treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[linux-2.6-block.git] / arch / c6x / platforms / dscr.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
9de98fb4
MS
2/*
3 * Device State Control Registers driver
4 *
5 * Copyright (C) 2011 Texas Instruments Incorporated
6 * Author: Mark Salter <msalter@redhat.com>
9de98fb4
MS
7 */
8
9/*
10 * The Device State Control Registers (DSCR) provide SoC level control over
11 * a number of peripherals. Details vary considerably among the various SoC
12 * parts. In general, the DSCR block will provide one or more configuration
13 * registers often protected by a lock register. One or more key values must
14 * be written to a lock register in order to unlock the configuration register.
15 * The configuration register may be used to enable (and disable in some
16 * cases) SoC pin drivers, peripheral clock sources (internal or pin), etc.
17 * In some cases, a configuration register is write once or the individual
18 * bits are write once. That is, you may be able to enable a device, but
19 * will not be able to disable it.
20 *
21 * In addition to device configuration, the DSCR block may provide registers
22 * which are used to reset SoC peripherals, provide device ID information,
23 * provide MAC addresses, and other miscellaneous functions.
24 */
25
26#include <linux/of.h>
27#include <linux/of_address.h>
28#include <linux/of_platform.h>
29#include <linux/module.h>
30#include <linux/io.h>
31#include <linux/delay.h>
32#include <asm/soc.h>
33#include <asm/dscr.h>
34
35#define MAX_DEVSTATE_IDS 32
36#define MAX_DEVCTL_REGS 8
37#define MAX_DEVSTAT_REGS 8
38#define MAX_LOCKED_REGS 4
39#define MAX_SOC_EMACS 2
40
41struct rmii_reset_reg {
42 u32 reg;
43 u32 mask;
44};
45
46/*
47 * Some registerd may be locked. In order to write to these
48 * registers, the key value must first be written to the lockreg.
49 */
50struct locked_reg {
51 u32 reg; /* offset from base */
52 u32 lockreg; /* offset from base */
53 u32 key; /* unlock key */
54};
55
56/*
57 * This describes a contiguous area of like control bits used to enable/disable
58 * SoC devices. Each controllable device is given an ID which is used by the
59 * individual device drivers to control the device state. These IDs start at
60 * zero and are assigned sequentially to the control bitfield ranges described
61 * by this structure.
62 */
63struct devstate_ctl_reg {
64 u32 reg; /* register holding the control bits */
65 u8 start_id; /* start id of this range */
66 u8 num_ids; /* number of devices in this range */
67 u8 enable_only; /* bits are write-once to enable only */
68 u8 enable; /* value used to enable device */
69 u8 disable; /* value used to disable device */
70 u8 shift; /* starting (rightmost) bit in range */
71 u8 nbits; /* number of bits per device */
72};
73
74
75/*
76 * This describes a region of status bits indicating the state of
77 * various devices. This is used internally to wait for status
78 * change completion when enabling/disabling a device. Status is
79 * optional and not all device controls will have a corresponding
80 * status.
81 */
82struct devstate_stat_reg {
83 u32 reg; /* register holding the status bits */
84 u8 start_id; /* start id of this range */
85 u8 num_ids; /* number of devices in this range */
86 u8 enable; /* value indicating enabled state */
87 u8 disable; /* value indicating disabled state */
88 u8 shift; /* starting (rightmost) bit in range */
89 u8 nbits; /* number of bits per device */
90};
91
92struct devstate_info {
93 struct devstate_ctl_reg *ctl;
94 struct devstate_stat_reg *stat;
95};
96
97/* These are callbacks to SOC-specific code. */
98struct dscr_ops {
99 void (*init)(struct device_node *node);
100};
101
102struct dscr_regs {
103 spinlock_t lock;
104 void __iomem *base;
105 u32 kick_reg[2];
106 u32 kick_key[2];
107 struct locked_reg locked[MAX_LOCKED_REGS];
108 struct devstate_info devstate_info[MAX_DEVSTATE_IDS];
109 struct rmii_reset_reg rmii_resets[MAX_SOC_EMACS];
110 struct devstate_ctl_reg devctl[MAX_DEVCTL_REGS];
111 struct devstate_stat_reg devstat[MAX_DEVSTAT_REGS];
112};
113
114static struct dscr_regs dscr;
115
116static struct locked_reg *find_locked_reg(u32 reg)
117{
118 int i;
119
120 for (i = 0; i < MAX_LOCKED_REGS; i++)
121 if (dscr.locked[i].key && reg == dscr.locked[i].reg)
122 return &dscr.locked[i];
123 return NULL;
124}
125
126/*
127 * Write to a register with one lock
128 */
129static void dscr_write_locked1(u32 reg, u32 val,
130 u32 lock, u32 key)
131{
132 void __iomem *reg_addr = dscr.base + reg;
133 void __iomem *lock_addr = dscr.base + lock;
134
135 /*
136 * For some registers, the lock is relocked after a short number
137 * of cycles. We have to put the lock write and register write in
138 * the same fetch packet to meet this timing. The .align ensures
139 * the two stw instructions are in the same fetch packet.
140 */
141 asm volatile ("b .s2 0f\n"
142 "nop 5\n"
143 " .align 5\n"
144 "0:\n"
145 "stw .D1T2 %3,*%2\n"
146 "stw .D1T2 %1,*%0\n"
147 :
148 : "a"(reg_addr), "b"(val), "a"(lock_addr), "b"(key)
149 );
150
151 /* in case the hw doesn't reset the lock */
152 soc_writel(0, lock_addr);
153}
154
155/*
156 * Write to a register protected by two lock registers
157 */
158static void dscr_write_locked2(u32 reg, u32 val,
159 u32 lock0, u32 key0,
160 u32 lock1, u32 key1)
161{
162 soc_writel(key0, dscr.base + lock0);
163 soc_writel(key1, dscr.base + lock1);
164 soc_writel(val, dscr.base + reg);
165 soc_writel(0, dscr.base + lock0);
166 soc_writel(0, dscr.base + lock1);
167}
168
169static void dscr_write(u32 reg, u32 val)
170{
171 struct locked_reg *lock;
172
173 lock = find_locked_reg(reg);
174 if (lock)
175 dscr_write_locked1(reg, val, lock->lockreg, lock->key);
176 else if (dscr.kick_key[0])
177 dscr_write_locked2(reg, val, dscr.kick_reg[0], dscr.kick_key[0],
178 dscr.kick_reg[1], dscr.kick_key[1]);
179 else
180 soc_writel(val, dscr.base + reg);
181}
182
183
184/*
185 * Drivers can use this interface to enable/disable SoC IP blocks.
186 */
187void dscr_set_devstate(int id, enum dscr_devstate_t state)
188{
189 struct devstate_ctl_reg *ctl;
190 struct devstate_stat_reg *stat;
191 struct devstate_info *info;
192 u32 ctl_val, val;
193 int ctl_shift, ctl_mask;
194 unsigned long flags;
195
196 if (!dscr.base)
197 return;
198
199 if (id < 0 || id >= MAX_DEVSTATE_IDS)
200 return;
201
202 info = &dscr.devstate_info[id];
203 ctl = info->ctl;
204 stat = info->stat;
205
206 if (ctl == NULL)
207 return;
208
209 ctl_shift = ctl->shift + ctl->nbits * (id - ctl->start_id);
210 ctl_mask = ((1 << ctl->nbits) - 1) << ctl_shift;
211
212 switch (state) {
213 case DSCR_DEVSTATE_ENABLED:
214 ctl_val = ctl->enable << ctl_shift;
215 break;
216 case DSCR_DEVSTATE_DISABLED:
217 if (ctl->enable_only)
218 return;
219 ctl_val = ctl->disable << ctl_shift;
220 break;
221 default:
222 return;
223 }
224
225 spin_lock_irqsave(&dscr.lock, flags);
226
227 val = soc_readl(dscr.base + ctl->reg);
228 val &= ~ctl_mask;
229 val |= ctl_val;
230
231 dscr_write(ctl->reg, val);
232
233 spin_unlock_irqrestore(&dscr.lock, flags);
234
235 if (!stat)
236 return;
237
238 ctl_shift = stat->shift + stat->nbits * (id - stat->start_id);
239
240 if (state == DSCR_DEVSTATE_ENABLED)
241 ctl_val = stat->enable;
242 else
243 ctl_val = stat->disable;
244
245 do {
246 val = soc_readl(dscr.base + stat->reg);
247 val >>= ctl_shift;
248 val &= ((1 << stat->nbits) - 1);
249 } while (val != ctl_val);
250}
251EXPORT_SYMBOL(dscr_set_devstate);
252
253/*
254 * Drivers can use this to reset RMII module.
255 */
256void dscr_rmii_reset(int id, int assert)
257{
258 struct rmii_reset_reg *r;
259 unsigned long flags;
260 u32 val;
261
262 if (id < 0 || id >= MAX_SOC_EMACS)
263 return;
264
265 r = &dscr.rmii_resets[id];
266 if (r->mask == 0)
267 return;
268
269 spin_lock_irqsave(&dscr.lock, flags);
270
271 val = soc_readl(dscr.base + r->reg);
272 if (assert)
273 dscr_write(r->reg, val | r->mask);
274 else
275 dscr_write(r->reg, val & ~(r->mask));
276
277 spin_unlock_irqrestore(&dscr.lock, flags);
278}
279EXPORT_SYMBOL(dscr_rmii_reset);
280
281static void __init dscr_parse_devstat(struct device_node *node,
282 void __iomem *base)
283{
284 u32 val;
285 int err;
286
287 err = of_property_read_u32_array(node, "ti,dscr-devstat", &val, 1);
288 if (!err)
289 c6x_devstat = soc_readl(base + val);
290 printk(KERN_INFO "DEVSTAT: %08x\n", c6x_devstat);
291}
292
293static void __init dscr_parse_silicon_rev(struct device_node *node,
294 void __iomem *base)
295{
296 u32 vals[3];
297 int err;
298
299 err = of_property_read_u32_array(node, "ti,dscr-silicon-rev", vals, 3);
300 if (!err) {
301 c6x_silicon_rev = soc_readl(base + vals[0]);
302 c6x_silicon_rev >>= vals[1];
303 c6x_silicon_rev &= vals[2];
304 }
305}
306
307/*
308 * Some SoCs will have a pair of fuse registers which hold
309 * an ethernet MAC address. The "ti,dscr-mac-fuse-regs"
310 * property is a mapping from fuse register bytes to MAC
311 * address bytes. The expected format is:
312 *
313 * ti,dscr-mac-fuse-regs = <reg0 b3 b2 b1 b0
314 * reg1 b3 b2 b1 b0>
315 *
316 * reg0 and reg1 are the offsets of the two fuse registers.
317 * b3-b0 positionally represent bytes within the fuse register.
318 * b3 is the most significant byte and b0 is the least.
319 * Allowable values for b3-b0 are:
320 *
321 * 0 = fuse register byte not used in MAC address
322 * 1-6 = index+1 into c6x_fuse_mac[]
323 */
324static void __init dscr_parse_mac_fuse(struct device_node *node,
325 void __iomem *base)
326{
327 u32 vals[10], fuse;
328 int f, i, j, err;
329
330 err = of_property_read_u32_array(node, "ti,dscr-mac-fuse-regs",
331 vals, 10);
332 if (err)
333 return;
334
335 for (f = 0; f < 2; f++) {
336 fuse = soc_readl(base + vals[f * 5]);
337 for (j = (f * 5) + 1, i = 24; i >= 0; i -= 8, j++)
338 if (vals[j] && vals[j] <= 6)
339 c6x_fuse_mac[vals[j] - 1] = fuse >> i;
340 }
341}
342
343static void __init dscr_parse_rmii_resets(struct device_node *node,
344 void __iomem *base)
345{
346 const __be32 *p;
347 int i, size;
348
349 /* look for RMII reset registers */
350 p = of_get_property(node, "ti,dscr-rmii-resets", &size);
351 if (p) {
352 /* parse all the reg/mask pairs we can handle */
353 size /= (sizeof(*p) * 2);
354 if (size > MAX_SOC_EMACS)
355 size = MAX_SOC_EMACS;
356
357 for (i = 0; i < size; i++) {
358 dscr.rmii_resets[i].reg = be32_to_cpup(p++);
359 dscr.rmii_resets[i].mask = be32_to_cpup(p++);
360 }
361 }
362}
363
364
365static void __init dscr_parse_privperm(struct device_node *node,
366 void __iomem *base)
367{
368 u32 vals[2];
369 int err;
370
371 err = of_property_read_u32_array(node, "ti,dscr-privperm", vals, 2);
372 if (err)
373 return;
374 dscr_write(vals[0], vals[1]);
375}
376
377/*
378 * SoCs may have "locked" DSCR registers which can only be written
379 * to only after writing a key value to a lock registers. These
380 * regisers can be described with the "ti,dscr-locked-regs" property.
381 * This property provides a list of register descriptions with each
382 * description consisting of three values.
383 *
384 * ti,dscr-locked-regs = <reg0 lockreg0 key0
385 * ...
386 * regN lockregN keyN>;
387 *
388 * reg is the offset of the locked register
389 * lockreg is the offset of the lock register
390 * key is the unlock key written to lockreg
391 *
392 */
393static void __init dscr_parse_locked_regs(struct device_node *node,
394 void __iomem *base)
395{
396 struct locked_reg *r;
397 const __be32 *p;
398 int i, size;
399
400 p = of_get_property(node, "ti,dscr-locked-regs", &size);
401 if (p) {
402 /* parse all the register descriptions we can handle */
403 size /= (sizeof(*p) * 3);
404 if (size > MAX_LOCKED_REGS)
405 size = MAX_LOCKED_REGS;
406
407 for (i = 0; i < size; i++) {
408 r = &dscr.locked[i];
409
410 r->reg = be32_to_cpup(p++);
411 r->lockreg = be32_to_cpup(p++);
412 r->key = be32_to_cpup(p++);
413 }
414 }
415}
416
417/*
418 * SoCs may have DSCR registers which are only write enabled after
419 * writing specific key values to two registers. The two key registers
420 * and the key values can be parsed from a "ti,dscr-kick-regs"
421 * propety with the following layout:
422 *
423 * ti,dscr-kick-regs = <kickreg0 key0 kickreg1 key1>
424 *
425 * kickreg is the offset of the "kick" register
426 * key is the value which unlocks writing for protected regs
427 */
428static void __init dscr_parse_kick_regs(struct device_node *node,
429 void __iomem *base)
430{
431 u32 vals[4];
432 int err;
433
434 err = of_property_read_u32_array(node, "ti,dscr-kick-regs", vals, 4);
435 if (!err) {
436 dscr.kick_reg[0] = vals[0];
437 dscr.kick_key[0] = vals[1];
438 dscr.kick_reg[1] = vals[2];
439 dscr.kick_key[1] = vals[3];
440 }
441}
442
443
444/*
445 * SoCs may provide controls to enable/disable individual IP blocks. These
446 * controls in the DSCR usually control pin drivers but also may control
447 * clocking and or resets. The device tree is used to describe the bitfields
448 * in registers used to control device state. The number of bits and their
449 * values may vary even within the same register.
450 *
451 * The layout of these bitfields is described by the ti,dscr-devstate-ctl-regs
452 * property. This property is a list where each element describes a contiguous
453 * range of control fields with like properties. Each element of the list
454 * consists of 7 cells with the following values:
455 *
456 * start_id num_ids reg enable disable start_bit nbits
457 *
458 * start_id is device id for the first device control in the range
459 * num_ids is the number of device controls in the range
460 * reg is the offset of the register holding the control bits
461 * enable is the value to enable a device
462 * disable is the value to disable a device (0xffffffff if cannot disable)
463 * start_bit is the bit number of the first bit in the range
464 * nbits is the number of bits per device control
465 */
466static void __init dscr_parse_devstate_ctl_regs(struct device_node *node,
467 void __iomem *base)
468{
469 struct devstate_ctl_reg *r;
470 const __be32 *p;
471 int i, j, size;
472
473 p = of_get_property(node, "ti,dscr-devstate-ctl-regs", &size);
474 if (p) {
475 /* parse all the ranges we can handle */
476 size /= (sizeof(*p) * 7);
477 if (size > MAX_DEVCTL_REGS)
478 size = MAX_DEVCTL_REGS;
479
480 for (i = 0; i < size; i++) {
481 r = &dscr.devctl[i];
482
483 r->start_id = be32_to_cpup(p++);
484 r->num_ids = be32_to_cpup(p++);
485 r->reg = be32_to_cpup(p++);
486 r->enable = be32_to_cpup(p++);
487 r->disable = be32_to_cpup(p++);
488 if (r->disable == 0xffffffff)
489 r->enable_only = 1;
490 r->shift = be32_to_cpup(p++);
491 r->nbits = be32_to_cpup(p++);
492
493 for (j = r->start_id;
494 j < (r->start_id + r->num_ids);
495 j++)
496 dscr.devstate_info[j].ctl = r;
497 }
498 }
499}
500
501/*
502 * SoCs may provide status registers indicating the state (enabled/disabled) of
503 * devices on the SoC. The device tree is used to describe the bitfields in
504 * registers used to provide device status. The number of bits and their
505 * values used to provide status may vary even within the same register.
506 *
507 * The layout of these bitfields is described by the ti,dscr-devstate-stat-regs
508 * property. This property is a list where each element describes a contiguous
509 * range of status fields with like properties. Each element of the list
510 * consists of 7 cells with the following values:
511 *
512 * start_id num_ids reg enable disable start_bit nbits
513 *
514 * start_id is device id for the first device status in the range
515 * num_ids is the number of devices covered by the range
516 * reg is the offset of the register holding the status bits
517 * enable is the value indicating device is enabled
518 * disable is the value indicating device is disabled
519 * start_bit is the bit number of the first bit in the range
520 * nbits is the number of bits per device status
521 */
522static void __init dscr_parse_devstate_stat_regs(struct device_node *node,
523 void __iomem *base)
524{
525 struct devstate_stat_reg *r;
526 const __be32 *p;
527 int i, j, size;
528
529 p = of_get_property(node, "ti,dscr-devstate-stat-regs", &size);
530 if (p) {
531 /* parse all the ranges we can handle */
532 size /= (sizeof(*p) * 7);
533 if (size > MAX_DEVSTAT_REGS)
534 size = MAX_DEVSTAT_REGS;
535
536 for (i = 0; i < size; i++) {
537 r = &dscr.devstat[i];
538
539 r->start_id = be32_to_cpup(p++);
540 r->num_ids = be32_to_cpup(p++);
541 r->reg = be32_to_cpup(p++);
542 r->enable = be32_to_cpup(p++);
543 r->disable = be32_to_cpup(p++);
544 r->shift = be32_to_cpup(p++);
545 r->nbits = be32_to_cpup(p++);
546
547 for (j = r->start_id;
548 j < (r->start_id + r->num_ids);
549 j++)
550 dscr.devstate_info[j].stat = r;
551 }
552 }
553}
554
555static struct of_device_id dscr_ids[] __initdata = {
556 { .compatible = "ti,c64x+dscr" },
557 {}
558};
559
560/*
561 * Probe for DSCR area.
562 *
563 * This has to be done early on in case timer or interrupt controller
564 * needs something. e.g. On C6455 SoC, timer must be enabled through
565 * DSCR before it is functional.
566 */
567void __init dscr_probe(void)
568{
569 struct device_node *node;
570 void __iomem *base;
571
572 spin_lock_init(&dscr.lock);
573
574 node = of_find_matching_node(NULL, dscr_ids);
575 if (!node)
576 return;
577
578 base = of_iomap(node, 0);
579 if (!base) {
580 of_node_put(node);
581 return;
582 }
583
584 dscr.base = base;
585
586 dscr_parse_devstat(node, base);
587 dscr_parse_silicon_rev(node, base);
588 dscr_parse_mac_fuse(node, base);
589 dscr_parse_rmii_resets(node, base);
590 dscr_parse_locked_regs(node, base);
591 dscr_parse_kick_regs(node, base);
592 dscr_parse_devstate_ctl_regs(node, base);
593 dscr_parse_devstate_stat_regs(node, base);
594 dscr_parse_privperm(node, base);
595}