kasan: preassign tags to objects with ctors or SLAB_TYPESAFE_BY_RCU
[linux-block.git] / arch / arm64 / mm / fault.c
CommitLineData
1d18c47c
CM
1/*
2 * Based on arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1995-2004 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
0edfa839 21#include <linux/extable.h>
1d18c47c
CM
22#include <linux/signal.h>
23#include <linux/mm.h>
24#include <linux/hardirq.h>
25#include <linux/init.h>
26#include <linux/kprobes.h>
27#include <linux/uaccess.h>
28#include <linux/page-flags.h>
3f07c014 29#include <linux/sched/signal.h>
b17b0153 30#include <linux/sched/debug.h>
1d18c47c
CM
31#include <linux/highmem.h>
32#include <linux/perf_event.h>
7209c868 33#include <linux/preempt.h>
e7c600f1 34#include <linux/hugetlb.h>
1d18c47c 35
7209c868 36#include <asm/bug.h>
3bbf7157 37#include <asm/cmpxchg.h>
338d4f49 38#include <asm/cpufeature.h>
1d18c47c 39#include <asm/exception.h>
9a0c0328 40#include <asm/daifflags.h>
1d18c47c 41#include <asm/debug-monitors.h>
9141300a 42#include <asm/esr.h>
338d4f49 43#include <asm/sysreg.h>
1d18c47c
CM
44#include <asm/system_misc.h>
45#include <asm/pgtable.h>
46#include <asm/tlbflush.h>
92ff0674 47#include <asm/traps.h>
1d18c47c 48
7edda088
TB
49#include <acpi/ghes.h>
50
09a6adf5
VK
51struct fault_info {
52 int (*fn)(unsigned long addr, unsigned int esr,
53 struct pt_regs *regs);
54 int sig;
55 int code;
56 const char *name;
57};
58
59static const struct fault_info fault_info[];
359048f9 60static struct fault_info debug_fault_info[];
09a6adf5
VK
61
62static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
63{
00bbd5d9 64 return fault_info + (esr & ESR_ELx_FSC);
09a6adf5 65}
3495386b 66
359048f9
AK
67static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
68{
69 return debug_fault_info + DBG_ESR_EVT(esr);
70}
71
2dd0e8d2
SP
72#ifdef CONFIG_KPROBES
73static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
74{
75 int ret = 0;
76
77 /* kprobe_running() needs smp_processor_id() */
78 if (!user_mode(regs)) {
79 preempt_disable();
80 if (kprobe_running() && kprobe_fault_handler(regs, esr))
81 ret = 1;
82 preempt_enable();
83 }
84
85 return ret;
86}
87#else
88static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
89{
90 return 0;
91}
92#endif
93
1f9b8936
JT
94static void data_abort_decode(unsigned int esr)
95{
96 pr_alert("Data abort info:\n");
97
98 if (esr & ESR_ELx_ISV) {
99 pr_alert(" Access size = %u byte(s)\n",
100 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
101 pr_alert(" SSE = %lu, SRT = %lu\n",
102 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
103 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
104 pr_alert(" SF = %lu, AR = %lu\n",
105 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
106 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
107 } else {
0a6de8b8 108 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
1f9b8936
JT
109 }
110
111 pr_alert(" CM = %lu, WnR = %lu\n",
112 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
113 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
114}
115
1f9b8936
JT
116static void mem_abort_decode(unsigned int esr)
117{
118 pr_alert("Mem abort info:\n");
119
42dbf54e 120 pr_alert(" ESR = 0x%08x\n", esr);
1f9b8936
JT
121 pr_alert(" Exception class = %s, IL = %u bits\n",
122 esr_get_class_string(esr),
123 (esr & ESR_ELx_IL) ? 32 : 16);
124 pr_alert(" SET = %lu, FnV = %lu\n",
125 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
126 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
127 pr_alert(" EA = %lu, S1PTW = %lu\n",
128 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
129 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
130
131 if (esr_is_data_abort(esr))
132 data_abort_decode(esr);
133}
134
1d18c47c 135/*
67ce16ec 136 * Dump out the page tables associated with 'addr' in the currently active mm.
1d18c47c 137 */
67ce16ec 138void show_pte(unsigned long addr)
1d18c47c 139{
67ce16ec 140 struct mm_struct *mm;
20a004e7
WD
141 pgd_t *pgdp;
142 pgd_t pgd;
1d18c47c 143
67ce16ec
KM
144 if (addr < TASK_SIZE) {
145 /* TTBR0 */
146 mm = current->active_mm;
147 if (mm == &init_mm) {
148 pr_alert("[%016lx] user address but active_mm is swapper\n",
149 addr);
150 return;
151 }
152 } else if (addr >= VA_START) {
153 /* TTBR1 */
1d18c47c 154 mm = &init_mm;
67ce16ec
KM
155 } else {
156 pr_alert("[%016lx] address between user and kernel address ranges\n",
157 addr);
158 return;
159 }
1d18c47c 160
20a004e7 161 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp = %p\n",
1eb34b6e 162 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
67e7fdfc 163 mm == &init_mm ? VA_BITS : (int) vabits_user, mm->pgd);
20a004e7
WD
164 pgdp = pgd_offset(mm, addr);
165 pgd = READ_ONCE(*pgdp);
166 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
1d18c47c
CM
167
168 do {
20a004e7
WD
169 pud_t *pudp, pud;
170 pmd_t *pmdp, pmd;
171 pte_t *ptep, pte;
1d18c47c 172
20a004e7 173 if (pgd_none(pgd) || pgd_bad(pgd))
1d18c47c
CM
174 break;
175
20a004e7
WD
176 pudp = pud_offset(pgdp, addr);
177 pud = READ_ONCE(*pudp);
178 pr_cont(", pud=%016llx", pud_val(pud));
179 if (pud_none(pud) || pud_bad(pud))
1d18c47c
CM
180 break;
181
20a004e7
WD
182 pmdp = pmd_offset(pudp, addr);
183 pmd = READ_ONCE(*pmdp);
184 pr_cont(", pmd=%016llx", pmd_val(pmd));
185 if (pmd_none(pmd) || pmd_bad(pmd))
1d18c47c
CM
186 break;
187
20a004e7
WD
188 ptep = pte_offset_map(pmdp, addr);
189 pte = READ_ONCE(*ptep);
190 pr_cont(", pte=%016llx", pte_val(pte));
191 pte_unmap(ptep);
1d18c47c
CM
192 } while(0);
193
6ef4fb38 194 pr_cont("\n");
1d18c47c
CM
195}
196
66dbd6e6
CM
197/*
198 * This function sets the access flags (dirty, accessed), as well as write
199 * permission, and only to a more permissive setting.
200 *
201 * It needs to cope with hardware update of the accessed/dirty state by other
202 * agents in the system and can safely skip the __sync_icache_dcache() call as,
203 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
204 *
205 * Returns whether or not the PTE actually changed.
206 */
207int ptep_set_access_flags(struct vm_area_struct *vma,
208 unsigned long address, pte_t *ptep,
209 pte_t entry, int dirty)
210{
3bbf7157 211 pteval_t old_pteval, pteval;
20a004e7 212 pte_t pte = READ_ONCE(*ptep);
66dbd6e6 213
20a004e7 214 if (pte_same(pte, entry))
66dbd6e6
CM
215 return 0;
216
217 /* only preserve the access flags and write permission */
73e86cb0 218 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
66dbd6e6
CM
219
220 /*
221 * Setting the flags must be done atomically to avoid racing with the
6d332747
CM
222 * hardware update of the access/dirty state. The PTE_RDONLY bit must
223 * be set to the most permissive (lowest value) of *ptep and entry
224 * (calculated as: a & b == ~(~a | ~b)).
66dbd6e6 225 */
6d332747 226 pte_val(entry) ^= PTE_RDONLY;
20a004e7 227 pteval = pte_val(pte);
3bbf7157
CM
228 do {
229 old_pteval = pteval;
230 pteval ^= PTE_RDONLY;
231 pteval |= pte_val(entry);
232 pteval ^= PTE_RDONLY;
233 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
234 } while (pteval != old_pteval);
66dbd6e6
CM
235
236 flush_tlb_fix_spurious_fault(vma, address);
237 return 1;
238}
66dbd6e6 239
9adeb8e7
LA
240static bool is_el1_instruction_abort(unsigned int esr)
241{
242 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
243}
244
dbfe3828
AK
245static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
246 struct pt_regs *regs)
b824b930
SB
247{
248 unsigned int ec = ESR_ELx_EC(esr);
249 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
250
251 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
252 return false;
253
254 if (fsc_type == ESR_ELx_FSC_PERM)
255 return true;
256
51369e39 257 if (addr < TASK_SIZE && system_uses_ttbr0_pan())
b824b930
SB
258 return fsc_type == ESR_ELx_FSC_FAULT &&
259 (regs->pstate & PSR_PAN_BIT);
260
261 return false;
262}
263
c870f14e
MR
264static void die_kernel_fault(const char *msg, unsigned long addr,
265 unsigned int esr, struct pt_regs *regs)
266{
267 bust_spinlocks(1);
268
269 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
270 addr);
271
272 mem_abort_decode(esr);
273
274 show_pte(addr);
275 die("Oops", regs, esr);
276 bust_spinlocks(0);
277 do_exit(SIGKILL);
278}
279
67ce16ec
KM
280static void __do_kernel_fault(unsigned long addr, unsigned int esr,
281 struct pt_regs *regs)
1d18c47c 282{
b824b930
SB
283 const char *msg;
284
1d18c47c
CM
285 /*
286 * Are we prepared to handle this kernel fault?
9adeb8e7 287 * We are almost certainly not prepared to handle instruction faults.
1d18c47c 288 */
9adeb8e7 289 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
1d18c47c
CM
290 return;
291
dbfe3828 292 if (is_el1_permission_fault(addr, esr, regs)) {
b824b930
SB
293 if (esr & ESR_ELx_WNR)
294 msg = "write to read-only memory";
295 else
296 msg = "read from unreadable memory";
297 } else if (addr < PAGE_SIZE) {
298 msg = "NULL pointer dereference";
299 } else {
300 msg = "paging request";
301 }
302
c870f14e 303 die_kernel_fault(msg, addr, esr, regs);
1d18c47c
CM
304}
305
f29ad209 306static void set_thread_esr(unsigned long address, unsigned int esr)
1d18c47c 307{
f29ad209 308 current->thread.fault_address = address;
cc198460
PM
309
310 /*
311 * If the faulting address is in the kernel, we must sanitize the ESR.
312 * From userspace's point of view, kernel-only mappings don't exist
313 * at all, so we report them as level 0 translation faults.
314 * (This is not quite the way that "no mapping there at all" behaves:
315 * an alignment fault not caused by the memory type would take
316 * precedence over translation fault for a real access to empty
317 * space. Unfortunately we can't easily distinguish "alignment fault
318 * not caused by memory type" from "alignment fault caused by memory
319 * type", so we ignore this wrinkle and just return the translation
320 * fault.)
321 */
322 if (current->thread.fault_address >= TASK_SIZE) {
323 switch (ESR_ELx_EC(esr)) {
324 case ESR_ELx_EC_DABT_LOW:
325 /*
326 * These bits provide only information about the
327 * faulting instruction, which userspace knows already.
328 * We explicitly clear bits which are architecturally
329 * RES0 in case they are given meanings in future.
330 * We always report the ESR as if the fault was taken
331 * to EL1 and so ISV and the bits in ISS[23:14] are
332 * clear. (In fact it always will be a fault to EL1.)
333 */
334 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
335 ESR_ELx_CM | ESR_ELx_WNR;
336 esr |= ESR_ELx_FSC_FAULT;
337 break;
338 case ESR_ELx_EC_IABT_LOW:
339 /*
340 * Claim a level 0 translation fault.
341 * All other bits are architecturally RES0 for faults
342 * reported with that DFSC value, so we clear them.
343 */
344 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
345 esr |= ESR_ELx_FSC_FAULT;
346 break;
347 default:
348 /*
349 * This should never happen (entry.S only brings us
350 * into this code for insn and data aborts from a lower
351 * exception level). Fail safe by not providing an ESR
352 * context record at all.
353 */
354 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
355 esr = 0;
356 break;
357 }
358 }
359
92ff0674 360 current->thread.fault_code = esr;
1d18c47c
CM
361}
362
59f67e16 363static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
1d18c47c 364{
1d18c47c
CM
365 /*
366 * If we are in kernel mode at this point, we have no context to
367 * handle this fault with.
368 */
09a6adf5 369 if (user_mode(regs)) {
92ff0674 370 const struct fault_info *inf = esr_to_fault_info(esr);
3eb0f519 371
effb093a 372 set_thread_esr(addr, esr);
feca355b
EB
373 arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
374 inf->name);
92ff0674 375 } else {
67ce16ec 376 __do_kernel_fault(addr, esr, regs);
92ff0674 377 }
1d18c47c
CM
378}
379
380#define VM_FAULT_BADMAP 0x010000
381#define VM_FAULT_BADACCESS 0x020000
382
50a7ca3c 383static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
db6f4106 384 unsigned int mm_flags, unsigned long vm_flags,
1d18c47c
CM
385 struct task_struct *tsk)
386{
387 struct vm_area_struct *vma;
50a7ca3c 388 vm_fault_t fault;
1d18c47c
CM
389
390 vma = find_vma(mm, addr);
391 fault = VM_FAULT_BADMAP;
392 if (unlikely(!vma))
393 goto out;
394 if (unlikely(vma->vm_start > addr))
395 goto check_stack;
396
397 /*
398 * Ok, we have a good vm_area for this memory access, so we can handle
399 * it.
400 */
401good_area:
db6f4106
WD
402 /*
403 * Check that the permissions on the VMA allow for the fault which
cab15ce6 404 * occurred.
db6f4106
WD
405 */
406 if (!(vma->vm_flags & vm_flags)) {
1d18c47c
CM
407 fault = VM_FAULT_BADACCESS;
408 goto out;
409 }
410
dcddffd4 411 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
1d18c47c
CM
412
413check_stack:
414 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
415 goto good_area;
416out:
417 return fault;
418}
419
541ec870
MR
420static bool is_el0_instruction_abort(unsigned int esr)
421{
422 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
423}
424
1d18c47c
CM
425static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
426 struct pt_regs *regs)
427{
2d2837fa 428 const struct fault_info *inf;
1d18c47c
CM
429 struct task_struct *tsk;
430 struct mm_struct *mm;
50a7ca3c 431 vm_fault_t fault, major = 0;
cab15ce6 432 unsigned long vm_flags = VM_READ | VM_WRITE;
db6f4106
WD
433 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
434
2dd0e8d2
SP
435 if (notify_page_fault(regs, esr))
436 return 0;
437
1d18c47c
CM
438 tsk = current;
439 mm = tsk->mm;
440
1d18c47c
CM
441 /*
442 * If we're in an interrupt or have no user context, we must not take
443 * the fault.
444 */
70ffdb93 445 if (faulthandler_disabled() || !mm)
1d18c47c
CM
446 goto no_context;
447
759496ba
JW
448 if (user_mode(regs))
449 mm_flags |= FAULT_FLAG_USER;
450
541ec870 451 if (is_el0_instruction_abort(esr)) {
759496ba 452 vm_flags = VM_EXEC;
aed40e01 453 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
759496ba
JW
454 vm_flags = VM_WRITE;
455 mm_flags |= FAULT_FLAG_WRITE;
456 }
457
dbfe3828 458 if (addr < TASK_SIZE && is_el1_permission_fault(addr, esr, regs)) {
e19a6ee2
JM
459 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
460 if (regs->orig_addr_limit == KERNEL_DS)
c870f14e
MR
461 die_kernel_fault("access to user memory with fs=KERNEL_DS",
462 addr, esr, regs);
70544196 463
9adeb8e7 464 if (is_el1_instruction_abort(esr))
c870f14e
MR
465 die_kernel_fault("execution of user memory",
466 addr, esr, regs);
9adeb8e7 467
57f4959b 468 if (!search_exception_tables(regs->pc))
c870f14e
MR
469 die_kernel_fault("access to user memory outside uaccess routines",
470 addr, esr, regs);
57f4959b 471 }
338d4f49 472
0e3a9026
PA
473 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
474
1d18c47c
CM
475 /*
476 * As per x86, we may deadlock here. However, since the kernel only
477 * validly references user space from well defined areas of the code,
478 * we can bug out early if this is from code which shouldn't.
479 */
480 if (!down_read_trylock(&mm->mmap_sem)) {
481 if (!user_mode(regs) && !search_exception_tables(regs->pc))
482 goto no_context;
483retry:
484 down_read(&mm->mmap_sem);
485 } else {
486 /*
487 * The above down_read_trylock() might have succeeded in which
488 * case, we'll have missed the might_sleep() from down_read().
489 */
490 might_sleep();
491#ifdef CONFIG_DEBUG_VM
492 if (!user_mode(regs) && !search_exception_tables(regs->pc))
493 goto no_context;
494#endif
495 }
496
db6f4106 497 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
0e3a9026 498 major |= fault & VM_FAULT_MAJOR;
1d18c47c 499
0e3a9026
PA
500 if (fault & VM_FAULT_RETRY) {
501 /*
502 * If we need to retry but a fatal signal is pending,
503 * handle the signal first. We do not need to release
504 * the mmap_sem because it would already be released
505 * in __lock_page_or_retry in mm/filemap.c.
506 */
289d07a2
MR
507 if (fatal_signal_pending(current)) {
508 if (!user_mode(regs))
509 goto no_context;
0e3a9026 510 return 0;
289d07a2 511 }
0e3a9026
PA
512
513 /*
514 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
515 * starvation.
516 */
517 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
518 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
519 mm_flags |= FAULT_FLAG_TRIED;
520 goto retry;
521 }
522 }
523 up_read(&mm->mmap_sem);
1d18c47c
CM
524
525 /*
0e3a9026 526 * Handle the "normal" (no error) case first.
1d18c47c 527 */
0e3a9026
PA
528 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
529 VM_FAULT_BADACCESS)))) {
530 /*
531 * Major/minor page fault accounting is only done
532 * once. If we go through a retry, it is extremely
533 * likely that the page will be found in page cache at
534 * that point.
535 */
536 if (major) {
1d18c47c
CM
537 tsk->maj_flt++;
538 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
539 addr);
540 } else {
541 tsk->min_flt++;
542 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
543 addr);
544 }
1d18c47c 545
1d18c47c 546 return 0;
0e3a9026 547 }
1d18c47c 548
87134102
JW
549 /*
550 * If we are in kernel mode at this point, we have no context to
551 * handle this fault with.
552 */
553 if (!user_mode(regs))
554 goto no_context;
555
1d18c47c
CM
556 if (fault & VM_FAULT_OOM) {
557 /*
558 * We ran out of memory, call the OOM killer, and return to
559 * userspace (which will retry the fault, or kill us if we got
560 * oom-killed).
561 */
562 pagefault_out_of_memory();
563 return 0;
564 }
565
2d2837fa 566 inf = esr_to_fault_info(esr);
559d8d91 567 set_thread_esr(addr, esr);
1d18c47c
CM
568 if (fault & VM_FAULT_SIGBUS) {
569 /*
570 * We had some memory, but were unable to successfully fix up
571 * this page fault.
572 */
feca355b
EB
573 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
574 inf->name);
9ea3a974
EB
575 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
576 unsigned int lsb;
577
578 lsb = PAGE_SHIFT;
579 if (fault & VM_FAULT_HWPOISON_LARGE)
580 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
92ff0674 581
b4d5557c
EB
582 arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
583 inf->name);
1d18c47c
CM
584 } else {
585 /*
586 * Something tried to access memory that isn't in our memory
587 * map.
588 */
feca355b
EB
589 arm64_force_sig_fault(SIGSEGV,
590 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
591 (void __user *)addr,
592 inf->name);
1d18c47c
CM
593 }
594
1d18c47c
CM
595 return 0;
596
597no_context:
67ce16ec 598 __do_kernel_fault(addr, esr, regs);
1d18c47c
CM
599 return 0;
600}
601
1d18c47c
CM
602static int __kprobes do_translation_fault(unsigned long addr,
603 unsigned int esr,
604 struct pt_regs *regs)
605{
606 if (addr < TASK_SIZE)
607 return do_page_fault(addr, esr, regs);
608
609 do_bad_area(addr, esr, regs);
610 return 0;
611}
612
52d7523d
EL
613static int do_alignment_fault(unsigned long addr, unsigned int esr,
614 struct pt_regs *regs)
615{
616 do_bad_area(addr, esr, regs);
617 return 0;
618}
619
1d18c47c
CM
620static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
621{
f67d5c4f 622 return 1; /* "fault" */
1d18c47c
CM
623}
624
32015c23
TB
625static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
626{
32015c23 627 const struct fault_info *inf;
6fa998e8 628 void __user *siaddr;
32015c23
TB
629
630 inf = esr_to_fault_info(esr);
32015c23 631
7edda088
TB
632 /*
633 * Synchronous aborts may interrupt code which had interrupts masked.
634 * Before calling out into the wider kernel tell the interested
635 * subsystems.
636 */
637 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
638 if (interrupts_enabled(regs))
639 nmi_enter();
640
faa75e14 641 ghes_notify_sea();
7edda088
TB
642
643 if (interrupts_enabled(regs))
644 nmi_exit();
645 }
646
32015c23 647 if (esr & ESR_ELx_FnV)
6fa998e8 648 siaddr = NULL;
32015c23 649 else
6fa998e8
EB
650 siaddr = (void __user *)addr;
651 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
32015c23 652
faa75e14 653 return 0;
32015c23
TB
654}
655
09a6adf5 656static const struct fault_info fault_info[] = {
af40ff68
DM
657 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
658 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
659 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
660 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
7f73f7ae 661 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
1d18c47c
CM
662 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
663 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
760bfb47 664 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
af40ff68 665 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
084bd298
SC
666 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
667 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
1d18c47c 668 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
af40ff68 669 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
084bd298
SC
670 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
671 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
1d18c47c 672 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
af40ff68
DM
673 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
674 { do_bad, SIGKILL, SI_KERNEL, "unknown 17" },
675 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
676 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
677 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
678 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
679 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
680 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
681 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
682 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
683 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
684 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
685 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
686 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
687 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
688 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
689 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
52d7523d 690 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
af40ff68
DM
691 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
692 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
693 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
694 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
695 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
696 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
697 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
698 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
699 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
700 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
701 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
702 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
703 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
704 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
705 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
706 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
707 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
708 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
709 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
710 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
711 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
712 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
713 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
714 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
715 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
716 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
717 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
718 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
719 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
720 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
1d18c47c
CM
721};
722
621f48e4
TB
723int handle_guest_sea(phys_addr_t addr, unsigned int esr)
724{
1035a078 725 return ghes_notify_sea();
621f48e4
TB
726}
727
1d18c47c
CM
728asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
729 struct pt_regs *regs)
730{
09a6adf5 731 const struct fault_info *inf = esr_to_fault_info(esr);
1d18c47c
CM
732
733 if (!inf->fn(addr, esr, regs))
734 return;
735
1049c308
WD
736 if (!user_mode(regs)) {
737 pr_alert("Unhandled fault at 0x%016lx\n", addr);
738 mem_abort_decode(esr);
80b6eb04 739 show_pte(addr);
1049c308 740 }
42dbf54e 741
6fa998e8
EB
742 arm64_notify_die(inf->name, regs,
743 inf->sig, inf->code, (void __user *)addr, esr);
1d18c47c
CM
744}
745
30d88c0e
WD
746asmlinkage void __exception do_el0_irq_bp_hardening(void)
747{
748 /* PC has already been checked in entry.S */
749 arm64_apply_bp_hardening();
750}
751
0f15adbb
WD
752asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
753 unsigned int esr,
754 struct pt_regs *regs)
755{
756 /*
757 * We've taken an instruction abort from userspace and not yet
758 * re-enabled IRQs. If the address is a kernel address, apply
759 * BP hardening prior to enabling IRQs and pre-emption.
760 */
761 if (addr > TASK_SIZE)
762 arm64_apply_bp_hardening();
763
9a0c0328 764 local_daif_restore(DAIF_PROCCTX);
0f15adbb
WD
765 do_mem_abort(addr, esr, regs);
766}
767
768
1d18c47c
CM
769asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
770 unsigned int esr,
771 struct pt_regs *regs)
772{
5dfc6ed2
WD
773 if (user_mode(regs)) {
774 if (instruction_pointer(regs) > TASK_SIZE)
775 arm64_apply_bp_hardening();
9a0c0328 776 local_daif_restore(DAIF_PROCCTX);
5dfc6ed2
WD
777 }
778
6fa998e8
EB
779 arm64_notify_die("SP/PC alignment exception", regs,
780 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
1d18c47c
CM
781}
782
9fb7410f
DM
783int __init early_brk64(unsigned long addr, unsigned int esr,
784 struct pt_regs *regs);
785
786/*
787 * __refdata because early_brk64 is __init, but the reference to it is
788 * clobbered at arch_initcall time.
789 * See traps.c and debug-monitors.c:debug_traps_init().
790 */
791static struct fault_info __refdata debug_fault_info[] = {
1d18c47c
CM
792 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
793 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
794 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
af40ff68 795 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
1d18c47c 796 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
af40ff68 797 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
9fb7410f 798 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
af40ff68 799 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
1d18c47c
CM
800};
801
802void __init hook_debug_fault_code(int nr,
803 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
804 int sig, int code, const char *name)
805{
806 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
807
808 debug_fault_info[nr].fn = fn;
809 debug_fault_info[nr].sig = sig;
810 debug_fault_info[nr].code = code;
811 debug_fault_info[nr].name = name;
812}
813
814asmlinkage int __exception do_debug_exception(unsigned long addr,
815 unsigned int esr,
816 struct pt_regs *regs)
817{
359048f9 818 const struct fault_info *inf = esr_to_debug_fault_info(esr);
6afedcd2 819 int rv;
1d18c47c 820
6afedcd2
JM
821 /*
822 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
823 * already disabled to preserve the last enabled/disabled addresses.
824 */
825 if (interrupts_enabled(regs))
826 trace_hardirqs_off();
1d18c47c 827
5dfc6ed2
WD
828 if (user_mode(regs) && instruction_pointer(regs) > TASK_SIZE)
829 arm64_apply_bp_hardening();
830
6afedcd2
JM
831 if (!inf->fn(addr, esr, regs)) {
832 rv = 1;
833 } else {
6fa998e8
EB
834 arm64_notify_die(inf->name, regs,
835 inf->sig, inf->code, (void __user *)addr, esr);
6afedcd2
JM
836 rv = 0;
837 }
1d18c47c 838
6afedcd2
JM
839 if (interrupts_enabled(regs))
840 trace_hardirqs_on();
1d18c47c 841
6afedcd2 842 return rv;
1d18c47c 843}
2dd0e8d2 844NOKPROBE_SYMBOL(do_debug_exception);