signal/powerpc: Use force_sig_fault where appropriate
[linux-block.git] / arch / arm64 / mm / fault.c
CommitLineData
1d18c47c
CM
1/*
2 * Based on arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1995-2004 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
0edfa839 21#include <linux/extable.h>
1d18c47c
CM
22#include <linux/signal.h>
23#include <linux/mm.h>
24#include <linux/hardirq.h>
25#include <linux/init.h>
26#include <linux/kprobes.h>
27#include <linux/uaccess.h>
28#include <linux/page-flags.h>
3f07c014 29#include <linux/sched/signal.h>
b17b0153 30#include <linux/sched/debug.h>
1d18c47c
CM
31#include <linux/highmem.h>
32#include <linux/perf_event.h>
7209c868 33#include <linux/preempt.h>
e7c600f1 34#include <linux/hugetlb.h>
1d18c47c 35
7209c868 36#include <asm/bug.h>
3bbf7157 37#include <asm/cmpxchg.h>
338d4f49 38#include <asm/cpufeature.h>
1d18c47c
CM
39#include <asm/exception.h>
40#include <asm/debug-monitors.h>
9141300a 41#include <asm/esr.h>
338d4f49 42#include <asm/sysreg.h>
1d18c47c
CM
43#include <asm/system_misc.h>
44#include <asm/pgtable.h>
45#include <asm/tlbflush.h>
92ff0674 46#include <asm/traps.h>
1d18c47c 47
7edda088
TB
48#include <acpi/ghes.h>
49
09a6adf5
VK
50struct fault_info {
51 int (*fn)(unsigned long addr, unsigned int esr,
52 struct pt_regs *regs);
53 int sig;
54 int code;
55 const char *name;
56};
57
58static const struct fault_info fault_info[];
59
60static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
61{
62 return fault_info + (esr & 63);
63}
3495386b 64
2dd0e8d2
SP
65#ifdef CONFIG_KPROBES
66static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
67{
68 int ret = 0;
69
70 /* kprobe_running() needs smp_processor_id() */
71 if (!user_mode(regs)) {
72 preempt_disable();
73 if (kprobe_running() && kprobe_fault_handler(regs, esr))
74 ret = 1;
75 preempt_enable();
76 }
77
78 return ret;
79}
80#else
81static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
82{
83 return 0;
84}
85#endif
86
1f9b8936
JT
87static void data_abort_decode(unsigned int esr)
88{
89 pr_alert("Data abort info:\n");
90
91 if (esr & ESR_ELx_ISV) {
92 pr_alert(" Access size = %u byte(s)\n",
93 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
94 pr_alert(" SSE = %lu, SRT = %lu\n",
95 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
96 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
97 pr_alert(" SF = %lu, AR = %lu\n",
98 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
99 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
100 } else {
0a6de8b8 101 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
1f9b8936
JT
102 }
103
104 pr_alert(" CM = %lu, WnR = %lu\n",
105 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
106 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
107}
108
1f9b8936
JT
109static void mem_abort_decode(unsigned int esr)
110{
111 pr_alert("Mem abort info:\n");
112
42dbf54e 113 pr_alert(" ESR = 0x%08x\n", esr);
1f9b8936
JT
114 pr_alert(" Exception class = %s, IL = %u bits\n",
115 esr_get_class_string(esr),
116 (esr & ESR_ELx_IL) ? 32 : 16);
117 pr_alert(" SET = %lu, FnV = %lu\n",
118 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
119 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
120 pr_alert(" EA = %lu, S1PTW = %lu\n",
121 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
122 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
123
124 if (esr_is_data_abort(esr))
125 data_abort_decode(esr);
126}
127
1d18c47c 128/*
67ce16ec 129 * Dump out the page tables associated with 'addr' in the currently active mm.
1d18c47c 130 */
67ce16ec 131void show_pte(unsigned long addr)
1d18c47c 132{
67ce16ec 133 struct mm_struct *mm;
20a004e7
WD
134 pgd_t *pgdp;
135 pgd_t pgd;
1d18c47c 136
67ce16ec
KM
137 if (addr < TASK_SIZE) {
138 /* TTBR0 */
139 mm = current->active_mm;
140 if (mm == &init_mm) {
141 pr_alert("[%016lx] user address but active_mm is swapper\n",
142 addr);
143 return;
144 }
145 } else if (addr >= VA_START) {
146 /* TTBR1 */
1d18c47c 147 mm = &init_mm;
67ce16ec
KM
148 } else {
149 pr_alert("[%016lx] address between user and kernel address ranges\n",
150 addr);
151 return;
152 }
1d18c47c 153
20a004e7 154 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp = %p\n",
1eb34b6e
WD
155 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
156 VA_BITS, mm->pgd);
20a004e7
WD
157 pgdp = pgd_offset(mm, addr);
158 pgd = READ_ONCE(*pgdp);
159 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
1d18c47c
CM
160
161 do {
20a004e7
WD
162 pud_t *pudp, pud;
163 pmd_t *pmdp, pmd;
164 pte_t *ptep, pte;
1d18c47c 165
20a004e7 166 if (pgd_none(pgd) || pgd_bad(pgd))
1d18c47c
CM
167 break;
168
20a004e7
WD
169 pudp = pud_offset(pgdp, addr);
170 pud = READ_ONCE(*pudp);
171 pr_cont(", pud=%016llx", pud_val(pud));
172 if (pud_none(pud) || pud_bad(pud))
1d18c47c
CM
173 break;
174
20a004e7
WD
175 pmdp = pmd_offset(pudp, addr);
176 pmd = READ_ONCE(*pmdp);
177 pr_cont(", pmd=%016llx", pmd_val(pmd));
178 if (pmd_none(pmd) || pmd_bad(pmd))
1d18c47c
CM
179 break;
180
20a004e7
WD
181 ptep = pte_offset_map(pmdp, addr);
182 pte = READ_ONCE(*ptep);
183 pr_cont(", pte=%016llx", pte_val(pte));
184 pte_unmap(ptep);
1d18c47c
CM
185 } while(0);
186
6ef4fb38 187 pr_cont("\n");
1d18c47c
CM
188}
189
66dbd6e6
CM
190/*
191 * This function sets the access flags (dirty, accessed), as well as write
192 * permission, and only to a more permissive setting.
193 *
194 * It needs to cope with hardware update of the accessed/dirty state by other
195 * agents in the system and can safely skip the __sync_icache_dcache() call as,
196 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
197 *
198 * Returns whether or not the PTE actually changed.
199 */
200int ptep_set_access_flags(struct vm_area_struct *vma,
201 unsigned long address, pte_t *ptep,
202 pte_t entry, int dirty)
203{
3bbf7157 204 pteval_t old_pteval, pteval;
20a004e7 205 pte_t pte = READ_ONCE(*ptep);
66dbd6e6 206
20a004e7 207 if (pte_same(pte, entry))
66dbd6e6
CM
208 return 0;
209
210 /* only preserve the access flags and write permission */
73e86cb0 211 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
66dbd6e6
CM
212
213 /*
214 * Setting the flags must be done atomically to avoid racing with the
6d332747
CM
215 * hardware update of the access/dirty state. The PTE_RDONLY bit must
216 * be set to the most permissive (lowest value) of *ptep and entry
217 * (calculated as: a & b == ~(~a | ~b)).
66dbd6e6 218 */
6d332747 219 pte_val(entry) ^= PTE_RDONLY;
20a004e7 220 pteval = pte_val(pte);
3bbf7157
CM
221 do {
222 old_pteval = pteval;
223 pteval ^= PTE_RDONLY;
224 pteval |= pte_val(entry);
225 pteval ^= PTE_RDONLY;
226 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
227 } while (pteval != old_pteval);
66dbd6e6
CM
228
229 flush_tlb_fix_spurious_fault(vma, address);
230 return 1;
231}
66dbd6e6 232
9adeb8e7
LA
233static bool is_el1_instruction_abort(unsigned int esr)
234{
235 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
236}
237
969e61ba
MR
238static inline bool is_el1_permission_fault(unsigned int esr,
239 struct pt_regs *regs,
240 unsigned long addr)
b824b930
SB
241{
242 unsigned int ec = ESR_ELx_EC(esr);
243 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
244
245 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
246 return false;
247
248 if (fsc_type == ESR_ELx_FSC_PERM)
249 return true;
250
51369e39 251 if (addr < TASK_SIZE && system_uses_ttbr0_pan())
b824b930
SB
252 return fsc_type == ESR_ELx_FSC_FAULT &&
253 (regs->pstate & PSR_PAN_BIT);
254
255 return false;
256}
257
c870f14e
MR
258static void die_kernel_fault(const char *msg, unsigned long addr,
259 unsigned int esr, struct pt_regs *regs)
260{
261 bust_spinlocks(1);
262
263 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
264 addr);
265
266 mem_abort_decode(esr);
267
268 show_pte(addr);
269 die("Oops", regs, esr);
270 bust_spinlocks(0);
271 do_exit(SIGKILL);
272}
273
67ce16ec
KM
274static void __do_kernel_fault(unsigned long addr, unsigned int esr,
275 struct pt_regs *regs)
1d18c47c 276{
b824b930
SB
277 const char *msg;
278
1d18c47c
CM
279 /*
280 * Are we prepared to handle this kernel fault?
9adeb8e7 281 * We are almost certainly not prepared to handle instruction faults.
1d18c47c 282 */
9adeb8e7 283 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
1d18c47c
CM
284 return;
285
969e61ba 286 if (is_el1_permission_fault(esr, regs, addr)) {
b824b930
SB
287 if (esr & ESR_ELx_WNR)
288 msg = "write to read-only memory";
289 else
290 msg = "read from unreadable memory";
291 } else if (addr < PAGE_SIZE) {
292 msg = "NULL pointer dereference";
293 } else {
294 msg = "paging request";
295 }
296
c870f14e 297 die_kernel_fault(msg, addr, esr, regs);
1d18c47c
CM
298}
299
92ff0674 300static void __do_user_fault(struct siginfo *info, unsigned int esr)
1d18c47c 301{
92ff0674 302 current->thread.fault_address = (unsigned long)info->si_addr;
cc198460
PM
303
304 /*
305 * If the faulting address is in the kernel, we must sanitize the ESR.
306 * From userspace's point of view, kernel-only mappings don't exist
307 * at all, so we report them as level 0 translation faults.
308 * (This is not quite the way that "no mapping there at all" behaves:
309 * an alignment fault not caused by the memory type would take
310 * precedence over translation fault for a real access to empty
311 * space. Unfortunately we can't easily distinguish "alignment fault
312 * not caused by memory type" from "alignment fault caused by memory
313 * type", so we ignore this wrinkle and just return the translation
314 * fault.)
315 */
316 if (current->thread.fault_address >= TASK_SIZE) {
317 switch (ESR_ELx_EC(esr)) {
318 case ESR_ELx_EC_DABT_LOW:
319 /*
320 * These bits provide only information about the
321 * faulting instruction, which userspace knows already.
322 * We explicitly clear bits which are architecturally
323 * RES0 in case they are given meanings in future.
324 * We always report the ESR as if the fault was taken
325 * to EL1 and so ISV and the bits in ISS[23:14] are
326 * clear. (In fact it always will be a fault to EL1.)
327 */
328 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
329 ESR_ELx_CM | ESR_ELx_WNR;
330 esr |= ESR_ELx_FSC_FAULT;
331 break;
332 case ESR_ELx_EC_IABT_LOW:
333 /*
334 * Claim a level 0 translation fault.
335 * All other bits are architecturally RES0 for faults
336 * reported with that DFSC value, so we clear them.
337 */
338 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
339 esr |= ESR_ELx_FSC_FAULT;
340 break;
341 default:
342 /*
343 * This should never happen (entry.S only brings us
344 * into this code for insn and data aborts from a lower
345 * exception level). Fail safe by not providing an ESR
346 * context record at all.
347 */
348 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
349 esr = 0;
350 break;
351 }
352 }
353
92ff0674
WD
354 current->thread.fault_code = esr;
355 arm64_force_sig_info(info, esr_to_fault_info(esr)->name, current);
1d18c47c
CM
356}
357
59f67e16 358static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
1d18c47c 359{
1d18c47c
CM
360 /*
361 * If we are in kernel mode at this point, we have no context to
362 * handle this fault with.
363 */
09a6adf5 364 if (user_mode(regs)) {
92ff0674 365 const struct fault_info *inf = esr_to_fault_info(esr);
3eb0f519
EB
366 struct siginfo si;
367
368 clear_siginfo(&si);
369 si.si_signo = inf->sig;
370 si.si_code = inf->code;
371 si.si_addr = (void __user *)addr;
92ff0674
WD
372
373 __do_user_fault(&si, esr);
374 } else {
67ce16ec 375 __do_kernel_fault(addr, esr, regs);
92ff0674 376 }
1d18c47c
CM
377}
378
379#define VM_FAULT_BADMAP 0x010000
380#define VM_FAULT_BADACCESS 0x020000
381
50a7ca3c 382static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
db6f4106 383 unsigned int mm_flags, unsigned long vm_flags,
1d18c47c
CM
384 struct task_struct *tsk)
385{
386 struct vm_area_struct *vma;
50a7ca3c 387 vm_fault_t fault;
1d18c47c
CM
388
389 vma = find_vma(mm, addr);
390 fault = VM_FAULT_BADMAP;
391 if (unlikely(!vma))
392 goto out;
393 if (unlikely(vma->vm_start > addr))
394 goto check_stack;
395
396 /*
397 * Ok, we have a good vm_area for this memory access, so we can handle
398 * it.
399 */
400good_area:
db6f4106
WD
401 /*
402 * Check that the permissions on the VMA allow for the fault which
cab15ce6 403 * occurred.
db6f4106
WD
404 */
405 if (!(vma->vm_flags & vm_flags)) {
1d18c47c
CM
406 fault = VM_FAULT_BADACCESS;
407 goto out;
408 }
409
dcddffd4 410 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
1d18c47c
CM
411
412check_stack:
413 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
414 goto good_area;
415out:
416 return fault;
417}
418
541ec870
MR
419static bool is_el0_instruction_abort(unsigned int esr)
420{
421 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
422}
423
1d18c47c
CM
424static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
425 struct pt_regs *regs)
426{
427 struct task_struct *tsk;
428 struct mm_struct *mm;
92ff0674 429 struct siginfo si;
50a7ca3c 430 vm_fault_t fault, major = 0;
cab15ce6 431 unsigned long vm_flags = VM_READ | VM_WRITE;
db6f4106
WD
432 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
433
2dd0e8d2
SP
434 if (notify_page_fault(regs, esr))
435 return 0;
436
1d18c47c
CM
437 tsk = current;
438 mm = tsk->mm;
439
1d18c47c
CM
440 /*
441 * If we're in an interrupt or have no user context, we must not take
442 * the fault.
443 */
70ffdb93 444 if (faulthandler_disabled() || !mm)
1d18c47c
CM
445 goto no_context;
446
759496ba
JW
447 if (user_mode(regs))
448 mm_flags |= FAULT_FLAG_USER;
449
541ec870 450 if (is_el0_instruction_abort(esr)) {
759496ba 451 vm_flags = VM_EXEC;
aed40e01 452 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
759496ba
JW
453 vm_flags = VM_WRITE;
454 mm_flags |= FAULT_FLAG_WRITE;
455 }
456
969e61ba 457 if (addr < TASK_SIZE && is_el1_permission_fault(esr, regs, addr)) {
e19a6ee2
JM
458 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
459 if (regs->orig_addr_limit == KERNEL_DS)
c870f14e
MR
460 die_kernel_fault("access to user memory with fs=KERNEL_DS",
461 addr, esr, regs);
70544196 462
9adeb8e7 463 if (is_el1_instruction_abort(esr))
c870f14e
MR
464 die_kernel_fault("execution of user memory",
465 addr, esr, regs);
9adeb8e7 466
57f4959b 467 if (!search_exception_tables(regs->pc))
c870f14e
MR
468 die_kernel_fault("access to user memory outside uaccess routines",
469 addr, esr, regs);
57f4959b 470 }
338d4f49 471
0e3a9026
PA
472 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
473
1d18c47c
CM
474 /*
475 * As per x86, we may deadlock here. However, since the kernel only
476 * validly references user space from well defined areas of the code,
477 * we can bug out early if this is from code which shouldn't.
478 */
479 if (!down_read_trylock(&mm->mmap_sem)) {
480 if (!user_mode(regs) && !search_exception_tables(regs->pc))
481 goto no_context;
482retry:
483 down_read(&mm->mmap_sem);
484 } else {
485 /*
486 * The above down_read_trylock() might have succeeded in which
487 * case, we'll have missed the might_sleep() from down_read().
488 */
489 might_sleep();
490#ifdef CONFIG_DEBUG_VM
491 if (!user_mode(regs) && !search_exception_tables(regs->pc))
492 goto no_context;
493#endif
494 }
495
db6f4106 496 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
0e3a9026 497 major |= fault & VM_FAULT_MAJOR;
1d18c47c 498
0e3a9026
PA
499 if (fault & VM_FAULT_RETRY) {
500 /*
501 * If we need to retry but a fatal signal is pending,
502 * handle the signal first. We do not need to release
503 * the mmap_sem because it would already be released
504 * in __lock_page_or_retry in mm/filemap.c.
505 */
289d07a2
MR
506 if (fatal_signal_pending(current)) {
507 if (!user_mode(regs))
508 goto no_context;
0e3a9026 509 return 0;
289d07a2 510 }
0e3a9026
PA
511
512 /*
513 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
514 * starvation.
515 */
516 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
517 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
518 mm_flags |= FAULT_FLAG_TRIED;
519 goto retry;
520 }
521 }
522 up_read(&mm->mmap_sem);
1d18c47c
CM
523
524 /*
0e3a9026 525 * Handle the "normal" (no error) case first.
1d18c47c 526 */
0e3a9026
PA
527 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
528 VM_FAULT_BADACCESS)))) {
529 /*
530 * Major/minor page fault accounting is only done
531 * once. If we go through a retry, it is extremely
532 * likely that the page will be found in page cache at
533 * that point.
534 */
535 if (major) {
1d18c47c
CM
536 tsk->maj_flt++;
537 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
538 addr);
539 } else {
540 tsk->min_flt++;
541 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
542 addr);
543 }
1d18c47c 544
1d18c47c 545 return 0;
0e3a9026 546 }
1d18c47c 547
87134102
JW
548 /*
549 * If we are in kernel mode at this point, we have no context to
550 * handle this fault with.
551 */
552 if (!user_mode(regs))
553 goto no_context;
554
1d18c47c
CM
555 if (fault & VM_FAULT_OOM) {
556 /*
557 * We ran out of memory, call the OOM killer, and return to
558 * userspace (which will retry the fault, or kill us if we got
559 * oom-killed).
560 */
561 pagefault_out_of_memory();
562 return 0;
563 }
564
92ff0674
WD
565 clear_siginfo(&si);
566 si.si_addr = (void __user *)addr;
567
1d18c47c
CM
568 if (fault & VM_FAULT_SIGBUS) {
569 /*
570 * We had some memory, but were unable to successfully fix up
571 * this page fault.
572 */
92ff0674
WD
573 si.si_signo = SIGBUS;
574 si.si_code = BUS_ADRERR;
575 } else if (fault & VM_FAULT_HWPOISON_LARGE) {
576 unsigned int hindex = VM_FAULT_GET_HINDEX(fault);
577
578 si.si_signo = SIGBUS;
579 si.si_code = BUS_MCEERR_AR;
580 si.si_addr_lsb = hstate_index_to_shift(hindex);
581 } else if (fault & VM_FAULT_HWPOISON) {
582 si.si_signo = SIGBUS;
583 si.si_code = BUS_MCEERR_AR;
584 si.si_addr_lsb = PAGE_SHIFT;
1d18c47c
CM
585 } else {
586 /*
587 * Something tried to access memory that isn't in our memory
588 * map.
589 */
92ff0674
WD
590 si.si_signo = SIGSEGV;
591 si.si_code = fault == VM_FAULT_BADACCESS ?
592 SEGV_ACCERR : SEGV_MAPERR;
1d18c47c
CM
593 }
594
92ff0674 595 __do_user_fault(&si, esr);
1d18c47c
CM
596 return 0;
597
598no_context:
67ce16ec 599 __do_kernel_fault(addr, esr, regs);
1d18c47c
CM
600 return 0;
601}
602
1d18c47c
CM
603static int __kprobes do_translation_fault(unsigned long addr,
604 unsigned int esr,
605 struct pt_regs *regs)
606{
607 if (addr < TASK_SIZE)
608 return do_page_fault(addr, esr, regs);
609
610 do_bad_area(addr, esr, regs);
611 return 0;
612}
613
52d7523d
EL
614static int do_alignment_fault(unsigned long addr, unsigned int esr,
615 struct pt_regs *regs)
616{
617 do_bad_area(addr, esr, regs);
618 return 0;
619}
620
1d18c47c
CM
621static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
622{
f67d5c4f 623 return 1; /* "fault" */
1d18c47c
CM
624}
625
32015c23
TB
626static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
627{
628 struct siginfo info;
629 const struct fault_info *inf;
630
631 inf = esr_to_fault_info(esr);
32015c23 632
7edda088
TB
633 /*
634 * Synchronous aborts may interrupt code which had interrupts masked.
635 * Before calling out into the wider kernel tell the interested
636 * subsystems.
637 */
638 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
639 if (interrupts_enabled(regs))
640 nmi_enter();
641
faa75e14 642 ghes_notify_sea();
7edda088
TB
643
644 if (interrupts_enabled(regs))
645 nmi_exit();
646 }
647
3eb0f519 648 clear_siginfo(&info);
af40ff68 649 info.si_signo = inf->sig;
32015c23 650 info.si_errno = 0;
af40ff68 651 info.si_code = inf->code;
32015c23
TB
652 if (esr & ESR_ELx_FnV)
653 info.si_addr = NULL;
654 else
655 info.si_addr = (void __user *)addr;
1049c308 656 arm64_notify_die(inf->name, regs, &info, esr);
32015c23 657
faa75e14 658 return 0;
32015c23
TB
659}
660
09a6adf5 661static const struct fault_info fault_info[] = {
af40ff68
DM
662 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
663 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
664 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
665 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
7f73f7ae 666 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
1d18c47c
CM
667 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
668 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
760bfb47 669 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
af40ff68 670 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
084bd298
SC
671 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
672 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
1d18c47c 673 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
af40ff68 674 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
084bd298
SC
675 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
676 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
1d18c47c 677 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
af40ff68
DM
678 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
679 { do_bad, SIGKILL, SI_KERNEL, "unknown 17" },
680 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
681 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
682 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
683 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
684 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
685 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
686 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
687 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
688 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
689 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
690 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
691 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
692 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
693 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
694 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
52d7523d 695 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
af40ff68
DM
696 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
697 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
698 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
699 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
700 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
701 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
702 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
703 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
704 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
705 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
706 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
707 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
708 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
709 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
710 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
711 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
712 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
713 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
714 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
715 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
716 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
717 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
718 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
719 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
720 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
721 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
722 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
723 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
724 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
725 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
1d18c47c
CM
726};
727
621f48e4
TB
728int handle_guest_sea(phys_addr_t addr, unsigned int esr)
729{
1035a078 730 return ghes_notify_sea();
621f48e4
TB
731}
732
1d18c47c
CM
733asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
734 struct pt_regs *regs)
735{
09a6adf5 736 const struct fault_info *inf = esr_to_fault_info(esr);
1d18c47c
CM
737 struct siginfo info;
738
739 if (!inf->fn(addr, esr, regs))
740 return;
741
1049c308
WD
742 if (!user_mode(regs)) {
743 pr_alert("Unhandled fault at 0x%016lx\n", addr);
744 mem_abort_decode(esr);
80b6eb04 745 show_pte(addr);
1049c308 746 }
42dbf54e 747
3eb0f519 748 clear_siginfo(&info);
1d18c47c
CM
749 info.si_signo = inf->sig;
750 info.si_errno = 0;
751 info.si_code = inf->code;
752 info.si_addr = (void __user *)addr;
1049c308 753 arm64_notify_die(inf->name, regs, &info, esr);
1d18c47c
CM
754}
755
30d88c0e
WD
756asmlinkage void __exception do_el0_irq_bp_hardening(void)
757{
758 /* PC has already been checked in entry.S */
759 arm64_apply_bp_hardening();
760}
761
0f15adbb
WD
762asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
763 unsigned int esr,
764 struct pt_regs *regs)
765{
766 /*
767 * We've taken an instruction abort from userspace and not yet
768 * re-enabled IRQs. If the address is a kernel address, apply
769 * BP hardening prior to enabling IRQs and pre-emption.
770 */
771 if (addr > TASK_SIZE)
772 arm64_apply_bp_hardening();
773
774 local_irq_enable();
775 do_mem_abort(addr, esr, regs);
776}
777
778
1d18c47c
CM
779asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
780 unsigned int esr,
781 struct pt_regs *regs)
782{
783 struct siginfo info;
9e793ab8 784
5dfc6ed2
WD
785 if (user_mode(regs)) {
786 if (instruction_pointer(regs) > TASK_SIZE)
787 arm64_apply_bp_hardening();
788 local_irq_enable();
789 }
790
3eb0f519 791 clear_siginfo(&info);
1d18c47c
CM
792 info.si_signo = SIGBUS;
793 info.si_errno = 0;
794 info.si_code = BUS_ADRALN;
795 info.si_addr = (void __user *)addr;
1049c308 796 arm64_notify_die("SP/PC alignment exception", regs, &info, esr);
1d18c47c
CM
797}
798
9fb7410f
DM
799int __init early_brk64(unsigned long addr, unsigned int esr,
800 struct pt_regs *regs);
801
802/*
803 * __refdata because early_brk64 is __init, but the reference to it is
804 * clobbered at arch_initcall time.
805 * See traps.c and debug-monitors.c:debug_traps_init().
806 */
807static struct fault_info __refdata debug_fault_info[] = {
1d18c47c
CM
808 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
809 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
810 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
af40ff68 811 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
1d18c47c 812 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
af40ff68 813 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
9fb7410f 814 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
af40ff68 815 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
1d18c47c
CM
816};
817
818void __init hook_debug_fault_code(int nr,
819 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
820 int sig, int code, const char *name)
821{
822 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
823
824 debug_fault_info[nr].fn = fn;
825 debug_fault_info[nr].sig = sig;
826 debug_fault_info[nr].code = code;
827 debug_fault_info[nr].name = name;
828}
829
830asmlinkage int __exception do_debug_exception(unsigned long addr,
831 unsigned int esr,
832 struct pt_regs *regs)
833{
834 const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
6afedcd2 835 int rv;
1d18c47c 836
6afedcd2
JM
837 /*
838 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
839 * already disabled to preserve the last enabled/disabled addresses.
840 */
841 if (interrupts_enabled(regs))
842 trace_hardirqs_off();
1d18c47c 843
5dfc6ed2
WD
844 if (user_mode(regs) && instruction_pointer(regs) > TASK_SIZE)
845 arm64_apply_bp_hardening();
846
6afedcd2
JM
847 if (!inf->fn(addr, esr, regs)) {
848 rv = 1;
849 } else {
3eb0f519
EB
850 struct siginfo info;
851
852 clear_siginfo(&info);
6afedcd2
JM
853 info.si_signo = inf->sig;
854 info.si_errno = 0;
855 info.si_code = inf->code;
856 info.si_addr = (void __user *)addr;
1049c308 857 arm64_notify_die(inf->name, regs, &info, esr);
6afedcd2
JM
858 rv = 0;
859 }
1d18c47c 860
6afedcd2
JM
861 if (interrupts_enabled(regs))
862 trace_hardirqs_on();
1d18c47c 863
6afedcd2 864 return rv;
1d18c47c 865}
2dd0e8d2 866NOKPROBE_SYMBOL(do_debug_exception);
338d4f49
JM
867
868#ifdef CONFIG_ARM64_PAN
c0cda3b8 869void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
338d4f49 870{
7209c868
JM
871 /*
872 * We modify PSTATE. This won't work from irq context as the PSTATE
873 * is discarded once we return from the exception.
874 */
875 WARN_ON_ONCE(in_interrupt());
876
25be597a 877 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
7209c868 878 asm(SET_PSTATE_PAN(1));
338d4f49
JM
879}
880#endif /* CONFIG_ARM64_PAN */