Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6-block.git] / arch / arm64 / lib / strnlen.S
CommitLineData
0a42cb0a 1/*
2 * Copyright (C) 2013 ARM Ltd.
3 * Copyright (C) 2013 Linaro.
4 *
5 * This code is based on glibc cortex strings work originally authored by Linaro
6 * and re-licensed under GPLv2 for the Linux kernel. The original code can
7 * be found @
8 *
9 * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
10 * files/head:/src/aarch64/
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 */
24
25#include <linux/linkage.h>
26#include <asm/assembler.h>
27
28/*
29 * determine the length of a fixed-size string
30 *
31 * Parameters:
32 * x0 - const string pointer
33 * x1 - maximal string length
34 * Returns:
35 * x0 - the return length of specific string
36 */
37
38/* Arguments and results. */
39srcin .req x0
40len .req x0
41limit .req x1
42
43/* Locals and temporaries. */
44src .req x2
45data1 .req x3
46data2 .req x4
47data2a .req x5
48has_nul1 .req x6
49has_nul2 .req x7
50tmp1 .req x8
51tmp2 .req x9
52tmp3 .req x10
53tmp4 .req x11
54zeroones .req x12
55pos .req x13
56limit_wd .req x14
57
58#define REP8_01 0x0101010101010101
59#define REP8_7f 0x7f7f7f7f7f7f7f7f
60#define REP8_80 0x8080808080808080
61
62ENTRY(strnlen)
63 cbz limit, .Lhit_limit
64 mov zeroones, #REP8_01
65 bic src, srcin, #15
66 ands tmp1, srcin, #15
67 b.ne .Lmisaligned
68 /* Calculate the number of full and partial words -1. */
69 sub limit_wd, limit, #1 /* Limit != 0, so no underflow. */
70 lsr limit_wd, limit_wd, #4 /* Convert to Qwords. */
71
72 /*
73 * NUL detection works on the principle that (X - 1) & (~X) & 0x80
74 * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
75 * can be done in parallel across the entire word.
76 */
77 /*
78 * The inner loop deals with two Dwords at a time. This has a
79 * slightly higher start-up cost, but we should win quite quickly,
80 * especially on cores with a high number of issue slots per
81 * cycle, as we get much better parallelism out of the operations.
82 */
83.Lloop:
84 ldp data1, data2, [src], #16
85.Lrealigned:
86 sub tmp1, data1, zeroones
87 orr tmp2, data1, #REP8_7f
88 sub tmp3, data2, zeroones
89 orr tmp4, data2, #REP8_7f
90 bic has_nul1, tmp1, tmp2
91 bic has_nul2, tmp3, tmp4
92 subs limit_wd, limit_wd, #1
93 orr tmp1, has_nul1, has_nul2
94 ccmp tmp1, #0, #0, pl /* NZCV = 0000 */
95 b.eq .Lloop
96
97 cbz tmp1, .Lhit_limit /* No null in final Qword. */
98
99 /*
100 * We know there's a null in the final Qword. The easiest thing
101 * to do now is work out the length of the string and return
102 * MIN (len, limit).
103 */
104 sub len, src, srcin
105 cbz has_nul1, .Lnul_in_data2
106CPU_BE( mov data2, data1 ) /*perpare data to re-calculate the syndrome*/
107
108 sub len, len, #8
109 mov has_nul2, has_nul1
110.Lnul_in_data2:
111 /*
112 * For big-endian, carry propagation (if the final byte in the
113 * string is 0x01) means we cannot use has_nul directly. The
114 * easiest way to get the correct byte is to byte-swap the data
115 * and calculate the syndrome a second time.
116 */
117CPU_BE( rev data2, data2 )
118CPU_BE( sub tmp1, data2, zeroones )
119CPU_BE( orr tmp2, data2, #REP8_7f )
120CPU_BE( bic has_nul2, tmp1, tmp2 )
121
122 sub len, len, #8
123 rev has_nul2, has_nul2
124 clz pos, has_nul2
125 add len, len, pos, lsr #3 /* Bits to bytes. */
126 cmp len, limit
127 csel len, len, limit, ls /* Return the lower value. */
128 ret
129
130.Lmisaligned:
131 /*
132 * Deal with a partial first word.
133 * We're doing two things in parallel here;
134 * 1) Calculate the number of words (but avoiding overflow if
135 * limit is near ULONG_MAX) - to do this we need to work out
136 * limit + tmp1 - 1 as a 65-bit value before shifting it;
137 * 2) Load and mask the initial data words - we force the bytes
138 * before the ones we are interested in to 0xff - this ensures
139 * early bytes will not hit any zero detection.
140 */
141 ldp data1, data2, [src], #16
142
143 sub limit_wd, limit, #1
144 and tmp3, limit_wd, #15
145 lsr limit_wd, limit_wd, #4
146
147 add tmp3, tmp3, tmp1
148 add limit_wd, limit_wd, tmp3, lsr #4
149
150 neg tmp4, tmp1
151 lsl tmp4, tmp4, #3 /* Bytes beyond alignment -> bits. */
152
153 mov tmp2, #~0
154 /* Big-endian. Early bytes are at MSB. */
155CPU_BE( lsl tmp2, tmp2, tmp4 ) /* Shift (tmp1 & 63). */
156 /* Little-endian. Early bytes are at LSB. */
157CPU_LE( lsr tmp2, tmp2, tmp4 ) /* Shift (tmp1 & 63). */
158
159 cmp tmp1, #8
160
161 orr data1, data1, tmp2
162 orr data2a, data2, tmp2
163
164 csinv data1, data1, xzr, le
165 csel data2, data2, data2a, le
166 b .Lrealigned
167
168.Lhit_limit:
169 mov len, limit
170 ret
7f4e3462 171ENDPIPROC(strnlen)