Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / arch / arm64 / mm / fault.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
1d18c47c
CM
2/*
3 * Based on arch/arm/mm/fault.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
1d18c47c
CM
8 */
9
d44f1b8d 10#include <linux/acpi.h>
0edfa839 11#include <linux/extable.h>
1d18c47c
CM
12#include <linux/signal.h>
13#include <linux/mm.h>
14#include <linux/hardirq.h>
15#include <linux/init.h>
16#include <linux/kprobes.h>
17#include <linux/uaccess.h>
18#include <linux/page-flags.h>
3f07c014 19#include <linux/sched/signal.h>
b17b0153 20#include <linux/sched/debug.h>
1d18c47c
CM
21#include <linux/highmem.h>
22#include <linux/perf_event.h>
7209c868 23#include <linux/preempt.h>
e7c600f1 24#include <linux/hugetlb.h>
1d18c47c 25
d44f1b8d 26#include <asm/acpi.h>
7209c868 27#include <asm/bug.h>
3bbf7157 28#include <asm/cmpxchg.h>
338d4f49 29#include <asm/cpufeature.h>
1d18c47c 30#include <asm/exception.h>
9a0c0328 31#include <asm/daifflags.h>
1d18c47c 32#include <asm/debug-monitors.h>
9141300a 33#include <asm/esr.h>
356607f2 34#include <asm/kasan.h>
338d4f49 35#include <asm/sysreg.h>
1d18c47c
CM
36#include <asm/system_misc.h>
37#include <asm/pgtable.h>
38#include <asm/tlbflush.h>
92ff0674 39#include <asm/traps.h>
1d18c47c 40
09a6adf5
VK
41struct fault_info {
42 int (*fn)(unsigned long addr, unsigned int esr,
43 struct pt_regs *regs);
44 int sig;
45 int code;
46 const char *name;
47};
48
49static const struct fault_info fault_info[];
359048f9 50static struct fault_info debug_fault_info[];
09a6adf5
VK
51
52static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
53{
00bbd5d9 54 return fault_info + (esr & ESR_ELx_FSC);
09a6adf5 55}
3495386b 56
359048f9
AK
57static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
58{
59 return debug_fault_info + DBG_ESR_EVT(esr);
60}
61
2dd0e8d2
SP
62#ifdef CONFIG_KPROBES
63static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
64{
65 int ret = 0;
66
67 /* kprobe_running() needs smp_processor_id() */
68 if (!user_mode(regs)) {
69 preempt_disable();
70 if (kprobe_running() && kprobe_fault_handler(regs, esr))
71 ret = 1;
72 preempt_enable();
73 }
74
75 return ret;
76}
77#else
78static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
79{
80 return 0;
81}
82#endif
83
1f9b8936
JT
84static void data_abort_decode(unsigned int esr)
85{
86 pr_alert("Data abort info:\n");
87
88 if (esr & ESR_ELx_ISV) {
89 pr_alert(" Access size = %u byte(s)\n",
90 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
91 pr_alert(" SSE = %lu, SRT = %lu\n",
92 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
93 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
94 pr_alert(" SF = %lu, AR = %lu\n",
95 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
96 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
97 } else {
0a6de8b8 98 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
1f9b8936
JT
99 }
100
101 pr_alert(" CM = %lu, WnR = %lu\n",
102 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
103 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
104}
105
1f9b8936
JT
106static void mem_abort_decode(unsigned int esr)
107{
108 pr_alert("Mem abort info:\n");
109
42dbf54e 110 pr_alert(" ESR = 0x%08x\n", esr);
1f9b8936
JT
111 pr_alert(" Exception class = %s, IL = %u bits\n",
112 esr_get_class_string(esr),
113 (esr & ESR_ELx_IL) ? 32 : 16);
114 pr_alert(" SET = %lu, FnV = %lu\n",
115 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
116 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
117 pr_alert(" EA = %lu, S1PTW = %lu\n",
118 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
119 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
120
121 if (esr_is_data_abort(esr))
122 data_abort_decode(esr);
123}
124
356607f2
AK
125static inline bool is_ttbr0_addr(unsigned long addr)
126{
127 /* entry assembly clears tags for TTBR0 addrs */
128 return addr < TASK_SIZE;
129}
130
131static inline bool is_ttbr1_addr(unsigned long addr)
132{
133 /* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */
134 return arch_kasan_reset_tag(addr) >= VA_START;
135}
136
1d18c47c 137/*
67ce16ec 138 * Dump out the page tables associated with 'addr' in the currently active mm.
1d18c47c 139 */
7048a597 140static void show_pte(unsigned long addr)
1d18c47c 141{
67ce16ec 142 struct mm_struct *mm;
20a004e7
WD
143 pgd_t *pgdp;
144 pgd_t pgd;
1d18c47c 145
356607f2 146 if (is_ttbr0_addr(addr)) {
67ce16ec
KM
147 /* TTBR0 */
148 mm = current->active_mm;
149 if (mm == &init_mm) {
150 pr_alert("[%016lx] user address but active_mm is swapper\n",
151 addr);
152 return;
153 }
356607f2 154 } else if (is_ttbr1_addr(addr)) {
67ce16ec 155 /* TTBR1 */
1d18c47c 156 mm = &init_mm;
67ce16ec
KM
157 } else {
158 pr_alert("[%016lx] address between user and kernel address ranges\n",
159 addr);
160 return;
161 }
1d18c47c 162
48caebf7 163 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp=%016lx\n",
1eb34b6e 164 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
48caebf7
WD
165 mm == &init_mm ? VA_BITS : (int)vabits_user,
166 (unsigned long)virt_to_phys(mm->pgd));
20a004e7
WD
167 pgdp = pgd_offset(mm, addr);
168 pgd = READ_ONCE(*pgdp);
169 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
1d18c47c
CM
170
171 do {
20a004e7
WD
172 pud_t *pudp, pud;
173 pmd_t *pmdp, pmd;
174 pte_t *ptep, pte;
1d18c47c 175
20a004e7 176 if (pgd_none(pgd) || pgd_bad(pgd))
1d18c47c
CM
177 break;
178
20a004e7
WD
179 pudp = pud_offset(pgdp, addr);
180 pud = READ_ONCE(*pudp);
181 pr_cont(", pud=%016llx", pud_val(pud));
182 if (pud_none(pud) || pud_bad(pud))
1d18c47c
CM
183 break;
184
20a004e7
WD
185 pmdp = pmd_offset(pudp, addr);
186 pmd = READ_ONCE(*pmdp);
187 pr_cont(", pmd=%016llx", pmd_val(pmd));
188 if (pmd_none(pmd) || pmd_bad(pmd))
1d18c47c
CM
189 break;
190
20a004e7
WD
191 ptep = pte_offset_map(pmdp, addr);
192 pte = READ_ONCE(*ptep);
193 pr_cont(", pte=%016llx", pte_val(pte));
194 pte_unmap(ptep);
1d18c47c
CM
195 } while(0);
196
6ef4fb38 197 pr_cont("\n");
1d18c47c
CM
198}
199
66dbd6e6
CM
200/*
201 * This function sets the access flags (dirty, accessed), as well as write
202 * permission, and only to a more permissive setting.
203 *
204 * It needs to cope with hardware update of the accessed/dirty state by other
205 * agents in the system and can safely skip the __sync_icache_dcache() call as,
206 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
207 *
208 * Returns whether or not the PTE actually changed.
209 */
210int ptep_set_access_flags(struct vm_area_struct *vma,
211 unsigned long address, pte_t *ptep,
212 pte_t entry, int dirty)
213{
3bbf7157 214 pteval_t old_pteval, pteval;
20a004e7 215 pte_t pte = READ_ONCE(*ptep);
66dbd6e6 216
20a004e7 217 if (pte_same(pte, entry))
66dbd6e6
CM
218 return 0;
219
220 /* only preserve the access flags and write permission */
73e86cb0 221 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
66dbd6e6
CM
222
223 /*
224 * Setting the flags must be done atomically to avoid racing with the
6d332747
CM
225 * hardware update of the access/dirty state. The PTE_RDONLY bit must
226 * be set to the most permissive (lowest value) of *ptep and entry
227 * (calculated as: a & b == ~(~a | ~b)).
66dbd6e6 228 */
6d332747 229 pte_val(entry) ^= PTE_RDONLY;
20a004e7 230 pteval = pte_val(pte);
3bbf7157
CM
231 do {
232 old_pteval = pteval;
233 pteval ^= PTE_RDONLY;
234 pteval |= pte_val(entry);
235 pteval ^= PTE_RDONLY;
236 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
237 } while (pteval != old_pteval);
66dbd6e6
CM
238
239 flush_tlb_fix_spurious_fault(vma, address);
240 return 1;
241}
66dbd6e6 242
9adeb8e7
LA
243static bool is_el1_instruction_abort(unsigned int esr)
244{
245 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
246}
247
dbfe3828
AK
248static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
249 struct pt_regs *regs)
b824b930
SB
250{
251 unsigned int ec = ESR_ELx_EC(esr);
252 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
253
254 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
255 return false;
256
257 if (fsc_type == ESR_ELx_FSC_PERM)
258 return true;
259
356607f2 260 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
b824b930
SB
261 return fsc_type == ESR_ELx_FSC_FAULT &&
262 (regs->pstate & PSR_PAN_BIT);
263
264 return false;
265}
266
c870f14e
MR
267static void die_kernel_fault(const char *msg, unsigned long addr,
268 unsigned int esr, struct pt_regs *regs)
269{
270 bust_spinlocks(1);
271
272 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
273 addr);
274
275 mem_abort_decode(esr);
276
277 show_pte(addr);
278 die("Oops", regs, esr);
279 bust_spinlocks(0);
280 do_exit(SIGKILL);
281}
282
67ce16ec
KM
283static void __do_kernel_fault(unsigned long addr, unsigned int esr,
284 struct pt_regs *regs)
1d18c47c 285{
b824b930
SB
286 const char *msg;
287
1d18c47c
CM
288 /*
289 * Are we prepared to handle this kernel fault?
9adeb8e7 290 * We are almost certainly not prepared to handle instruction faults.
1d18c47c 291 */
9adeb8e7 292 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
1d18c47c
CM
293 return;
294
dbfe3828 295 if (is_el1_permission_fault(addr, esr, regs)) {
b824b930
SB
296 if (esr & ESR_ELx_WNR)
297 msg = "write to read-only memory";
298 else
299 msg = "read from unreadable memory";
300 } else if (addr < PAGE_SIZE) {
301 msg = "NULL pointer dereference";
302 } else {
303 msg = "paging request";
304 }
305
c870f14e 306 die_kernel_fault(msg, addr, esr, regs);
1d18c47c
CM
307}
308
f29ad209 309static void set_thread_esr(unsigned long address, unsigned int esr)
1d18c47c 310{
f29ad209 311 current->thread.fault_address = address;
cc198460
PM
312
313 /*
314 * If the faulting address is in the kernel, we must sanitize the ESR.
315 * From userspace's point of view, kernel-only mappings don't exist
316 * at all, so we report them as level 0 translation faults.
317 * (This is not quite the way that "no mapping there at all" behaves:
318 * an alignment fault not caused by the memory type would take
319 * precedence over translation fault for a real access to empty
320 * space. Unfortunately we can't easily distinguish "alignment fault
321 * not caused by memory type" from "alignment fault caused by memory
322 * type", so we ignore this wrinkle and just return the translation
323 * fault.)
324 */
356607f2 325 if (!is_ttbr0_addr(current->thread.fault_address)) {
cc198460
PM
326 switch (ESR_ELx_EC(esr)) {
327 case ESR_ELx_EC_DABT_LOW:
328 /*
329 * These bits provide only information about the
330 * faulting instruction, which userspace knows already.
331 * We explicitly clear bits which are architecturally
332 * RES0 in case they are given meanings in future.
333 * We always report the ESR as if the fault was taken
334 * to EL1 and so ISV and the bits in ISS[23:14] are
335 * clear. (In fact it always will be a fault to EL1.)
336 */
337 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
338 ESR_ELx_CM | ESR_ELx_WNR;
339 esr |= ESR_ELx_FSC_FAULT;
340 break;
341 case ESR_ELx_EC_IABT_LOW:
342 /*
343 * Claim a level 0 translation fault.
344 * All other bits are architecturally RES0 for faults
345 * reported with that DFSC value, so we clear them.
346 */
347 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
348 esr |= ESR_ELx_FSC_FAULT;
349 break;
350 default:
351 /*
352 * This should never happen (entry.S only brings us
353 * into this code for insn and data aborts from a lower
354 * exception level). Fail safe by not providing an ESR
355 * context record at all.
356 */
357 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
358 esr = 0;
359 break;
360 }
361 }
362
92ff0674 363 current->thread.fault_code = esr;
1d18c47c
CM
364}
365
59f67e16 366static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
1d18c47c 367{
1d18c47c
CM
368 /*
369 * If we are in kernel mode at this point, we have no context to
370 * handle this fault with.
371 */
09a6adf5 372 if (user_mode(regs)) {
92ff0674 373 const struct fault_info *inf = esr_to_fault_info(esr);
3eb0f519 374
effb093a 375 set_thread_esr(addr, esr);
feca355b
EB
376 arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
377 inf->name);
92ff0674 378 } else {
67ce16ec 379 __do_kernel_fault(addr, esr, regs);
92ff0674 380 }
1d18c47c
CM
381}
382
383#define VM_FAULT_BADMAP 0x010000
384#define VM_FAULT_BADACCESS 0x020000
385
50a7ca3c 386static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
db6f4106 387 unsigned int mm_flags, unsigned long vm_flags,
1d18c47c
CM
388 struct task_struct *tsk)
389{
390 struct vm_area_struct *vma;
50a7ca3c 391 vm_fault_t fault;
1d18c47c
CM
392
393 vma = find_vma(mm, addr);
394 fault = VM_FAULT_BADMAP;
395 if (unlikely(!vma))
396 goto out;
397 if (unlikely(vma->vm_start > addr))
398 goto check_stack;
399
400 /*
401 * Ok, we have a good vm_area for this memory access, so we can handle
402 * it.
403 */
404good_area:
db6f4106
WD
405 /*
406 * Check that the permissions on the VMA allow for the fault which
cab15ce6 407 * occurred.
db6f4106
WD
408 */
409 if (!(vma->vm_flags & vm_flags)) {
1d18c47c
CM
410 fault = VM_FAULT_BADACCESS;
411 goto out;
412 }
413
dcddffd4 414 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
1d18c47c
CM
415
416check_stack:
417 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
418 goto good_area;
419out:
420 return fault;
421}
422
541ec870
MR
423static bool is_el0_instruction_abort(unsigned int esr)
424{
425 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
426}
427
1d18c47c
CM
428static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
429 struct pt_regs *regs)
430{
2d2837fa 431 const struct fault_info *inf;
1d18c47c
CM
432 struct task_struct *tsk;
433 struct mm_struct *mm;
50a7ca3c 434 vm_fault_t fault, major = 0;
cab15ce6 435 unsigned long vm_flags = VM_READ | VM_WRITE;
db6f4106
WD
436 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
437
2dd0e8d2
SP
438 if (notify_page_fault(regs, esr))
439 return 0;
440
1d18c47c
CM
441 tsk = current;
442 mm = tsk->mm;
443
1d18c47c
CM
444 /*
445 * If we're in an interrupt or have no user context, we must not take
446 * the fault.
447 */
70ffdb93 448 if (faulthandler_disabled() || !mm)
1d18c47c
CM
449 goto no_context;
450
759496ba
JW
451 if (user_mode(regs))
452 mm_flags |= FAULT_FLAG_USER;
453
541ec870 454 if (is_el0_instruction_abort(esr)) {
759496ba 455 vm_flags = VM_EXEC;
aed40e01 456 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
759496ba
JW
457 vm_flags = VM_WRITE;
458 mm_flags |= FAULT_FLAG_WRITE;
459 }
460
356607f2 461 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
e19a6ee2
JM
462 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
463 if (regs->orig_addr_limit == KERNEL_DS)
c870f14e
MR
464 die_kernel_fault("access to user memory with fs=KERNEL_DS",
465 addr, esr, regs);
70544196 466
9adeb8e7 467 if (is_el1_instruction_abort(esr))
c870f14e
MR
468 die_kernel_fault("execution of user memory",
469 addr, esr, regs);
9adeb8e7 470
57f4959b 471 if (!search_exception_tables(regs->pc))
c870f14e
MR
472 die_kernel_fault("access to user memory outside uaccess routines",
473 addr, esr, regs);
57f4959b 474 }
338d4f49 475
0e3a9026
PA
476 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
477
1d18c47c
CM
478 /*
479 * As per x86, we may deadlock here. However, since the kernel only
480 * validly references user space from well defined areas of the code,
481 * we can bug out early if this is from code which shouldn't.
482 */
483 if (!down_read_trylock(&mm->mmap_sem)) {
484 if (!user_mode(regs) && !search_exception_tables(regs->pc))
485 goto no_context;
486retry:
487 down_read(&mm->mmap_sem);
488 } else {
489 /*
490 * The above down_read_trylock() might have succeeded in which
491 * case, we'll have missed the might_sleep() from down_read().
492 */
493 might_sleep();
494#ifdef CONFIG_DEBUG_VM
495 if (!user_mode(regs) && !search_exception_tables(regs->pc))
496 goto no_context;
497#endif
498 }
499
db6f4106 500 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
0e3a9026 501 major |= fault & VM_FAULT_MAJOR;
1d18c47c 502
0e3a9026
PA
503 if (fault & VM_FAULT_RETRY) {
504 /*
505 * If we need to retry but a fatal signal is pending,
506 * handle the signal first. We do not need to release
507 * the mmap_sem because it would already be released
508 * in __lock_page_or_retry in mm/filemap.c.
509 */
289d07a2
MR
510 if (fatal_signal_pending(current)) {
511 if (!user_mode(regs))
512 goto no_context;
0e3a9026 513 return 0;
289d07a2 514 }
0e3a9026
PA
515
516 /*
517 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
518 * starvation.
519 */
520 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
521 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
522 mm_flags |= FAULT_FLAG_TRIED;
523 goto retry;
524 }
525 }
526 up_read(&mm->mmap_sem);
1d18c47c
CM
527
528 /*
0e3a9026 529 * Handle the "normal" (no error) case first.
1d18c47c 530 */
0e3a9026
PA
531 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
532 VM_FAULT_BADACCESS)))) {
533 /*
534 * Major/minor page fault accounting is only done
535 * once. If we go through a retry, it is extremely
536 * likely that the page will be found in page cache at
537 * that point.
538 */
539 if (major) {
1d18c47c
CM
540 tsk->maj_flt++;
541 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
542 addr);
543 } else {
544 tsk->min_flt++;
545 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
546 addr);
547 }
1d18c47c 548
1d18c47c 549 return 0;
0e3a9026 550 }
1d18c47c 551
87134102
JW
552 /*
553 * If we are in kernel mode at this point, we have no context to
554 * handle this fault with.
555 */
556 if (!user_mode(regs))
557 goto no_context;
558
1d18c47c
CM
559 if (fault & VM_FAULT_OOM) {
560 /*
561 * We ran out of memory, call the OOM killer, and return to
562 * userspace (which will retry the fault, or kill us if we got
563 * oom-killed).
564 */
565 pagefault_out_of_memory();
566 return 0;
567 }
568
2d2837fa 569 inf = esr_to_fault_info(esr);
559d8d91 570 set_thread_esr(addr, esr);
1d18c47c
CM
571 if (fault & VM_FAULT_SIGBUS) {
572 /*
573 * We had some memory, but were unable to successfully fix up
574 * this page fault.
575 */
feca355b
EB
576 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
577 inf->name);
9ea3a974
EB
578 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
579 unsigned int lsb;
580
581 lsb = PAGE_SHIFT;
582 if (fault & VM_FAULT_HWPOISON_LARGE)
583 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
92ff0674 584
b4d5557c
EB
585 arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
586 inf->name);
1d18c47c
CM
587 } else {
588 /*
589 * Something tried to access memory that isn't in our memory
590 * map.
591 */
feca355b
EB
592 arm64_force_sig_fault(SIGSEGV,
593 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
594 (void __user *)addr,
595 inf->name);
1d18c47c
CM
596 }
597
1d18c47c
CM
598 return 0;
599
600no_context:
67ce16ec 601 __do_kernel_fault(addr, esr, regs);
1d18c47c
CM
602 return 0;
603}
604
1d18c47c
CM
605static int __kprobes do_translation_fault(unsigned long addr,
606 unsigned int esr,
607 struct pt_regs *regs)
608{
356607f2 609 if (is_ttbr0_addr(addr))
1d18c47c
CM
610 return do_page_fault(addr, esr, regs);
611
612 do_bad_area(addr, esr, regs);
613 return 0;
614}
615
52d7523d
EL
616static int do_alignment_fault(unsigned long addr, unsigned int esr,
617 struct pt_regs *regs)
618{
619 do_bad_area(addr, esr, regs);
620 return 0;
621}
622
1d18c47c
CM
623static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
624{
f67d5c4f 625 return 1; /* "fault" */
1d18c47c
CM
626}
627
32015c23
TB
628static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
629{
32015c23 630 const struct fault_info *inf;
6fa998e8 631 void __user *siaddr;
32015c23
TB
632
633 inf = esr_to_fault_info(esr);
32015c23 634
7edda088 635 /*
d44f1b8d
JM
636 * Return value ignored as we rely on signal merging.
637 * Future patches will make this more robust.
7edda088 638 */
d44f1b8d 639 apei_claim_sea(regs);
7edda088 640
32015c23 641 if (esr & ESR_ELx_FnV)
6fa998e8 642 siaddr = NULL;
32015c23 643 else
6fa998e8
EB
644 siaddr = (void __user *)addr;
645 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
32015c23 646
faa75e14 647 return 0;
32015c23
TB
648}
649
09a6adf5 650static const struct fault_info fault_info[] = {
af40ff68
DM
651 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
652 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
653 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
654 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
7f73f7ae 655 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
1d18c47c
CM
656 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
657 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
760bfb47 658 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
af40ff68 659 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
084bd298
SC
660 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
661 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
1d18c47c 662 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
af40ff68 663 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
084bd298
SC
664 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
665 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
1d18c47c 666 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
af40ff68
DM
667 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
668 { do_bad, SIGKILL, SI_KERNEL, "unknown 17" },
669 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
670 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
671 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
672 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
673 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
674 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
675 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
676 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
677 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
678 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
679 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
680 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
681 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
682 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
683 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
52d7523d 684 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
af40ff68
DM
685 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
686 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
687 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
688 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
689 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
690 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
691 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
692 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
693 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
694 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
695 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
696 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
697 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
698 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
699 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
700 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
701 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
702 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
703 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
704 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
705 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
706 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
707 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
708 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
709 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
710 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
711 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
712 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
713 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
714 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
1d18c47c
CM
715};
716
1d18c47c
CM
717asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
718 struct pt_regs *regs)
719{
09a6adf5 720 const struct fault_info *inf = esr_to_fault_info(esr);
1d18c47c
CM
721
722 if (!inf->fn(addr, esr, regs))
723 return;
724
1049c308
WD
725 if (!user_mode(regs)) {
726 pr_alert("Unhandled fault at 0x%016lx\n", addr);
727 mem_abort_decode(esr);
80b6eb04 728 show_pte(addr);
1049c308 729 }
42dbf54e 730
6fa998e8
EB
731 arm64_notify_die(inf->name, regs,
732 inf->sig, inf->code, (void __user *)addr, esr);
1d18c47c
CM
733}
734
30d88c0e
WD
735asmlinkage void __exception do_el0_irq_bp_hardening(void)
736{
737 /* PC has already been checked in entry.S */
738 arm64_apply_bp_hardening();
739}
740
0f15adbb
WD
741asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
742 unsigned int esr,
743 struct pt_regs *regs)
744{
745 /*
746 * We've taken an instruction abort from userspace and not yet
747 * re-enabled IRQs. If the address is a kernel address, apply
748 * BP hardening prior to enabling IRQs and pre-emption.
749 */
356607f2 750 if (!is_ttbr0_addr(addr))
0f15adbb
WD
751 arm64_apply_bp_hardening();
752
9a0c0328 753 local_daif_restore(DAIF_PROCCTX);
0f15adbb
WD
754 do_mem_abort(addr, esr, regs);
755}
756
757
1d18c47c
CM
758asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
759 unsigned int esr,
760 struct pt_regs *regs)
761{
5dfc6ed2 762 if (user_mode(regs)) {
356607f2 763 if (!is_ttbr0_addr(instruction_pointer(regs)))
5dfc6ed2 764 arm64_apply_bp_hardening();
9a0c0328 765 local_daif_restore(DAIF_PROCCTX);
5dfc6ed2
WD
766 }
767
6fa998e8
EB
768 arm64_notify_die("SP/PC alignment exception", regs,
769 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
1d18c47c
CM
770}
771
9fb7410f
DM
772int __init early_brk64(unsigned long addr, unsigned int esr,
773 struct pt_regs *regs);
774
775/*
776 * __refdata because early_brk64 is __init, but the reference to it is
777 * clobbered at arch_initcall time.
778 * See traps.c and debug-monitors.c:debug_traps_init().
779 */
780static struct fault_info __refdata debug_fault_info[] = {
1d18c47c
CM
781 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
782 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
783 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
af40ff68 784 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
1d18c47c 785 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
af40ff68 786 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
9fb7410f 787 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
af40ff68 788 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
1d18c47c
CM
789};
790
791void __init hook_debug_fault_code(int nr,
792 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
793 int sig, int code, const char *name)
794{
795 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
796
797 debug_fault_info[nr].fn = fn;
798 debug_fault_info[nr].sig = sig;
799 debug_fault_info[nr].code = code;
800 debug_fault_info[nr].name = name;
801}
802
969f5ea6
WD
803#ifdef CONFIG_ARM64_ERRATUM_1463225
804DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
805
806static int __exception
807cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
808{
809 if (user_mode(regs))
810 return 0;
811
812 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
813 return 0;
814
815 /*
816 * We've taken a dummy step exception from the kernel to ensure
817 * that interrupts are re-enabled on the syscall path. Return back
818 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
819 * masked so that we can safely restore the mdscr and get on with
820 * handling the syscall.
821 */
822 regs->pstate |= PSR_D_BIT;
823 return 1;
824}
825#else
826static int __exception
827cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
828{
829 return 0;
830}
831#endif /* CONFIG_ARM64_ERRATUM_1463225 */
832
52c6d145
WD
833asmlinkage void __exception do_debug_exception(unsigned long addr_if_watchpoint,
834 unsigned int esr,
835 struct pt_regs *regs)
1d18c47c 836{
359048f9 837 const struct fault_info *inf = esr_to_debug_fault_info(esr);
b9a4b9d0 838 unsigned long pc = instruction_pointer(regs);
1d18c47c 839
969f5ea6
WD
840 if (cortex_a76_erratum_1463225_debug_handler(regs))
841 return;
842
6afedcd2
JM
843 /*
844 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
845 * already disabled to preserve the last enabled/disabled addresses.
846 */
847 if (interrupts_enabled(regs))
848 trace_hardirqs_off();
1d18c47c 849
b9a4b9d0 850 if (user_mode(regs) && !is_ttbr0_addr(pc))
5dfc6ed2
WD
851 arm64_apply_bp_hardening();
852
52c6d145 853 if (inf->fn(addr_if_watchpoint, esr, regs)) {
6fa998e8 854 arm64_notify_die(inf->name, regs,
b9a4b9d0 855 inf->sig, inf->code, (void __user *)pc, esr);
6afedcd2 856 }
1d18c47c 857
6afedcd2
JM
858 if (interrupts_enabled(regs))
859 trace_hardirqs_on();
1d18c47c 860}
2dd0e8d2 861NOKPROBE_SYMBOL(do_debug_exception);