Revert "arm64: uaccess: Implement unsafe accessors"
[linux-block.git] / arch / arm64 / mm / fault.c
CommitLineData
1d18c47c
CM
1/*
2 * Based on arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1995-2004 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
0edfa839 21#include <linux/extable.h>
1d18c47c
CM
22#include <linux/signal.h>
23#include <linux/mm.h>
24#include <linux/hardirq.h>
25#include <linux/init.h>
26#include <linux/kprobes.h>
27#include <linux/uaccess.h>
28#include <linux/page-flags.h>
3f07c014 29#include <linux/sched/signal.h>
b17b0153 30#include <linux/sched/debug.h>
1d18c47c
CM
31#include <linux/highmem.h>
32#include <linux/perf_event.h>
7209c868 33#include <linux/preempt.h>
e7c600f1 34#include <linux/hugetlb.h>
1d18c47c 35
7209c868 36#include <asm/bug.h>
3bbf7157 37#include <asm/cmpxchg.h>
338d4f49 38#include <asm/cpufeature.h>
1d18c47c 39#include <asm/exception.h>
9a0c0328 40#include <asm/daifflags.h>
1d18c47c 41#include <asm/debug-monitors.h>
9141300a 42#include <asm/esr.h>
356607f2 43#include <asm/kasan.h>
338d4f49 44#include <asm/sysreg.h>
1d18c47c
CM
45#include <asm/system_misc.h>
46#include <asm/pgtable.h>
47#include <asm/tlbflush.h>
92ff0674 48#include <asm/traps.h>
1d18c47c 49
7edda088
TB
50#include <acpi/ghes.h>
51
09a6adf5
VK
52struct fault_info {
53 int (*fn)(unsigned long addr, unsigned int esr,
54 struct pt_regs *regs);
55 int sig;
56 int code;
57 const char *name;
58};
59
60static const struct fault_info fault_info[];
359048f9 61static struct fault_info debug_fault_info[];
09a6adf5
VK
62
63static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
64{
00bbd5d9 65 return fault_info + (esr & ESR_ELx_FSC);
09a6adf5 66}
3495386b 67
359048f9
AK
68static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
69{
70 return debug_fault_info + DBG_ESR_EVT(esr);
71}
72
2dd0e8d2
SP
73#ifdef CONFIG_KPROBES
74static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
75{
76 int ret = 0;
77
78 /* kprobe_running() needs smp_processor_id() */
79 if (!user_mode(regs)) {
80 preempt_disable();
81 if (kprobe_running() && kprobe_fault_handler(regs, esr))
82 ret = 1;
83 preempt_enable();
84 }
85
86 return ret;
87}
88#else
89static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
90{
91 return 0;
92}
93#endif
94
1f9b8936
JT
95static void data_abort_decode(unsigned int esr)
96{
97 pr_alert("Data abort info:\n");
98
99 if (esr & ESR_ELx_ISV) {
100 pr_alert(" Access size = %u byte(s)\n",
101 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
102 pr_alert(" SSE = %lu, SRT = %lu\n",
103 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
104 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
105 pr_alert(" SF = %lu, AR = %lu\n",
106 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
107 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
108 } else {
0a6de8b8 109 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
1f9b8936
JT
110 }
111
112 pr_alert(" CM = %lu, WnR = %lu\n",
113 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
114 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
115}
116
1f9b8936
JT
117static void mem_abort_decode(unsigned int esr)
118{
119 pr_alert("Mem abort info:\n");
120
42dbf54e 121 pr_alert(" ESR = 0x%08x\n", esr);
1f9b8936
JT
122 pr_alert(" Exception class = %s, IL = %u bits\n",
123 esr_get_class_string(esr),
124 (esr & ESR_ELx_IL) ? 32 : 16);
125 pr_alert(" SET = %lu, FnV = %lu\n",
126 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
127 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
128 pr_alert(" EA = %lu, S1PTW = %lu\n",
129 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
130 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
131
132 if (esr_is_data_abort(esr))
133 data_abort_decode(esr);
134}
135
356607f2
AK
136static inline bool is_ttbr0_addr(unsigned long addr)
137{
138 /* entry assembly clears tags for TTBR0 addrs */
139 return addr < TASK_SIZE;
140}
141
142static inline bool is_ttbr1_addr(unsigned long addr)
143{
144 /* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */
145 return arch_kasan_reset_tag(addr) >= VA_START;
146}
147
1d18c47c 148/*
67ce16ec 149 * Dump out the page tables associated with 'addr' in the currently active mm.
1d18c47c 150 */
67ce16ec 151void show_pte(unsigned long addr)
1d18c47c 152{
67ce16ec 153 struct mm_struct *mm;
20a004e7
WD
154 pgd_t *pgdp;
155 pgd_t pgd;
1d18c47c 156
356607f2 157 if (is_ttbr0_addr(addr)) {
67ce16ec
KM
158 /* TTBR0 */
159 mm = current->active_mm;
160 if (mm == &init_mm) {
161 pr_alert("[%016lx] user address but active_mm is swapper\n",
162 addr);
163 return;
164 }
356607f2 165 } else if (is_ttbr1_addr(addr)) {
67ce16ec 166 /* TTBR1 */
1d18c47c 167 mm = &init_mm;
67ce16ec
KM
168 } else {
169 pr_alert("[%016lx] address between user and kernel address ranges\n",
170 addr);
171 return;
172 }
1d18c47c 173
20a004e7 174 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp = %p\n",
1eb34b6e 175 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
67e7fdfc 176 mm == &init_mm ? VA_BITS : (int) vabits_user, mm->pgd);
20a004e7
WD
177 pgdp = pgd_offset(mm, addr);
178 pgd = READ_ONCE(*pgdp);
179 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
1d18c47c
CM
180
181 do {
20a004e7
WD
182 pud_t *pudp, pud;
183 pmd_t *pmdp, pmd;
184 pte_t *ptep, pte;
1d18c47c 185
20a004e7 186 if (pgd_none(pgd) || pgd_bad(pgd))
1d18c47c
CM
187 break;
188
20a004e7
WD
189 pudp = pud_offset(pgdp, addr);
190 pud = READ_ONCE(*pudp);
191 pr_cont(", pud=%016llx", pud_val(pud));
192 if (pud_none(pud) || pud_bad(pud))
1d18c47c
CM
193 break;
194
20a004e7
WD
195 pmdp = pmd_offset(pudp, addr);
196 pmd = READ_ONCE(*pmdp);
197 pr_cont(", pmd=%016llx", pmd_val(pmd));
198 if (pmd_none(pmd) || pmd_bad(pmd))
1d18c47c
CM
199 break;
200
20a004e7
WD
201 ptep = pte_offset_map(pmdp, addr);
202 pte = READ_ONCE(*ptep);
203 pr_cont(", pte=%016llx", pte_val(pte));
204 pte_unmap(ptep);
1d18c47c
CM
205 } while(0);
206
6ef4fb38 207 pr_cont("\n");
1d18c47c
CM
208}
209
66dbd6e6
CM
210/*
211 * This function sets the access flags (dirty, accessed), as well as write
212 * permission, and only to a more permissive setting.
213 *
214 * It needs to cope with hardware update of the accessed/dirty state by other
215 * agents in the system and can safely skip the __sync_icache_dcache() call as,
216 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
217 *
218 * Returns whether or not the PTE actually changed.
219 */
220int ptep_set_access_flags(struct vm_area_struct *vma,
221 unsigned long address, pte_t *ptep,
222 pte_t entry, int dirty)
223{
3bbf7157 224 pteval_t old_pteval, pteval;
20a004e7 225 pte_t pte = READ_ONCE(*ptep);
66dbd6e6 226
20a004e7 227 if (pte_same(pte, entry))
66dbd6e6
CM
228 return 0;
229
230 /* only preserve the access flags and write permission */
73e86cb0 231 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
66dbd6e6
CM
232
233 /*
234 * Setting the flags must be done atomically to avoid racing with the
6d332747
CM
235 * hardware update of the access/dirty state. The PTE_RDONLY bit must
236 * be set to the most permissive (lowest value) of *ptep and entry
237 * (calculated as: a & b == ~(~a | ~b)).
66dbd6e6 238 */
6d332747 239 pte_val(entry) ^= PTE_RDONLY;
20a004e7 240 pteval = pte_val(pte);
3bbf7157
CM
241 do {
242 old_pteval = pteval;
243 pteval ^= PTE_RDONLY;
244 pteval |= pte_val(entry);
245 pteval ^= PTE_RDONLY;
246 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
247 } while (pteval != old_pteval);
66dbd6e6
CM
248
249 flush_tlb_fix_spurious_fault(vma, address);
250 return 1;
251}
66dbd6e6 252
9adeb8e7
LA
253static bool is_el1_instruction_abort(unsigned int esr)
254{
255 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
256}
257
dbfe3828
AK
258static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
259 struct pt_regs *regs)
b824b930
SB
260{
261 unsigned int ec = ESR_ELx_EC(esr);
262 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
263
264 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
265 return false;
266
267 if (fsc_type == ESR_ELx_FSC_PERM)
268 return true;
269
356607f2 270 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
b824b930
SB
271 return fsc_type == ESR_ELx_FSC_FAULT &&
272 (regs->pstate & PSR_PAN_BIT);
273
274 return false;
275}
276
c870f14e
MR
277static void die_kernel_fault(const char *msg, unsigned long addr,
278 unsigned int esr, struct pt_regs *regs)
279{
280 bust_spinlocks(1);
281
282 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
283 addr);
284
285 mem_abort_decode(esr);
286
287 show_pte(addr);
288 die("Oops", regs, esr);
289 bust_spinlocks(0);
290 do_exit(SIGKILL);
291}
292
67ce16ec
KM
293static void __do_kernel_fault(unsigned long addr, unsigned int esr,
294 struct pt_regs *regs)
1d18c47c 295{
b824b930
SB
296 const char *msg;
297
1d18c47c
CM
298 /*
299 * Are we prepared to handle this kernel fault?
9adeb8e7 300 * We are almost certainly not prepared to handle instruction faults.
1d18c47c 301 */
9adeb8e7 302 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
1d18c47c
CM
303 return;
304
dbfe3828 305 if (is_el1_permission_fault(addr, esr, regs)) {
b824b930
SB
306 if (esr & ESR_ELx_WNR)
307 msg = "write to read-only memory";
308 else
309 msg = "read from unreadable memory";
310 } else if (addr < PAGE_SIZE) {
311 msg = "NULL pointer dereference";
312 } else {
313 msg = "paging request";
314 }
315
c870f14e 316 die_kernel_fault(msg, addr, esr, regs);
1d18c47c
CM
317}
318
f29ad209 319static void set_thread_esr(unsigned long address, unsigned int esr)
1d18c47c 320{
f29ad209 321 current->thread.fault_address = address;
cc198460
PM
322
323 /*
324 * If the faulting address is in the kernel, we must sanitize the ESR.
325 * From userspace's point of view, kernel-only mappings don't exist
326 * at all, so we report them as level 0 translation faults.
327 * (This is not quite the way that "no mapping there at all" behaves:
328 * an alignment fault not caused by the memory type would take
329 * precedence over translation fault for a real access to empty
330 * space. Unfortunately we can't easily distinguish "alignment fault
331 * not caused by memory type" from "alignment fault caused by memory
332 * type", so we ignore this wrinkle and just return the translation
333 * fault.)
334 */
356607f2 335 if (!is_ttbr0_addr(current->thread.fault_address)) {
cc198460
PM
336 switch (ESR_ELx_EC(esr)) {
337 case ESR_ELx_EC_DABT_LOW:
338 /*
339 * These bits provide only information about the
340 * faulting instruction, which userspace knows already.
341 * We explicitly clear bits which are architecturally
342 * RES0 in case they are given meanings in future.
343 * We always report the ESR as if the fault was taken
344 * to EL1 and so ISV and the bits in ISS[23:14] are
345 * clear. (In fact it always will be a fault to EL1.)
346 */
347 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
348 ESR_ELx_CM | ESR_ELx_WNR;
349 esr |= ESR_ELx_FSC_FAULT;
350 break;
351 case ESR_ELx_EC_IABT_LOW:
352 /*
353 * Claim a level 0 translation fault.
354 * All other bits are architecturally RES0 for faults
355 * reported with that DFSC value, so we clear them.
356 */
357 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
358 esr |= ESR_ELx_FSC_FAULT;
359 break;
360 default:
361 /*
362 * This should never happen (entry.S only brings us
363 * into this code for insn and data aborts from a lower
364 * exception level). Fail safe by not providing an ESR
365 * context record at all.
366 */
367 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
368 esr = 0;
369 break;
370 }
371 }
372
92ff0674 373 current->thread.fault_code = esr;
1d18c47c
CM
374}
375
59f67e16 376static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
1d18c47c 377{
1d18c47c
CM
378 /*
379 * If we are in kernel mode at this point, we have no context to
380 * handle this fault with.
381 */
09a6adf5 382 if (user_mode(regs)) {
92ff0674 383 const struct fault_info *inf = esr_to_fault_info(esr);
3eb0f519 384
effb093a 385 set_thread_esr(addr, esr);
feca355b
EB
386 arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
387 inf->name);
92ff0674 388 } else {
67ce16ec 389 __do_kernel_fault(addr, esr, regs);
92ff0674 390 }
1d18c47c
CM
391}
392
393#define VM_FAULT_BADMAP 0x010000
394#define VM_FAULT_BADACCESS 0x020000
395
50a7ca3c 396static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
db6f4106 397 unsigned int mm_flags, unsigned long vm_flags,
1d18c47c
CM
398 struct task_struct *tsk)
399{
400 struct vm_area_struct *vma;
50a7ca3c 401 vm_fault_t fault;
1d18c47c
CM
402
403 vma = find_vma(mm, addr);
404 fault = VM_FAULT_BADMAP;
405 if (unlikely(!vma))
406 goto out;
407 if (unlikely(vma->vm_start > addr))
408 goto check_stack;
409
410 /*
411 * Ok, we have a good vm_area for this memory access, so we can handle
412 * it.
413 */
414good_area:
db6f4106
WD
415 /*
416 * Check that the permissions on the VMA allow for the fault which
cab15ce6 417 * occurred.
db6f4106
WD
418 */
419 if (!(vma->vm_flags & vm_flags)) {
1d18c47c
CM
420 fault = VM_FAULT_BADACCESS;
421 goto out;
422 }
423
dcddffd4 424 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
1d18c47c
CM
425
426check_stack:
427 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
428 goto good_area;
429out:
430 return fault;
431}
432
541ec870
MR
433static bool is_el0_instruction_abort(unsigned int esr)
434{
435 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
436}
437
1d18c47c
CM
438static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
439 struct pt_regs *regs)
440{
2d2837fa 441 const struct fault_info *inf;
1d18c47c
CM
442 struct task_struct *tsk;
443 struct mm_struct *mm;
50a7ca3c 444 vm_fault_t fault, major = 0;
cab15ce6 445 unsigned long vm_flags = VM_READ | VM_WRITE;
db6f4106
WD
446 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
447
2dd0e8d2
SP
448 if (notify_page_fault(regs, esr))
449 return 0;
450
1d18c47c
CM
451 tsk = current;
452 mm = tsk->mm;
453
1d18c47c
CM
454 /*
455 * If we're in an interrupt or have no user context, we must not take
456 * the fault.
457 */
70ffdb93 458 if (faulthandler_disabled() || !mm)
1d18c47c
CM
459 goto no_context;
460
759496ba
JW
461 if (user_mode(regs))
462 mm_flags |= FAULT_FLAG_USER;
463
541ec870 464 if (is_el0_instruction_abort(esr)) {
759496ba 465 vm_flags = VM_EXEC;
aed40e01 466 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
759496ba
JW
467 vm_flags = VM_WRITE;
468 mm_flags |= FAULT_FLAG_WRITE;
469 }
470
356607f2 471 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
e19a6ee2
JM
472 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
473 if (regs->orig_addr_limit == KERNEL_DS)
c870f14e
MR
474 die_kernel_fault("access to user memory with fs=KERNEL_DS",
475 addr, esr, regs);
70544196 476
9adeb8e7 477 if (is_el1_instruction_abort(esr))
c870f14e
MR
478 die_kernel_fault("execution of user memory",
479 addr, esr, regs);
9adeb8e7 480
57f4959b 481 if (!search_exception_tables(regs->pc))
c870f14e
MR
482 die_kernel_fault("access to user memory outside uaccess routines",
483 addr, esr, regs);
57f4959b 484 }
338d4f49 485
0e3a9026
PA
486 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
487
1d18c47c
CM
488 /*
489 * As per x86, we may deadlock here. However, since the kernel only
490 * validly references user space from well defined areas of the code,
491 * we can bug out early if this is from code which shouldn't.
492 */
493 if (!down_read_trylock(&mm->mmap_sem)) {
494 if (!user_mode(regs) && !search_exception_tables(regs->pc))
495 goto no_context;
496retry:
497 down_read(&mm->mmap_sem);
498 } else {
499 /*
500 * The above down_read_trylock() might have succeeded in which
501 * case, we'll have missed the might_sleep() from down_read().
502 */
503 might_sleep();
504#ifdef CONFIG_DEBUG_VM
505 if (!user_mode(regs) && !search_exception_tables(regs->pc))
506 goto no_context;
507#endif
508 }
509
db6f4106 510 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
0e3a9026 511 major |= fault & VM_FAULT_MAJOR;
1d18c47c 512
0e3a9026
PA
513 if (fault & VM_FAULT_RETRY) {
514 /*
515 * If we need to retry but a fatal signal is pending,
516 * handle the signal first. We do not need to release
517 * the mmap_sem because it would already be released
518 * in __lock_page_or_retry in mm/filemap.c.
519 */
289d07a2
MR
520 if (fatal_signal_pending(current)) {
521 if (!user_mode(regs))
522 goto no_context;
0e3a9026 523 return 0;
289d07a2 524 }
0e3a9026
PA
525
526 /*
527 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
528 * starvation.
529 */
530 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
531 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
532 mm_flags |= FAULT_FLAG_TRIED;
533 goto retry;
534 }
535 }
536 up_read(&mm->mmap_sem);
1d18c47c
CM
537
538 /*
0e3a9026 539 * Handle the "normal" (no error) case first.
1d18c47c 540 */
0e3a9026
PA
541 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
542 VM_FAULT_BADACCESS)))) {
543 /*
544 * Major/minor page fault accounting is only done
545 * once. If we go through a retry, it is extremely
546 * likely that the page will be found in page cache at
547 * that point.
548 */
549 if (major) {
1d18c47c
CM
550 tsk->maj_flt++;
551 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
552 addr);
553 } else {
554 tsk->min_flt++;
555 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
556 addr);
557 }
1d18c47c 558
1d18c47c 559 return 0;
0e3a9026 560 }
1d18c47c 561
87134102
JW
562 /*
563 * If we are in kernel mode at this point, we have no context to
564 * handle this fault with.
565 */
566 if (!user_mode(regs))
567 goto no_context;
568
1d18c47c
CM
569 if (fault & VM_FAULT_OOM) {
570 /*
571 * We ran out of memory, call the OOM killer, and return to
572 * userspace (which will retry the fault, or kill us if we got
573 * oom-killed).
574 */
575 pagefault_out_of_memory();
576 return 0;
577 }
578
2d2837fa 579 inf = esr_to_fault_info(esr);
559d8d91 580 set_thread_esr(addr, esr);
1d18c47c
CM
581 if (fault & VM_FAULT_SIGBUS) {
582 /*
583 * We had some memory, but were unable to successfully fix up
584 * this page fault.
585 */
feca355b
EB
586 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
587 inf->name);
9ea3a974
EB
588 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
589 unsigned int lsb;
590
591 lsb = PAGE_SHIFT;
592 if (fault & VM_FAULT_HWPOISON_LARGE)
593 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
92ff0674 594
b4d5557c
EB
595 arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
596 inf->name);
1d18c47c
CM
597 } else {
598 /*
599 * Something tried to access memory that isn't in our memory
600 * map.
601 */
feca355b
EB
602 arm64_force_sig_fault(SIGSEGV,
603 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
604 (void __user *)addr,
605 inf->name);
1d18c47c
CM
606 }
607
1d18c47c
CM
608 return 0;
609
610no_context:
67ce16ec 611 __do_kernel_fault(addr, esr, regs);
1d18c47c
CM
612 return 0;
613}
614
1d18c47c
CM
615static int __kprobes do_translation_fault(unsigned long addr,
616 unsigned int esr,
617 struct pt_regs *regs)
618{
356607f2 619 if (is_ttbr0_addr(addr))
1d18c47c
CM
620 return do_page_fault(addr, esr, regs);
621
622 do_bad_area(addr, esr, regs);
623 return 0;
624}
625
52d7523d
EL
626static int do_alignment_fault(unsigned long addr, unsigned int esr,
627 struct pt_regs *regs)
628{
629 do_bad_area(addr, esr, regs);
630 return 0;
631}
632
1d18c47c
CM
633static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
634{
f67d5c4f 635 return 1; /* "fault" */
1d18c47c
CM
636}
637
32015c23
TB
638static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
639{
32015c23 640 const struct fault_info *inf;
6fa998e8 641 void __user *siaddr;
32015c23
TB
642
643 inf = esr_to_fault_info(esr);
32015c23 644
7edda088
TB
645 /*
646 * Synchronous aborts may interrupt code which had interrupts masked.
647 * Before calling out into the wider kernel tell the interested
648 * subsystems.
649 */
650 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
651 if (interrupts_enabled(regs))
652 nmi_enter();
653
faa75e14 654 ghes_notify_sea();
7edda088
TB
655
656 if (interrupts_enabled(regs))
657 nmi_exit();
658 }
659
32015c23 660 if (esr & ESR_ELx_FnV)
6fa998e8 661 siaddr = NULL;
32015c23 662 else
6fa998e8
EB
663 siaddr = (void __user *)addr;
664 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
32015c23 665
faa75e14 666 return 0;
32015c23
TB
667}
668
09a6adf5 669static const struct fault_info fault_info[] = {
af40ff68
DM
670 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
671 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
672 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
673 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
7f73f7ae 674 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
1d18c47c
CM
675 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
676 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
760bfb47 677 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
af40ff68 678 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
084bd298
SC
679 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
680 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
1d18c47c 681 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
af40ff68 682 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
084bd298
SC
683 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
684 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
1d18c47c 685 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
af40ff68
DM
686 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
687 { do_bad, SIGKILL, SI_KERNEL, "unknown 17" },
688 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
689 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
690 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
691 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
692 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
693 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
694 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
695 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
696 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
697 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
698 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
699 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
700 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
701 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
702 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
52d7523d 703 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
af40ff68
DM
704 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
705 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
706 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
707 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
708 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
709 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
710 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
711 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
712 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
713 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
714 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
715 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
716 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
717 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
718 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
719 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
720 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
721 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
722 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
723 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
724 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
725 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
726 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
727 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
728 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
729 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
730 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
731 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
732 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
733 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
1d18c47c
CM
734};
735
621f48e4
TB
736int handle_guest_sea(phys_addr_t addr, unsigned int esr)
737{
1035a078 738 return ghes_notify_sea();
621f48e4
TB
739}
740
1d18c47c
CM
741asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
742 struct pt_regs *regs)
743{
09a6adf5 744 const struct fault_info *inf = esr_to_fault_info(esr);
1d18c47c
CM
745
746 if (!inf->fn(addr, esr, regs))
747 return;
748
1049c308
WD
749 if (!user_mode(regs)) {
750 pr_alert("Unhandled fault at 0x%016lx\n", addr);
751 mem_abort_decode(esr);
80b6eb04 752 show_pte(addr);
1049c308 753 }
42dbf54e 754
6fa998e8
EB
755 arm64_notify_die(inf->name, regs,
756 inf->sig, inf->code, (void __user *)addr, esr);
1d18c47c
CM
757}
758
30d88c0e
WD
759asmlinkage void __exception do_el0_irq_bp_hardening(void)
760{
761 /* PC has already been checked in entry.S */
762 arm64_apply_bp_hardening();
763}
764
0f15adbb
WD
765asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
766 unsigned int esr,
767 struct pt_regs *regs)
768{
769 /*
770 * We've taken an instruction abort from userspace and not yet
771 * re-enabled IRQs. If the address is a kernel address, apply
772 * BP hardening prior to enabling IRQs and pre-emption.
773 */
356607f2 774 if (!is_ttbr0_addr(addr))
0f15adbb
WD
775 arm64_apply_bp_hardening();
776
9a0c0328 777 local_daif_restore(DAIF_PROCCTX);
0f15adbb
WD
778 do_mem_abort(addr, esr, regs);
779}
780
781
1d18c47c
CM
782asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
783 unsigned int esr,
784 struct pt_regs *regs)
785{
5dfc6ed2 786 if (user_mode(regs)) {
356607f2 787 if (!is_ttbr0_addr(instruction_pointer(regs)))
5dfc6ed2 788 arm64_apply_bp_hardening();
9a0c0328 789 local_daif_restore(DAIF_PROCCTX);
5dfc6ed2
WD
790 }
791
6fa998e8
EB
792 arm64_notify_die("SP/PC alignment exception", regs,
793 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
1d18c47c
CM
794}
795
9fb7410f
DM
796int __init early_brk64(unsigned long addr, unsigned int esr,
797 struct pt_regs *regs);
798
799/*
800 * __refdata because early_brk64 is __init, but the reference to it is
801 * clobbered at arch_initcall time.
802 * See traps.c and debug-monitors.c:debug_traps_init().
803 */
804static struct fault_info __refdata debug_fault_info[] = {
1d18c47c
CM
805 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
806 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
807 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
af40ff68 808 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
1d18c47c 809 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
af40ff68 810 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
9fb7410f 811 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
af40ff68 812 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
1d18c47c
CM
813};
814
815void __init hook_debug_fault_code(int nr,
816 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
817 int sig, int code, const char *name)
818{
819 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
820
821 debug_fault_info[nr].fn = fn;
822 debug_fault_info[nr].sig = sig;
823 debug_fault_info[nr].code = code;
824 debug_fault_info[nr].name = name;
825}
826
827asmlinkage int __exception do_debug_exception(unsigned long addr,
828 unsigned int esr,
829 struct pt_regs *regs)
830{
359048f9 831 const struct fault_info *inf = esr_to_debug_fault_info(esr);
6afedcd2 832 int rv;
1d18c47c 833
6afedcd2
JM
834 /*
835 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
836 * already disabled to preserve the last enabled/disabled addresses.
837 */
838 if (interrupts_enabled(regs))
839 trace_hardirqs_off();
1d18c47c 840
356607f2 841 if (user_mode(regs) && !is_ttbr0_addr(instruction_pointer(regs)))
5dfc6ed2
WD
842 arm64_apply_bp_hardening();
843
6afedcd2
JM
844 if (!inf->fn(addr, esr, regs)) {
845 rv = 1;
846 } else {
6fa998e8
EB
847 arm64_notify_die(inf->name, regs,
848 inf->sig, inf->code, (void __user *)addr, esr);
6afedcd2
JM
849 rv = 0;
850 }
1d18c47c 851
6afedcd2
JM
852 if (interrupts_enabled(regs))
853 trace_hardirqs_on();
1d18c47c 854
6afedcd2 855 return rv;
1d18c47c 856}
2dd0e8d2 857NOKPROBE_SYMBOL(do_debug_exception);