Merge branches 'for-next/kpti', 'for-next/missing-proto-warn', 'for-next/iss2-decode...
[linux-block.git] / arch / arm64 / mm / fault.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
1d18c47c
CM
2/*
3 * Based on arch/arm/mm/fault.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
1d18c47c
CM
8 */
9
d44f1b8d 10#include <linux/acpi.h>
42f91093 11#include <linux/bitfield.h>
0edfa839 12#include <linux/extable.h>
840b2398 13#include <linux/kfence.h>
1d18c47c
CM
14#include <linux/signal.h>
15#include <linux/mm.h>
16#include <linux/hardirq.h>
17#include <linux/init.h>
4291e9ee 18#include <linux/kasan.h>
1d18c47c
CM
19#include <linux/kprobes.h>
20#include <linux/uaccess.h>
21#include <linux/page-flags.h>
3f07c014 22#include <linux/sched/signal.h>
b17b0153 23#include <linux/sched/debug.h>
1d18c47c
CM
24#include <linux/highmem.h>
25#include <linux/perf_event.h>
7209c868 26#include <linux/preempt.h>
e7c600f1 27#include <linux/hugetlb.h>
1d18c47c 28
d44f1b8d 29#include <asm/acpi.h>
7209c868 30#include <asm/bug.h>
3bbf7157 31#include <asm/cmpxchg.h>
338d4f49 32#include <asm/cpufeature.h>
e8dfdf31 33#include <asm/efi.h>
1d18c47c 34#include <asm/exception.h>
9a0c0328 35#include <asm/daifflags.h>
1d18c47c 36#include <asm/debug-monitors.h>
9141300a 37#include <asm/esr.h>
b6e43c0e 38#include <asm/kprobes.h>
98c970da 39#include <asm/mte.h>
bfe29874 40#include <asm/processor.h>
338d4f49 41#include <asm/sysreg.h>
1d18c47c 42#include <asm/system_misc.h>
1d18c47c 43#include <asm/tlbflush.h>
92ff0674 44#include <asm/traps.h>
1d18c47c 45
09a6adf5 46struct fault_info {
8d56e5c5 47 int (*fn)(unsigned long far, unsigned long esr,
09a6adf5
VK
48 struct pt_regs *regs);
49 int sig;
50 int code;
51 const char *name;
52};
53
54static const struct fault_info fault_info[];
359048f9 55static struct fault_info debug_fault_info[];
09a6adf5 56
8d56e5c5 57static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
09a6adf5 58{
00bbd5d9 59 return fault_info + (esr & ESR_ELx_FSC);
09a6adf5 60}
3495386b 61
8d56e5c5 62static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr)
359048f9
AK
63{
64 return debug_fault_info + DBG_ESR_EVT(esr);
65}
66
8d56e5c5 67static void data_abort_decode(unsigned long esr)
1f9b8936 68{
1f9d4ba6
MB
69 unsigned long iss2 = ESR_ELx_ISS2(esr);
70
1f9b8936
JT
71 pr_alert("Data abort info:\n");
72
73 if (esr & ESR_ELx_ISV) {
74 pr_alert(" Access size = %u byte(s)\n",
75 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
76 pr_alert(" SSE = %lu, SRT = %lu\n",
77 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
78 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
79 pr_alert(" SF = %lu, AR = %lu\n",
80 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
81 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
82 } else {
1f9d4ba6
MB
83 pr_alert(" ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n",
84 esr & ESR_ELx_ISS_MASK, iss2);
1f9b8936
JT
85 }
86
1f9d4ba6 87 pr_alert(" CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n",
1f9b8936 88 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
1f9d4ba6
MB
89 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT,
90 (iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT,
91 (iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT);
92
93 pr_alert(" GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n",
94 (iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT,
95 (iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT,
96 (iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT,
97 (iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT);
1f9b8936
JT
98}
99
8d56e5c5 100static void mem_abort_decode(unsigned long esr)
1f9b8936
JT
101{
102 pr_alert("Mem abort info:\n");
103
8d56e5c5 104 pr_alert(" ESR = 0x%016lx\n", esr);
2951d5ef
MC
105 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
106 ESR_ELx_EC(esr), esr_get_class_string(esr),
1f9b8936
JT
107 (esr & ESR_ELx_IL) ? 32 : 16);
108 pr_alert(" SET = %lu, FnV = %lu\n",
109 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
110 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
111 pr_alert(" EA = %lu, S1PTW = %lu\n",
112 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
113 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
8d56e5c5 114 pr_alert(" FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
e0e3903f 115 esr_to_fault_info(esr)->name);
1f9b8936
JT
116
117 if (esr_is_data_abort(esr))
118 data_abort_decode(esr);
119}
120
e4365f96
MR
121static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
122{
123 /* Either init_pg_dir or swapper_pg_dir */
124 if (mm == &init_mm)
125 return __pa_symbol(mm->pgd);
126
127 return (unsigned long)virt_to_phys(mm->pgd);
128}
129
1d18c47c 130/*
67ce16ec 131 * Dump out the page tables associated with 'addr' in the currently active mm.
1d18c47c 132 */
7048a597 133static void show_pte(unsigned long addr)
1d18c47c 134{
67ce16ec 135 struct mm_struct *mm;
20a004e7
WD
136 pgd_t *pgdp;
137 pgd_t pgd;
1d18c47c 138
356607f2 139 if (is_ttbr0_addr(addr)) {
67ce16ec
KM
140 /* TTBR0 */
141 mm = current->active_mm;
142 if (mm == &init_mm) {
143 pr_alert("[%016lx] user address but active_mm is swapper\n",
144 addr);
145 return;
146 }
356607f2 147 } else if (is_ttbr1_addr(addr)) {
67ce16ec 148 /* TTBR1 */
1d18c47c 149 mm = &init_mm;
67ce16ec
KM
150 } else {
151 pr_alert("[%016lx] address between user and kernel address ranges\n",
152 addr);
153 return;
154 }
1d18c47c 155
5383cc6e 156 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
1eb34b6e 157 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
e4365f96 158 vabits_actual, mm_to_pgd_phys(mm));
20a004e7
WD
159 pgdp = pgd_offset(mm, addr);
160 pgd = READ_ONCE(*pgdp);
161 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
1d18c47c
CM
162
163 do {
e9f63768 164 p4d_t *p4dp, p4d;
20a004e7
WD
165 pud_t *pudp, pud;
166 pmd_t *pmdp, pmd;
167 pte_t *ptep, pte;
1d18c47c 168
20a004e7 169 if (pgd_none(pgd) || pgd_bad(pgd))
1d18c47c
CM
170 break;
171
e9f63768
MR
172 p4dp = p4d_offset(pgdp, addr);
173 p4d = READ_ONCE(*p4dp);
174 pr_cont(", p4d=%016llx", p4d_val(p4d));
175 if (p4d_none(p4d) || p4d_bad(p4d))
176 break;
177
178 pudp = pud_offset(p4dp, addr);
20a004e7
WD
179 pud = READ_ONCE(*pudp);
180 pr_cont(", pud=%016llx", pud_val(pud));
181 if (pud_none(pud) || pud_bad(pud))
1d18c47c
CM
182 break;
183
20a004e7
WD
184 pmdp = pmd_offset(pudp, addr);
185 pmd = READ_ONCE(*pmdp);
186 pr_cont(", pmd=%016llx", pmd_val(pmd));
187 if (pmd_none(pmd) || pmd_bad(pmd))
1d18c47c
CM
188 break;
189
20a004e7
WD
190 ptep = pte_offset_map(pmdp, addr);
191 pte = READ_ONCE(*ptep);
192 pr_cont(", pte=%016llx", pte_val(pte));
193 pte_unmap(ptep);
1d18c47c
CM
194 } while(0);
195
6ef4fb38 196 pr_cont("\n");
1d18c47c
CM
197}
198
66dbd6e6
CM
199/*
200 * This function sets the access flags (dirty, accessed), as well as write
201 * permission, and only to a more permissive setting.
202 *
203 * It needs to cope with hardware update of the accessed/dirty state by other
204 * agents in the system and can safely skip the __sync_icache_dcache() call as,
205 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
206 *
207 * Returns whether or not the PTE actually changed.
208 */
209int ptep_set_access_flags(struct vm_area_struct *vma,
210 unsigned long address, pte_t *ptep,
211 pte_t entry, int dirty)
212{
3bbf7157 213 pteval_t old_pteval, pteval;
20a004e7 214 pte_t pte = READ_ONCE(*ptep);
66dbd6e6 215
20a004e7 216 if (pte_same(pte, entry))
66dbd6e6
CM
217 return 0;
218
219 /* only preserve the access flags and write permission */
73e86cb0 220 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
66dbd6e6
CM
221
222 /*
223 * Setting the flags must be done atomically to avoid racing with the
6d332747
CM
224 * hardware update of the access/dirty state. The PTE_RDONLY bit must
225 * be set to the most permissive (lowest value) of *ptep and entry
226 * (calculated as: a & b == ~(~a | ~b)).
66dbd6e6 227 */
6d332747 228 pte_val(entry) ^= PTE_RDONLY;
20a004e7 229 pteval = pte_val(pte);
3bbf7157
CM
230 do {
231 old_pteval = pteval;
232 pteval ^= PTE_RDONLY;
233 pteval |= pte_val(entry);
234 pteval ^= PTE_RDONLY;
235 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
236 } while (pteval != old_pteval);
66dbd6e6 237
6a1bdb17
WD
238 /* Invalidate a stale read-only entry */
239 if (dirty)
240 flush_tlb_page(vma, address);
66dbd6e6
CM
241 return 1;
242}
66dbd6e6 243
8d56e5c5 244static bool is_el1_instruction_abort(unsigned long esr)
9adeb8e7
LA
245{
246 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
247}
248
8d56e5c5 249static bool is_el1_data_abort(unsigned long esr)
fcf9dc02
KW
250{
251 return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
252}
253
8d56e5c5 254static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
dbfe3828 255 struct pt_regs *regs)
b824b930 256{
8d56e5c5 257 unsigned long fsc_type = esr & ESR_ELx_FSC_TYPE;
b824b930 258
fcf9dc02 259 if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
b824b930
SB
260 return false;
261
262 if (fsc_type == ESR_ELx_FSC_PERM)
263 return true;
264
356607f2 265 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
b824b930
SB
266 return fsc_type == ESR_ELx_FSC_FAULT &&
267 (regs->pstate & PSR_PAN_BIT);
268
269 return false;
270}
271
42f91093 272static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
8d56e5c5 273 unsigned long esr,
42f91093
WD
274 struct pt_regs *regs)
275{
276 unsigned long flags;
277 u64 par, dfsc;
278
fcf9dc02 279 if (!is_el1_data_abort(esr) ||
42f91093
WD
280 (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
281 return false;
282
283 local_irq_save(flags);
284 asm volatile("at s1e1r, %0" :: "r" (addr));
285 isb();
96d389ca 286 par = read_sysreg_par();
42f91093
WD
287 local_irq_restore(flags);
288
38137335
MR
289 /*
290 * If we now have a valid translation, treat the translation fault as
291 * spurious.
292 */
42f91093 293 if (!(par & SYS_PAR_EL1_F))
38137335 294 return true;
42f91093
WD
295
296 /*
297 * If we got a different type of fault from the AT instruction,
298 * treat the translation fault as spurious.
299 */
308c5156 300 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
42f91093
WD
301 return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
302}
303
c870f14e 304static void die_kernel_fault(const char *msg, unsigned long addr,
8d56e5c5 305 unsigned long esr, struct pt_regs *regs)
c870f14e
MR
306{
307 bust_spinlocks(1);
308
309 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
310 addr);
311
07b742a4
MR
312 kasan_non_canonical_hook(addr);
313
c870f14e
MR
314 mem_abort_decode(esr);
315
316 show_pte(addr);
317 die("Oops", regs, esr);
318 bust_spinlocks(0);
0e25498f 319 make_task_dead(SIGKILL);
c870f14e
MR
320}
321
4291e9ee 322#ifdef CONFIG_KASAN_HW_TAGS
8d56e5c5 323static void report_tag_fault(unsigned long addr, unsigned long esr,
98c970da
VF
324 struct pt_regs *regs)
325{
4291e9ee
AK
326 /*
327 * SAS bits aren't set for all faults reported in EL1, so we can't
328 * find out access size.
329 */
76721503 330 bool is_write = !!(esr & ESR_ELx_WNR);
4291e9ee 331 kasan_report(addr, 0, is_write, regs->pc);
98c970da 332}
4291e9ee
AK
333#else
334/* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
8d56e5c5 335static inline void report_tag_fault(unsigned long addr, unsigned long esr,
4291e9ee
AK
336 struct pt_regs *regs) { }
337#endif
98c970da 338
8d56e5c5 339static void do_tag_recovery(unsigned long addr, unsigned long esr,
98c970da
VF
340 struct pt_regs *regs)
341{
98c970da 342
f05842cf 343 report_tag_fault(addr, esr, regs);
98c970da
VF
344
345 /*
346 * Disable MTE Tag Checking on the local CPU for the current EL.
347 * It will be done lazily on the other CPUs when they will hit a
348 * tag fault.
349 */
bc249e37
MB
350 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
351 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
98c970da
VF
352 isb();
353}
354
8d56e5c5 355static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
98c970da 356{
8d56e5c5 357 unsigned long fsc = esr & ESR_ELx_FSC;
98c970da 358
fcf9dc02 359 if (!is_el1_data_abort(esr))
98c970da
VF
360 return false;
361
362 if (fsc == ESR_ELx_FSC_MTE)
363 return true;
364
365 return false;
366}
367
0bb1fbff
MR
368static bool is_translation_fault(unsigned long esr)
369{
370 return (esr & ESR_ELx_FSC_TYPE) == ESR_ELx_FSC_FAULT;
371}
372
8d56e5c5 373static void __do_kernel_fault(unsigned long addr, unsigned long esr,
67ce16ec 374 struct pt_regs *regs)
1d18c47c 375{
b824b930
SB
376 const char *msg;
377
1d18c47c
CM
378 /*
379 * Are we prepared to handle this kernel fault?
9adeb8e7 380 * We are almost certainly not prepared to handle instruction faults.
1d18c47c 381 */
9adeb8e7 382 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
1d18c47c
CM
383 return;
384
42f91093
WD
385 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
386 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
387 return;
388
98c970da
VF
389 if (is_el1_mte_sync_tag_check_fault(esr)) {
390 do_tag_recovery(addr, esr, regs);
391
392 return;
393 }
394
dbfe3828 395 if (is_el1_permission_fault(addr, esr, regs)) {
b824b930
SB
396 if (esr & ESR_ELx_WNR)
397 msg = "write to read-only memory";
e44ec4a3
XZ
398 else if (is_el1_instruction_abort(esr))
399 msg = "execute from non-executable memory";
b824b930
SB
400 else
401 msg = "read from unreadable memory";
402 } else if (addr < PAGE_SIZE) {
403 msg = "NULL pointer dereference";
404 } else {
0bb1fbff
MR
405 if (is_translation_fault(esr) &&
406 kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
840b2398
ME
407 return;
408
b824b930
SB
409 msg = "paging request";
410 }
411
e8dfdf31
AB
412 if (efi_runtime_fixup_exception(regs, msg))
413 return;
414
c870f14e 415 die_kernel_fault(msg, addr, esr, regs);
1d18c47c
CM
416}
417
8d56e5c5 418static void set_thread_esr(unsigned long address, unsigned long esr)
1d18c47c 419{
f29ad209 420 current->thread.fault_address = address;
cc198460
PM
421
422 /*
423 * If the faulting address is in the kernel, we must sanitize the ESR.
424 * From userspace's point of view, kernel-only mappings don't exist
425 * at all, so we report them as level 0 translation faults.
426 * (This is not quite the way that "no mapping there at all" behaves:
427 * an alignment fault not caused by the memory type would take
428 * precedence over translation fault for a real access to empty
429 * space. Unfortunately we can't easily distinguish "alignment fault
430 * not caused by memory type" from "alignment fault caused by memory
431 * type", so we ignore this wrinkle and just return the translation
432 * fault.)
433 */
356607f2 434 if (!is_ttbr0_addr(current->thread.fault_address)) {
cc198460
PM
435 switch (ESR_ELx_EC(esr)) {
436 case ESR_ELx_EC_DABT_LOW:
437 /*
438 * These bits provide only information about the
439 * faulting instruction, which userspace knows already.
440 * We explicitly clear bits which are architecturally
441 * RES0 in case they are given meanings in future.
442 * We always report the ESR as if the fault was taken
443 * to EL1 and so ISV and the bits in ISS[23:14] are
444 * clear. (In fact it always will be a fault to EL1.)
445 */
446 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
447 ESR_ELx_CM | ESR_ELx_WNR;
448 esr |= ESR_ELx_FSC_FAULT;
449 break;
450 case ESR_ELx_EC_IABT_LOW:
451 /*
452 * Claim a level 0 translation fault.
453 * All other bits are architecturally RES0 for faults
454 * reported with that DFSC value, so we clear them.
455 */
456 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
457 esr |= ESR_ELx_FSC_FAULT;
458 break;
459 default:
460 /*
461 * This should never happen (entry.S only brings us
462 * into this code for insn and data aborts from a lower
463 * exception level). Fail safe by not providing an ESR
464 * context record at all.
465 */
8d56e5c5 466 WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
cc198460
PM
467 esr = 0;
468 break;
469 }
470 }
471
92ff0674 472 current->thread.fault_code = esr;
1d18c47c
CM
473}
474
8d56e5c5 475static void do_bad_area(unsigned long far, unsigned long esr,
dceec3ff 476 struct pt_regs *regs)
1d18c47c 477{
dceec3ff
PC
478 unsigned long addr = untagged_addr(far);
479
1d18c47c
CM
480 /*
481 * If we are in kernel mode at this point, we have no context to
482 * handle this fault with.
483 */
09a6adf5 484 if (user_mode(regs)) {
92ff0674 485 const struct fault_info *inf = esr_to_fault_info(esr);
3eb0f519 486
effb093a 487 set_thread_esr(addr, esr);
dceec3ff 488 arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
92ff0674 489 } else {
67ce16ec 490 __do_kernel_fault(addr, esr, regs);
92ff0674 491 }
1d18c47c
CM
492}
493
d91d5808
MHC
494#define VM_FAULT_BADMAP ((__force vm_fault_t)0x010000)
495#define VM_FAULT_BADACCESS ((__force vm_fault_t)0x020000)
1d18c47c 496
50a7ca3c 497static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
6a1bb025
PX
498 unsigned int mm_flags, unsigned long vm_flags,
499 struct pt_regs *regs)
1d18c47c 500{
4745224b 501 struct vm_area_struct *vma = find_vma(mm, addr);
1d18c47c 502
1d18c47c 503 if (unlikely(!vma))
4745224b 504 return VM_FAULT_BADMAP;
1d18c47c
CM
505
506 /*
507 * Ok, we have a good vm_area for this memory access, so we can handle
508 * it.
509 */
4745224b
AK
510 if (unlikely(vma->vm_start > addr)) {
511 if (!(vma->vm_flags & VM_GROWSDOWN))
512 return VM_FAULT_BADMAP;
513 if (expand_stack(vma, addr))
514 return VM_FAULT_BADMAP;
515 }
516
db6f4106
WD
517 /*
518 * Check that the permissions on the VMA allow for the fault which
cab15ce6 519 * occurred.
db6f4106 520 */
4745224b
AK
521 if (!(vma->vm_flags & vm_flags))
522 return VM_FAULT_BADACCESS;
84c5e23e 523 return handle_mm_fault(vma, addr, mm_flags, regs);
1d18c47c
CM
524}
525
8d56e5c5 526static bool is_el0_instruction_abort(unsigned long esr)
541ec870
MR
527{
528 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
529}
530
c49bd02f
AK
531/*
532 * Note: not valid for EL1 DC IVAC, but we never use that such that it
533 * should fault. EL0 cannot issue DC IVAC (undef).
534 */
8d56e5c5 535static bool is_write_abort(unsigned long esr)
c49bd02f
AK
536{
537 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
538}
539
8d56e5c5 540static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
1d18c47c
CM
541 struct pt_regs *regs)
542{
2d2837fa 543 const struct fault_info *inf;
61681036 544 struct mm_struct *mm = current->mm;
6a1bb025 545 vm_fault_t fault;
18107f8a 546 unsigned long vm_flags;
dde16072 547 unsigned int mm_flags = FAULT_FLAG_DEFAULT;
dceec3ff 548 unsigned long addr = untagged_addr(far);
cd7f176a
SB
549#ifdef CONFIG_PER_VMA_LOCK
550 struct vm_area_struct *vma;
551#endif
db6f4106 552
b98cca44 553 if (kprobe_page_fault(regs, esr))
2dd0e8d2
SP
554 return 0;
555
1d18c47c
CM
556 /*
557 * If we're in an interrupt or have no user context, we must not take
558 * the fault.
559 */
70ffdb93 560 if (faulthandler_disabled() || !mm)
1d18c47c
CM
561 goto no_context;
562
759496ba
JW
563 if (user_mode(regs))
564 mm_flags |= FAULT_FLAG_USER;
565
18107f8a
VM
566 /*
567 * vm_flags tells us what bits we must have in vma->vm_flags
568 * for the fault to be benign, __do_page_fault() would check
569 * vma->vm_flags & vm_flags and returns an error if the
570 * intersection is empty
571 */
541ec870 572 if (is_el0_instruction_abort(esr)) {
18107f8a 573 /* It was exec fault */
759496ba 574 vm_flags = VM_EXEC;
01de1776 575 mm_flags |= FAULT_FLAG_INSTRUCTION;
c49bd02f 576 } else if (is_write_abort(esr)) {
18107f8a 577 /* It was write fault */
759496ba
JW
578 vm_flags = VM_WRITE;
579 mm_flags |= FAULT_FLAG_WRITE;
18107f8a
VM
580 } else {
581 /* It was read fault */
582 vm_flags = VM_READ;
583 /* Write implies read */
584 vm_flags |= VM_WRITE;
585 /* If EPAN is absent then exec implies read */
586 if (!cpus_have_const_cap(ARM64_HAS_EPAN))
587 vm_flags |= VM_EXEC;
759496ba
JW
588 }
589
356607f2 590 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
9adeb8e7 591 if (is_el1_instruction_abort(esr))
c870f14e
MR
592 die_kernel_fault("execution of user memory",
593 addr, esr, regs);
9adeb8e7 594
57f4959b 595 if (!search_exception_tables(regs->pc))
c870f14e
MR
596 die_kernel_fault("access to user memory outside uaccess routines",
597 addr, esr, regs);
57f4959b 598 }
338d4f49 599
0e3a9026
PA
600 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
601
cd7f176a
SB
602#ifdef CONFIG_PER_VMA_LOCK
603 if (!(mm_flags & FAULT_FLAG_USER))
604 goto lock_mmap;
605
606 vma = lock_vma_under_rcu(mm, addr);
607 if (!vma)
608 goto lock_mmap;
609
610 if (!(vma->vm_flags & vm_flags)) {
611 vma_end_read(vma);
612 goto lock_mmap;
613 }
614 fault = handle_mm_fault(vma, addr & PAGE_MASK,
615 mm_flags | FAULT_FLAG_VMA_LOCK, regs);
616 vma_end_read(vma);
617
618 if (!(fault & VM_FAULT_RETRY)) {
619 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
620 goto done;
621 }
622 count_vm_vma_lock_event(VMA_LOCK_RETRY);
623
624 /* Quick path to respond to signals */
625 if (fault_signal_pending(fault, regs)) {
626 if (!user_mode(regs))
627 goto no_context;
628 return 0;
629 }
630lock_mmap:
631#endif /* CONFIG_PER_VMA_LOCK */
1d18c47c
CM
632 /*
633 * As per x86, we may deadlock here. However, since the kernel only
634 * validly references user space from well defined areas of the code,
635 * we can bug out early if this is from code which shouldn't.
636 */
d8ed45c5 637 if (!mmap_read_trylock(mm)) {
1d18c47c
CM
638 if (!user_mode(regs) && !search_exception_tables(regs->pc))
639 goto no_context;
640retry:
d8ed45c5 641 mmap_read_lock(mm);
1d18c47c
CM
642 } else {
643 /*
abd4737f 644 * The above mmap_read_trylock() might have succeeded in which
1d18c47c
CM
645 * case, we'll have missed the might_sleep() from down_read().
646 */
647 might_sleep();
648#ifdef CONFIG_DEBUG_VM
a0509313 649 if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
d8ed45c5 650 mmap_read_unlock(mm);
1d18c47c 651 goto no_context;
a0509313 652 }
1d18c47c
CM
653#endif
654 }
655
6a1bb025 656 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs);
1d18c47c 657
b502f038
PX
658 /* Quick path to respond to signals */
659 if (fault_signal_pending(fault, regs)) {
660 if (!user_mode(regs))
661 goto no_context;
662 return 0;
663 }
0e3a9026 664
d9272525
PX
665 /* The fault is fully completed (including releasing mmap lock) */
666 if (fault & VM_FAULT_COMPLETED)
667 return 0;
668
b502f038 669 if (fault & VM_FAULT_RETRY) {
36ef159f
QZ
670 mm_flags |= FAULT_FLAG_TRIED;
671 goto retry;
0e3a9026 672 }
d8ed45c5 673 mmap_read_unlock(mm);
1d18c47c 674
cd7f176a
SB
675#ifdef CONFIG_PER_VMA_LOCK
676done:
677#endif
1d18c47c 678 /*
0e3a9026 679 * Handle the "normal" (no error) case first.
1d18c47c 680 */
0e3a9026 681 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
6a1bb025 682 VM_FAULT_BADACCESS))))
1d18c47c
CM
683 return 0;
684
87134102
JW
685 /*
686 * If we are in kernel mode at this point, we have no context to
687 * handle this fault with.
688 */
689 if (!user_mode(regs))
690 goto no_context;
691
1d18c47c
CM
692 if (fault & VM_FAULT_OOM) {
693 /*
694 * We ran out of memory, call the OOM killer, and return to
695 * userspace (which will retry the fault, or kill us if we got
696 * oom-killed).
697 */
698 pagefault_out_of_memory();
699 return 0;
700 }
701
2d2837fa 702 inf = esr_to_fault_info(esr);
559d8d91 703 set_thread_esr(addr, esr);
1d18c47c
CM
704 if (fault & VM_FAULT_SIGBUS) {
705 /*
706 * We had some memory, but were unable to successfully fix up
707 * this page fault.
708 */
dceec3ff 709 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
9ea3a974
EB
710 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
711 unsigned int lsb;
712
713 lsb = PAGE_SHIFT;
714 if (fault & VM_FAULT_HWPOISON_LARGE)
715 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
92ff0674 716
dceec3ff 717 arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
1d18c47c
CM
718 } else {
719 /*
720 * Something tried to access memory that isn't in our memory
721 * map.
722 */
feca355b
EB
723 arm64_force_sig_fault(SIGSEGV,
724 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
dceec3ff 725 far, inf->name);
1d18c47c
CM
726 }
727
1d18c47c
CM
728 return 0;
729
730no_context:
67ce16ec 731 __do_kernel_fault(addr, esr, regs);
1d18c47c
CM
732 return 0;
733}
734
dceec3ff 735static int __kprobes do_translation_fault(unsigned long far,
8d56e5c5 736 unsigned long esr,
1d18c47c
CM
737 struct pt_regs *regs)
738{
dceec3ff
PC
739 unsigned long addr = untagged_addr(far);
740
356607f2 741 if (is_ttbr0_addr(addr))
dceec3ff 742 return do_page_fault(far, esr, regs);
1d18c47c 743
dceec3ff 744 do_bad_area(far, esr, regs);
1d18c47c
CM
745 return 0;
746}
747
8d56e5c5 748static int do_alignment_fault(unsigned long far, unsigned long esr,
52d7523d
EL
749 struct pt_regs *regs)
750{
3fc24ef3
AB
751 if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) &&
752 compat_user_mode(regs))
753 return do_compat_alignment_fixup(far, regs);
dceec3ff 754 do_bad_area(far, esr, regs);
52d7523d
EL
755 return 0;
756}
757
8d56e5c5 758static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
1d18c47c 759{
f67d5c4f 760 return 1; /* "fault" */
1d18c47c
CM
761}
762
8d56e5c5 763static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
32015c23 764{
32015c23 765 const struct fault_info *inf;
dceec3ff 766 unsigned long siaddr;
32015c23
TB
767
768 inf = esr_to_fault_info(esr);
32015c23 769
8fcc4ae6
JM
770 if (user_mode(regs) && apei_claim_sea(regs) == 0) {
771 /*
772 * APEI claimed this as a firmware-first notification.
773 * Some processing deferred to task_work before ret_to_user().
774 */
775 return 0;
776 }
7edda088 777
dceec3ff
PC
778 if (esr & ESR_ELx_FnV) {
779 siaddr = 0;
780 } else {
781 /*
782 * The architecture specifies that the tag bits of FAR_EL1 are
783 * UNKNOWN for synchronous external aborts. Mask them out now
784 * so that userspace doesn't see them.
785 */
786 siaddr = untagged_addr(far);
787 }
6fa998e8 788 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
32015c23 789
faa75e14 790 return 0;
32015c23
TB
791}
792
8d56e5c5 793static int do_tag_check_fault(unsigned long far, unsigned long esr,
637ec831
VF
794 struct pt_regs *regs)
795{
dceec3ff 796 /*
3ed86b9a
AK
797 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
798 * for tag check faults. Set them to corresponding bits in the untagged
799 * address.
dceec3ff 800 */
3ed86b9a 801 far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
dceec3ff 802 do_bad_area(far, esr, regs);
637ec831
VF
803 return 0;
804}
805
09a6adf5 806static const struct fault_info fault_info[] = {
af40ff68
DM
807 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
808 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
809 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
810 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
7f73f7ae 811 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
1d18c47c
CM
812 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
813 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
760bfb47 814 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
af40ff68 815 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
084bd298
SC
816 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
817 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
1d18c47c 818 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
af40ff68 819 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
084bd298
SC
820 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
821 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
1d18c47c 822 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
af40ff68 823 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
637ec831 824 { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" },
af40ff68
DM
825 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
826 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
827 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
828 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
829 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
830 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
831 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
832 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
833 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
834 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
835 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
836 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
837 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
838 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
839 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
52d7523d 840 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
af40ff68
DM
841 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
842 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
843 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
844 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
845 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
846 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
847 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
848 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
849 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
850 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
851 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
852 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
853 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
854 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
855 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
856 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
857 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
858 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
859 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
860 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
861 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
862 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
863 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
864 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
865 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
866 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
867 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
868 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
869 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
870 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
1d18c47c
CM
871};
872
8d56e5c5 873void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
1d18c47c 874{
09a6adf5 875 const struct fault_info *inf = esr_to_fault_info(esr);
dceec3ff 876 unsigned long addr = untagged_addr(far);
1d18c47c 877
dceec3ff 878 if (!inf->fn(far, esr, regs))
1d18c47c
CM
879 return;
880
6f6cfa58
MR
881 if (!user_mode(regs))
882 die_kernel_fault(inf->name, addr, esr, regs);
42dbf54e 883
dceec3ff
PC
884 /*
885 * At this point we have an unrecognized fault type whose tag bits may
886 * have been defined as UNKNOWN. Therefore we only expose the untagged
887 * address to the signal handler.
888 */
889 arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
1d18c47c 890}
b6e43c0e 891NOKPROBE_SYMBOL(do_mem_abort);
1d18c47c 892
8d56e5c5 893void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
1d18c47c 894{
dceec3ff
PC
895 arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
896 addr, esr);
1d18c47c 897}
b6e43c0e 898NOKPROBE_SYMBOL(do_sp_pc_abort);
1d18c47c 899
9fb7410f
DM
900/*
901 * __refdata because early_brk64 is __init, but the reference to it is
902 * clobbered at arch_initcall time.
903 * See traps.c and debug-monitors.c:debug_traps_init().
904 */
905static struct fault_info __refdata debug_fault_info[] = {
1d18c47c
CM
906 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
907 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
908 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
af40ff68 909 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
1d18c47c 910 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
af40ff68 911 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
9fb7410f 912 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
af40ff68 913 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
1d18c47c
CM
914};
915
916void __init hook_debug_fault_code(int nr,
8d56e5c5 917 int (*fn)(unsigned long, unsigned long, struct pt_regs *),
1d18c47c
CM
918 int sig, int code, const char *name)
919{
920 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
921
922 debug_fault_info[nr].fn = fn;
923 debug_fault_info[nr].sig = sig;
924 debug_fault_info[nr].code = code;
925 debug_fault_info[nr].name = name;
926}
927
d8bb6718
MH
928/*
929 * In debug exception context, we explicitly disable preemption despite
930 * having interrupts disabled.
931 * This serves two purposes: it makes it much less likely that we would
932 * accidentally schedule in exception context and it will force a warning
933 * if we somehow manage to schedule by accident.
934 */
935static void debug_exception_enter(struct pt_regs *regs)
936{
d8bb6718
MH
937 preempt_disable();
938
939 /* This code is a bit fragile. Test it. */
940 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
941}
942NOKPROBE_SYMBOL(debug_exception_enter);
943
944static void debug_exception_exit(struct pt_regs *regs)
945{
946 preempt_enable_no_resched();
d8bb6718
MH
947}
948NOKPROBE_SYMBOL(debug_exception_exit);
949
8d56e5c5 950void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr,
afa7c0e5 951 struct pt_regs *regs)
1d18c47c 952{
359048f9 953 const struct fault_info *inf = esr_to_debug_fault_info(esr);
b9a4b9d0 954 unsigned long pc = instruction_pointer(regs);
1d18c47c 955
d8bb6718 956 debug_exception_enter(regs);
1d18c47c 957
b9a4b9d0 958 if (user_mode(regs) && !is_ttbr0_addr(pc))
5dfc6ed2
WD
959 arm64_apply_bp_hardening();
960
52c6d145 961 if (inf->fn(addr_if_watchpoint, esr, regs)) {
dceec3ff 962 arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
6afedcd2 963 }
1d18c47c 964
d8bb6718 965 debug_exception_exit(regs);
1d18c47c 966}
2dd0e8d2 967NOKPROBE_SYMBOL(do_debug_exception);
013bb59d
PC
968
969/*
970 * Used during anonymous page fault handling.
971 */
6bc56a4d 972struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
013bb59d
PC
973 unsigned long vaddr)
974{
975 gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO;
976
977 /*
978 * If the page is mapped with PROT_MTE, initialise the tags at the
979 * point of allocation and page zeroing as this is usually faster than
980 * separate DC ZVA and STGM.
981 */
982 if (vma->vm_flags & VM_MTE)
983 flags |= __GFP_ZEROTAGS;
984
6bc56a4d 985 return vma_alloc_folio(flags, 0, vma, vaddr, false);
013bb59d
PC
986}
987
988void tag_clear_highpage(struct page *page)
989{
d77e59a8
CM
990 /* Newly allocated page, shouldn't have been tagged yet */
991 WARN_ON_ONCE(!try_page_mte_tagging(page));
013bb59d 992 mte_zero_clear_page_tags(page_address(page));
e059853d 993 set_page_mte_tagged(page);
013bb59d 994}