;
4179
4180 read_lock(&tasklist_lock);
4181
4182 do_each_thread (g, t) {
4183 if (t->thread.pfm_context == ctx) {
4184 ret = 0;
6794c752 4185 goto out;
1da177e4
LT
4186 }
4187 } while_each_thread (g, t);
6794c752 4188out:
1da177e4
LT
4189 read_unlock(&tasklist_lock);
4190
4191 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4192
4193 return ret;
4194}
4195
4196static int
4197pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4198{
4199 struct task_struct *task;
4200 struct thread_struct *thread;
4201 struct pfm_context_t *old;
4202 unsigned long flags;
4203#ifndef CONFIG_SMP
4204 struct task_struct *owner_task = NULL;
4205#endif
4206 pfarg_load_t *req = (pfarg_load_t *)arg;
4207 unsigned long *pmcs_source, *pmds_source;
4208 int the_cpu;
4209 int ret = 0;
4210 int state, is_system, set_dbregs = 0;
4211
4212 state = ctx->ctx_state;
4213 is_system = ctx->ctx_fl_system;
4214 /*
4215 * can only load from unloaded or terminated state
4216 */
4217 if (state != PFM_CTX_UNLOADED) {
4218 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4219 req->load_pid,
4220 ctx->ctx_state));
a5a70b75 4221 return -EBUSY;
1da177e4
LT
4222 }
4223
4224 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4225
4226 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4227 DPRINT(("cannot use blocking mode on self\n"));
4228 return -EINVAL;
4229 }
4230
4231 ret = pfm_get_task(ctx, req->load_pid, &task);
4232 if (ret) {
4233 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4234 return ret;
4235 }
4236
4237 ret = -EINVAL;
4238
4239 /*
4240 * system wide is self monitoring only
4241 */
4242 if (is_system && task != current) {
4243 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4244 req->load_pid));
4245 goto error;
4246 }
4247
4248 thread = &task->thread;
4249
4250 ret = 0;
4251 /*
4252 * cannot load a context which is using range restrictions,
4253 * into a task that is being debugged.
4254 */
4255 if (ctx->ctx_fl_using_dbreg) {
4256 if (thread->flags & IA64_THREAD_DBG_VALID) {
4257 ret = -EBUSY;
4258 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4259 goto error;
4260 }
4261 LOCK_PFS(flags);
4262
4263 if (is_system) {
4264 if (pfm_sessions.pfs_ptrace_use_dbregs) {
19c5870c
AD
4265 DPRINT(("cannot load [%d] dbregs in use\n",
4266 task_pid_nr(task)));
1da177e4
LT
4267 ret = -EBUSY;
4268 } else {
4269 pfm_sessions.pfs_sys_use_dbregs++;
19c5870c 4270 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
1da177e4
LT
4271 set_dbregs = 1;
4272 }
4273 }
4274
4275 UNLOCK_PFS(flags);
4276
4277 if (ret) goto error;
4278 }
4279
4280 /*
4281 * SMP system-wide monitoring implies self-monitoring.
4282 *
4283 * The programming model expects the task to
4284 * be pinned on a CPU throughout the session.
4285 * Here we take note of the current CPU at the
4286 * time the context is loaded. No call from
4287 * another CPU will be allowed.
4288 *
4289 * The pinning via shed_setaffinity()
4290 * must be done by the calling task prior
4291 * to this call.
4292 *
4293 * systemwide: keep track of CPU this session is supposed to run on
4294 */
4295 the_cpu = ctx->ctx_cpu = smp_processor_id();
4296
4297 ret = -EBUSY;
4298 /*
4299 * now reserve the session
4300 */
4301 ret = pfm_reserve_session(current, is_system, the_cpu);
4302 if (ret) goto error;
4303
4304 /*
4305 * task is necessarily stopped at this point.
4306 *
4307 * If the previous context was zombie, then it got removed in
4308 * pfm_save_regs(). Therefore we should not see it here.
4309 * If we see a context, then this is an active context
4310 *
4311 * XXX: needs to be atomic
4312 */
4313 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4314 thread->pfm_context, ctx));
4315
6bf11e8c 4316 ret = -EBUSY;
1da177e4
LT
4317 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4318 if (old != NULL) {
4319 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4320 goto error_unres;
4321 }
4322
4323 pfm_reset_msgq(ctx);
4324
4325 ctx->ctx_state = PFM_CTX_LOADED;
4326
4327 /*
4328 * link context to task
4329 */
4330 ctx->ctx_task = task;
4331
4332 if (is_system) {
4333 /*
4334 * we load as stopped
4335 */
4336 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4337 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4338
4339 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4340 } else {
4341 thread->flags |= IA64_THREAD_PM_VALID;
4342 }
4343
4344 /*
4345 * propagate into thread-state
4346 */
4347 pfm_copy_pmds(task, ctx);
4348 pfm_copy_pmcs(task, ctx);
4349
35589a8f
KA
4350 pmcs_source = ctx->th_pmcs;
4351 pmds_source = ctx->th_pmds;
1da177e4
LT
4352
4353 /*
4354 * always the case for system-wide
4355 */
4356 if (task == current) {
4357
4358 if (is_system == 0) {
4359
4360 /* allow user level control */
4361 ia64_psr(regs)->sp = 0;
19c5870c 4362 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
1da177e4
LT
4363
4364 SET_LAST_CPU(ctx, smp_processor_id());
4365 INC_ACTIVATION();
4366 SET_ACTIVATION(ctx);
4367#ifndef CONFIG_SMP
4368 /*
4369 * push the other task out, if any
4370 */
4371 owner_task = GET_PMU_OWNER();
4372 if (owner_task) pfm_lazy_save_regs(owner_task);
4373#endif
4374 }
4375 /*
4376 * load all PMD from ctx to PMU (as opposed to thread state)
4377 * restore all PMC from ctx to PMU
4378 */
4379 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4380 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4381
4382 ctx->ctx_reload_pmcs[0] = 0UL;
4383 ctx->ctx_reload_pmds[0] = 0UL;
4384
4385 /*
4386 * guaranteed safe by earlier check against DBG_VALID
4387 */
4388 if (ctx->ctx_fl_using_dbreg) {
4389 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4390 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4391 }
4392 /*
4393 * set new ownership
4394 */
4395 SET_PMU_OWNER(task, ctx);
4396
19c5870c 4397 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
1da177e4
LT
4398 } else {
4399 /*
4400 * when not current, task MUST be stopped, so this is safe
4401 */
6450578f 4402 regs = task_pt_regs(task);
1da177e4
LT
4403
4404 /* force a full reload */
4405 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4406 SET_LAST_CPU(ctx, -1);
4407
4408 /* initial saved psr (stopped) */
4409 ctx->ctx_saved_psr_up = 0UL;
4410 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4411 }
4412
4413 ret = 0;
4414
4415error_unres:
4416 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4417error:
4418 /*
4419 * we must undo the dbregs setting (for system-wide)
4420 */
4421 if (ret && set_dbregs) {
4422 LOCK_PFS(flags);
4423 pfm_sessions.pfs_sys_use_dbregs--;
4424 UNLOCK_PFS(flags);
4425 }
4426 /*
4427 * release task, there is now a link with the context
4428 */
4429 if (is_system == 0 && task != current) {
4430 pfm_put_task(task);
4431
4432 if (ret == 0) {
4433 ret = pfm_check_task_exist(ctx);
4434 if (ret) {
4435 ctx->ctx_state = PFM_CTX_UNLOADED;
4436 ctx->ctx_task = NULL;
4437 }
4438 }
4439 }
4440 return ret;
4441}
4442
4443/*
4444 * in this function, we do not need to increase the use count
4445 * for the task via get_task_struct(), because we hold the
4446 * context lock. If the task were to disappear while having
4447 * a context attached, it would go through pfm_exit_thread()
4448 * which also grabs the context lock and would therefore be blocked
4449 * until we are here.
4450 */
4451static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4452
4453static int
4454pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4455{
4456 struct task_struct *task = PFM_CTX_TASK(ctx);
4457 struct pt_regs *tregs;
4458 int prev_state, is_system;
4459 int ret;
4460
19c5870c 4461 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
1da177e4
LT
4462
4463 prev_state = ctx->ctx_state;
4464 is_system = ctx->ctx_fl_system;
4465
4466 /*
4467 * unload only when necessary
4468 */
4469 if (prev_state == PFM_CTX_UNLOADED) {
4470 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4471 return 0;
4472 }
4473
4474 /*
4475 * clear psr and dcr bits
4476 */
4477 ret = pfm_stop(ctx, NULL, 0, regs);
4478 if (ret) return ret;
4479
4480 ctx->ctx_state = PFM_CTX_UNLOADED;
4481
4482 /*
4483 * in system mode, we need to update the PMU directly
4484 * and the user level state of the caller, which may not
4485 * necessarily be the creator of the context.
4486 */
4487 if (is_system) {
4488
4489 /*
4490 * Update cpuinfo
4491 *
4492 * local PMU is taken care of in pfm_stop()
4493 */
4494 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4495 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4496
4497 /*
4498 * save PMDs in context
4499 * release ownership
4500 */
4501 pfm_flush_pmds(current, ctx);
4502
4503 /*
4504 * at this point we are done with the PMU
4505 * so we can unreserve the resource.
4506 */
4507 if (prev_state != PFM_CTX_ZOMBIE)
4508 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4509
4510 /*
4511 * disconnect context from task
4512 */
4513 task->thread.pfm_context = NULL;
4514 /*
4515 * disconnect task from context
4516 */
4517 ctx->ctx_task = NULL;
4518
4519 /*
4520 * There is nothing more to cleanup here.
4521 */
4522 return 0;
4523 }
4524
4525 /*
4526 * per-task mode
4527 */
6450578f 4528 tregs = task == current ? regs : task_pt_regs(task);
1da177e4
LT
4529
4530 if (task == current) {
4531 /*
4532 * cancel user level control
4533 */
4534 ia64_psr(regs)->sp = 1;
4535
19c5870c 4536 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
1da177e4
LT
4537 }
4538 /*
4539 * save PMDs to context
4540 * release ownership
4541 */
4542 pfm_flush_pmds(task, ctx);
4543
4544 /*
4545 * at this point we are done with the PMU
4546 * so we can unreserve the resource.
4547 *
4548 * when state was ZOMBIE, we have already unreserved.
4549 */
4550 if (prev_state != PFM_CTX_ZOMBIE)
4551 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4552
4553 /*
4554 * reset activation counter and psr
4555 */
4556 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4557 SET_LAST_CPU(ctx, -1);
4558
4559 /*
4560 * PMU state will not be restored
4561 */
4562 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4563
4564 /*
4565 * break links between context and task
4566 */
4567 task->thread.pfm_context = NULL;
4568 ctx->ctx_task = NULL;
4569
4570 PFM_SET_WORK_PENDING(task, 0);
4571
4572 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4573 ctx->ctx_fl_can_restart = 0;
4574 ctx->ctx_fl_going_zombie = 0;
4575
19c5870c 4576 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
1da177e4
LT
4577
4578 return 0;
4579}
4580
4581
4582/*
4583 * called only from exit_thread(): task == current
4584 * we come here only if current has a context attached (loaded or masked)
4585 */
4586void
4587pfm_exit_thread(struct task_struct *task)
4588{
4589 pfm_context_t *ctx;
4590 unsigned long flags;
6450578f 4591 struct pt_regs *regs = task_pt_regs(task);
1da177e4
LT
4592 int ret, state;
4593 int free_ok = 0;
4594
4595 ctx = PFM_GET_CTX(task);
4596
4597 PROTECT_CTX(ctx, flags);
4598
19c5870c 4599 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
1da177e4
LT
4600
4601 state = ctx->ctx_state;
4602 switch(state) {
4603 case PFM_CTX_UNLOADED:
4604 /*
72fdbdce 4605 * only comes to this function if pfm_context is not NULL, i.e., cannot
1da177e4
LT
4606 * be in unloaded state
4607 */
19c5870c 4608 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
1da177e4
LT
4609 break;
4610 case PFM_CTX_LOADED:
4611 case PFM_CTX_MASKED:
4612 ret = pfm_context_unload(ctx, NULL, 0, regs);
4613 if (ret) {
19c5870c 4614 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
1da177e4
LT
4615 }
4616 DPRINT(("ctx unloaded for current state was %d\n", state));
4617
4618 pfm_end_notify_user(ctx);
4619 break;
4620 case PFM_CTX_ZOMBIE:
4621 ret = pfm_context_unload(ctx, NULL, 0, regs);
4622 if (ret) {
19c5870c 4623 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
1da177e4
LT
4624 }
4625 free_ok = 1;
4626 break;
4627 default:
19c5870c 4628 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
1da177e4
LT
4629 break;
4630 }
4631 UNPROTECT_CTX(ctx, flags);
4632
4633 { u64 psr = pfm_get_psr();
4634 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4635 BUG_ON(GET_PMU_OWNER());
4636 BUG_ON(ia64_psr(regs)->up);
4637 BUG_ON(ia64_psr(regs)->pp);
4638 }
4639
4640 /*
4641 * All memory free operations (especially for vmalloc'ed memory)
4642 * MUST be done with interrupts ENABLED.
4643 */
4644 if (free_ok) pfm_context_free(ctx);
4645}
4646
4647/*
4648 * functions MUST be listed in the increasing order of their index (see permfon.h)
4649 */
4650#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4651#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4652#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4653#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4654#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4655
4656static pfm_cmd_desc_t pfm_cmd_tab[]={
4657/* 0 */PFM_CMD_NONE,
4658/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4659/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4660/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4661/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4662/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4663/* 6 */PFM_CMD_NONE,
4664/* 7 */PFM_CMD_NONE,
4665/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4666/* 9 */PFM_CMD_NONE,
4667/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4668/* 11 */PFM_CMD_NONE,
4669/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4670/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4671/* 14 */PFM_CMD_NONE,
4672/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4673/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4674/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4675/* 18 */PFM_CMD_NONE,
4676/* 19 */PFM_CMD_NONE,
4677/* 20 */PFM_CMD_NONE,
4678/* 21 */PFM_CMD_NONE,
4679/* 22 */PFM_CMD_NONE,
4680/* 23 */PFM_CMD_NONE,
4681/* 24 */PFM_CMD_NONE,
4682/* 25 */PFM_CMD_NONE,
4683/* 26 */PFM_CMD_NONE,
4684/* 27 */PFM_CMD_NONE,
4685/* 28 */PFM_CMD_NONE,
4686/* 29 */PFM_CMD_NONE,
4687/* 30 */PFM_CMD_NONE,
4688/* 31 */PFM_CMD_NONE,
4689/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4690/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4691};
4692#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4693
4694static int
4695pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4696{
4697 struct task_struct *task;
4698 int state, old_state;
4699
4700recheck:
4701 state = ctx->ctx_state;
4702 task = ctx->ctx_task;
4703
4704 if (task == NULL) {
4705 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4706 return 0;
4707 }
4708
4709 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4710 ctx->ctx_fd,
4711 state,
19c5870c 4712 task_pid_nr(task),
1da177e4
LT
4713 task->state, PFM_CMD_STOPPED(cmd)));
4714
4715 /*
4716 * self-monitoring always ok.
4717 *
4718 * for system-wide the caller can either be the creator of the
4719 * context (to one to which the context is attached to) OR
4720 * a task running on the same CPU as the session.
4721 */
4722 if (task == current || ctx->ctx_fl_system) return 0;
4723
4724 /*
a5a70b75 4725 * we are monitoring another thread
1da177e4 4726 */
a5a70b75 4727 switch(state) {
4728 case PFM_CTX_UNLOADED:
4729 /*
4730 * if context is UNLOADED we are safe to go
4731 */
4732 return 0;
4733 case PFM_CTX_ZOMBIE:
4734 /*
4735 * no command can operate on a zombie context
4736 */
4737 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4738 return -EINVAL;
4739 case PFM_CTX_MASKED:
4740 /*
4741 * PMU state has been saved to software even though
4742 * the thread may still be running.
4743 */
4744 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
1da177e4
LT
4745 }
4746
4747 /*
4748 * context is LOADED or MASKED. Some commands may need to have
4749 * the task stopped.
4750 *
4751 * We could lift this restriction for UP but it would mean that
4752 * the user has no guarantee the task would not run between
4753 * two successive calls to perfmonctl(). That's probably OK.
4754 * If this user wants to ensure the task does not run, then
4755 * the task must be stopped.
4756 */
4757 if (PFM_CMD_STOPPED(cmd)) {
21498223 4758 if (!task_is_stopped_or_traced(task)) {
19c5870c 4759 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
1da177e4
LT
4760 return -EBUSY;
4761 }
4762 /*
4763 * task is now stopped, wait for ctxsw out
4764 *
4765 * This is an interesting point in the code.
4766 * We need to unprotect the context because
4767 * the pfm_save_regs() routines needs to grab
4768 * the same lock. There are danger in doing
4769 * this because it leaves a window open for
4770 * another task to get access to the context
4771 * and possibly change its state. The one thing
4772 * that is not possible is for the context to disappear
4773 * because we are protected by the VFS layer, i.e.,
4774 * get_fd()/put_fd().
4775 */
4776 old_state = state;
4777
4778 UNPROTECT_CTX(ctx, flags);
4779
85ba2d86 4780 wait_task_inactive(task, 0);
1da177e4
LT
4781
4782 PROTECT_CTX(ctx, flags);
4783
4784 /*
4785 * we must recheck to verify if state has changed
4786 */
4787 if (ctx->ctx_state != old_state) {
4788 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4789 goto recheck;
4790 }
4791 }
4792 return 0;
4793}
4794
4795/*
4796 * system-call entry point (must return long)
4797 */
4798asmlinkage long
4799sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4800{
4801 struct file *file = NULL;
4802 pfm_context_t *ctx = NULL;
4803 unsigned long flags = 0UL;
4804 void *args_k = NULL;
4805 long ret; /* will expand int return types */
4806 size_t base_sz, sz, xtra_sz = 0;
4807 int narg, completed_args = 0, call_made = 0, cmd_flags;
4808 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4809 int (*getsize)(void *arg, size_t *sz);
4810#define PFM_MAX_ARGSIZE 4096
4811
4812 /*
4813 * reject any call if perfmon was disabled at initialization
4814 */
4815 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4816
4817 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4818 DPRINT(("invalid cmd=%d\n", cmd));
4819 return -EINVAL;
4820 }
4821
4822 func = pfm_cmd_tab[cmd].cmd_func;
4823 narg = pfm_cmd_tab[cmd].cmd_narg;
4824 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4825 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4826 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4827
4828 if (unlikely(func == NULL)) {
4829 DPRINT(("invalid cmd=%d\n", cmd));
4830 return -EINVAL;
4831 }
4832
4833 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4834 PFM_CMD_NAME(cmd),
4835 cmd,
4836 narg,
4837 base_sz,
4838 count));
4839
4840 /*
4841 * check if number of arguments matches what the command expects
4842 */
4843 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4844 return -EINVAL;
4845
4846restart_args:
4847 sz = xtra_sz + base_sz*count;
4848 /*
4849 * limit abuse to min page size
4850 */
4851 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
19c5870c 4852 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
1da177e4
LT
4853 return -E2BIG;
4854 }
4855
4856 /*
4857 * allocate default-sized argument buffer
4858 */
4859 if (likely(count && args_k == NULL)) {
4860 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4861 if (args_k == NULL) return -ENOMEM;
4862 }
4863
4864 ret = -EFAULT;
4865
4866 /*
4867 * copy arguments
4868 *
4869 * assume sz = 0 for command without parameters
4870 */
4871 if (sz && copy_from_user(args_k, arg, sz)) {
4872 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4873 goto error_args;
4874 }
4875
4876 /*
4877 * check if command supports extra parameters
4878 */
4879 if (completed_args == 0 && getsize) {
4880 /*
4881 * get extra parameters size (based on main argument)
4882 */
4883 ret = (*getsize)(args_k, &xtra_sz);
4884 if (ret) goto error_args;
4885
4886 completed_args = 1;
4887
4888 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4889
4890 /* retry if necessary */
4891 if (likely(xtra_sz)) goto restart_args;
4892 }
4893
4894 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4895
4896 ret = -EBADF;
4897
4898 file = fget(fd);
4899 if (unlikely(file == NULL)) {
4900 DPRINT(("invalid fd %d\n", fd));
4901 goto error_args;
4902 }
4903 if (unlikely(PFM_IS_FILE(file) == 0)) {
4904 DPRINT(("fd %d not related to perfmon\n", fd));
4905 goto error_args;
4906 }
4907
4908 ctx = (pfm_context_t *)file->private_data;
4909 if (unlikely(ctx == NULL)) {
4910 DPRINT(("no context for fd %d\n", fd));
4911 goto error_args;
4912 }
4913 prefetch(&ctx->ctx_state);
4914
4915 PROTECT_CTX(ctx, flags);
4916
4917 /*
4918 * check task is stopped
4919 */
4920 ret = pfm_check_task_state(ctx, cmd, flags);
4921 if (unlikely(ret)) goto abort_locked;
4922
4923skip_fd:
6450578f 4924 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
1da177e4
LT
4925
4926 call_made = 1;
4927
4928abort_locked:
4929 if (likely(ctx)) {
4930 DPRINT(("context unlocked\n"));
4931 UNPROTECT_CTX(ctx, flags);
1da177e4
LT
4932 }
4933
4934 /* copy argument back to user, if needed */
4935 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4936
4937error_args:
b8444d00
SE
4938 if (file)
4939 fput(file);
4940
b2325fe1 4941 kfree(args_k);
1da177e4
LT
4942
4943 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4944
4945 return ret;
4946}
4947
4948static void
4949pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4950{
4951 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4952 pfm_ovfl_ctrl_t rst_ctrl;
4953 int state;
4954 int ret = 0;
4955
4956 state = ctx->ctx_state;
4957 /*
4958 * Unlock sampling buffer and reset index atomically
4959 * XXX: not really needed when blocking
4960 */
4961 if (CTX_HAS_SMPL(ctx)) {
4962
4963 rst_ctrl.bits.mask_monitoring = 0;
4964 rst_ctrl.bits.reset_ovfl_pmds = 0;
4965
4966 if (state == PFM_CTX_LOADED)
4967 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4968 else
4969 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4970 } else {
4971 rst_ctrl.bits.mask_monitoring = 0;
4972 rst_ctrl.bits.reset_ovfl_pmds = 1;
4973 }
4974
4975 if (ret == 0) {
4976 if (rst_ctrl.bits.reset_ovfl_pmds) {
4977 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4978 }
4979 if (rst_ctrl.bits.mask_monitoring == 0) {
4980 DPRINT(("resuming monitoring\n"));
4981 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4982 } else {
4983 DPRINT(("stopping monitoring\n"));
4984 //pfm_stop_monitoring(current, regs);
4985 }
4986 ctx->ctx_state = PFM_CTX_LOADED;
4987 }
4988}
4989
4990/*
4991 * context MUST BE LOCKED when calling
4992 * can only be called for current
4993 */
4994static void
4995pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4996{
4997 int ret;
4998
19c5870c 4999 DPRINT(("entering for [%d]\n", task_pid_nr(current)));
1da177e4
LT
5000
5001 ret = pfm_context_unload(ctx, NULL, 0, regs);
5002 if (ret) {
19c5870c 5003 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
1da177e4
LT
5004 }
5005
5006 /*
5007 * and wakeup controlling task, indicating we are now disconnected
5008 */
5009 wake_up_interruptible(&ctx->ctx_zombieq);
5010
5011 /*
5012 * given that context is still locked, the controlling
5013 * task will only get access when we return from
5014 * pfm_handle_work().
5015 */
5016}
5017
5018static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
0fb232fd 5019
4944930a
SE
5020 /*
5021 * pfm_handle_work() can be called with interrupts enabled
5022 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5023 * call may sleep, therefore we must re-enable interrupts
5024 * to avoid deadlocks. It is safe to do so because this function
0fb232fd 5025 * is called ONLY when returning to user level (pUStk=1), in which case
4944930a
SE
5026 * there is no risk of kernel stack overflow due to deep
5027 * interrupt nesting.
5028 */
1da177e4
LT
5029void
5030pfm_handle_work(void)
5031{
5032 pfm_context_t *ctx;
5033 struct pt_regs *regs;
4944930a 5034 unsigned long flags, dummy_flags;
1da177e4
LT
5035 unsigned long ovfl_regs;
5036 unsigned int reason;
5037 int ret;
5038
5039 ctx = PFM_GET_CTX(current);
5040 if (ctx == NULL) {
0fb232fd
HS
5041 printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5042 task_pid_nr(current));
1da177e4
LT
5043 return;
5044 }
5045
5046 PROTECT_CTX(ctx, flags);
5047
5048 PFM_SET_WORK_PENDING(current, 0);
5049
6450578f 5050 regs = task_pt_regs(current);
1da177e4
LT
5051
5052 /*
5053 * extract reason for being here and clear
5054 */
5055 reason = ctx->ctx_fl_trap_reason;
5056 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5057 ovfl_regs = ctx->ctx_ovfl_regs[0];
5058
5059 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5060
5061 /*
5062 * must be done before we check for simple-reset mode
5063 */
0fb232fd
HS
5064 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5065 goto do_zombie;
1da177e4
LT
5066
5067 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
0fb232fd
HS
5068 if (reason == PFM_TRAP_REASON_RESET)
5069 goto skip_blocking;
1da177e4 5070
4944930a
SE
5071 /*
5072 * restore interrupt mask to what it was on entry.
5073 * Could be enabled/diasbled.
5074 */
1da177e4
LT
5075 UNPROTECT_CTX(ctx, flags);
5076
4944930a
SE
5077 /*
5078 * force interrupt enable because of down_interruptible()
5079 */
1da177e4
LT
5080 local_irq_enable();
5081
5082 DPRINT(("before block sleeping\n"));
5083
5084 /*
5085 * may go through without blocking on SMP systems
5086 * if restart has been received already by the time we call down()
5087 */
60f1c444 5088 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
1da177e4
LT
5089
5090 DPRINT(("after block sleeping ret=%d\n", ret));
5091
5092 /*
4944930a
SE
5093 * lock context and mask interrupts again
5094 * We save flags into a dummy because we may have
5095 * altered interrupts mask compared to entry in this
5096 * function.
1da177e4 5097 */
4944930a 5098 PROTECT_CTX(ctx, dummy_flags);
1da177e4
LT
5099
5100 /*
5101 * we need to read the ovfl_regs only after wake-up
5102 * because we may have had pfm_write_pmds() in between
5103 * and that can changed PMD values and therefore
5104 * ovfl_regs is reset for these new PMD values.
5105 */
5106 ovfl_regs = ctx->ctx_ovfl_regs[0];
5107
5108 if (ctx->ctx_fl_going_zombie) {
5109do_zombie:
5110 DPRINT(("context is zombie, bailing out\n"));
5111 pfm_context_force_terminate(ctx, regs);
5112 goto nothing_to_do;
5113 }
5114 /*
5115 * in case of interruption of down() we don't restart anything
5116 */
0fb232fd
HS
5117 if (ret < 0)
5118 goto nothing_to_do;
1da177e4
LT
5119
5120skip_blocking:
5121 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5122 ctx->ctx_ovfl_regs[0] = 0UL;
5123
5124nothing_to_do:
4944930a
SE
5125 /*
5126 * restore flags as they were upon entry
5127 */
1da177e4
LT
5128 UNPROTECT_CTX(ctx, flags);
5129}
5130
5131static int
5132pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5133{
5134 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5135 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5136 return 0;
5137 }
5138
5139 DPRINT(("waking up somebody\n"));
5140
5141 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5142
5143 /*
5144 * safe, we are not in intr handler, nor in ctxsw when
5145 * we come here
5146 */
5147 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5148
5149 return 0;
5150}
5151
5152static int
5153pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5154{
5155 pfm_msg_t *msg = NULL;
5156
5157 if (ctx->ctx_fl_no_msg == 0) {
5158 msg = pfm_get_new_msg(ctx);
5159 if (msg == NULL) {
5160 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5161 return -1;
5162 }
5163
5164 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5165 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5166 msg->pfm_ovfl_msg.msg_active_set = 0;
5167 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5168 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5169 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5170 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5171 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5172 }
5173
5174 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5175 msg,
5176 ctx->ctx_fl_no_msg,
5177 ctx->ctx_fd,
5178 ovfl_pmds));
5179
5180 return pfm_notify_user(ctx, msg);
5181}
5182
5183static int
5184pfm_end_notify_user(pfm_context_t *ctx)
5185{
5186 pfm_msg_t *msg;
5187
5188 msg = pfm_get_new_msg(ctx);
5189 if (msg == NULL) {
5190 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5191 return -1;
5192 }
5193 /* no leak */
5194 memset(msg, 0, sizeof(*msg));
5195
5196 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5197 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5198 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5199
5200 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5201 msg,
5202 ctx->ctx_fl_no_msg,
5203 ctx->ctx_fd));
5204
5205 return pfm_notify_user(ctx, msg);
5206}
5207
5208/*
5209 * main overflow processing routine.
72fdbdce 5210 * it can be called from the interrupt path or explicitly during the context switch code
1da177e4 5211 */
e088a4ad
MW
5212static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5213 unsigned long pmc0, struct pt_regs *regs)
1da177e4
LT
5214{
5215 pfm_ovfl_arg_t *ovfl_arg;
5216 unsigned long mask;
5217 unsigned long old_val, ovfl_val, new_val;
5218 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5219 unsigned long tstamp;
5220 pfm_ovfl_ctrl_t ovfl_ctrl;
5221 unsigned int i, has_smpl;
5222 int must_notify = 0;
5223
5224 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5225
5226 /*
5227 * sanity test. Should never happen
5228 */
5229 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5230
5231 tstamp = ia64_get_itc();
5232 mask = pmc0 >> PMU_FIRST_COUNTER;
5233 ovfl_val = pmu_conf->ovfl_val;
5234 has_smpl = CTX_HAS_SMPL(ctx);
5235
5236 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5237 "used_pmds=0x%lx\n",
5238 pmc0,
19c5870c 5239 task ? task_pid_nr(task): -1,
1da177e4
LT
5240 (regs ? regs->cr_iip : 0),
5241 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5242 ctx->ctx_used_pmds[0]));
5243
5244
5245 /*
5246 * first we update the virtual counters
5247 * assume there was a prior ia64_srlz_d() issued
5248 */
5249 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5250
5251 /* skip pmd which did not overflow */
5252 if ((mask & 0x1) == 0) continue;
5253
5254 /*
5255 * Note that the pmd is not necessarily 0 at this point as qualified events
5256 * may have happened before the PMU was frozen. The residual count is not
5257 * taken into consideration here but will be with any read of the pmd via
5258 * pfm_read_pmds().
5259 */
5260 old_val = new_val = ctx->ctx_pmds[i].val;
5261 new_val += 1 + ovfl_val;
5262 ctx->ctx_pmds[i].val = new_val;
5263
5264 /*
5265 * check for overflow condition
5266 */
5267 if (likely(old_val > new_val)) {
5268 ovfl_pmds |= 1UL << i;
5269 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5270 }
5271
5272 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5273 i,
5274 new_val,
5275 old_val,
5276 ia64_get_pmd(i) & ovfl_val,
5277 ovfl_pmds,
5278 ovfl_notify));
5279 }
5280
5281 /*
5282 * there was no 64-bit overflow, nothing else to do
5283 */
5284 if (ovfl_pmds == 0UL) return;
5285
5286 /*
5287 * reset all control bits
5288 */
5289 ovfl_ctrl.val = 0;
5290 reset_pmds = 0UL;
5291
5292 /*
5293 * if a sampling format module exists, then we "cache" the overflow by
5294 * calling the module's handler() routine.
5295 */
5296 if (has_smpl) {
5297 unsigned long start_cycles, end_cycles;
5298 unsigned long pmd_mask;
5299 int j, k, ret = 0;
5300 int this_cpu = smp_processor_id();
5301
5302 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5303 ovfl_arg = &ctx->ctx_ovfl_arg;
5304
5305 prefetch(ctx->ctx_smpl_hdr);
5306
5307 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5308
5309 mask = 1UL << i;
5310
5311 if ((pmd_mask & 0x1) == 0) continue;
5312
5313 ovfl_arg->ovfl_pmd = (unsigned char )i;
5314 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5315 ovfl_arg->active_set = 0;
5316 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5317 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5318
5319 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5320 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5321 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5322
5323 /*
5324 * copy values of pmds of interest. Sampling format may copy them
5325 * into sampling buffer.
5326 */
5327 if (smpl_pmds) {
5328 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5329 if ((smpl_pmds & 0x1) == 0) continue;
5330 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5331 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5332 }
5333 }
5334
5335 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5336
5337 start_cycles = ia64_get_itc();
5338
5339 /*
5340 * call custom buffer format record (handler) routine
5341 */
5342 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5343
5344 end_cycles = ia64_get_itc();
5345
5346 /*
5347 * For those controls, we take the union because they have
5348 * an all or nothing behavior.
5349 */
5350 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5351 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5352 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5353 /*
5354 * build the bitmask of pmds to reset now
5355 */
5356 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5357
5358 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5359 }
5360 /*
5361 * when the module cannot handle the rest of the overflows, we abort right here
5362 */
5363 if (ret && pmd_mask) {
5364 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5365 pmd_mask<<PMU_FIRST_COUNTER));
5366 }
5367 /*
5368 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5369 */
5370 ovfl_pmds &= ~reset_pmds;
5371 } else {
5372 /*
5373 * when no sampling module is used, then the default
5374 * is to notify on overflow if requested by user
5375 */
5376 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5377 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5378 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5379 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5380 /*
5381 * if needed, we reset all overflowed pmds
5382 */
5383 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5384 }
5385
5386 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5387
5388 /*
5389 * reset the requested PMD registers using the short reset values
5390 */
5391 if (reset_pmds) {
5392 unsigned long bm = reset_pmds;
5393 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5394 }
5395
5396 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5397 /*
5398 * keep track of what to reset when unblocking
5399 */
5400 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5401
5402 /*
5403 * check for blocking context
5404 */
5405 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5406
5407 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5408
5409 /*
5410 * set the perfmon specific checking pending work for the task
5411 */
5412 PFM_SET_WORK_PENDING(task, 1);
5413
5414 /*
5415 * when coming from ctxsw, current still points to the
5416 * previous task, therefore we must work with task and not current.
5417 */
f14488cc 5418 set_notify_resume(task);
1da177e4
LT
5419 }
5420 /*
5421 * defer until state is changed (shorten spin window). the context is locked
5422 * anyway, so the signal receiver would come spin for nothing.
5423 */
5424 must_notify = 1;
5425 }
5426
5427 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
19c5870c 5428 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
1da177e4
LT
5429 PFM_GET_WORK_PENDING(task),
5430 ctx->ctx_fl_trap_reason,
5431 ovfl_pmds,
5432 ovfl_notify,
5433 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5434 /*
5435 * in case monitoring must be stopped, we toggle the psr bits
5436 */
5437 if (ovfl_ctrl.bits.mask_monitoring) {
5438 pfm_mask_monitoring(task);
5439 ctx->ctx_state = PFM_CTX_MASKED;
5440 ctx->ctx_fl_can_restart = 1;
5441 }
5442
5443 /*
5444 * send notification now
5445 */
5446 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5447
5448 return;
5449
5450sanity_check:
5451 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5452 smp_processor_id(),
19c5870c 5453 task ? task_pid_nr(task) : -1,
1da177e4
LT
5454 pmc0);
5455 return;
5456
5457stop_monitoring:
5458 /*
5459 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5460 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5461 * come here as zombie only if the task is the current task. In which case, we
5462 * can access the PMU hardware directly.
5463 *
5464 * Note that zombies do have PM_VALID set. So here we do the minimal.
5465 *
5466 * In case the context was zombified it could not be reclaimed at the time
5467 * the monitoring program exited. At this point, the PMU reservation has been
5468 * returned, the sampiing buffer has been freed. We must convert this call
5469 * into a spurious interrupt. However, we must also avoid infinite overflows
5470 * by stopping monitoring for this task. We can only come here for a per-task
5471 * context. All we need to do is to stop monitoring using the psr bits which
5472 * are always task private. By re-enabling secure montioring, we ensure that
5473 * the monitored task will not be able to re-activate monitoring.
5474 * The task will eventually be context switched out, at which point the context
5475 * will be reclaimed (that includes releasing ownership of the PMU).
5476 *
5477 * So there might be a window of time where the number of per-task session is zero
5478 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5479 * context. This is safe because if a per-task session comes in, it will push this one
5480 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5481 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5482 * also push our zombie context out.
5483 *
5484 * Overall pretty hairy stuff....
5485 */
19c5870c 5486 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
1da177e4
LT
5487 pfm_clear_psr_up();
5488 ia64_psr(regs)->up = 0;
5489 ia64_psr(regs)->sp = 1;
5490 return;
5491}
5492
5493static int
9010eff0 5494pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
1da177e4
LT
5495{
5496 struct task_struct *task;
5497 pfm_context_t *ctx;
5498 unsigned long flags;
5499 u64 pmc0;
5500 int this_cpu = smp_processor_id();
5501 int retval = 0;
5502
5503 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5504
5505 /*
5506 * srlz.d done before arriving here
5507 */
5508 pmc0 = ia64_get_pmc(0);
5509
5510 task = GET_PMU_OWNER();
5511 ctx = GET_PMU_CTX();
5512
5513 /*
5514 * if we have some pending bits set
5515 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5516 */
5517 if (PMC0_HAS_OVFL(pmc0) && task) {
5518 /*
5519 * we assume that pmc0.fr is always set here
5520 */
5521
5522 /* sanity check */
5523 if (!ctx) goto report_spurious1;
5524
5525 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5526 goto report_spurious2;
5527
5528 PROTECT_CTX_NOPRINT(ctx, flags);
5529
5530 pfm_overflow_handler(task, ctx, pmc0, regs);
5531
5532 UNPROTECT_CTX_NOPRINT(ctx, flags);
5533
5534 } else {
5535 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5536 retval = -1;
5537 }
5538 /*
5539 * keep it unfrozen at all times
5540 */
5541 pfm_unfreeze_pmu();
5542
5543 return retval;
5544
5545report_spurious1:
5546 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
19c5870c 5547 this_cpu, task_pid_nr(task));
1da177e4
LT
5548 pfm_unfreeze_pmu();
5549 return -1;
5550report_spurious2:
5551 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5552 this_cpu,
19c5870c 5553 task_pid_nr(task));
1da177e4
LT
5554 pfm_unfreeze_pmu();
5555 return -1;
5556}
5557
5558static irqreturn_t
3bbe486b 5559pfm_interrupt_handler(int irq, void *arg)
1da177e4
LT
5560{
5561 unsigned long start_cycles, total_cycles;
5562 unsigned long min, max;
5563 int this_cpu;
5564 int ret;
3bbe486b 5565 struct pt_regs *regs = get_irq_regs();
1da177e4
LT
5566
5567 this_cpu = get_cpu();
a1ecf7f6
TL
5568 if (likely(!pfm_alt_intr_handler)) {
5569 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5570 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
1da177e4 5571
a1ecf7f6 5572 start_cycles = ia64_get_itc();
1da177e4 5573
9010eff0 5574 ret = pfm_do_interrupt_handler(arg, regs);
1da177e4 5575
a1ecf7f6 5576 total_cycles = ia64_get_itc();
1da177e4 5577
a1ecf7f6
TL
5578 /*
5579 * don't measure spurious interrupts
5580 */
5581 if (likely(ret == 0)) {
5582 total_cycles -= start_cycles;
1da177e4 5583
a1ecf7f6
TL
5584 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5585 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
1da177e4 5586
a1ecf7f6
TL
5587 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5588 }
5589 }
5590 else {
5591 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
1da177e4 5592 }
a1ecf7f6 5593
8b0b1db0 5594 put_cpu();
1da177e4
LT
5595 return IRQ_HANDLED;
5596}
5597
5598/*
5599 * /proc/perfmon interface, for debug only
5600 */
5601
fa276f36 5602#define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
1da177e4
LT
5603
5604static void *
5605pfm_proc_start(struct seq_file *m, loff_t *pos)
5606{
5607 if (*pos == 0) {
5608 return PFM_PROC_SHOW_HEADER;
5609 }
5610
5dd3c994 5611 while (*pos <= nr_cpu_ids) {
1da177e4
LT
5612 if (cpu_online(*pos - 1)) {
5613 return (void *)*pos;
5614 }
5615 ++*pos;
5616 }
5617 return NULL;
5618}
5619
5620static void *
5621pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5622{
5623 ++*pos;
5624 return pfm_proc_start(m, pos);
5625}
5626
5627static void
5628pfm_proc_stop(struct seq_file *m, void *v)
5629{
5630}
5631
5632static void
5633pfm_proc_show_header(struct seq_file *m)
5634{
5635 struct list_head * pos;
5636 pfm_buffer_fmt_t * entry;
5637 unsigned long flags;
5638
5639 seq_printf(m,
5640 "perfmon version : %u.%u\n"
5641 "model : %s\n"
5642 "fastctxsw : %s\n"
5643 "expert mode : %s\n"
5644 "ovfl_mask : 0x%lx\n"
5645 "PMU flags : 0x%x\n",
5646 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5647 pmu_conf->pmu_name,
5648 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5649 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5650 pmu_conf->ovfl_val,
5651 pmu_conf->flags);
5652
5653 LOCK_PFS(flags);
5654
5655 seq_printf(m,
5656 "proc_sessions : %u\n"
5657 "sys_sessions : %u\n"
5658 "sys_use_dbregs : %u\n"
5659 "ptrace_use_dbregs : %u\n",
5660 pfm_sessions.pfs_task_sessions,
5661 pfm_sessions.pfs_sys_sessions,
5662 pfm_sessions.pfs_sys_use_dbregs,
5663 pfm_sessions.pfs_ptrace_use_dbregs);
5664
5665 UNLOCK_PFS(flags);
5666
5667 spin_lock(&pfm_buffer_fmt_lock);
5668
5669 list_for_each(pos, &pfm_buffer_fmt_list) {
5670 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5671 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5672 entry->fmt_uuid[0],
5673 entry->fmt_uuid[1],
5674 entry->fmt_uuid[2],
5675 entry->fmt_uuid[3],
5676 entry->fmt_uuid[4],
5677 entry->fmt_uuid[5],
5678 entry->fmt_uuid[6],
5679 entry->fmt_uuid[7],
5680 entry->fmt_uuid[8],
5681 entry->fmt_uuid[9],
5682 entry->fmt_uuid[10],
5683 entry->fmt_uuid[11],
5684 entry->fmt_uuid[12],
5685 entry->fmt_uuid[13],
5686 entry->fmt_uuid[14],
5687 entry->fmt_uuid[15],
5688 entry->fmt_name);
5689 }
5690 spin_unlock(&pfm_buffer_fmt_lock);
5691
5692}
5693
5694static int
5695pfm_proc_show(struct seq_file *m, void *v)
5696{
5697 unsigned long psr;
5698 unsigned int i;
5699 int cpu;
5700
5701 if (v == PFM_PROC_SHOW_HEADER) {
5702 pfm_proc_show_header(m);
5703 return 0;
5704 }
5705
5706 /* show info for CPU (v - 1) */
5707
5708 cpu = (long)v - 1;
5709 seq_printf(m,
5710 "CPU%-2d overflow intrs : %lu\n"
5711 "CPU%-2d overflow cycles : %lu\n"
5712 "CPU%-2d overflow min : %lu\n"
5713 "CPU%-2d overflow max : %lu\n"
5714 "CPU%-2d smpl handler calls : %lu\n"
5715 "CPU%-2d smpl handler cycles : %lu\n"
5716 "CPU%-2d spurious intrs : %lu\n"
5717 "CPU%-2d replay intrs : %lu\n"
5718 "CPU%-2d syst_wide : %d\n"
5719 "CPU%-2d dcr_pp : %d\n"
5720 "CPU%-2d exclude idle : %d\n"
5721 "CPU%-2d owner : %d\n"
5722 "CPU%-2d context : %p\n"
5723 "CPU%-2d activations : %lu\n",
5724 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5725 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5726 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5727 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5728 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5729 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5730 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5731 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5732 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5733 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5734 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5735 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5736 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5737 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5738
5739 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5740
5741 psr = pfm_get_psr();
5742
5743 ia64_srlz_d();
5744
5745 seq_printf(m,
5746 "CPU%-2d psr : 0x%lx\n"
5747 "CPU%-2d pmc0 : 0x%lx\n",
5748 cpu, psr,
5749 cpu, ia64_get_pmc(0));
5750
5751 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5752 if (PMC_IS_COUNTING(i) == 0) continue;
5753 seq_printf(m,
5754 "CPU%-2d pmc%u : 0x%lx\n"
5755 "CPU%-2d pmd%u : 0x%lx\n",
5756 cpu, i, ia64_get_pmc(i),
5757 cpu, i, ia64_get_pmd(i));
5758 }
5759 }
5760 return 0;
5761}
5762
a23fe55e 5763const struct seq_operations pfm_seq_ops = {
1da177e4
LT
5764 .start = pfm_proc_start,
5765 .next = pfm_proc_next,
5766 .stop = pfm_proc_stop,
5767 .show = pfm_proc_show
5768};
5769
5770static int
5771pfm_proc_open(struct inode *inode, struct file *file)
5772{
5773 return seq_open(file, &pfm_seq_ops);
5774}
5775
5776
5777/*
5778 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5779 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5780 * is active or inactive based on mode. We must rely on the value in
5781 * local_cpu_data->pfm_syst_info
5782 */
5783void
5784pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5785{
5786 struct pt_regs *regs;
5787 unsigned long dcr;
5788 unsigned long dcr_pp;
5789
5790 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5791
5792 /*
5793 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5794 * on every CPU, so we can rely on the pid to identify the idle task.
5795 */
5796 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
6450578f 5797 regs = task_pt_regs(task);
1da177e4
LT
5798 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5799 return;
5800 }
5801 /*
5802 * if monitoring has started
5803 */
5804 if (dcr_pp) {
5805 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5806 /*
5807 * context switching in?
5808 */
5809 if (is_ctxswin) {
5810 /* mask monitoring for the idle task */
5811 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5812 pfm_clear_psr_pp();
5813 ia64_srlz_i();
5814 return;
5815 }
5816 /*
5817 * context switching out
5818 * restore monitoring for next task
5819 *
5820 * Due to inlining this odd if-then-else construction generates
5821 * better code.
5822 */
5823 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5824 pfm_set_psr_pp();
5825 ia64_srlz_i();
5826 }
5827}
5828
5829#ifdef CONFIG_SMP
5830
5831static void
5832pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5833{
5834 struct task_struct *task = ctx->ctx_task;
5835
5836 ia64_psr(regs)->up = 0;
5837 ia64_psr(regs)->sp = 1;
5838
5839 if (GET_PMU_OWNER() == task) {
19c5870c
AD
5840 DPRINT(("cleared ownership for [%d]\n",
5841 task_pid_nr(ctx->ctx_task)));
1da177e4
LT
5842 SET_PMU_OWNER(NULL, NULL);
5843 }
5844
5845 /*
5846 * disconnect the task from the context and vice-versa
5847 */
5848 PFM_SET_WORK_PENDING(task, 0);
5849
5850 task->thread.pfm_context = NULL;
5851 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5852
19c5870c 5853 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
1da177e4
LT
5854}
5855
5856
5857/*
5858 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5859 */
5860void
5861pfm_save_regs(struct task_struct *task)
5862{
5863 pfm_context_t *ctx;
1da177e4
LT
5864 unsigned long flags;
5865 u64 psr;
5866
5867
5868 ctx = PFM_GET_CTX(task);
5869 if (ctx == NULL) return;
1da177e4
LT
5870
5871 /*
5872 * we always come here with interrupts ALREADY disabled by
5873 * the scheduler. So we simply need to protect against concurrent
5874 * access, not CPU concurrency.
5875 */
5876 flags = pfm_protect_ctx_ctxsw(ctx);
5877
5878 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
6450578f 5879 struct pt_regs *regs = task_pt_regs(task);
1da177e4
LT
5880
5881 pfm_clear_psr_up();
5882
5883 pfm_force_cleanup(ctx, regs);
5884
5885 BUG_ON(ctx->ctx_smpl_hdr);
5886
5887 pfm_unprotect_ctx_ctxsw(ctx, flags);
5888
5889 pfm_context_free(ctx);
5890 return;
5891 }
5892
5893 /*
5894 * save current PSR: needed because we modify it
5895 */
5896 ia64_srlz_d();
5897 psr = pfm_get_psr();
5898
5899 BUG_ON(psr & (IA64_PSR_I));
5900
5901 /*
5902 * stop monitoring:
5903 * This is the last instruction which may generate an overflow
5904 *
5905 * We do not need to set psr.sp because, it is irrelevant in kernel.
5906 * It will be restored from ipsr when going back to user level
5907 */
5908 pfm_clear_psr_up();
5909
5910 /*
5911 * keep a copy of psr.up (for reload)
5912 */
5913 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5914
5915 /*
5916 * release ownership of this PMU.
5917 * PM interrupts are masked, so nothing
5918 * can happen.
5919 */
5920 SET_PMU_OWNER(NULL, NULL);
5921
5922 /*
5923 * we systematically save the PMD as we have no
5924 * guarantee we will be schedule at that same
5925 * CPU again.
5926 */
35589a8f 5927 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
1da177e4
LT
5928
5929 /*
5930 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5931 * we will need it on the restore path to check
5932 * for pending overflow.
5933 */
35589a8f 5934 ctx->th_pmcs[0] = ia64_get_pmc(0);
1da177e4
LT
5935
5936 /*
5937 * unfreeze PMU if had pending overflows
5938 */
35589a8f 5939 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
1da177e4
LT
5940
5941 /*
5942 * finally, allow context access.
5943 * interrupts will still be masked after this call.
5944 */
5945 pfm_unprotect_ctx_ctxsw(ctx, flags);
5946}
5947
5948#else /* !CONFIG_SMP */
5949void
5950pfm_save_regs(struct task_struct *task)
5951{
5952 pfm_context_t *ctx;
5953 u64 psr;
5954
5955 ctx = PFM_GET_CTX(task);
5956 if (ctx == NULL) return;
5957
5958 /*
5959 * save current PSR: needed because we modify it
5960 */
5961 psr = pfm_get_psr();
5962
5963 BUG_ON(psr & (IA64_PSR_I));
5964
5965 /*
5966 * stop monitoring:
5967 * This is the last instruction which may generate an overflow
5968 *
5969 * We do not need to set psr.sp because, it is irrelevant in kernel.
5970 * It will be restored from ipsr when going back to user level
5971 */
5972 pfm_clear_psr_up();
5973
5974 /*
5975 * keep a copy of psr.up (for reload)
5976 */
5977 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5978}
5979
5980static void
5981pfm_lazy_save_regs (struct task_struct *task)
5982{
5983 pfm_context_t *ctx;
1da177e4
LT
5984 unsigned long flags;
5985
5986 { u64 psr = pfm_get_psr();
5987 BUG_ON(psr & IA64_PSR_UP);
5988 }
5989
5990 ctx = PFM_GET_CTX(task);
1da177e4
LT
5991
5992 /*
5993 * we need to mask PMU overflow here to
5994 * make sure that we maintain pmc0 until
5995 * we save it. overflow interrupts are
5996 * treated as spurious if there is no
5997 * owner.
5998 *
5999 * XXX: I don't think this is necessary
6000 */
6001 PROTECT_CTX(ctx,flags);
6002
6003 /*
6004 * release ownership of this PMU.
6005 * must be done before we save the registers.
6006 *
6007 * after this call any PMU interrupt is treated
6008 * as spurious.
6009 */
6010 SET_PMU_OWNER(NULL, NULL);
6011
6012 /*
6013 * save all the pmds we use
6014 */
35589a8f 6015 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
1da177e4
LT
6016
6017 /*
6018 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6019 * it is needed to check for pended overflow
6020 * on the restore path
6021 */
35589a8f 6022 ctx->th_pmcs[0] = ia64_get_pmc(0);
1da177e4
LT
6023
6024 /*
6025 * unfreeze PMU if had pending overflows
6026 */
35589a8f 6027 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
1da177e4
LT
6028
6029 /*
6030 * now get can unmask PMU interrupts, they will
6031 * be treated as purely spurious and we will not
6032 * lose any information
6033 */
6034 UNPROTECT_CTX(ctx,flags);
6035}
6036#endif /* CONFIG_SMP */
6037
6038#ifdef CONFIG_SMP
6039/*
6040 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6041 */
6042void
6043pfm_load_regs (struct task_struct *task)
6044{
6045 pfm_context_t *ctx;
1da177e4
LT
6046 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6047 unsigned long flags;
6048 u64 psr, psr_up;
6049 int need_irq_resend;
6050
6051 ctx = PFM_GET_CTX(task);
6052 if (unlikely(ctx == NULL)) return;
6053
6054 BUG_ON(GET_PMU_OWNER());
6055
1da177e4
LT
6056 /*
6057 * possible on unload
6058 */
35589a8f 6059 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
1da177e4
LT
6060
6061 /*
6062 * we always come here with interrupts ALREADY disabled by
6063 * the scheduler. So we simply need to protect against concurrent
6064 * access, not CPU concurrency.
6065 */
6066 flags = pfm_protect_ctx_ctxsw(ctx);
6067 psr = pfm_get_psr();
6068
6069 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6070
6071 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6072 BUG_ON(psr & IA64_PSR_I);
6073
6074 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6450578f 6075 struct pt_regs *regs = task_pt_regs(task);
1da177e4
LT
6076
6077 BUG_ON(ctx->ctx_smpl_hdr);
6078
6079 pfm_force_cleanup(ctx, regs);
6080
6081 pfm_unprotect_ctx_ctxsw(ctx, flags);
6082
6083 /*
6084 * this one (kmalloc'ed) is fine with interrupts disabled
6085 */
6086 pfm_context_free(ctx);
6087
6088 return;
6089 }
6090
6091 /*
6092 * we restore ALL the debug registers to avoid picking up
6093 * stale state.
6094 */
6095 if (ctx->ctx_fl_using_dbreg) {
6096 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6097 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6098 }
6099 /*
6100 * retrieve saved psr.up
6101 */
6102 psr_up = ctx->ctx_saved_psr_up;
6103
6104 /*
6105 * if we were the last user of the PMU on that CPU,
6106 * then nothing to do except restore psr
6107 */
6108 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6109
6110 /*
6111 * retrieve partial reload masks (due to user modifications)
6112 */
6113 pmc_mask = ctx->ctx_reload_pmcs[0];
6114 pmd_mask = ctx->ctx_reload_pmds[0];
6115
6116 } else {
6117 /*
6118 * To avoid leaking information to the user level when psr.sp=0,
6119 * we must reload ALL implemented pmds (even the ones we don't use).
6120 * In the kernel we only allow PFM_READ_PMDS on registers which
6121 * we initialized or requested (sampling) so there is no risk there.
6122 */
6123 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6124
6125 /*
6126 * ALL accessible PMCs are systematically reloaded, unused registers
6127 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6128 * up stale configuration.
6129 *
6130 * PMC0 is never in the mask. It is always restored separately.
6131 */
6132 pmc_mask = ctx->ctx_all_pmcs[0];
6133 }
6134 /*
6135 * when context is MASKED, we will restore PMC with plm=0
6136 * and PMD with stale information, but that's ok, nothing
6137 * will be captured.
6138 *
6139 * XXX: optimize here
6140 */
35589a8f
KA
6141 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6142 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
1da177e4
LT
6143
6144 /*
6145 * check for pending overflow at the time the state
6146 * was saved.
6147 */
35589a8f 6148 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
1da177e4
LT
6149 /*
6150 * reload pmc0 with the overflow information
6151 * On McKinley PMU, this will trigger a PMU interrupt
6152 */
35589a8f 6153 ia64_set_pmc(0, ctx->th_pmcs[0]);
1da177e4 6154 ia64_srlz_d();
35589a8f 6155 ctx->th_pmcs[0] = 0UL;
1da177e4
LT
6156
6157 /*
6158 * will replay the PMU interrupt
6159 */
c0ad90a3 6160 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
1da177e4
LT
6161
6162 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6163 }
6164
6165 /*
6166 * we just did a reload, so we reset the partial reload fields
6167 */
6168 ctx->ctx_reload_pmcs[0] = 0UL;
6169 ctx->ctx_reload_pmds[0] = 0UL;
6170
6171 SET_LAST_CPU(ctx, smp_processor_id());
6172
6173 /*
6174 * dump activation value for this PMU
6175 */
6176 INC_ACTIVATION();
6177 /*
6178 * record current activation for this context
6179 */
6180 SET_ACTIVATION(ctx);
6181
6182 /*
6183 * establish new ownership.
6184 */
6185 SET_PMU_OWNER(task, ctx);
6186
6187 /*
6188 * restore the psr.up bit. measurement
6189 * is active again.
6190 * no PMU interrupt can happen at this point
6191 * because we still have interrupts disabled.
6192 */
6193 if (likely(psr_up)) pfm_set_psr_up();
6194
6195 /*
6196 * allow concurrent access to context
6197 */
6198 pfm_unprotect_ctx_ctxsw(ctx, flags);
6199}
6200#else /* !CONFIG_SMP */
6201/*
6202 * reload PMU state for UP kernels
6203 * in 2.5 we come here with interrupts disabled
6204 */
6205void
6206pfm_load_regs (struct task_struct *task)
6207{
1da177e4
LT
6208 pfm_context_t *ctx;
6209 struct task_struct *owner;
6210 unsigned long pmd_mask, pmc_mask;
6211 u64 psr, psr_up;
6212 int need_irq_resend;
6213
6214 owner = GET_PMU_OWNER();
6215 ctx = PFM_GET_CTX(task);
1da177e4
LT
6216 psr = pfm_get_psr();
6217
6218 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6219 BUG_ON(psr & IA64_PSR_I);
6220
6221 /*
6222 * we restore ALL the debug registers to avoid picking up
6223 * stale state.
6224 *
6225 * This must be done even when the task is still the owner
6226 * as the registers may have been modified via ptrace()
6227 * (not perfmon) by the previous task.
6228 */
6229 if (ctx->ctx_fl_using_dbreg) {
6230 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6231 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6232 }
6233
6234 /*
6235 * retrieved saved psr.up
6236 */
6237 psr_up = ctx->ctx_saved_psr_up;
6238 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6239
6240 /*
6241 * short path, our state is still there, just
6242 * need to restore psr and we go
6243 *
6244 * we do not touch either PMC nor PMD. the psr is not touched
6245 * by the overflow_handler. So we are safe w.r.t. to interrupt
6246 * concurrency even without interrupt masking.
6247 */
6248 if (likely(owner == task)) {
6249 if (likely(psr_up)) pfm_set_psr_up();
6250 return;
6251 }
6252
6253 /*
6254 * someone else is still using the PMU, first push it out and
6255 * then we'll be able to install our stuff !
6256 *
6257 * Upon return, there will be no owner for the current PMU
6258 */
6259 if (owner) pfm_lazy_save_regs(owner);
6260
6261 /*
6262 * To avoid leaking information to the user level when psr.sp=0,
6263 * we must reload ALL implemented pmds (even the ones we don't use).
6264 * In the kernel we only allow PFM_READ_PMDS on registers which
6265 * we initialized or requested (sampling) so there is no risk there.
6266 */
6267 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6268
6269 /*
6270 * ALL accessible PMCs are systematically reloaded, unused registers
6271 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6272 * up stale configuration.
6273 *
6274 * PMC0 is never in the mask. It is always restored separately
6275 */
6276 pmc_mask = ctx->ctx_all_pmcs[0];
6277
35589a8f
KA
6278 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6279 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
1da177e4
LT
6280
6281 /*
6282 * check for pending overflow at the time the state
6283 * was saved.
6284 */
35589a8f 6285 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
1da177e4
LT
6286 /*
6287 * reload pmc0 with the overflow information
6288 * On McKinley PMU, this will trigger a PMU interrupt
6289 */
35589a8f 6290 ia64_set_pmc(0, ctx->th_pmcs[0]);
1da177e4
LT
6291 ia64_srlz_d();
6292
35589a8f 6293 ctx->th_pmcs[0] = 0UL;
1da177e4
LT
6294
6295 /*
6296 * will replay the PMU interrupt
6297 */
c0ad90a3 6298 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
1da177e4
LT
6299
6300 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6301 }
6302
6303 /*
6304 * establish new ownership.
6305 */
6306 SET_PMU_OWNER(task, ctx);
6307
6308 /*
6309 * restore the psr.up bit. measurement
6310 * is active again.
6311 * no PMU interrupt can happen at this point
6312 * because we still have interrupts disabled.
6313 */
6314 if (likely(psr_up)) pfm_set_psr_up();
6315}
6316#endif /* CONFIG_SMP */
6317
6318/*
6319 * this function assumes monitoring is stopped
6320 */
6321static void
6322pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6323{
6324 u64 pmc0;
6325 unsigned long mask2, val, pmd_val, ovfl_val;
6326 int i, can_access_pmu = 0;
6327 int is_self;
6328
6329 /*
6330 * is the caller the task being monitored (or which initiated the
6331 * session for system wide measurements)
6332 */
6333 is_self = ctx->ctx_task == task ? 1 : 0;
6334
6335 /*
6336 * can access PMU is task is the owner of the PMU state on the current CPU
6337 * or if we are running on the CPU bound to the context in system-wide mode
6338 * (that is not necessarily the task the context is attached to in this mode).
6339 * In system-wide we always have can_access_pmu true because a task running on an
6340 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6341 */
6342 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6343 if (can_access_pmu) {
6344 /*
6345 * Mark the PMU as not owned
6346 * This will cause the interrupt handler to do nothing in case an overflow
6347 * interrupt was in-flight
6348 * This also guarantees that pmc0 will contain the final state
6349 * It virtually gives us full control on overflow processing from that point
6350 * on.
6351 */
6352 SET_PMU_OWNER(NULL, NULL);
6353 DPRINT(("releasing ownership\n"));
6354
6355 /*
6356 * read current overflow status:
6357 *
6358 * we are guaranteed to read the final stable state
6359 */
6360 ia64_srlz_d();
6361 pmc0 = ia64_get_pmc(0); /* slow */
6362
6363 /*
6364 * reset freeze bit, overflow status information destroyed
6365 */
6366 pfm_unfreeze_pmu();
6367 } else {
35589a8f 6368 pmc0 = ctx->th_pmcs[0];
1da177e4
LT
6369 /*
6370 * clear whatever overflow status bits there were
6371 */
35589a8f 6372 ctx->th_pmcs[0] = 0;
1da177e4
LT
6373 }
6374 ovfl_val = pmu_conf->ovfl_val;
6375 /*
6376 * we save all the used pmds
6377 * we take care of overflows for counting PMDs
6378 *
6379 * XXX: sampling situation is not taken into account here
6380 */
6381 mask2 = ctx->ctx_used_pmds[0];
6382
6383 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6384
6385 for (i = 0; mask2; i++, mask2>>=1) {
6386
6387 /* skip non used pmds */
6388 if ((mask2 & 0x1) == 0) continue;
6389
6390 /*
6391 * can access PMU always true in system wide mode
6392 */
35589a8f 6393 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
1da177e4
LT
6394
6395 if (PMD_IS_COUNTING(i)) {
6396 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
19c5870c 6397 task_pid_nr(task),
1da177e4
LT
6398 i,
6399 ctx->ctx_pmds[i].val,
6400 val & ovfl_val));
6401
6402 /*
6403 * we rebuild the full 64 bit value of the counter
6404 */
6405 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6406
6407 /*
6408 * now everything is in ctx_pmds[] and we need
6409 * to clear the saved context from save_regs() such that
6410 * pfm_read_pmds() gets the correct value
6411 */
6412 pmd_val = 0UL;
6413
6414 /*
6415 * take care of overflow inline
6416 */
6417 if (pmc0 & (1UL << i)) {
6418 val += 1 + ovfl_val;
19c5870c 6419 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
1da177e4
LT
6420 }
6421 }
6422
19c5870c 6423 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
1da177e4 6424
35589a8f 6425 if (is_self) ctx->th_pmds[i] = pmd_val;
1da177e4
LT
6426
6427 ctx->ctx_pmds[i].val = val;
6428 }
6429}
6430
6431static struct irqaction perfmon_irqaction = {
6432 .handler = pfm_interrupt_handler,
121a4226 6433 .flags = IRQF_DISABLED,
1da177e4
LT
6434 .name = "perfmon"
6435};
6436
a1ecf7f6
TL
6437static void
6438pfm_alt_save_pmu_state(void *data)
6439{
6440 struct pt_regs *regs;
6441
6450578f 6442 regs = task_pt_regs(current);
a1ecf7f6
TL
6443
6444 DPRINT(("called\n"));
6445
6446 /*
6447 * should not be necessary but
6448 * let's take not risk
6449 */
6450 pfm_clear_psr_up();
6451 pfm_clear_psr_pp();
6452 ia64_psr(regs)->pp = 0;
6453
6454 /*
6455 * This call is required
6456 * May cause a spurious interrupt on some processors
6457 */
6458 pfm_freeze_pmu();
6459
6460 ia64_srlz_d();
6461}
6462
6463void
6464pfm_alt_restore_pmu_state(void *data)
6465{
6466 struct pt_regs *regs;
6467
6450578f 6468 regs = task_pt_regs(current);
a1ecf7f6
TL
6469
6470 DPRINT(("called\n"));
6471
6472 /*
6473 * put PMU back in state expected
6474 * by perfmon
6475 */
6476 pfm_clear_psr_up();
6477 pfm_clear_psr_pp();
6478 ia64_psr(regs)->pp = 0;
6479
6480 /*
6481 * perfmon runs with PMU unfrozen at all times
6482 */
6483 pfm_unfreeze_pmu();
6484
6485 ia64_srlz_d();
6486}
6487
6488int
6489pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6490{
6491 int ret, i;
6492 int reserve_cpu;
6493
6494 /* some sanity checks */
6495 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6496
6497 /* do the easy test first */
6498 if (pfm_alt_intr_handler) return -EBUSY;
6499
6500 /* one at a time in the install or remove, just fail the others */
6501 if (!spin_trylock(&pfm_alt_install_check)) {
6502 return -EBUSY;
6503 }
6504
6505 /* reserve our session */
6506 for_each_online_cpu(reserve_cpu) {
6507 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6508 if (ret) goto cleanup_reserve;
6509 }
6510
6511 /* save the current system wide pmu states */
15c8b6c1 6512 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
a1ecf7f6
TL
6513 if (ret) {
6514 DPRINT(("on_each_cpu() failed: %d\n", ret));
6515 goto cleanup_reserve;
6516 }
6517
6518 /* officially change to the alternate interrupt handler */
6519 pfm_alt_intr_handler = hdl;
6520
6521 spin_unlock(&pfm_alt_install_check);
6522
6523 return 0;
6524
6525cleanup_reserve:
6526 for_each_online_cpu(i) {
6527 /* don't unreserve more than we reserved */
6528 if (i >= reserve_cpu) break;
6529
6530 pfm_unreserve_session(NULL, 1, i);
6531 }
6532
6533 spin_unlock(&pfm_alt_install_check);
6534
6535 return ret;
6536}
6537EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6538
6539int
6540pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6541{
6542 int i;
6543 int ret;
6544
6545 if (hdl == NULL) return -EINVAL;
6546
6547 /* cannot remove someone else's handler! */
6548 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6549
6550 /* one at a time in the install or remove, just fail the others */
6551 if (!spin_trylock(&pfm_alt_install_check)) {
6552 return -EBUSY;
6553 }
6554
6555 pfm_alt_intr_handler = NULL;
6556
15c8b6c1 6557 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
a1ecf7f6
TL
6558 if (ret) {
6559 DPRINT(("on_each_cpu() failed: %d\n", ret));
6560 }
6561
6562 for_each_online_cpu(i) {
6563 pfm_unreserve_session(NULL, 1, i);
6564 }
6565
6566 spin_unlock(&pfm_alt_install_check);
6567
6568 return 0;
6569}
6570EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6571
1da177e4
LT
6572/*
6573 * perfmon initialization routine, called from the initcall() table
6574 */
6575static int init_pfm_fs(void);
6576
6577static int __init
6578pfm_probe_pmu(void)
6579{
6580 pmu_config_t **p;
6581 int family;
6582
6583 family = local_cpu_data->family;
6584 p = pmu_confs;
6585
6586 while(*p) {
6587 if ((*p)->probe) {
6588 if ((*p)->probe() == 0) goto found;
6589 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6590 goto found;
6591 }
6592 p++;
6593 }
6594 return -1;
6595found:
6596 pmu_conf = *p;
6597 return 0;
6598}
6599
5dfe4c96 6600static const struct file_operations pfm_proc_fops = {
1da177e4
LT
6601 .open = pfm_proc_open,
6602 .read = seq_read,
6603 .llseek = seq_lseek,
6604 .release = seq_release,
6605};
6606
6607int __init
6608pfm_init(void)
6609{
6610 unsigned int n, n_counters, i;
6611
6612 printk("perfmon: version %u.%u IRQ %u\n",
6613 PFM_VERSION_MAJ,
6614 PFM_VERSION_MIN,
6615 IA64_PERFMON_VECTOR);
6616
6617 if (pfm_probe_pmu()) {
6618 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6619 local_cpu_data->family);
6620 return -ENODEV;
6621 }
6622
6623 /*
6624 * compute the number of implemented PMD/PMC from the
6625 * description tables
6626 */
6627 n = 0;
6628 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6629 if (PMC_IS_IMPL(i) == 0) continue;
6630 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6631 n++;
6632 }
6633 pmu_conf->num_pmcs = n;
6634
6635 n = 0; n_counters = 0;
6636 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6637 if (PMD_IS_IMPL(i) == 0) continue;
6638 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6639 n++;
6640 if (PMD_IS_COUNTING(i)) n_counters++;
6641 }
6642 pmu_conf->num_pmds = n;
6643 pmu_conf->num_counters = n_counters;
6644
6645 /*
6646 * sanity checks on the number of debug registers
6647 */
6648 if (pmu_conf->use_rr_dbregs) {
6649 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6650 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6651 pmu_conf = NULL;
6652 return -1;
6653 }
6654 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6655 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6656 pmu_conf = NULL;
6657 return -1;
6658 }
6659 }
6660
6661 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6662 pmu_conf->pmu_name,
6663 pmu_conf->num_pmcs,
6664 pmu_conf->num_pmds,
6665 pmu_conf->num_counters,
6666 ffz(pmu_conf->ovfl_val));
6667
6668 /* sanity check */
35589a8f 6669 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
1da177e4
LT
6670 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6671 pmu_conf = NULL;
6672 return -1;
6673 }
6674
6675 /*
6676 * create /proc/perfmon (mostly for debugging purposes)
6677 */
e2363768 6678 perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
1da177e4
LT
6679 if (perfmon_dir == NULL) {
6680 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6681 pmu_conf = NULL;
6682 return -1;
6683 }
1da177e4
LT
6684
6685 /*
6686 * create /proc/sys/kernel/perfmon (for debugging purposes)
6687 */
0b4d4147 6688 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
1da177e4
LT
6689
6690 /*
6691 * initialize all our spinlocks
6692 */
6693 spin_lock_init(&pfm_sessions.pfs_lock);
6694 spin_lock_init(&pfm_buffer_fmt_lock);
6695
6696 init_pfm_fs();
6697
6698 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6699
6700 return 0;
6701}
6702
6703__initcall(pfm_init);
6704
6705/*
6706 * this function is called before pfm_init()
6707 */
6708void
6709pfm_init_percpu (void)
6710{
ff741906 6711 static int first_time=1;
1da177e4
LT
6712 /*
6713 * make sure no measurement is active
6714 * (may inherit programmed PMCs from EFI).
6715 */
6716 pfm_clear_psr_pp();
6717 pfm_clear_psr_up();
6718
6719 /*
6720 * we run with the PMU not frozen at all times
6721 */
6722 pfm_unfreeze_pmu();
6723
ff741906 6724 if (first_time) {
1da177e4 6725 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
ff741906
AR
6726 first_time=0;
6727 }
1da177e4
LT
6728
6729 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6730 ia64_srlz_d();
6731}
6732
6733/*
6734 * used for debug purposes only
6735 */
6736void
6737dump_pmu_state(const char *from)
6738{
6739 struct task_struct *task;
1da177e4
LT
6740 struct pt_regs *regs;
6741 pfm_context_t *ctx;
6742 unsigned long psr, dcr, info, flags;
6743 int i, this_cpu;
6744
6745 local_irq_save(flags);
6746
6747 this_cpu = smp_processor_id();
6450578f 6748 regs = task_pt_regs(current);
1da177e4
LT
6749 info = PFM_CPUINFO_GET();
6750 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6751
6752 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6753 local_irq_restore(flags);
6754 return;
6755 }
6756
6757 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6758 this_cpu,
6759 from,
19c5870c 6760 task_pid_nr(current),
1da177e4
LT
6761 regs->cr_iip,
6762 current->comm);
6763
6764 task = GET_PMU_OWNER();
6765 ctx = GET_PMU_CTX();
6766
19c5870c 6767 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
1da177e4
LT
6768
6769 psr = pfm_get_psr();
6770
6771 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6772 this_cpu,
6773 ia64_get_pmc(0),
6774 psr & IA64_PSR_PP ? 1 : 0,
6775 psr & IA64_PSR_UP ? 1 : 0,
6776 dcr & IA64_DCR_PP ? 1 : 0,
6777 info,
6778 ia64_psr(regs)->up,
6779 ia64_psr(regs)->pp);
6780
6781 ia64_psr(regs)->up = 0;
6782 ia64_psr(regs)->pp = 0;
6783
1da177e4
LT
6784 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6785 if (PMC_IS_IMPL(i) == 0) continue;
35589a8f 6786 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
1da177e4
LT
6787 }
6788
6789 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6790 if (PMD_IS_IMPL(i) == 0) continue;
35589a8f 6791 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
1da177e4
LT
6792 }
6793
6794 if (ctx) {
6795 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6796 this_cpu,
6797 ctx->ctx_state,
6798 ctx->ctx_smpl_vaddr,
6799 ctx->ctx_smpl_hdr,
6800 ctx->ctx_msgq_head,
6801 ctx->ctx_msgq_tail,
6802 ctx->ctx_saved_psr_up);
6803 }
6804 local_irq_restore(flags);
6805}
6806
6807/*
6808 * called from process.c:copy_thread(). task is new child.
6809 */
6810void
6811pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6812{
6813 struct thread_struct *thread;
6814
19c5870c 6815 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
1da177e4
LT
6816
6817 thread = &task->thread;
6818
6819 /*
6820 * cut links inherited from parent (current)
6821 */
6822 thread->pfm_context = NULL;
6823
6824 PFM_SET_WORK_PENDING(task, 0);
6825
6826 /*
6827 * the psr bits are already set properly in copy_threads()
6828 */
6829}
6830#else /* !CONFIG_PERFMON */
6831asmlinkage long
6832sys_perfmonctl (int fd, int cmd, void *arg, int count)
6833{
6834 return -ENOSYS;
6835}
6836#endif /* CONFIG_PERFMON */