memblock: rename free_all_bootmem to memblock_free_all
[linux-2.6-block.git] / arch / arm64 / mm / init.c
CommitLineData
c1cc1552
CM
1/*
2 * Based on arch/arm/mm/init.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <linux/kernel.h>
21#include <linux/export.h>
22#include <linux/errno.h>
23#include <linux/swap.h>
24#include <linux/init.h>
25#include <linux/bootmem.h>
5a9e3e15 26#include <linux/cache.h>
c1cc1552
CM
27#include <linux/mman.h>
28#include <linux/nodemask.h>
29#include <linux/initrd.h>
30#include <linux/gfp.h>
31#include <linux/memblock.h>
32#include <linux/sort.h>
764b51ea 33#include <linux/of.h>
c1cc1552 34#include <linux/of_fdt.h>
19e7640d 35#include <linux/dma-mapping.h>
6ac2104d 36#include <linux/dma-contiguous.h>
86c8b27a 37#include <linux/efi.h>
a1e50a82 38#include <linux/swiotlb.h>
dae8c235 39#include <linux/vmalloc.h>
2077be67 40#include <linux/mm.h>
764b51ea 41#include <linux/kexec.h>
e62aaeac 42#include <linux/crash_dump.h>
c1cc1552 43
a7f8de16 44#include <asm/boot.h>
08375198 45#include <asm/fixmap.h>
f9040773 46#include <asm/kasan.h>
a7f8de16 47#include <asm/kernel-pgtable.h>
aa03c428 48#include <asm/memory.h>
1a2db300 49#include <asm/numa.h>
c1cc1552
CM
50#include <asm/sections.h>
51#include <asm/setup.h>
52#include <asm/sizes.h>
53#include <asm/tlb.h>
e039ee4e 54#include <asm/alternative.h>
c1cc1552 55
a7f8de16
AB
56/*
57 * We need to be able to catch inadvertent references to memstart_addr
58 * that occur (potentially in generic code) before arm64_memblock_init()
59 * executes, which assigns it its actual value. So use a default value
60 * that cannot be mistaken for a real physical address.
61 */
5a9e3e15
JZ
62s64 memstart_addr __ro_after_init = -1;
63phys_addr_t arm64_dma_phys_limit __ro_after_init;
c1cc1552 64
ec2eaa73 65#ifdef CONFIG_BLK_DEV_INITRD
c1cc1552
CM
66static int __init early_initrd(char *p)
67{
68 unsigned long start, size;
69 char *endp;
70
71 start = memparse(p, &endp);
72 if (*endp == ',') {
73 size = memparse(endp + 1, NULL);
74
a89dea58
AB
75 initrd_start = start;
76 initrd_end = start + size;
c1cc1552
CM
77 }
78 return 0;
79}
80early_param("initrd", early_initrd);
ec2eaa73 81#endif
c1cc1552 82
764b51ea
AT
83#ifdef CONFIG_KEXEC_CORE
84/*
85 * reserve_crashkernel() - reserves memory for crash kernel
86 *
87 * This function reserves memory area given in "crashkernel=" kernel command
88 * line parameter. The memory reserved is used by dump capture kernel when
89 * primary kernel is crashing.
90 */
91static void __init reserve_crashkernel(void)
92{
93 unsigned long long crash_base, crash_size;
94 int ret;
95
96 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
97 &crash_size, &crash_base);
98 /* no crashkernel= or invalid value specified */
99 if (ret || !crash_size)
100 return;
101
102 crash_size = PAGE_ALIGN(crash_size);
103
104 if (crash_base == 0) {
105 /* Current arm64 boot protocol requires 2MB alignment */
106 crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
107 crash_size, SZ_2M);
108 if (crash_base == 0) {
109 pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
110 crash_size);
111 return;
112 }
113 } else {
114 /* User specifies base address explicitly. */
115 if (!memblock_is_region_memory(crash_base, crash_size)) {
116 pr_warn("cannot reserve crashkernel: region is not memory\n");
117 return;
118 }
119
120 if (memblock_is_region_reserved(crash_base, crash_size)) {
121 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
122 return;
123 }
124
125 if (!IS_ALIGNED(crash_base, SZ_2M)) {
126 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
127 return;
128 }
129 }
130 memblock_reserve(crash_base, crash_size);
131
132 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
133 crash_base, crash_base + crash_size, crash_size >> 20);
134
135 crashk_res.start = crash_base;
136 crashk_res.end = crash_base + crash_size - 1;
137}
254a41c0
AT
138
139static void __init kexec_reserve_crashkres_pages(void)
140{
141#ifdef CONFIG_HIBERNATION
142 phys_addr_t addr;
143 struct page *page;
144
145 if (!crashk_res.end)
146 return;
147
148 /*
149 * To reduce the size of hibernation image, all the pages are
150 * marked as Reserved initially.
151 */
152 for (addr = crashk_res.start; addr < (crashk_res.end + 1);
153 addr += PAGE_SIZE) {
154 page = phys_to_page(addr);
155 SetPageReserved(page);
156 }
157#endif
158}
764b51ea
AT
159#else
160static void __init reserve_crashkernel(void)
161{
162}
254a41c0
AT
163
164static void __init kexec_reserve_crashkres_pages(void)
165{
166}
764b51ea
AT
167#endif /* CONFIG_KEXEC_CORE */
168
e62aaeac
AT
169#ifdef CONFIG_CRASH_DUMP
170static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
171 const char *uname, int depth, void *data)
172{
173 const __be32 *reg;
174 int len;
175
176 if (depth != 1 || strcmp(uname, "chosen") != 0)
177 return 0;
178
179 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
180 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
181 return 1;
182
183 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
184 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
185
186 return 1;
187}
188
189/*
190 * reserve_elfcorehdr() - reserves memory for elf core header
191 *
192 * This function reserves the memory occupied by an elf core header
193 * described in the device tree. This region contains all the
194 * information about primary kernel's core image and is used by a dump
195 * capture kernel to access the system memory on primary kernel.
196 */
197static void __init reserve_elfcorehdr(void)
198{
199 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
200
201 if (!elfcorehdr_size)
202 return;
203
204 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
205 pr_warn("elfcorehdr is overlapped\n");
206 return;
207 }
208
209 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
210
211 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
212 elfcorehdr_size >> 10, elfcorehdr_addr);
213}
214#else
215static void __init reserve_elfcorehdr(void)
216{
217}
218#endif /* CONFIG_CRASH_DUMP */
d50314a6 219/*
ad67f5a6 220 * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
d50314a6
CM
221 * currently assumes that for memory starting above 4G, 32-bit devices will
222 * use a DMA offset.
223 */
a7c61a34 224static phys_addr_t __init max_zone_dma_phys(void)
d50314a6
CM
225{
226 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
227 return min(offset + (1ULL << 32), memblock_end_of_DRAM());
228}
229
1a2db300
GK
230#ifdef CONFIG_NUMA
231
232static void __init zone_sizes_init(unsigned long min, unsigned long max)
233{
234 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
235
ad67f5a6
CH
236 if (IS_ENABLED(CONFIG_ZONE_DMA32))
237 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
1a2db300
GK
238 max_zone_pfns[ZONE_NORMAL] = max;
239
240 free_area_init_nodes(max_zone_pfns);
241}
242
243#else
244
c1cc1552
CM
245static void __init zone_sizes_init(unsigned long min, unsigned long max)
246{
247 struct memblock_region *reg;
248 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
19e7640d 249 unsigned long max_dma = min;
c1cc1552
CM
250
251 memset(zone_size, 0, sizeof(zone_size));
252
c1cc1552 253 /* 4GB maximum for 32-bit only capable devices */
ad67f5a6 254#ifdef CONFIG_ZONE_DMA32
86a5906e 255 max_dma = PFN_DOWN(arm64_dma_phys_limit);
ad67f5a6 256 zone_size[ZONE_DMA32] = max_dma - min;
86a5906e 257#endif
19e7640d 258 zone_size[ZONE_NORMAL] = max - max_dma;
c1cc1552
CM
259
260 memcpy(zhole_size, zone_size, sizeof(zhole_size));
261
262 for_each_memblock(memory, reg) {
263 unsigned long start = memblock_region_memory_base_pfn(reg);
264 unsigned long end = memblock_region_memory_end_pfn(reg);
265
266 if (start >= max)
267 continue;
19e7640d 268
ad67f5a6 269#ifdef CONFIG_ZONE_DMA32
86a5906e 270 if (start < max_dma) {
19e7640d 271 unsigned long dma_end = min(end, max_dma);
ad67f5a6 272 zhole_size[ZONE_DMA32] -= dma_end - start;
c1cc1552 273 }
86a5906e 274#endif
19e7640d 275 if (end > max_dma) {
c1cc1552 276 unsigned long normal_end = min(end, max);
19e7640d 277 unsigned long normal_start = max(start, max_dma);
c1cc1552
CM
278 zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
279 }
280 }
281
282 free_area_init_node(0, zone_size, min, zhole_size);
283}
284
1a2db300
GK
285#endif /* CONFIG_NUMA */
286
c1cc1552
CM
287int pfn_valid(unsigned long pfn)
288{
5ad356ea
GH
289 phys_addr_t addr = pfn << PAGE_SHIFT;
290
291 if ((addr >> PAGE_SHIFT) != pfn)
292 return 0;
293 return memblock_is_map_memory(addr);
c1cc1552
CM
294}
295EXPORT_SYMBOL(pfn_valid);
c1cc1552
CM
296
297#ifndef CONFIG_SPARSEMEM
a7c61a34 298static void __init arm64_memory_present(void)
c1cc1552
CM
299{
300}
301#else
a7c61a34 302static void __init arm64_memory_present(void)
c1cc1552
CM
303{
304 struct memblock_region *reg;
305
1a2db300 306 for_each_memblock(memory, reg) {
ea2cbee3
MR
307 int nid = memblock_get_region_node(reg);
308
1a2db300
GK
309 memory_present(nid, memblock_region_memory_base_pfn(reg),
310 memblock_region_memory_end_pfn(reg));
311 }
c1cc1552
CM
312}
313#endif
314
d7dc899a 315static phys_addr_t memory_limit = PHYS_ADDR_MAX;
6083fe74
MR
316
317/*
318 * Limit the memory size that was specified via FDT.
319 */
320static int __init early_mem(char *p)
321{
322 if (!p)
323 return 1;
324
325 memory_limit = memparse(p, &p) & PAGE_MASK;
326 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
327
328 return 0;
329}
330early_param("mem", early_mem);
331
8f579b1c
AT
332static int __init early_init_dt_scan_usablemem(unsigned long node,
333 const char *uname, int depth, void *data)
334{
335 struct memblock_region *usablemem = data;
336 const __be32 *reg;
337 int len;
338
339 if (depth != 1 || strcmp(uname, "chosen") != 0)
340 return 0;
341
342 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
343 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
344 return 1;
345
346 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
347 usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
348
349 return 1;
350}
351
352static void __init fdt_enforce_memory_region(void)
353{
354 struct memblock_region reg = {
355 .size = 0,
356 };
357
358 of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
359
360 if (reg.size)
361 memblock_cap_memory_range(reg.base, reg.size);
362}
363
c1cc1552
CM
364void __init arm64_memblock_init(void)
365{
a7f8de16
AB
366 const s64 linear_region_size = -(s64)PAGE_OFFSET;
367
8f579b1c
AT
368 /* Handle linux,usable-memory-range property */
369 fdt_enforce_memory_region();
370
e9eaa805
KM
371 /* Remove memory above our supported physical address size */
372 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
373
6d2aa549
AB
374 /*
375 * Ensure that the linear region takes up exactly half of the kernel
376 * virtual address space. This way, we can distinguish a linear address
377 * from a kernel/module/vmalloc address by testing a single bit.
378 */
379 BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
380
a7f8de16
AB
381 /*
382 * Select a suitable value for the base of physical memory.
383 */
384 memstart_addr = round_down(memblock_start_of_DRAM(),
385 ARM64_MEMSTART_ALIGN);
386
387 /*
388 * Remove the memory that we will not be able to cover with the
389 * linear mapping. Take care not to clip the kernel which may be
390 * high in memory.
391 */
2077be67
LA
392 memblock_remove(max_t(u64, memstart_addr + linear_region_size,
393 __pa_symbol(_end)), ULLONG_MAX);
2958987f
AB
394 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
395 /* ensure that memstart_addr remains sufficiently aligned */
396 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
397 ARM64_MEMSTART_ALIGN);
398 memblock_remove(0, memstart_addr);
399 }
a7f8de16
AB
400
401 /*
402 * Apply the memory limit if it was set. Since the kernel may be loaded
403 * high up in memory, add back the kernel region that must be accessible
404 * via the linear mapping.
405 */
d7dc899a 406 if (memory_limit != PHYS_ADDR_MAX) {
cb0a6502 407 memblock_mem_limit_remove_map(memory_limit);
2077be67 408 memblock_add(__pa_symbol(_text), (u64)(_end - _text));
a7f8de16 409 }
6083fe74 410
177e15f0
AB
411 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) {
412 /*
413 * Add back the memory we just removed if it results in the
414 * initrd to become inaccessible via the linear mapping.
415 * Otherwise, this is a no-op
416 */
417 u64 base = initrd_start & PAGE_MASK;
418 u64 size = PAGE_ALIGN(initrd_end) - base;
419
420 /*
421 * We can only add back the initrd memory if we don't end up
422 * with more memory than we can address via the linear mapping.
423 * It is up to the bootloader to position the kernel and the
424 * initrd reasonably close to each other (i.e., within 32 GB of
425 * each other) so that all granule/#levels combinations can
426 * always access both.
427 */
428 if (WARN(base < memblock_start_of_DRAM() ||
429 base + size > memblock_start_of_DRAM() +
430 linear_region_size,
431 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
432 initrd_start = 0;
433 } else {
434 memblock_remove(base, size); /* clear MEMBLOCK_ flags */
435 memblock_add(base, size);
436 memblock_reserve(base, size);
437 }
438 }
439
c031a421
AB
440 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
441 extern u16 memstart_offset_seed;
442 u64 range = linear_region_size -
443 (memblock_end_of_DRAM() - memblock_start_of_DRAM());
444
445 /*
446 * If the size of the linear region exceeds, by a sufficient
447 * margin, the size of the region that the available physical
448 * memory spans, randomize the linear region as well.
449 */
450 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
451 range = range / ARM64_MEMSTART_ALIGN + 1;
452 memstart_addr -= ARM64_MEMSTART_ALIGN *
453 ((range * memstart_offset_seed) >> 16);
454 }
455 }
6083fe74 456
bd00cd5f
MR
457 /*
458 * Register the kernel text, kernel data, initrd, and initial
459 * pagetables with memblock.
460 */
2077be67 461 memblock_reserve(__pa_symbol(_text), _end - _text);
c1cc1552 462#ifdef CONFIG_BLK_DEV_INITRD
a89dea58
AB
463 if (initrd_start) {
464 memblock_reserve(initrd_start, initrd_end - initrd_start);
465
466 /* the generic initrd code expects virtual addresses */
467 initrd_start = __phys_to_virt(initrd_start);
468 initrd_end = __phys_to_virt(initrd_end);
469 }
c1cc1552
CM
470#endif
471
0ceac9e0 472 early_init_fdt_scan_reserved_mem();
2d5a5612
CM
473
474 /* 4GB maximum for 32-bit only capable devices */
ad67f5a6 475 if (IS_ENABLED(CONFIG_ZONE_DMA32))
a1e50a82
CM
476 arm64_dma_phys_limit = max_zone_dma_phys();
477 else
478 arm64_dma_phys_limit = PHYS_MASK + 1;
764b51ea
AT
479
480 reserve_crashkernel();
481
e62aaeac
AT
482 reserve_elfcorehdr();
483
f24e5834
SC
484 high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
485
a1e50a82 486 dma_contiguous_reserve(arm64_dma_phys_limit);
6ac2104d 487
c1cc1552 488 memblock_allow_resize();
c1cc1552
CM
489}
490
491void __init bootmem_init(void)
492{
493 unsigned long min, max;
494
495 min = PFN_UP(memblock_start_of_DRAM());
496 max = PFN_DOWN(memblock_end_of_DRAM());
497
36dd9086
VM
498 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
499
1a2db300
GK
500 max_pfn = max_low_pfn = max;
501
502 arm64_numa_init();
c1cc1552
CM
503 /*
504 * Sparsemem tries to allocate bootmem in memory_present(), so must be
505 * done after the fixed reservations.
506 */
507 arm64_memory_present();
508
509 sparse_init();
510 zone_sizes_init(min, max);
511
1a2db300 512 memblock_dump_all();
c1cc1552
CM
513}
514
c1cc1552
CM
515#ifndef CONFIG_SPARSEMEM_VMEMMAP
516static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
517{
518 struct page *start_pg, *end_pg;
519 unsigned long pg, pgend;
520
521 /*
522 * Convert start_pfn/end_pfn to a struct page pointer.
523 */
524 start_pg = pfn_to_page(start_pfn - 1) + 1;
525 end_pg = pfn_to_page(end_pfn - 1) + 1;
526
527 /*
528 * Convert to physical addresses, and round start upwards and end
529 * downwards.
530 */
531 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
532 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
533
534 /*
535 * If there are free pages between these, free the section of the
536 * memmap array.
537 */
538 if (pg < pgend)
2013288f 539 memblock_free(pg, pgend - pg);
c1cc1552
CM
540}
541
542/*
543 * The mem_map array can get very big. Free the unused area of the memory map.
544 */
545static void __init free_unused_memmap(void)
546{
547 unsigned long start, prev_end = 0;
548 struct memblock_region *reg;
549
550 for_each_memblock(memory, reg) {
551 start = __phys_to_pfn(reg->base);
552
553#ifdef CONFIG_SPARSEMEM
554 /*
555 * Take care not to free memmap entries that don't exist due
556 * to SPARSEMEM sections which aren't present.
557 */
558 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
559#endif
560 /*
561 * If we had a previous bank, and there is a space between the
562 * current bank and the previous, free it.
563 */
564 if (prev_end && prev_end < start)
565 free_memmap(prev_end, start);
566
567 /*
568 * Align up here since the VM subsystem insists that the
569 * memmap entries are valid from the bank end aligned to
570 * MAX_ORDER_NR_PAGES.
571 */
b9bcc919 572 prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
c1cc1552
CM
573 MAX_ORDER_NR_PAGES);
574 }
575
576#ifdef CONFIG_SPARSEMEM
577 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
578 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
579#endif
580}
581#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
582
583/*
584 * mem_init() marks the free areas in the mem_map and tells us how much memory
585 * is free. This is done after various parts of the system have claimed their
586 * memory after the kernel image.
587 */
588void __init mem_init(void)
589{
ae7871be
GU
590 if (swiotlb_force == SWIOTLB_FORCE ||
591 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
b67a8b29 592 swiotlb_init(1);
524dabe1
AG
593 else
594 swiotlb_force = SWIOTLB_NO_FORCE;
a1e50a82 595
a6583c7c 596 set_max_mapnr(pfn_to_page(max_pfn) - mem_map);
c1cc1552
CM
597
598#ifndef CONFIG_SPARSEMEM_VMEMMAP
c1cc1552
CM
599 free_unused_memmap();
600#endif
bee4ebd1 601 /* this will put all unused low memory onto the freelists */
c6ffc5ca 602 memblock_free_all();
c1cc1552 603
254a41c0
AT
604 kexec_reserve_crashkres_pages();
605
6879ea83 606 mem_init_print_info(NULL);
c1cc1552 607
c1cc1552
CM
608 /*
609 * Check boundaries twice: Some fundamental inconsistencies can be
610 * detected at build time already.
611 */
612#ifdef CONFIG_COMPAT
613 BUILD_BUG_ON(TASK_SIZE_32 > TASK_SIZE_64);
614#endif
c1cc1552 615
7b0eb6b4 616#ifdef CONFIG_SPARSEMEM_VMEMMAP
3e1907d5
AB
617 /*
618 * Make sure we chose the upper bound of sizeof(struct page)
7b0eb6b4 619 * correctly when sizing the VMEMMAP array.
3e1907d5
AB
620 */
621 BUILD_BUG_ON(sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT));
7b0eb6b4 622#endif
3e1907d5 623
bee4ebd1 624 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
c1cc1552
CM
625 extern int sysctl_overcommit_memory;
626 /*
627 * On a machine this small we won't get anywhere without
628 * overcommit, so turn it on by default.
629 */
630 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
631 }
632}
633
634void free_initmem(void)
635{
2077be67
LA
636 free_reserved_area(lm_alias(__init_begin),
637 lm_alias(__init_end),
d386825c 638 0, "unused kernel");
dae8c235
KW
639 /*
640 * Unmap the __init region but leave the VM area in place. This
641 * prevents the region from being reused for kernel modules, which
642 * is not supported by kallsyms.
643 */
644 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
c1cc1552
CM
645}
646
647#ifdef CONFIG_BLK_DEV_INITRD
648
662ba3db 649static int keep_initrd __initdata;
c1cc1552 650
662ba3db 651void __init free_initrd_mem(unsigned long start, unsigned long end)
c1cc1552 652{
05c58752 653 if (!keep_initrd) {
9af5b807 654 free_reserved_area((void *)start, (void *)end, 0, "initrd");
05c58752
CV
655 memblock_free(__virt_to_phys(start), end - start);
656 }
c1cc1552
CM
657}
658
659static int __init keepinitrd_setup(char *__unused)
660{
661 keep_initrd = 1;
662 return 1;
663}
664
665__setup("keepinitrd", keepinitrd_setup);
666#endif
a7f8de16
AB
667
668/*
669 * Dump out memory limit information on panic.
670 */
671static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
672{
d7dc899a 673 if (memory_limit != PHYS_ADDR_MAX) {
a7f8de16
AB
674 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
675 } else {
676 pr_emerg("Memory Limit: none\n");
677 }
678 return 0;
679}
680
681static struct notifier_block mem_limit_notifier = {
682 .notifier_call = dump_mem_limit,
683};
684
685static int __init register_mem_limit_dumper(void)
686{
687 atomic_notifier_chain_register(&panic_notifier_list,
688 &mem_limit_notifier);
689 return 0;
690}
691__initcall(register_mem_limit_dumper);