KVM: arm64: Don't BUG_ON() if emulated register table is unsorted
[linux-2.6-block.git] / arch / arm64 / kvm / sys_regs.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
7c8c5e6a
MZ
2/*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/coproc.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
9 * Christoffer Dall <c.dall@virtualopensystems.com>
7c8c5e6a
MZ
10 */
11
c8857935 12#include <linux/bitfield.h>
623eefa8 13#include <linux/bsearch.h>
7c8c5e6a 14#include <linux/kvm_host.h>
c6d01a94 15#include <linux/mm.h>
07d79fe7 16#include <linux/printk.h>
7c8c5e6a 17#include <linux/uaccess.h>
c6d01a94 18
7c8c5e6a
MZ
19#include <asm/cacheflush.h>
20#include <asm/cputype.h>
0c557ed4 21#include <asm/debug-monitors.h>
c6d01a94
MR
22#include <asm/esr.h>
23#include <asm/kvm_arm.h>
c6d01a94 24#include <asm/kvm_emulate.h>
d47533da 25#include <asm/kvm_hyp.h>
c6d01a94 26#include <asm/kvm_mmu.h>
ab946834 27#include <asm/perf_event.h>
1f3d8699 28#include <asm/sysreg.h>
c6d01a94 29
7c8c5e6a
MZ
30#include <trace/events/kvm.h>
31
32#include "sys_regs.h"
33
eef8c85a
AB
34#include "trace.h"
35
7c8c5e6a 36/*
656012c7 37 * All of this file is extremely similar to the ARM coproc.c, but the
7c8c5e6a
MZ
38 * types are different. My gut feeling is that it should be pretty
39 * easy to merge, but that would be an ABI breakage -- again. VFP
40 * would also need to be abstracted.
62a89c44
MZ
41 *
42 * For AArch32, we only take care of what is being trapped. Anything
43 * that has to do with init and userspace access has to go via the
44 * 64bit interface.
7c8c5e6a
MZ
45 */
46
f24adc65
OU
47static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
48static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
49static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
50
7b5b4df1 51static bool read_from_write_only(struct kvm_vcpu *vcpu,
e7f1d1ee
MZ
52 struct sys_reg_params *params,
53 const struct sys_reg_desc *r)
7b5b4df1
MZ
54{
55 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
56 print_sys_reg_instr(params);
57 kvm_inject_undefined(vcpu);
58 return false;
59}
60
7b1dba1f
MZ
61static bool write_to_read_only(struct kvm_vcpu *vcpu,
62 struct sys_reg_params *params,
63 const struct sys_reg_desc *r)
64{
65 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
66 print_sys_reg_instr(params);
67 kvm_inject_undefined(vcpu);
68 return false;
69}
70
7ea90bdd
MZ
71u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
72{
73 u64 val = 0x8badf00d8badf00d;
74
75 if (vcpu->arch.sysregs_loaded_on_cpu &&
76 __vcpu_read_sys_reg_from_cpu(reg, &val))
77 return val;
78
79 return __vcpu_sys_reg(vcpu, reg);
80}
81
82void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
83{
84 if (vcpu->arch.sysregs_loaded_on_cpu &&
85 __vcpu_write_sys_reg_to_cpu(val, reg))
86 return;
87
d47533da
CD
88 __vcpu_sys_reg(vcpu, reg) = val;
89}
90
7c8c5e6a
MZ
91/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
92static u32 cache_levels;
93
94/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
c73a4416 95#define CSSELR_MAX 14
7c8c5e6a
MZ
96
97/* Which cache CCSIDR represents depends on CSSELR value. */
98static u32 get_ccsidr(u32 csselr)
99{
100 u32 ccsidr;
101
102 /* Make sure noone else changes CSSELR during this! */
103 local_irq_disable();
1f3d8699 104 write_sysreg(csselr, csselr_el1);
7c8c5e6a 105 isb();
1f3d8699 106 ccsidr = read_sysreg(ccsidr_el1);
7c8c5e6a
MZ
107 local_irq_enable();
108
109 return ccsidr;
110}
111
3c1e7165
MZ
112/*
113 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
114 */
7c8c5e6a 115static bool access_dcsw(struct kvm_vcpu *vcpu,
3fec037d 116 struct sys_reg_params *p,
7c8c5e6a
MZ
117 const struct sys_reg_desc *r)
118{
7c8c5e6a 119 if (!p->is_write)
e7f1d1ee 120 return read_from_write_only(vcpu, p, r);
7c8c5e6a 121
09605e94
MZ
122 /*
123 * Only track S/W ops if we don't have FWB. It still indicates
124 * that the guest is a bit broken (S/W operations should only
125 * be done by firmware, knowing that there is only a single
126 * CPU left in the system, and certainly not from non-secure
127 * software).
128 */
129 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
130 kvm_set_way_flush(vcpu);
131
7c8c5e6a
MZ
132 return true;
133}
134
b1ea1d76
MZ
135static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
136{
137 switch (r->aarch32_map) {
138 case AA32_LO:
139 *mask = GENMASK_ULL(31, 0);
140 *shift = 0;
141 break;
142 case AA32_HI:
143 *mask = GENMASK_ULL(63, 32);
144 *shift = 32;
145 break;
146 default:
147 *mask = GENMASK_ULL(63, 0);
148 *shift = 0;
149 break;
150 }
151}
152
4d44923b
MZ
153/*
154 * Generic accessor for VM registers. Only called as long as HCR_TVM
3c1e7165
MZ
155 * is set. If the guest enables the MMU, we stop trapping the VM
156 * sys_regs and leave it in complete control of the caches.
4d44923b
MZ
157 */
158static bool access_vm_reg(struct kvm_vcpu *vcpu,
3fec037d 159 struct sys_reg_params *p,
4d44923b
MZ
160 const struct sys_reg_desc *r)
161{
3c1e7165 162 bool was_enabled = vcpu_has_cache_enabled(vcpu);
b1ea1d76 163 u64 val, mask, shift;
4d44923b
MZ
164
165 BUG_ON(!p->is_write);
166
b1ea1d76 167 get_access_mask(r, &mask, &shift);
52f6c4f0 168
b1ea1d76
MZ
169 if (~mask) {
170 val = vcpu_read_sys_reg(vcpu, r->reg);
171 val &= ~mask;
dedf97e8 172 } else {
b1ea1d76 173 val = 0;
dedf97e8 174 }
b1ea1d76
MZ
175
176 val |= (p->regval & (mask >> shift)) << shift;
177 vcpu_write_sys_reg(vcpu, val, r->reg);
f0a3eaff 178
3c1e7165 179 kvm_toggle_cache(vcpu, was_enabled);
4d44923b
MZ
180 return true;
181}
182
af473829
JM
183static bool access_actlr(struct kvm_vcpu *vcpu,
184 struct sys_reg_params *p,
185 const struct sys_reg_desc *r)
186{
b1ea1d76
MZ
187 u64 mask, shift;
188
af473829
JM
189 if (p->is_write)
190 return ignore_write(vcpu, p);
191
b1ea1d76
MZ
192 get_access_mask(r, &mask, &shift);
193 p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
af473829
JM
194
195 return true;
196}
197
6d52f35a
AP
198/*
199 * Trap handler for the GICv3 SGI generation system register.
200 * Forward the request to the VGIC emulation.
201 * The cp15_64 code makes sure this automatically works
202 * for both AArch64 and AArch32 accesses.
203 */
204static bool access_gic_sgi(struct kvm_vcpu *vcpu,
3fec037d 205 struct sys_reg_params *p,
6d52f35a
AP
206 const struct sys_reg_desc *r)
207{
03bd646d
MZ
208 bool g1;
209
6d52f35a 210 if (!p->is_write)
e7f1d1ee 211 return read_from_write_only(vcpu, p, r);
6d52f35a 212
03bd646d
MZ
213 /*
214 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
215 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
216 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
217 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
218 * group.
219 */
50f30453 220 if (p->Op0 == 0) { /* AArch32 */
03bd646d
MZ
221 switch (p->Op1) {
222 default: /* Keep GCC quiet */
223 case 0: /* ICC_SGI1R */
224 g1 = true;
225 break;
226 case 1: /* ICC_ASGI1R */
227 case 2: /* ICC_SGI0R */
228 g1 = false;
229 break;
230 }
50f30453 231 } else { /* AArch64 */
03bd646d
MZ
232 switch (p->Op2) {
233 default: /* Keep GCC quiet */
234 case 5: /* ICC_SGI1R_EL1 */
235 g1 = true;
236 break;
237 case 6: /* ICC_ASGI1R_EL1 */
238 case 7: /* ICC_SGI0R_EL1 */
239 g1 = false;
240 break;
241 }
242 }
243
244 vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
6d52f35a
AP
245
246 return true;
247}
248
b34f2bcb
MZ
249static bool access_gic_sre(struct kvm_vcpu *vcpu,
250 struct sys_reg_params *p,
251 const struct sys_reg_desc *r)
252{
253 if (p->is_write)
254 return ignore_write(vcpu, p);
255
256 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
257 return true;
258}
259
7609c125 260static bool trap_raz_wi(struct kvm_vcpu *vcpu,
3fec037d 261 struct sys_reg_params *p,
7609c125 262 const struct sys_reg_desc *r)
7c8c5e6a
MZ
263{
264 if (p->is_write)
265 return ignore_write(vcpu, p);
266 else
267 return read_zero(vcpu, p);
268}
269
22925521
MZ
270/*
271 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
272 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
273 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
274 * treat it separately.
275 */
276static bool trap_loregion(struct kvm_vcpu *vcpu,
277 struct sys_reg_params *p,
278 const struct sys_reg_desc *r)
cc33c4e2 279{
22925521 280 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
7ba8b438 281 u32 sr = reg_to_encoding(r);
22925521
MZ
282
283 if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
284 kvm_inject_undefined(vcpu);
285 return false;
286 }
287
288 if (p->is_write && sr == SYS_LORID_EL1)
289 return write_to_read_only(vcpu, p, r);
290
291 return trap_raz_wi(vcpu, p, r);
cc33c4e2
MR
292}
293
f24adc65
OU
294static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
295 struct sys_reg_params *p,
296 const struct sys_reg_desc *r)
297{
298 u64 oslsr;
299
300 if (!p->is_write)
301 return read_from_write_only(vcpu, p, r);
302
303 /* Forward the OSLK bit to OSLSR */
304 oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK;
305 if (p->regval & SYS_OSLAR_OSLK)
306 oslsr |= SYS_OSLSR_OSLK;
307
308 __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
309 return true;
310}
311
0c557ed4 312static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
3fec037d 313 struct sys_reg_params *p,
0c557ed4
MZ
314 const struct sys_reg_desc *r)
315{
d42e2671 316 if (p->is_write)
e2ffceaa 317 return write_to_read_only(vcpu, p, r);
d42e2671
OU
318
319 p->regval = __vcpu_sys_reg(vcpu, r->reg);
320 return true;
321}
322
323static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
324 const struct kvm_one_reg *reg, void __user *uaddr)
325{
326 u64 id = sys_reg_to_index(rd);
327 u64 val;
328 int err;
329
330 err = reg_from_user(&val, uaddr, id);
331 if (err)
332 return err;
333
f24adc65
OU
334 /*
335 * The only modifiable bit is the OSLK bit. Refuse the write if
336 * userspace attempts to change any other bit in the register.
337 */
338 if ((val ^ rd->val) & ~SYS_OSLSR_OSLK)
d42e2671
OU
339 return -EINVAL;
340
f24adc65 341 __vcpu_sys_reg(vcpu, rd->reg) = val;
d42e2671 342 return 0;
0c557ed4
MZ
343}
344
345static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
3fec037d 346 struct sys_reg_params *p,
0c557ed4
MZ
347 const struct sys_reg_desc *r)
348{
349 if (p->is_write) {
350 return ignore_write(vcpu, p);
351 } else {
1f3d8699 352 p->regval = read_sysreg(dbgauthstatus_el1);
0c557ed4
MZ
353 return true;
354 }
355}
356
357/*
358 * We want to avoid world-switching all the DBG registers all the
359 * time:
e6bc555c 360 *
0c557ed4
MZ
361 * - If we've touched any debug register, it is likely that we're
362 * going to touch more of them. It then makes sense to disable the
363 * traps and start doing the save/restore dance
364 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
365 * then mandatory to save/restore the registers, as the guest
366 * depends on them.
e6bc555c 367 *
0c557ed4
MZ
368 * For this, we use a DIRTY bit, indicating the guest has modified the
369 * debug registers, used as follow:
370 *
371 * On guest entry:
372 * - If the dirty bit is set (because we're coming back from trapping),
373 * disable the traps, save host registers, restore guest registers.
374 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
375 * set the dirty bit, disable the traps, save host registers,
376 * restore guest registers.
377 * - Otherwise, enable the traps
378 *
379 * On guest exit:
380 * - If the dirty bit is set, save guest registers, restore host
381 * registers and clear the dirty bit. This ensure that the host can
382 * now use the debug registers.
383 */
384static bool trap_debug_regs(struct kvm_vcpu *vcpu,
3fec037d 385 struct sys_reg_params *p,
0c557ed4
MZ
386 const struct sys_reg_desc *r)
387{
388 if (p->is_write) {
8d404c4c 389 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
fa89d31c 390 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
0c557ed4 391 } else {
8d404c4c 392 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
0c557ed4
MZ
393 }
394
2ec5be3d 395 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
eef8c85a 396
0c557ed4
MZ
397 return true;
398}
399
84e690bf
AB
400/*
401 * reg_to_dbg/dbg_to_reg
402 *
403 * A 32 bit write to a debug register leave top bits alone
404 * A 32 bit read from a debug register only returns the bottom bits
405 *
406 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
407 * hyp.S code switches between host and guest values in future.
408 */
281243cb
MZ
409static void reg_to_dbg(struct kvm_vcpu *vcpu,
410 struct sys_reg_params *p,
1da42c34 411 const struct sys_reg_desc *rd,
281243cb 412 u64 *dbg_reg)
84e690bf 413{
1da42c34 414 u64 mask, shift, val;
84e690bf 415
1da42c34 416 get_access_mask(rd, &mask, &shift);
84e690bf 417
1da42c34
MZ
418 val = *dbg_reg;
419 val &= ~mask;
420 val |= (p->regval & (mask >> shift)) << shift;
84e690bf 421 *dbg_reg = val;
1da42c34 422
fa89d31c 423 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
84e690bf
AB
424}
425
281243cb
MZ
426static void dbg_to_reg(struct kvm_vcpu *vcpu,
427 struct sys_reg_params *p,
1da42c34 428 const struct sys_reg_desc *rd,
281243cb 429 u64 *dbg_reg)
84e690bf 430{
1da42c34
MZ
431 u64 mask, shift;
432
433 get_access_mask(rd, &mask, &shift);
434 p->regval = (*dbg_reg & mask) >> shift;
84e690bf
AB
435}
436
281243cb
MZ
437static bool trap_bvr(struct kvm_vcpu *vcpu,
438 struct sys_reg_params *p,
439 const struct sys_reg_desc *rd)
84e690bf 440{
cb853ded 441 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
84e690bf
AB
442
443 if (p->is_write)
1da42c34 444 reg_to_dbg(vcpu, p, rd, dbg_reg);
84e690bf 445 else
1da42c34 446 dbg_to_reg(vcpu, p, rd, dbg_reg);
84e690bf 447
cb853ded 448 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
eef8c85a 449
84e690bf
AB
450 return true;
451}
452
453static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
454 const struct kvm_one_reg *reg, void __user *uaddr)
455{
cb853ded 456 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
84e690bf 457
1713e5aa 458 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
459 return -EFAULT;
460 return 0;
461}
462
463static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
464 const struct kvm_one_reg *reg, void __user *uaddr)
465{
cb853ded 466 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
84e690bf
AB
467
468 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
469 return -EFAULT;
470 return 0;
471}
472
281243cb
MZ
473static void reset_bvr(struct kvm_vcpu *vcpu,
474 const struct sys_reg_desc *rd)
84e690bf 475{
cb853ded 476 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
84e690bf
AB
477}
478
281243cb
MZ
479static bool trap_bcr(struct kvm_vcpu *vcpu,
480 struct sys_reg_params *p,
481 const struct sys_reg_desc *rd)
84e690bf 482{
cb853ded 483 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
84e690bf
AB
484
485 if (p->is_write)
1da42c34 486 reg_to_dbg(vcpu, p, rd, dbg_reg);
84e690bf 487 else
1da42c34 488 dbg_to_reg(vcpu, p, rd, dbg_reg);
84e690bf 489
cb853ded 490 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
eef8c85a 491
84e690bf
AB
492 return true;
493}
494
495static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
496 const struct kvm_one_reg *reg, void __user *uaddr)
497{
cb853ded 498 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
84e690bf 499
1713e5aa 500 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
501 return -EFAULT;
502
503 return 0;
504}
505
506static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
507 const struct kvm_one_reg *reg, void __user *uaddr)
508{
cb853ded 509 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
84e690bf
AB
510
511 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
512 return -EFAULT;
513 return 0;
514}
515
281243cb
MZ
516static void reset_bcr(struct kvm_vcpu *vcpu,
517 const struct sys_reg_desc *rd)
84e690bf 518{
cb853ded 519 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
84e690bf
AB
520}
521
281243cb
MZ
522static bool trap_wvr(struct kvm_vcpu *vcpu,
523 struct sys_reg_params *p,
524 const struct sys_reg_desc *rd)
84e690bf 525{
cb853ded 526 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
84e690bf
AB
527
528 if (p->is_write)
1da42c34 529 reg_to_dbg(vcpu, p, rd, dbg_reg);
84e690bf 530 else
1da42c34 531 dbg_to_reg(vcpu, p, rd, dbg_reg);
84e690bf 532
cb853ded
MZ
533 trace_trap_reg(__func__, rd->CRm, p->is_write,
534 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
eef8c85a 535
84e690bf
AB
536 return true;
537}
538
539static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
540 const struct kvm_one_reg *reg, void __user *uaddr)
541{
cb853ded 542 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
84e690bf 543
1713e5aa 544 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
545 return -EFAULT;
546 return 0;
547}
548
549static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
550 const struct kvm_one_reg *reg, void __user *uaddr)
551{
cb853ded 552 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
84e690bf
AB
553
554 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
555 return -EFAULT;
556 return 0;
557}
558
281243cb
MZ
559static void reset_wvr(struct kvm_vcpu *vcpu,
560 const struct sys_reg_desc *rd)
84e690bf 561{
cb853ded 562 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
84e690bf
AB
563}
564
281243cb
MZ
565static bool trap_wcr(struct kvm_vcpu *vcpu,
566 struct sys_reg_params *p,
567 const struct sys_reg_desc *rd)
84e690bf 568{
cb853ded 569 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
84e690bf
AB
570
571 if (p->is_write)
1da42c34 572 reg_to_dbg(vcpu, p, rd, dbg_reg);
84e690bf 573 else
1da42c34 574 dbg_to_reg(vcpu, p, rd, dbg_reg);
84e690bf 575
cb853ded 576 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
eef8c85a 577
84e690bf
AB
578 return true;
579}
580
581static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
582 const struct kvm_one_reg *reg, void __user *uaddr)
583{
cb853ded 584 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
84e690bf 585
1713e5aa 586 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
587 return -EFAULT;
588 return 0;
589}
590
591static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
592 const struct kvm_one_reg *reg, void __user *uaddr)
593{
cb853ded 594 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
84e690bf
AB
595
596 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
597 return -EFAULT;
598 return 0;
599}
600
281243cb
MZ
601static void reset_wcr(struct kvm_vcpu *vcpu,
602 const struct sys_reg_desc *rd)
84e690bf 603{
cb853ded 604 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
84e690bf
AB
605}
606
7c8c5e6a
MZ
607static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
608{
8d404c4c
CD
609 u64 amair = read_sysreg(amair_el1);
610 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
7c8c5e6a
MZ
611}
612
af473829
JM
613static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
614{
615 u64 actlr = read_sysreg(actlr_el1);
616 vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
617}
618
7c8c5e6a
MZ
619static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
620{
4429fc64
AP
621 u64 mpidr;
622
7c8c5e6a 623 /*
4429fc64
AP
624 * Map the vcpu_id into the first three affinity level fields of
625 * the MPIDR. We limit the number of VCPUs in level 0 due to a
626 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
627 * of the GICv3 to be able to address each CPU directly when
628 * sending IPIs.
7c8c5e6a 629 */
4429fc64
AP
630 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
631 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
632 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
8d404c4c 633 vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
7c8c5e6a
MZ
634}
635
11663111
MZ
636static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
637 const struct sys_reg_desc *r)
638{
639 if (kvm_vcpu_has_pmu(vcpu))
640 return 0;
641
642 return REG_HIDDEN;
643}
644
0ab410a9
MZ
645static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
646{
647 u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
648
649 /* No PMU available, any PMU reg may UNDEF... */
650 if (!kvm_arm_support_pmu_v3())
651 return;
652
653 n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
654 n &= ARMV8_PMU_PMCR_N_MASK;
655 if (n)
656 mask |= GENMASK(n - 1, 0);
657
658 reset_unknown(vcpu, r);
659 __vcpu_sys_reg(vcpu, r->reg) &= mask;
660}
661
662static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
663{
664 reset_unknown(vcpu, r);
665 __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
666}
667
668static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
669{
670 reset_unknown(vcpu, r);
671 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
672}
673
674static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
675{
676 reset_unknown(vcpu, r);
677 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
678}
679
ab946834
SZ
680static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
681{
682 u64 pmcr, val;
683
2a5f1b67
MZ
684 /* No PMU available, PMCR_EL0 may UNDEF... */
685 if (!kvm_arm_support_pmu_v3())
686 return;
687
1f3d8699
MR
688 pmcr = read_sysreg(pmcr_el0);
689 /*
690 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
ab946834
SZ
691 * except PMCR.E resetting to zero.
692 */
693 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
694 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
6f163714
MZ
695 if (!system_supports_32bit_el0())
696 val |= ARMV8_PMU_PMCR_LC;
03fdfb26 697 __vcpu_sys_reg(vcpu, r->reg) = val;
ab946834
SZ
698}
699
6c007036 700static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
d692b8ad 701{
8d404c4c 702 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
7ded92e2 703 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
d692b8ad 704
24d5950f
MZ
705 if (!enabled)
706 kvm_inject_undefined(vcpu);
d692b8ad 707
6c007036 708 return !enabled;
d692b8ad
SZ
709}
710
6c007036 711static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
d692b8ad 712{
6c007036
MZ
713 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
714}
d692b8ad 715
6c007036
MZ
716static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
717{
718 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
d692b8ad
SZ
719}
720
721static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
722{
6c007036 723 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
d692b8ad
SZ
724}
725
726static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
727{
6c007036 728 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
d692b8ad
SZ
729}
730
ab946834
SZ
731static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
732 const struct sys_reg_desc *r)
733{
734 u64 val;
735
d692b8ad
SZ
736 if (pmu_access_el0_disabled(vcpu))
737 return false;
738
ab946834
SZ
739 if (p->is_write) {
740 /* Only update writeable bits of PMCR */
8d404c4c 741 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
ab946834
SZ
742 val &= ~ARMV8_PMU_PMCR_MASK;
743 val |= p->regval & ARMV8_PMU_PMCR_MASK;
6f163714
MZ
744 if (!system_supports_32bit_el0())
745 val |= ARMV8_PMU_PMCR_LC;
8d404c4c 746 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
76993739 747 kvm_pmu_handle_pmcr(vcpu, val);
435e53fb 748 kvm_vcpu_pmu_restore_guest(vcpu);
ab946834
SZ
749 } else {
750 /* PMCR.P & PMCR.C are RAZ */
8d404c4c 751 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
ab946834
SZ
752 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
753 p->regval = val;
754 }
755
756 return true;
757}
758
3965c3ce
SZ
759static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
760 const struct sys_reg_desc *r)
761{
d692b8ad
SZ
762 if (pmu_access_event_counter_el0_disabled(vcpu))
763 return false;
764
3965c3ce 765 if (p->is_write)
8d404c4c 766 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
3965c3ce
SZ
767 else
768 /* return PMSELR.SEL field */
8d404c4c 769 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
3965c3ce
SZ
770 & ARMV8_PMU_COUNTER_MASK;
771
772 return true;
773}
774
a86b5505
SZ
775static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
776 const struct sys_reg_desc *r)
777{
99b6a401 778 u64 pmceid, mask, shift;
a86b5505 779
a86b5505
SZ
780 BUG_ON(p->is_write);
781
d692b8ad
SZ
782 if (pmu_access_el0_disabled(vcpu))
783 return false;
784
99b6a401
MZ
785 get_access_mask(r, &mask, &shift);
786
88865bec 787 pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
99b6a401
MZ
788 pmceid &= mask;
789 pmceid >>= shift;
a86b5505
SZ
790
791 p->regval = pmceid;
792
793 return true;
794}
795
051ff581
SZ
796static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
797{
798 u64 pmcr, val;
799
8d404c4c 800 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
051ff581 801 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
24d5950f
MZ
802 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
803 kvm_inject_undefined(vcpu);
051ff581 804 return false;
24d5950f 805 }
051ff581
SZ
806
807 return true;
808}
809
810static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
811 struct sys_reg_params *p,
812 const struct sys_reg_desc *r)
813{
a3da9358 814 u64 idx = ~0UL;
051ff581
SZ
815
816 if (r->CRn == 9 && r->CRm == 13) {
817 if (r->Op2 == 2) {
818 /* PMXEVCNTR_EL0 */
d692b8ad
SZ
819 if (pmu_access_event_counter_el0_disabled(vcpu))
820 return false;
821
8d404c4c 822 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
051ff581
SZ
823 & ARMV8_PMU_COUNTER_MASK;
824 } else if (r->Op2 == 0) {
825 /* PMCCNTR_EL0 */
d692b8ad
SZ
826 if (pmu_access_cycle_counter_el0_disabled(vcpu))
827 return false;
828
051ff581 829 idx = ARMV8_PMU_CYCLE_IDX;
051ff581 830 }
9e3f7a29
WH
831 } else if (r->CRn == 0 && r->CRm == 9) {
832 /* PMCCNTR */
833 if (pmu_access_event_counter_el0_disabled(vcpu))
834 return false;
835
836 idx = ARMV8_PMU_CYCLE_IDX;
051ff581
SZ
837 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
838 /* PMEVCNTRn_EL0 */
d692b8ad
SZ
839 if (pmu_access_event_counter_el0_disabled(vcpu))
840 return false;
841
051ff581 842 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
051ff581
SZ
843 }
844
a3da9358
MZ
845 /* Catch any decoding mistake */
846 WARN_ON(idx == ~0UL);
847
051ff581
SZ
848 if (!pmu_counter_idx_valid(vcpu, idx))
849 return false;
850
d692b8ad
SZ
851 if (p->is_write) {
852 if (pmu_access_el0_disabled(vcpu))
853 return false;
854
051ff581 855 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
d692b8ad 856 } else {
051ff581 857 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
d692b8ad 858 }
051ff581
SZ
859
860 return true;
861}
862
9feb21ac
SZ
863static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
864 const struct sys_reg_desc *r)
865{
866 u64 idx, reg;
867
d692b8ad
SZ
868 if (pmu_access_el0_disabled(vcpu))
869 return false;
870
9feb21ac
SZ
871 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
872 /* PMXEVTYPER_EL0 */
8d404c4c 873 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
9feb21ac
SZ
874 reg = PMEVTYPER0_EL0 + idx;
875 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
876 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
877 if (idx == ARMV8_PMU_CYCLE_IDX)
878 reg = PMCCFILTR_EL0;
879 else
880 /* PMEVTYPERn_EL0 */
881 reg = PMEVTYPER0_EL0 + idx;
882 } else {
883 BUG();
884 }
885
886 if (!pmu_counter_idx_valid(vcpu, idx))
887 return false;
888
889 if (p->is_write) {
890 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
8d404c4c 891 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
435e53fb 892 kvm_vcpu_pmu_restore_guest(vcpu);
9feb21ac 893 } else {
8d404c4c 894 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
9feb21ac
SZ
895 }
896
897 return true;
898}
899
96b0eebc
SZ
900static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
901 const struct sys_reg_desc *r)
902{
903 u64 val, mask;
904
d692b8ad
SZ
905 if (pmu_access_el0_disabled(vcpu))
906 return false;
907
96b0eebc
SZ
908 mask = kvm_pmu_valid_counter_mask(vcpu);
909 if (p->is_write) {
910 val = p->regval & mask;
911 if (r->Op2 & 0x1) {
912 /* accessing PMCNTENSET_EL0 */
8d404c4c 913 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
418e5ca8 914 kvm_pmu_enable_counter_mask(vcpu, val);
435e53fb 915 kvm_vcpu_pmu_restore_guest(vcpu);
96b0eebc
SZ
916 } else {
917 /* accessing PMCNTENCLR_EL0 */
8d404c4c 918 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
418e5ca8 919 kvm_pmu_disable_counter_mask(vcpu, val);
96b0eebc
SZ
920 }
921 } else {
f5eff400 922 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
96b0eebc
SZ
923 }
924
925 return true;
926}
927
9db52c78
SZ
928static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
929 const struct sys_reg_desc *r)
930{
931 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
932
b0737e99 933 if (check_pmu_access_disabled(vcpu, 0))
d692b8ad
SZ
934 return false;
935
9db52c78
SZ
936 if (p->is_write) {
937 u64 val = p->regval & mask;
938
939 if (r->Op2 & 0x1)
940 /* accessing PMINTENSET_EL1 */
8d404c4c 941 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
9db52c78
SZ
942 else
943 /* accessing PMINTENCLR_EL1 */
8d404c4c 944 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
9db52c78 945 } else {
f5eff400 946 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
9db52c78
SZ
947 }
948
949 return true;
950}
951
76d883c4
SZ
952static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
953 const struct sys_reg_desc *r)
954{
955 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
956
d692b8ad
SZ
957 if (pmu_access_el0_disabled(vcpu))
958 return false;
959
76d883c4
SZ
960 if (p->is_write) {
961 if (r->CRm & 0x2)
962 /* accessing PMOVSSET_EL0 */
8d404c4c 963 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
76d883c4
SZ
964 else
965 /* accessing PMOVSCLR_EL0 */
8d404c4c 966 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
76d883c4 967 } else {
f5eff400 968 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
76d883c4
SZ
969 }
970
971 return true;
972}
973
7a0adc70
SZ
974static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
975 const struct sys_reg_desc *r)
976{
977 u64 mask;
978
e0443230 979 if (!p->is_write)
e7f1d1ee 980 return read_from_write_only(vcpu, p, r);
e0443230 981
d692b8ad
SZ
982 if (pmu_write_swinc_el0_disabled(vcpu))
983 return false;
984
e0443230
MZ
985 mask = kvm_pmu_valid_counter_mask(vcpu);
986 kvm_pmu_software_increment(vcpu, p->regval & mask);
987 return true;
7a0adc70
SZ
988}
989
d692b8ad
SZ
990static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
991 const struct sys_reg_desc *r)
992{
d692b8ad 993 if (p->is_write) {
9008c235
MZ
994 if (!vcpu_mode_priv(vcpu)) {
995 kvm_inject_undefined(vcpu);
d692b8ad 996 return false;
9008c235 997 }
d692b8ad 998
8d404c4c
CD
999 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1000 p->regval & ARMV8_PMU_USERENR_MASK;
d692b8ad 1001 } else {
8d404c4c 1002 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
d692b8ad
SZ
1003 & ARMV8_PMU_USERENR_MASK;
1004 }
1005
1006 return true;
1007}
1008
0c557ed4
MZ
1009/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1010#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
ee1b64e6 1011 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
03fdfb26 1012 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
ee1b64e6 1013 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
03fdfb26 1014 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
ee1b64e6 1015 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
03fdfb26 1016 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
ee1b64e6 1017 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
03fdfb26 1018 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
0c557ed4 1019
11663111 1020#define PMU_SYS_REG(r) \
0ab410a9 1021 SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
11663111 1022
051ff581
SZ
1023/* Macro to expand the PMEVCNTRn_EL0 register */
1024#define PMU_PMEVCNTR_EL0(n) \
11663111 1025 { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)), \
0ab410a9 1026 .reset = reset_pmevcntr, \
11663111 1027 .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
051ff581 1028
9feb21ac
SZ
1029/* Macro to expand the PMEVTYPERn_EL0 register */
1030#define PMU_PMEVTYPER_EL0(n) \
11663111 1031 { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)), \
0ab410a9 1032 .reset = reset_pmevtyper, \
11663111 1033 .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
9feb21ac 1034
338b1793
MZ
1035static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1036 const struct sys_reg_desc *r)
4fcdf106
IV
1037{
1038 kvm_inject_undefined(vcpu);
1039
1040 return false;
1041}
1042
1043/* Macro to expand the AMU counter and type registers*/
338b1793
MZ
1044#define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1045#define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1046#define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1047#define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
384b40ca
MR
1048
1049static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1050 const struct sys_reg_desc *rd)
1051{
01fe5ace 1052 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
384b40ca
MR
1053}
1054
338b1793
MZ
1055/*
1056 * If we land here on a PtrAuth access, that is because we didn't
1057 * fixup the access on exit by allowing the PtrAuth sysregs. The only
1058 * way this happens is when the guest does not have PtrAuth support
1059 * enabled.
1060 */
384b40ca 1061#define __PTRAUTH_KEY(k) \
338b1793 1062 { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
384b40ca
MR
1063 .visibility = ptrauth_visibility}
1064
1065#define PTRAUTH_KEY(k) \
1066 __PTRAUTH_KEY(k ## KEYLO_EL1), \
1067 __PTRAUTH_KEY(k ## KEYHI_EL1)
1068
84135d3d
AP
1069static bool access_arch_timer(struct kvm_vcpu *vcpu,
1070 struct sys_reg_params *p,
1071 const struct sys_reg_desc *r)
c9a3c58f 1072{
84135d3d
AP
1073 enum kvm_arch_timers tmr;
1074 enum kvm_arch_timer_regs treg;
1075 u64 reg = reg_to_encoding(r);
7b6b4631 1076
84135d3d
AP
1077 switch (reg) {
1078 case SYS_CNTP_TVAL_EL0:
1079 case SYS_AARCH32_CNTP_TVAL:
1080 tmr = TIMER_PTIMER;
1081 treg = TIMER_REG_TVAL;
1082 break;
1083 case SYS_CNTP_CTL_EL0:
1084 case SYS_AARCH32_CNTP_CTL:
1085 tmr = TIMER_PTIMER;
1086 treg = TIMER_REG_CTL;
1087 break;
1088 case SYS_CNTP_CVAL_EL0:
1089 case SYS_AARCH32_CNTP_CVAL:
1090 tmr = TIMER_PTIMER;
1091 treg = TIMER_REG_CVAL;
1092 break;
1093 default:
1094 BUG();
c1b135af 1095 }
7b6b4631 1096
7b6b4631 1097 if (p->is_write)
84135d3d 1098 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
7b6b4631 1099 else
84135d3d 1100 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
7b6b4631 1101
c9a3c58f
JL
1102 return true;
1103}
1104
93390c0a 1105/* Read a sanitised cpufeature ID register by sys_reg_desc */
1c199913
DM
1106static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1107 struct sys_reg_desc const *r, bool raz)
93390c0a 1108{
7ba8b438 1109 u32 id = reg_to_encoding(r);
00d5101b
AE
1110 u64 val;
1111
1112 if (raz)
1113 return 0;
1114
1115 val = read_sanitised_ftr_reg(id);
93390c0a 1116
c8857935
MZ
1117 switch (id) {
1118 case SYS_ID_AA64PFR0_EL1:
4fcdf106 1119 if (!vcpu_has_sve(vcpu))
f76f89e2
FT
1120 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_SVE);
1121 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_AMU);
1122 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2);
1123 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1124 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3);
1125 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
562e530f
MZ
1126 if (irqchip_in_kernel(vcpu->kvm) &&
1127 vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
1128 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_GIC);
1129 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_GIC), 1);
1130 }
c8857935
MZ
1131 break;
1132 case SYS_ID_AA64PFR1_EL1:
16dd1fbb
FT
1133 if (!kvm_has_mte(vcpu->kvm))
1134 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_MTE);
c8857935
MZ
1135 break;
1136 case SYS_ID_AA64ISAR1_EL1:
1137 if (!vcpu_has_ptrauth(vcpu))
f76f89e2
FT
1138 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_APA) |
1139 ARM64_FEATURE_MASK(ID_AA64ISAR1_API) |
1140 ARM64_FEATURE_MASK(ID_AA64ISAR1_GPA) |
1141 ARM64_FEATURE_MASK(ID_AA64ISAR1_GPI));
c8857935 1142 break;
def8c222
VM
1143 case SYS_ID_AA64ISAR2_EL1:
1144 if (!vcpu_has_ptrauth(vcpu))
1145 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_APA3) |
1146 ARM64_FEATURE_MASK(ID_AA64ISAR2_GPA3));
1147 break;
c8857935 1148 case SYS_ID_AA64DFR0_EL1:
94893fc9 1149 /* Limit debug to ARMv8.0 */
f76f89e2
FT
1150 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER);
1151 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), 6);
46081078 1152 /* Limit guests to PMUv3 for ARMv8.4 */
c854188e 1153 val = cpuid_feature_cap_perfmon_field(val,
c8857935 1154 ID_AA64DFR0_PMUVER_SHIFT,
46081078 1155 kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0);
96f4f680 1156 /* Hide SPE from guests */
f76f89e2 1157 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_PMSVER);
c8857935
MZ
1158 break;
1159 case SYS_ID_DFR0_EL1:
46081078 1160 /* Limit guests to PMUv3 for ARMv8.4 */
c854188e 1161 val = cpuid_feature_cap_perfmon_field(val,
cb959146 1162 ID_DFR0_PERFMON_SHIFT,
46081078 1163 kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0);
c8857935 1164 break;
07d79fe7
DM
1165 }
1166
1167 return val;
93390c0a
DM
1168}
1169
912dee57
AJ
1170static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1171 const struct sys_reg_desc *r)
1172{
7ba8b438 1173 u32 id = reg_to_encoding(r);
c512298e
AJ
1174
1175 switch (id) {
1176 case SYS_ID_AA64ZFR0_EL1:
1177 if (!vcpu_has_sve(vcpu))
1178 return REG_RAZ;
1179 break;
1180 }
1181
912dee57
AJ
1182 return 0;
1183}
1184
93390c0a
DM
1185/* cpufeature ID register access trap handlers */
1186
1187static bool __access_id_reg(struct kvm_vcpu *vcpu,
1188 struct sys_reg_params *p,
1189 const struct sys_reg_desc *r,
1190 bool raz)
1191{
1192 if (p->is_write)
1193 return write_to_read_only(vcpu, p, r);
1194
1c199913 1195 p->regval = read_id_reg(vcpu, r, raz);
93390c0a
DM
1196 return true;
1197}
1198
1199static bool access_id_reg(struct kvm_vcpu *vcpu,
1200 struct sys_reg_params *p,
1201 const struct sys_reg_desc *r)
1202{
912dee57
AJ
1203 bool raz = sysreg_visible_as_raz(vcpu, r);
1204
1205 return __access_id_reg(vcpu, p, r, raz);
93390c0a
DM
1206}
1207
1208static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1209 struct sys_reg_params *p,
1210 const struct sys_reg_desc *r)
1211{
1212 return __access_id_reg(vcpu, p, r, true);
1213}
1214
73433762
DM
1215/* Visibility overrides for SVE-specific control registers */
1216static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1217 const struct sys_reg_desc *rd)
1218{
1219 if (vcpu_has_sve(vcpu))
1220 return 0;
1221
01fe5ace 1222 return REG_HIDDEN;
73433762
DM
1223}
1224
23711a5e
MZ
1225static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1226 const struct sys_reg_desc *rd,
1227 const struct kvm_one_reg *reg, void __user *uaddr)
1228{
1229 const u64 id = sys_reg_to_index(rd);
4f1df628 1230 u8 csv2, csv3;
23711a5e
MZ
1231 int err;
1232 u64 val;
23711a5e
MZ
1233
1234 err = reg_from_user(&val, uaddr, id);
1235 if (err)
1236 return err;
1237
1238 /*
1239 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1240 * it doesn't promise more than what is actually provided (the
1241 * guest could otherwise be covered in ectoplasmic residue).
1242 */
1243 csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1244 if (csv2 > 1 ||
1245 (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1246 return -EINVAL;
1247
4f1df628
MZ
1248 /* Same thing for CSV3 */
1249 csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1250 if (csv3 > 1 ||
1251 (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1252 return -EINVAL;
1253
1254 /* We can only differ with CSV[23], and anything else is an error */
23711a5e 1255 val ^= read_id_reg(vcpu, rd, false);
4f1df628
MZ
1256 val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1257 (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
23711a5e
MZ
1258 if (val)
1259 return -EINVAL;
1260
1261 vcpu->kvm->arch.pfr0_csv2 = csv2;
4f1df628 1262 vcpu->kvm->arch.pfr0_csv3 = csv3 ;
23711a5e
MZ
1263
1264 return 0;
1265}
1266
93390c0a
DM
1267/*
1268 * cpufeature ID register user accessors
1269 *
1270 * For now, these registers are immutable for userspace, so no values
1271 * are stored, and for set_id_reg() we don't allow the effective value
1272 * to be changed.
1273 */
1c199913
DM
1274static int __get_id_reg(const struct kvm_vcpu *vcpu,
1275 const struct sys_reg_desc *rd, void __user *uaddr,
93390c0a
DM
1276 bool raz)
1277{
1278 const u64 id = sys_reg_to_index(rd);
1c199913 1279 const u64 val = read_id_reg(vcpu, rd, raz);
93390c0a
DM
1280
1281 return reg_to_user(uaddr, &val, id);
1282}
1283
1c199913
DM
1284static int __set_id_reg(const struct kvm_vcpu *vcpu,
1285 const struct sys_reg_desc *rd, void __user *uaddr,
93390c0a
DM
1286 bool raz)
1287{
1288 const u64 id = sys_reg_to_index(rd);
1289 int err;
1290 u64 val;
1291
1292 err = reg_from_user(&val, uaddr, id);
1293 if (err)
1294 return err;
1295
1296 /* This is what we mean by invariant: you can't change it. */
1c199913 1297 if (val != read_id_reg(vcpu, rd, raz))
93390c0a
DM
1298 return -EINVAL;
1299
1300 return 0;
1301}
1302
1303static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1304 const struct kvm_one_reg *reg, void __user *uaddr)
1305{
912dee57
AJ
1306 bool raz = sysreg_visible_as_raz(vcpu, rd);
1307
1308 return __get_id_reg(vcpu, rd, uaddr, raz);
93390c0a
DM
1309}
1310
1311static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1312 const struct kvm_one_reg *reg, void __user *uaddr)
1313{
912dee57
AJ
1314 bool raz = sysreg_visible_as_raz(vcpu, rd);
1315
1316 return __set_id_reg(vcpu, rd, uaddr, raz);
93390c0a
DM
1317}
1318
93390c0a
DM
1319static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1320 const struct kvm_one_reg *reg, void __user *uaddr)
1321{
1c199913 1322 return __set_id_reg(vcpu, rd, uaddr, true);
93390c0a
DM
1323}
1324
5a430976
AE
1325static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1326 const struct kvm_one_reg *reg, void __user *uaddr)
1327{
1328 const u64 id = sys_reg_to_index(rd);
1329 const u64 val = 0;
1330
1331 return reg_to_user(uaddr, &val, id);
1332}
1333
7a3ba309
MZ
1334static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1335 const struct kvm_one_reg *reg, void __user *uaddr)
1336{
1337 int err;
1338 u64 val;
1339
1340 /* Perform the access even if we are going to ignore the value */
1341 err = reg_from_user(&val, uaddr, sys_reg_to_index(rd));
1342 if (err)
1343 return err;
1344
1345 return 0;
1346}
1347
f7f2b15c
AB
1348static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1349 const struct sys_reg_desc *r)
1350{
1351 if (p->is_write)
1352 return write_to_read_only(vcpu, p, r);
1353
1354 p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1355 return true;
1356}
1357
1358static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1359 const struct sys_reg_desc *r)
1360{
1361 if (p->is_write)
1362 return write_to_read_only(vcpu, p, r);
1363
1364 p->regval = read_sysreg(clidr_el1);
1365 return true;
1366}
1367
1368static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1369 const struct sys_reg_desc *r)
1370{
7c582bf4
JM
1371 int reg = r->reg;
1372
f7f2b15c 1373 if (p->is_write)
7c582bf4 1374 vcpu_write_sys_reg(vcpu, p->regval, reg);
f7f2b15c 1375 else
7c582bf4 1376 p->regval = vcpu_read_sys_reg(vcpu, reg);
f7f2b15c
AB
1377 return true;
1378}
1379
1380static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1381 const struct sys_reg_desc *r)
1382{
1383 u32 csselr;
1384
1385 if (p->is_write)
1386 return write_to_read_only(vcpu, p, r);
1387
1388 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1389 p->regval = get_ccsidr(csselr);
793acf87
AB
1390
1391 /*
1392 * Guests should not be doing cache operations by set/way at all, and
1393 * for this reason, we trap them and attempt to infer the intent, so
1394 * that we can flush the entire guest's address space at the appropriate
1395 * time.
1396 * To prevent this trapping from causing performance problems, let's
1397 * expose the geometry of all data and unified caches (which are
1398 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1399 * [If guests should attempt to infer aliasing properties from the
1400 * geometry (which is not permitted by the architecture), they would
1401 * only do so for virtually indexed caches.]
1402 */
1403 if (!(csselr & 1)) // data or unified cache
1404 p->regval &= ~GENMASK(27, 3);
f7f2b15c
AB
1405 return true;
1406}
1407
e1f358b5
SP
1408static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1409 const struct sys_reg_desc *rd)
1410{
673638f4
SP
1411 if (kvm_has_mte(vcpu->kvm))
1412 return 0;
1413
e1f358b5
SP
1414 return REG_HIDDEN;
1415}
1416
1417#define MTE_REG(name) { \
1418 SYS_DESC(SYS_##name), \
1419 .access = undef_access, \
1420 .reset = reset_unknown, \
1421 .reg = name, \
1422 .visibility = mte_visibility, \
1423}
1424
93390c0a
DM
1425/* sys_reg_desc initialiser for known cpufeature ID registers */
1426#define ID_SANITISED(name) { \
1427 SYS_DESC(SYS_##name), \
1428 .access = access_id_reg, \
1429 .get_user = get_id_reg, \
1430 .set_user = set_id_reg, \
912dee57 1431 .visibility = id_visibility, \
93390c0a
DM
1432}
1433
1434/*
1435 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1436 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1437 * (1 <= crm < 8, 0 <= Op2 < 8).
1438 */
1439#define ID_UNALLOCATED(crm, op2) { \
1440 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
1441 .access = access_raz_id_reg, \
ebf6aa8c 1442 .get_user = get_raz_reg, \
93390c0a
DM
1443 .set_user = set_raz_id_reg, \
1444}
1445
1446/*
1447 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1448 * For now, these are exposed just like unallocated ID regs: they appear
1449 * RAZ for the guest.
1450 */
1451#define ID_HIDDEN(name) { \
1452 SYS_DESC(SYS_##name), \
1453 .access = access_raz_id_reg, \
ebf6aa8c 1454 .get_user = get_raz_reg, \
93390c0a
DM
1455 .set_user = set_raz_id_reg, \
1456}
1457
7c8c5e6a
MZ
1458/*
1459 * Architected system registers.
1460 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
7609c125 1461 *
0c557ed4
MZ
1462 * Debug handling: We do trap most, if not all debug related system
1463 * registers. The implementation is good enough to ensure that a guest
1464 * can use these with minimal performance degradation. The drawback is
7dabf02f
OU
1465 * that we don't implement any of the external debug architecture.
1466 * This should be revisited if we ever encounter a more demanding
1467 * guest...
7c8c5e6a
MZ
1468 */
1469static const struct sys_reg_desc sys_reg_descs[] = {
7606e078
MR
1470 { SYS_DESC(SYS_DC_ISW), access_dcsw },
1471 { SYS_DESC(SYS_DC_CSW), access_dcsw },
1472 { SYS_DESC(SYS_DC_CISW), access_dcsw },
7c8c5e6a 1473
0c557ed4
MZ
1474 DBG_BCR_BVR_WCR_WVR_EL1(0),
1475 DBG_BCR_BVR_WCR_WVR_EL1(1),
ee1b64e6
MR
1476 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1477 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
0c557ed4
MZ
1478 DBG_BCR_BVR_WCR_WVR_EL1(2),
1479 DBG_BCR_BVR_WCR_WVR_EL1(3),
1480 DBG_BCR_BVR_WCR_WVR_EL1(4),
1481 DBG_BCR_BVR_WCR_WVR_EL1(5),
1482 DBG_BCR_BVR_WCR_WVR_EL1(6),
1483 DBG_BCR_BVR_WCR_WVR_EL1(7),
1484 DBG_BCR_BVR_WCR_WVR_EL1(8),
1485 DBG_BCR_BVR_WCR_WVR_EL1(9),
1486 DBG_BCR_BVR_WCR_WVR_EL1(10),
1487 DBG_BCR_BVR_WCR_WVR_EL1(11),
1488 DBG_BCR_BVR_WCR_WVR_EL1(12),
1489 DBG_BCR_BVR_WCR_WVR_EL1(13),
1490 DBG_BCR_BVR_WCR_WVR_EL1(14),
1491 DBG_BCR_BVR_WCR_WVR_EL1(15),
1492
ee1b64e6 1493 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
f24adc65 1494 { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
d42e2671
OU
1495 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1496 SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
ee1b64e6
MR
1497 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1498 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1499 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1500 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1501 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1502
1503 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1504 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1505 // DBGDTR[TR]X_EL0 share the same encoding
1506 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1507
1508 { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
62a89c44 1509
851050a5 1510 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
93390c0a
DM
1511
1512 /*
1513 * ID regs: all ID_SANITISED() entries here must have corresponding
1514 * entries in arm64_ftr_regs[].
1515 */
1516
1517 /* AArch64 mappings of the AArch32 ID registers */
1518 /* CRm=1 */
1519 ID_SANITISED(ID_PFR0_EL1),
1520 ID_SANITISED(ID_PFR1_EL1),
1521 ID_SANITISED(ID_DFR0_EL1),
1522 ID_HIDDEN(ID_AFR0_EL1),
1523 ID_SANITISED(ID_MMFR0_EL1),
1524 ID_SANITISED(ID_MMFR1_EL1),
1525 ID_SANITISED(ID_MMFR2_EL1),
1526 ID_SANITISED(ID_MMFR3_EL1),
1527
1528 /* CRm=2 */
1529 ID_SANITISED(ID_ISAR0_EL1),
1530 ID_SANITISED(ID_ISAR1_EL1),
1531 ID_SANITISED(ID_ISAR2_EL1),
1532 ID_SANITISED(ID_ISAR3_EL1),
1533 ID_SANITISED(ID_ISAR4_EL1),
1534 ID_SANITISED(ID_ISAR5_EL1),
1535 ID_SANITISED(ID_MMFR4_EL1),
8e3747be 1536 ID_SANITISED(ID_ISAR6_EL1),
93390c0a
DM
1537
1538 /* CRm=3 */
1539 ID_SANITISED(MVFR0_EL1),
1540 ID_SANITISED(MVFR1_EL1),
1541 ID_SANITISED(MVFR2_EL1),
1542 ID_UNALLOCATED(3,3),
16824085 1543 ID_SANITISED(ID_PFR2_EL1),
dd35ec07 1544 ID_HIDDEN(ID_DFR1_EL1),
152accf8 1545 ID_SANITISED(ID_MMFR5_EL1),
93390c0a
DM
1546 ID_UNALLOCATED(3,7),
1547
1548 /* AArch64 ID registers */
1549 /* CRm=4 */
23711a5e
MZ
1550 { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1551 .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
93390c0a
DM
1552 ID_SANITISED(ID_AA64PFR1_EL1),
1553 ID_UNALLOCATED(4,2),
1554 ID_UNALLOCATED(4,3),
c512298e 1555 ID_SANITISED(ID_AA64ZFR0_EL1),
93390c0a
DM
1556 ID_UNALLOCATED(4,5),
1557 ID_UNALLOCATED(4,6),
1558 ID_UNALLOCATED(4,7),
1559
1560 /* CRm=5 */
1561 ID_SANITISED(ID_AA64DFR0_EL1),
1562 ID_SANITISED(ID_AA64DFR1_EL1),
1563 ID_UNALLOCATED(5,2),
1564 ID_UNALLOCATED(5,3),
1565 ID_HIDDEN(ID_AA64AFR0_EL1),
1566 ID_HIDDEN(ID_AA64AFR1_EL1),
1567 ID_UNALLOCATED(5,6),
1568 ID_UNALLOCATED(5,7),
1569
1570 /* CRm=6 */
1571 ID_SANITISED(ID_AA64ISAR0_EL1),
1572 ID_SANITISED(ID_AA64ISAR1_EL1),
9e45365f 1573 ID_SANITISED(ID_AA64ISAR2_EL1),
93390c0a
DM
1574 ID_UNALLOCATED(6,3),
1575 ID_UNALLOCATED(6,4),
1576 ID_UNALLOCATED(6,5),
1577 ID_UNALLOCATED(6,6),
1578 ID_UNALLOCATED(6,7),
1579
1580 /* CRm=7 */
1581 ID_SANITISED(ID_AA64MMFR0_EL1),
1582 ID_SANITISED(ID_AA64MMFR1_EL1),
1583 ID_SANITISED(ID_AA64MMFR2_EL1),
1584 ID_UNALLOCATED(7,3),
1585 ID_UNALLOCATED(7,4),
1586 ID_UNALLOCATED(7,5),
1587 ID_UNALLOCATED(7,6),
1588 ID_UNALLOCATED(7,7),
1589
851050a5 1590 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
af473829 1591 { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
851050a5 1592 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2ac638fc 1593
e1f358b5
SP
1594 MTE_REG(RGSR_EL1),
1595 MTE_REG(GCR_EL1),
2ac638fc 1596
73433762 1597 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
cc427cbb 1598 { SYS_DESC(SYS_TRFCR_EL1), undef_access },
851050a5
MR
1599 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1600 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1601 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1602
384b40ca
MR
1603 PTRAUTH_KEY(APIA),
1604 PTRAUTH_KEY(APIB),
1605 PTRAUTH_KEY(APDA),
1606 PTRAUTH_KEY(APDB),
1607 PTRAUTH_KEY(APGA),
1608
851050a5
MR
1609 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1610 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1611 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
558daf69
DG
1612
1613 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1614 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1615 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1616 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1617 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1618 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1619 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1620 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1621
e1f358b5
SP
1622 MTE_REG(TFSR_EL1),
1623 MTE_REG(TFSRE0_EL1),
2ac638fc 1624
851050a5
MR
1625 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1626 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
7c8c5e6a 1627
13611bc8
AE
1628 { SYS_DESC(SYS_PMSCR_EL1), undef_access },
1629 { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1630 { SYS_DESC(SYS_PMSICR_EL1), undef_access },
1631 { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1632 { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1633 { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1634 { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1635 { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1636 { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1637 { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1638 { SYS_DESC(SYS_PMBSR_EL1), undef_access },
1639 /* PMBIDR_EL1 is not trapped */
1640
11663111
MZ
1641 { PMU_SYS_REG(SYS_PMINTENSET_EL1),
1642 .access = access_pminten, .reg = PMINTENSET_EL1 },
1643 { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1644 .access = access_pminten, .reg = PMINTENSET_EL1 },
46081078 1645 { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
7c8c5e6a 1646
851050a5
MR
1647 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1648 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
7c8c5e6a 1649
22925521
MZ
1650 { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1651 { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1652 { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1653 { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1654 { SYS_DESC(SYS_LORID_EL1), trap_loregion },
cc33c4e2 1655
851050a5 1656 { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
c773ae2b 1657 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
db7dedd0 1658
7b1dba1f 1659 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
e7f1d1ee 1660 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
7b1dba1f 1661 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
e7f1d1ee 1662 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
7b1dba1f 1663 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
e804d208 1664 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
03bd646d
MZ
1665 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1666 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
7b1dba1f 1667 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
e7f1d1ee 1668 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
7b1dba1f 1669 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
e804d208 1670 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
db7dedd0 1671
851050a5
MR
1672 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1673 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
7c8c5e6a 1674
ed4ffaf4
MZ
1675 { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1676
851050a5 1677 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
7c8c5e6a 1678
f7f2b15c
AB
1679 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1680 { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1681 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1682 { SYS_DESC(SYS_CTR_EL0), access_ctr },
7c8c5e6a 1683
11663111
MZ
1684 { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1685 .reset = reset_pmcr, .reg = PMCR_EL0 },
1686 { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1687 .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1688 { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1689 .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1690 { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1691 .access = access_pmovs, .reg = PMOVSSET_EL0 },
7a3ba309
MZ
1692 /*
1693 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
1694 * previously (and pointlessly) advertised in the past...
1695 */
11663111 1696 { PMU_SYS_REG(SYS_PMSWINC_EL0),
5a430976 1697 .get_user = get_raz_reg, .set_user = set_wi_reg,
7a3ba309 1698 .access = access_pmswinc, .reset = NULL },
11663111 1699 { PMU_SYS_REG(SYS_PMSELR_EL0),
0ab410a9 1700 .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
11663111
MZ
1701 { PMU_SYS_REG(SYS_PMCEID0_EL0),
1702 .access = access_pmceid, .reset = NULL },
1703 { PMU_SYS_REG(SYS_PMCEID1_EL0),
1704 .access = access_pmceid, .reset = NULL },
1705 { PMU_SYS_REG(SYS_PMCCNTR_EL0),
0ab410a9 1706 .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 },
11663111
MZ
1707 { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1708 .access = access_pmu_evtyper, .reset = NULL },
1709 { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1710 .access = access_pmu_evcntr, .reset = NULL },
174ed3e4
MR
1711 /*
1712 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
d692b8ad
SZ
1713 * in 32bit mode. Here we choose to reset it as zero for consistency.
1714 */
11663111
MZ
1715 { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1716 .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1717 { PMU_SYS_REG(SYS_PMOVSSET_EL0),
1718 .access = access_pmovs, .reg = PMOVSSET_EL0 },
7c8c5e6a 1719
851050a5
MR
1720 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1721 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
4fcdf106 1722
ed4ffaf4
MZ
1723 { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1724
338b1793
MZ
1725 { SYS_DESC(SYS_AMCR_EL0), undef_access },
1726 { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1727 { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1728 { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1729 { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1730 { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1731 { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1732 { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
4fcdf106
IV
1733 AMU_AMEVCNTR0_EL0(0),
1734 AMU_AMEVCNTR0_EL0(1),
1735 AMU_AMEVCNTR0_EL0(2),
1736 AMU_AMEVCNTR0_EL0(3),
1737 AMU_AMEVCNTR0_EL0(4),
1738 AMU_AMEVCNTR0_EL0(5),
1739 AMU_AMEVCNTR0_EL0(6),
1740 AMU_AMEVCNTR0_EL0(7),
1741 AMU_AMEVCNTR0_EL0(8),
1742 AMU_AMEVCNTR0_EL0(9),
1743 AMU_AMEVCNTR0_EL0(10),
1744 AMU_AMEVCNTR0_EL0(11),
1745 AMU_AMEVCNTR0_EL0(12),
1746 AMU_AMEVCNTR0_EL0(13),
1747 AMU_AMEVCNTR0_EL0(14),
1748 AMU_AMEVCNTR0_EL0(15),
493cf9b7
VM
1749 AMU_AMEVTYPER0_EL0(0),
1750 AMU_AMEVTYPER0_EL0(1),
1751 AMU_AMEVTYPER0_EL0(2),
1752 AMU_AMEVTYPER0_EL0(3),
1753 AMU_AMEVTYPER0_EL0(4),
1754 AMU_AMEVTYPER0_EL0(5),
1755 AMU_AMEVTYPER0_EL0(6),
1756 AMU_AMEVTYPER0_EL0(7),
1757 AMU_AMEVTYPER0_EL0(8),
1758 AMU_AMEVTYPER0_EL0(9),
1759 AMU_AMEVTYPER0_EL0(10),
1760 AMU_AMEVTYPER0_EL0(11),
1761 AMU_AMEVTYPER0_EL0(12),
1762 AMU_AMEVTYPER0_EL0(13),
1763 AMU_AMEVTYPER0_EL0(14),
1764 AMU_AMEVTYPER0_EL0(15),
4fcdf106
IV
1765 AMU_AMEVCNTR1_EL0(0),
1766 AMU_AMEVCNTR1_EL0(1),
1767 AMU_AMEVCNTR1_EL0(2),
1768 AMU_AMEVCNTR1_EL0(3),
1769 AMU_AMEVCNTR1_EL0(4),
1770 AMU_AMEVCNTR1_EL0(5),
1771 AMU_AMEVCNTR1_EL0(6),
1772 AMU_AMEVCNTR1_EL0(7),
1773 AMU_AMEVCNTR1_EL0(8),
1774 AMU_AMEVCNTR1_EL0(9),
1775 AMU_AMEVCNTR1_EL0(10),
1776 AMU_AMEVCNTR1_EL0(11),
1777 AMU_AMEVCNTR1_EL0(12),
1778 AMU_AMEVCNTR1_EL0(13),
1779 AMU_AMEVCNTR1_EL0(14),
1780 AMU_AMEVCNTR1_EL0(15),
493cf9b7
VM
1781 AMU_AMEVTYPER1_EL0(0),
1782 AMU_AMEVTYPER1_EL0(1),
1783 AMU_AMEVTYPER1_EL0(2),
1784 AMU_AMEVTYPER1_EL0(3),
1785 AMU_AMEVTYPER1_EL0(4),
1786 AMU_AMEVTYPER1_EL0(5),
1787 AMU_AMEVTYPER1_EL0(6),
1788 AMU_AMEVTYPER1_EL0(7),
1789 AMU_AMEVTYPER1_EL0(8),
1790 AMU_AMEVTYPER1_EL0(9),
1791 AMU_AMEVTYPER1_EL0(10),
1792 AMU_AMEVTYPER1_EL0(11),
1793 AMU_AMEVTYPER1_EL0(12),
1794 AMU_AMEVTYPER1_EL0(13),
1795 AMU_AMEVTYPER1_EL0(14),
1796 AMU_AMEVTYPER1_EL0(15),
62a89c44 1797
84135d3d
AP
1798 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1799 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1800 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
c9a3c58f 1801
051ff581
SZ
1802 /* PMEVCNTRn_EL0 */
1803 PMU_PMEVCNTR_EL0(0),
1804 PMU_PMEVCNTR_EL0(1),
1805 PMU_PMEVCNTR_EL0(2),
1806 PMU_PMEVCNTR_EL0(3),
1807 PMU_PMEVCNTR_EL0(4),
1808 PMU_PMEVCNTR_EL0(5),
1809 PMU_PMEVCNTR_EL0(6),
1810 PMU_PMEVCNTR_EL0(7),
1811 PMU_PMEVCNTR_EL0(8),
1812 PMU_PMEVCNTR_EL0(9),
1813 PMU_PMEVCNTR_EL0(10),
1814 PMU_PMEVCNTR_EL0(11),
1815 PMU_PMEVCNTR_EL0(12),
1816 PMU_PMEVCNTR_EL0(13),
1817 PMU_PMEVCNTR_EL0(14),
1818 PMU_PMEVCNTR_EL0(15),
1819 PMU_PMEVCNTR_EL0(16),
1820 PMU_PMEVCNTR_EL0(17),
1821 PMU_PMEVCNTR_EL0(18),
1822 PMU_PMEVCNTR_EL0(19),
1823 PMU_PMEVCNTR_EL0(20),
1824 PMU_PMEVCNTR_EL0(21),
1825 PMU_PMEVCNTR_EL0(22),
1826 PMU_PMEVCNTR_EL0(23),
1827 PMU_PMEVCNTR_EL0(24),
1828 PMU_PMEVCNTR_EL0(25),
1829 PMU_PMEVCNTR_EL0(26),
1830 PMU_PMEVCNTR_EL0(27),
1831 PMU_PMEVCNTR_EL0(28),
1832 PMU_PMEVCNTR_EL0(29),
1833 PMU_PMEVCNTR_EL0(30),
9feb21ac
SZ
1834 /* PMEVTYPERn_EL0 */
1835 PMU_PMEVTYPER_EL0(0),
1836 PMU_PMEVTYPER_EL0(1),
1837 PMU_PMEVTYPER_EL0(2),
1838 PMU_PMEVTYPER_EL0(3),
1839 PMU_PMEVTYPER_EL0(4),
1840 PMU_PMEVTYPER_EL0(5),
1841 PMU_PMEVTYPER_EL0(6),
1842 PMU_PMEVTYPER_EL0(7),
1843 PMU_PMEVTYPER_EL0(8),
1844 PMU_PMEVTYPER_EL0(9),
1845 PMU_PMEVTYPER_EL0(10),
1846 PMU_PMEVTYPER_EL0(11),
1847 PMU_PMEVTYPER_EL0(12),
1848 PMU_PMEVTYPER_EL0(13),
1849 PMU_PMEVTYPER_EL0(14),
1850 PMU_PMEVTYPER_EL0(15),
1851 PMU_PMEVTYPER_EL0(16),
1852 PMU_PMEVTYPER_EL0(17),
1853 PMU_PMEVTYPER_EL0(18),
1854 PMU_PMEVTYPER_EL0(19),
1855 PMU_PMEVTYPER_EL0(20),
1856 PMU_PMEVTYPER_EL0(21),
1857 PMU_PMEVTYPER_EL0(22),
1858 PMU_PMEVTYPER_EL0(23),
1859 PMU_PMEVTYPER_EL0(24),
1860 PMU_PMEVTYPER_EL0(25),
1861 PMU_PMEVTYPER_EL0(26),
1862 PMU_PMEVTYPER_EL0(27),
1863 PMU_PMEVTYPER_EL0(28),
1864 PMU_PMEVTYPER_EL0(29),
1865 PMU_PMEVTYPER_EL0(30),
174ed3e4
MR
1866 /*
1867 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
9feb21ac
SZ
1868 * in 32bit mode. Here we choose to reset it as zero for consistency.
1869 */
11663111
MZ
1870 { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1871 .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
051ff581 1872
851050a5
MR
1873 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1874 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
c88b0936 1875 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
62a89c44
MZ
1876};
1877
8c358b29 1878static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
3fec037d 1879 struct sys_reg_params *p,
bdfb4b38
MZ
1880 const struct sys_reg_desc *r)
1881{
1882 if (p->is_write) {
1883 return ignore_write(vcpu, p);
1884 } else {
46823dd1
DM
1885 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1886 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
28c5dcb2 1887 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
bdfb4b38 1888
2ec5be3d
PF
1889 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1890 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1891 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
bea7e97f 1892 | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
bdfb4b38
MZ
1893 return true;
1894 }
1895}
1896
1da42c34
MZ
1897/*
1898 * AArch32 debug register mappings
84e690bf
AB
1899 *
1900 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1901 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1902 *
1da42c34
MZ
1903 * None of the other registers share their location, so treat them as
1904 * if they were 64bit.
84e690bf 1905 */
1da42c34
MZ
1906#define DBG_BCR_BVR_WCR_WVR(n) \
1907 /* DBGBVRn */ \
1908 { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1909 /* DBGBCRn */ \
1910 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1911 /* DBGWVRn */ \
1912 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1913 /* DBGWCRn */ \
84e690bf
AB
1914 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1915
1da42c34
MZ
1916#define DBGBXVR(n) \
1917 { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
bdfb4b38
MZ
1918
1919/*
1920 * Trapped cp14 registers. We generally ignore most of the external
1921 * debug, on the principle that they don't really make sense to a
84e690bf 1922 * guest. Revisit this one day, would this principle change.
bdfb4b38 1923 */
72564016 1924static const struct sys_reg_desc cp14_regs[] = {
8c358b29
AE
1925 /* DBGDIDR */
1926 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
bdfb4b38
MZ
1927 /* DBGDTRRXext */
1928 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1929
1930 DBG_BCR_BVR_WCR_WVR(0),
1931 /* DBGDSCRint */
1932 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1933 DBG_BCR_BVR_WCR_WVR(1),
1934 /* DBGDCCINT */
1da42c34 1935 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
bdfb4b38 1936 /* DBGDSCRext */
1da42c34 1937 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
bdfb4b38
MZ
1938 DBG_BCR_BVR_WCR_WVR(2),
1939 /* DBGDTR[RT]Xint */
1940 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1941 /* DBGDTR[RT]Xext */
1942 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1943 DBG_BCR_BVR_WCR_WVR(3),
1944 DBG_BCR_BVR_WCR_WVR(4),
1945 DBG_BCR_BVR_WCR_WVR(5),
1946 /* DBGWFAR */
1947 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1948 /* DBGOSECCR */
1949 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1950 DBG_BCR_BVR_WCR_WVR(6),
1951 /* DBGVCR */
1da42c34 1952 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
bdfb4b38
MZ
1953 DBG_BCR_BVR_WCR_WVR(7),
1954 DBG_BCR_BVR_WCR_WVR(8),
1955 DBG_BCR_BVR_WCR_WVR(9),
1956 DBG_BCR_BVR_WCR_WVR(10),
1957 DBG_BCR_BVR_WCR_WVR(11),
1958 DBG_BCR_BVR_WCR_WVR(12),
1959 DBG_BCR_BVR_WCR_WVR(13),
1960 DBG_BCR_BVR_WCR_WVR(14),
1961 DBG_BCR_BVR_WCR_WVR(15),
1962
1963 /* DBGDRAR (32bit) */
1964 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1965
1966 DBGBXVR(0),
1967 /* DBGOSLAR */
f24adc65 1968 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
bdfb4b38
MZ
1969 DBGBXVR(1),
1970 /* DBGOSLSR */
d42e2671 1971 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
bdfb4b38
MZ
1972 DBGBXVR(2),
1973 DBGBXVR(3),
1974 /* DBGOSDLR */
1975 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1976 DBGBXVR(4),
1977 /* DBGPRCR */
1978 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1979 DBGBXVR(5),
1980 DBGBXVR(6),
1981 DBGBXVR(7),
1982 DBGBXVR(8),
1983 DBGBXVR(9),
1984 DBGBXVR(10),
1985 DBGBXVR(11),
1986 DBGBXVR(12),
1987 DBGBXVR(13),
1988 DBGBXVR(14),
1989 DBGBXVR(15),
1990
1991 /* DBGDSAR (32bit) */
1992 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1993
1994 /* DBGDEVID2 */
1995 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1996 /* DBGDEVID1 */
1997 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1998 /* DBGDEVID */
1999 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2000 /* DBGCLAIMSET */
2001 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2002 /* DBGCLAIMCLR */
2003 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2004 /* DBGAUTHSTATUS */
2005 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
72564016
MZ
2006};
2007
a9866ba0
MZ
2008/* Trapped cp14 64bit registers */
2009static const struct sys_reg_desc cp14_64_regs[] = {
bdfb4b38
MZ
2010 /* DBGDRAR (64bit) */
2011 { Op1( 0), CRm( 1), .access = trap_raz_wi },
2012
2013 /* DBGDSAR (64bit) */
2014 { Op1( 0), CRm( 2), .access = trap_raz_wi },
a9866ba0
MZ
2015};
2016
051ff581
SZ
2017/* Macro to expand the PMEVCNTRn register */
2018#define PMU_PMEVCNTR(n) \
2019 /* PMEVCNTRn */ \
2020 { Op1(0), CRn(0b1110), \
2021 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
2022 access_pmu_evcntr }
2023
9feb21ac
SZ
2024/* Macro to expand the PMEVTYPERn register */
2025#define PMU_PMEVTYPER(n) \
2026 /* PMEVTYPERn */ \
2027 { Op1(0), CRn(0b1110), \
2028 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
2029 access_pmu_evtyper }
2030
4d44923b
MZ
2031/*
2032 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2033 * depending on the way they are accessed (as a 32bit or a 64bit
2034 * register).
2035 */
62a89c44 2036static const struct sys_reg_desc cp15_regs[] = {
f7f2b15c 2037 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
b1ea1d76
MZ
2038 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2039 /* ACTLR */
2040 { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2041 /* ACTLR2 */
2042 { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2043 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2044 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2045 /* TTBCR */
2046 { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2047 /* TTBCR2 */
2048 { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2049 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2050 /* DFSR */
2051 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2052 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2053 /* ADFSR */
2054 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2055 /* AIFSR */
2056 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2057 /* DFAR */
2058 { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2059 /* IFAR */
2060 { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
4d44923b 2061
62a89c44
MZ
2062 /*
2063 * DC{C,I,CI}SW operations:
2064 */
2065 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2066 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2067 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4d44923b 2068
7609c125 2069 /* PMU */
ab946834 2070 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
96b0eebc
SZ
2071 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
2072 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
76d883c4 2073 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
7a0adc70 2074 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
3965c3ce 2075 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
99b6a401
MZ
2076 { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
2077 { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
051ff581 2078 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
9feb21ac 2079 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
051ff581 2080 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
d692b8ad 2081 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
9db52c78
SZ
2082 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
2083 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
76d883c4 2084 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
99b6a401
MZ
2085 { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 4), access_pmceid },
2086 { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 5), access_pmceid },
46081078
MZ
2087 /* PMMIR */
2088 { Op1( 0), CRn( 9), CRm(14), Op2( 6), trap_raz_wi },
4d44923b 2089
b1ea1d76
MZ
2090 /* PRRR/MAIR0 */
2091 { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2092 /* NMRR/MAIR1 */
2093 { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2094 /* AMAIR0 */
2095 { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2096 /* AMAIR1 */
2097 { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
db7dedd0
CD
2098
2099 /* ICC_SRE */
f7f6f2d9 2100 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
db7dedd0 2101
b1ea1d76 2102 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
051ff581 2103
84135d3d
AP
2104 /* Arch Tmers */
2105 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2106 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
eac137b4 2107
051ff581
SZ
2108 /* PMEVCNTRn */
2109 PMU_PMEVCNTR(0),
2110 PMU_PMEVCNTR(1),
2111 PMU_PMEVCNTR(2),
2112 PMU_PMEVCNTR(3),
2113 PMU_PMEVCNTR(4),
2114 PMU_PMEVCNTR(5),
2115 PMU_PMEVCNTR(6),
2116 PMU_PMEVCNTR(7),
2117 PMU_PMEVCNTR(8),
2118 PMU_PMEVCNTR(9),
2119 PMU_PMEVCNTR(10),
2120 PMU_PMEVCNTR(11),
2121 PMU_PMEVCNTR(12),
2122 PMU_PMEVCNTR(13),
2123 PMU_PMEVCNTR(14),
2124 PMU_PMEVCNTR(15),
2125 PMU_PMEVCNTR(16),
2126 PMU_PMEVCNTR(17),
2127 PMU_PMEVCNTR(18),
2128 PMU_PMEVCNTR(19),
2129 PMU_PMEVCNTR(20),
2130 PMU_PMEVCNTR(21),
2131 PMU_PMEVCNTR(22),
2132 PMU_PMEVCNTR(23),
2133 PMU_PMEVCNTR(24),
2134 PMU_PMEVCNTR(25),
2135 PMU_PMEVCNTR(26),
2136 PMU_PMEVCNTR(27),
2137 PMU_PMEVCNTR(28),
2138 PMU_PMEVCNTR(29),
2139 PMU_PMEVCNTR(30),
9feb21ac
SZ
2140 /* PMEVTYPERn */
2141 PMU_PMEVTYPER(0),
2142 PMU_PMEVTYPER(1),
2143 PMU_PMEVTYPER(2),
2144 PMU_PMEVTYPER(3),
2145 PMU_PMEVTYPER(4),
2146 PMU_PMEVTYPER(5),
2147 PMU_PMEVTYPER(6),
2148 PMU_PMEVTYPER(7),
2149 PMU_PMEVTYPER(8),
2150 PMU_PMEVTYPER(9),
2151 PMU_PMEVTYPER(10),
2152 PMU_PMEVTYPER(11),
2153 PMU_PMEVTYPER(12),
2154 PMU_PMEVTYPER(13),
2155 PMU_PMEVTYPER(14),
2156 PMU_PMEVTYPER(15),
2157 PMU_PMEVTYPER(16),
2158 PMU_PMEVTYPER(17),
2159 PMU_PMEVTYPER(18),
2160 PMU_PMEVTYPER(19),
2161 PMU_PMEVTYPER(20),
2162 PMU_PMEVTYPER(21),
2163 PMU_PMEVTYPER(22),
2164 PMU_PMEVTYPER(23),
2165 PMU_PMEVTYPER(24),
2166 PMU_PMEVTYPER(25),
2167 PMU_PMEVTYPER(26),
2168 PMU_PMEVTYPER(27),
2169 PMU_PMEVTYPER(28),
2170 PMU_PMEVTYPER(29),
2171 PMU_PMEVTYPER(30),
2172 /* PMCCFILTR */
2173 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
f7f2b15c
AB
2174
2175 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2176 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
b1ea1d76 2177 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
a9866ba0
MZ
2178};
2179
2180static const struct sys_reg_desc cp15_64_regs[] = {
b1ea1d76 2181 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
051ff581 2182 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
03bd646d 2183 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
b1ea1d76 2184 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
03bd646d
MZ
2185 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2186 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
84135d3d 2187 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
7c8c5e6a
MZ
2188};
2189
f1f0c0cf
AE
2190static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2191 bool is_32)
bb44a8db
MZ
2192{
2193 unsigned int i;
2194
2195 for (i = 0; i < n; i++) {
2196 if (!is_32 && table[i].reg && !table[i].reset) {
f1f0c0cf
AE
2197 kvm_err("sys_reg table %p entry %d lacks reset\n", table, i);
2198 return false;
bb44a8db
MZ
2199 }
2200
2201 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2202 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
f1f0c0cf 2203 return false;
bb44a8db
MZ
2204 }
2205 }
2206
f1f0c0cf 2207 return true;
bb44a8db
MZ
2208}
2209
74cc7e0c 2210int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
62a89c44
MZ
2211{
2212 kvm_inject_undefined(vcpu);
2213 return 1;
2214}
2215
e70b9522
MZ
2216static void perform_access(struct kvm_vcpu *vcpu,
2217 struct sys_reg_params *params,
2218 const struct sys_reg_desc *r)
2219{
599d79dc
MZ
2220 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2221
7f34e409 2222 /* Check for regs disabled by runtime config */
01fe5ace 2223 if (sysreg_hidden(vcpu, r)) {
7f34e409
DM
2224 kvm_inject_undefined(vcpu);
2225 return;
2226 }
2227
e70b9522
MZ
2228 /*
2229 * Not having an accessor means that we have configured a trap
2230 * that we don't know how to handle. This certainly qualifies
2231 * as a gross bug that should be fixed right away.
2232 */
2233 BUG_ON(!r->access);
2234
2235 /* Skip instruction if instructed so */
2236 if (likely(r->access(vcpu, params, r)))
cdb5e02e 2237 kvm_incr_pc(vcpu);
e70b9522
MZ
2238}
2239
72564016
MZ
2240/*
2241 * emulate_cp -- tries to match a sys_reg access in a handling table, and
2242 * call the corresponding trap handler.
2243 *
2244 * @params: pointer to the descriptor of the access
2245 * @table: array of trap descriptors
2246 * @num: size of the trap descriptor array
2247 *
2248 * Return 0 if the access has been handled, and -1 if not.
2249 */
2250static int emulate_cp(struct kvm_vcpu *vcpu,
3fec037d 2251 struct sys_reg_params *params,
72564016
MZ
2252 const struct sys_reg_desc *table,
2253 size_t num)
62a89c44 2254{
72564016 2255 const struct sys_reg_desc *r;
62a89c44 2256
72564016
MZ
2257 if (!table)
2258 return -1; /* Not handled */
62a89c44 2259
62a89c44 2260 r = find_reg(params, table, num);
62a89c44 2261
72564016 2262 if (r) {
e70b9522
MZ
2263 perform_access(vcpu, params, r);
2264 return 0;
72564016
MZ
2265 }
2266
2267 /* Not handled */
2268 return -1;
2269}
2270
2271static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2272 struct sys_reg_params *params)
2273{
3a949f4c 2274 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
40c4f8d2 2275 int cp = -1;
72564016 2276
3a949f4c 2277 switch (esr_ec) {
c6d01a94
MR
2278 case ESR_ELx_EC_CP15_32:
2279 case ESR_ELx_EC_CP15_64:
72564016
MZ
2280 cp = 15;
2281 break;
c6d01a94
MR
2282 case ESR_ELx_EC_CP14_MR:
2283 case ESR_ELx_EC_CP14_64:
72564016
MZ
2284 cp = 14;
2285 break;
2286 default:
40c4f8d2 2287 WARN_ON(1);
62a89c44
MZ
2288 }
2289
bf4b96bb
MR
2290 print_sys_reg_msg(params,
2291 "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2292 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
62a89c44
MZ
2293 kvm_inject_undefined(vcpu);
2294}
2295
2296/**
7769db90 2297 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
62a89c44
MZ
2298 * @vcpu: The VCPU pointer
2299 * @run: The kvm_run struct
2300 */
72564016
MZ
2301static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2302 const struct sys_reg_desc *global,
dcaffa7b 2303 size_t nr_global)
62a89c44
MZ
2304{
2305 struct sys_reg_params params;
3a949f4c 2306 u32 esr = kvm_vcpu_get_esr(vcpu);
c667186f 2307 int Rt = kvm_vcpu_sys_get_rt(vcpu);
3a949f4c 2308 int Rt2 = (esr >> 10) & 0x1f;
62a89c44 2309
3a949f4c
GS
2310 params.CRm = (esr >> 1) & 0xf;
2311 params.is_write = ((esr & 1) == 0);
62a89c44
MZ
2312
2313 params.Op0 = 0;
3a949f4c 2314 params.Op1 = (esr >> 16) & 0xf;
62a89c44
MZ
2315 params.Op2 = 0;
2316 params.CRn = 0;
2317
2318 /*
2ec5be3d 2319 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
62a89c44
MZ
2320 * backends between AArch32 and AArch64, we get away with it.
2321 */
2322 if (params.is_write) {
2ec5be3d
PF
2323 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2324 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
62a89c44
MZ
2325 }
2326
b6b7a806 2327 /*
dcaffa7b 2328 * If the table contains a handler, handle the
b6b7a806
MZ
2329 * potential register operation in the case of a read and return
2330 * with success.
2331 */
dcaffa7b 2332 if (!emulate_cp(vcpu, &params, global, nr_global)) {
b6b7a806
MZ
2333 /* Split up the value between registers for the read side */
2334 if (!params.is_write) {
2335 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2336 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2337 }
62a89c44 2338
b6b7a806 2339 return 1;
62a89c44
MZ
2340 }
2341
b6b7a806 2342 unhandled_cp_access(vcpu, &params);
62a89c44
MZ
2343 return 1;
2344}
2345
2346/**
7769db90 2347 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
62a89c44
MZ
2348 * @vcpu: The VCPU pointer
2349 * @run: The kvm_run struct
2350 */
72564016
MZ
2351static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2352 const struct sys_reg_desc *global,
dcaffa7b 2353 size_t nr_global)
62a89c44
MZ
2354{
2355 struct sys_reg_params params;
3a949f4c 2356 u32 esr = kvm_vcpu_get_esr(vcpu);
c667186f 2357 int Rt = kvm_vcpu_sys_get_rt(vcpu);
62a89c44 2358
3a949f4c 2359 params.CRm = (esr >> 1) & 0xf;
2ec5be3d 2360 params.regval = vcpu_get_reg(vcpu, Rt);
3a949f4c
GS
2361 params.is_write = ((esr & 1) == 0);
2362 params.CRn = (esr >> 10) & 0xf;
62a89c44 2363 params.Op0 = 0;
3a949f4c
GS
2364 params.Op1 = (esr >> 14) & 0x7;
2365 params.Op2 = (esr >> 17) & 0x7;
62a89c44 2366
dcaffa7b 2367 if (!emulate_cp(vcpu, &params, global, nr_global)) {
2ec5be3d
PF
2368 if (!params.is_write)
2369 vcpu_set_reg(vcpu, Rt, params.regval);
72564016 2370 return 1;
2ec5be3d 2371 }
72564016
MZ
2372
2373 unhandled_cp_access(vcpu, &params);
62a89c44
MZ
2374 return 1;
2375}
2376
74cc7e0c 2377int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
72564016 2378{
dcaffa7b 2379 return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
72564016
MZ
2380}
2381
74cc7e0c 2382int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
72564016 2383{
dcaffa7b 2384 return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
72564016
MZ
2385}
2386
74cc7e0c 2387int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
72564016 2388{
dcaffa7b 2389 return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
72564016
MZ
2390}
2391
74cc7e0c 2392int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
72564016 2393{
dcaffa7b 2394 return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
72564016
MZ
2395}
2396
54ad68b7
MR
2397static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2398{
2399 // See ARM DDI 0487E.a, section D12.3.2
2400 return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2401}
2402
7c8c5e6a 2403static int emulate_sys_reg(struct kvm_vcpu *vcpu,
3fec037d 2404 struct sys_reg_params *params)
7c8c5e6a 2405{
dcaffa7b 2406 const struct sys_reg_desc *r;
7c8c5e6a 2407
dcaffa7b 2408 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
7c8c5e6a
MZ
2409
2410 if (likely(r)) {
e70b9522 2411 perform_access(vcpu, params, r);
54ad68b7
MR
2412 } else if (is_imp_def_sys_reg(params)) {
2413 kvm_inject_undefined(vcpu);
7c8c5e6a 2414 } else {
bf4b96bb
MR
2415 print_sys_reg_msg(params,
2416 "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2417 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
e70b9522 2418 kvm_inject_undefined(vcpu);
7c8c5e6a 2419 }
7c8c5e6a
MZ
2420 return 1;
2421}
2422
750ed566
JM
2423/**
2424 * kvm_reset_sys_regs - sets system registers to reset value
2425 * @vcpu: The VCPU pointer
2426 *
2427 * This function finds the right table above and sets the registers on the
2428 * virtual CPU struct to their architecturally defined reset values.
2429 */
2430void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
7c8c5e6a
MZ
2431{
2432 unsigned long i;
2433
750ed566
JM
2434 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2435 if (sys_reg_descs[i].reset)
2436 sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
7c8c5e6a
MZ
2437}
2438
2439/**
2440 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2441 * @vcpu: The VCPU pointer
7c8c5e6a 2442 */
74cc7e0c 2443int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
7c8c5e6a
MZ
2444{
2445 struct sys_reg_params params;
3a949f4c 2446 unsigned long esr = kvm_vcpu_get_esr(vcpu);
c667186f 2447 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2ec5be3d 2448 int ret;
7c8c5e6a 2449
eef8c85a
AB
2450 trace_kvm_handle_sys_reg(esr);
2451
f76f89e2 2452 params = esr_sys64_to_params(esr);
2ec5be3d 2453 params.regval = vcpu_get_reg(vcpu, Rt);
7c8c5e6a 2454
2ec5be3d
PF
2455 ret = emulate_sys_reg(vcpu, &params);
2456
2457 if (!params.is_write)
2458 vcpu_set_reg(vcpu, Rt, params.regval);
2459 return ret;
7c8c5e6a
MZ
2460}
2461
2462/******************************************************************************
2463 * Userspace API
2464 *****************************************************************************/
2465
2466static bool index_to_params(u64 id, struct sys_reg_params *params)
2467{
2468 switch (id & KVM_REG_SIZE_MASK) {
2469 case KVM_REG_SIZE_U64:
2470 /* Any unused index bits means it's not valid. */
2471 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2472 | KVM_REG_ARM_COPROC_MASK
2473 | KVM_REG_ARM64_SYSREG_OP0_MASK
2474 | KVM_REG_ARM64_SYSREG_OP1_MASK
2475 | KVM_REG_ARM64_SYSREG_CRN_MASK
2476 | KVM_REG_ARM64_SYSREG_CRM_MASK
2477 | KVM_REG_ARM64_SYSREG_OP2_MASK))
2478 return false;
2479 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2480 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2481 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2482 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2483 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2484 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2485 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2486 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2487 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2488 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2489 return true;
2490 default:
2491 return false;
2492 }
2493}
2494
4b927b94
VK
2495const struct sys_reg_desc *find_reg_by_id(u64 id,
2496 struct sys_reg_params *params,
2497 const struct sys_reg_desc table[],
2498 unsigned int num)
2499{
2500 if (!index_to_params(id, params))
2501 return NULL;
2502
2503 return find_reg(params, table, num);
2504}
2505
7c8c5e6a
MZ
2506/* Decode an index value, and find the sys_reg_desc entry. */
2507static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2508 u64 id)
2509{
dcaffa7b 2510 const struct sys_reg_desc *r;
7c8c5e6a
MZ
2511 struct sys_reg_params params;
2512
2513 /* We only do sys_reg for now. */
2514 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2515 return NULL;
2516
1ce74e96
WD
2517 if (!index_to_params(id, &params))
2518 return NULL;
2519
dcaffa7b 2520 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
7c8c5e6a 2521
93390c0a
DM
2522 /* Not saved in the sys_reg array and not otherwise accessible? */
2523 if (r && !(r->reg || r->get_user))
7c8c5e6a
MZ
2524 r = NULL;
2525
2526 return r;
2527}
2528
2529/*
2530 * These are the invariant sys_reg registers: we let the guest see the
2531 * host versions of these, so they're part of the guest state.
2532 *
2533 * A future CPU may provide a mechanism to present different values to
2534 * the guest, or a future kvm may trap them.
2535 */
2536
2537#define FUNCTION_INVARIANT(reg) \
2538 static void get_##reg(struct kvm_vcpu *v, \
2539 const struct sys_reg_desc *r) \
2540 { \
1f3d8699 2541 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
7c8c5e6a
MZ
2542 }
2543
2544FUNCTION_INVARIANT(midr_el1)
7c8c5e6a 2545FUNCTION_INVARIANT(revidr_el1)
7c8c5e6a
MZ
2546FUNCTION_INVARIANT(clidr_el1)
2547FUNCTION_INVARIANT(aidr_el1)
2548
f7f2b15c
AB
2549static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2550{
2551 ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2552}
2553
7c8c5e6a
MZ
2554/* ->val is filled in by kvm_sys_reg_table_init() */
2555static struct sys_reg_desc invariant_sys_regs[] = {
0d449541
MR
2556 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2557 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
0d449541
MR
2558 { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2559 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2560 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
7c8c5e6a
MZ
2561};
2562
26c99af1 2563static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
7c8c5e6a 2564{
7c8c5e6a
MZ
2565 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2566 return -EFAULT;
2567 return 0;
2568}
2569
26c99af1 2570static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
7c8c5e6a 2571{
7c8c5e6a
MZ
2572 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2573 return -EFAULT;
2574 return 0;
2575}
2576
2577static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2578{
2579 struct sys_reg_params params;
2580 const struct sys_reg_desc *r;
2581
4b927b94
VK
2582 r = find_reg_by_id(id, &params, invariant_sys_regs,
2583 ARRAY_SIZE(invariant_sys_regs));
7c8c5e6a
MZ
2584 if (!r)
2585 return -ENOENT;
2586
2587 return reg_to_user(uaddr, &r->val, id);
2588}
2589
2590static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2591{
2592 struct sys_reg_params params;
2593 const struct sys_reg_desc *r;
2594 int err;
2595 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2596
4b927b94
VK
2597 r = find_reg_by_id(id, &params, invariant_sys_regs,
2598 ARRAY_SIZE(invariant_sys_regs));
7c8c5e6a
MZ
2599 if (!r)
2600 return -ENOENT;
2601
2602 err = reg_from_user(&val, uaddr, id);
2603 if (err)
2604 return err;
2605
2606 /* This is what we mean by invariant: you can't change it. */
2607 if (r->val != val)
2608 return -EINVAL;
2609
2610 return 0;
2611}
2612
2613static bool is_valid_cache(u32 val)
2614{
2615 u32 level, ctype;
2616
2617 if (val >= CSSELR_MAX)
18d45766 2618 return false;
7c8c5e6a
MZ
2619
2620 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
2621 level = (val >> 1);
2622 ctype = (cache_levels >> (level * 3)) & 7;
2623
2624 switch (ctype) {
2625 case 0: /* No cache */
2626 return false;
2627 case 1: /* Instruction cache only */
2628 return (val & 1);
2629 case 2: /* Data cache only */
2630 case 4: /* Unified cache */
2631 return !(val & 1);
2632 case 3: /* Separate instruction and data caches */
2633 return true;
2634 default: /* Reserved: we can't know instruction or data. */
2635 return false;
2636 }
2637}
2638
2639static int demux_c15_get(u64 id, void __user *uaddr)
2640{
2641 u32 val;
2642 u32 __user *uval = uaddr;
2643
2644 /* Fail if we have unknown bits set. */
2645 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2646 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2647 return -ENOENT;
2648
2649 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2650 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2651 if (KVM_REG_SIZE(id) != 4)
2652 return -ENOENT;
2653 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2654 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2655 if (!is_valid_cache(val))
2656 return -ENOENT;
2657
2658 return put_user(get_ccsidr(val), uval);
2659 default:
2660 return -ENOENT;
2661 }
2662}
2663
2664static int demux_c15_set(u64 id, void __user *uaddr)
2665{
2666 u32 val, newval;
2667 u32 __user *uval = uaddr;
2668
2669 /* Fail if we have unknown bits set. */
2670 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2671 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2672 return -ENOENT;
2673
2674 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2675 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2676 if (KVM_REG_SIZE(id) != 4)
2677 return -ENOENT;
2678 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2679 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2680 if (!is_valid_cache(val))
2681 return -ENOENT;
2682
2683 if (get_user(newval, uval))
2684 return -EFAULT;
2685
2686 /* This is also invariant: you can't change it. */
2687 if (newval != get_ccsidr(val))
2688 return -EINVAL;
2689 return 0;
2690 default:
2691 return -ENOENT;
2692 }
2693}
2694
2695int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2696{
2697 const struct sys_reg_desc *r;
2698 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2699
2700 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2701 return demux_c15_get(reg->id, uaddr);
2702
2703 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2704 return -ENOENT;
2705
2706 r = index_to_sys_reg_desc(vcpu, reg->id);
2707 if (!r)
2708 return get_invariant_sys_reg(reg->id, uaddr);
2709
7f34e409 2710 /* Check for regs disabled by runtime config */
01fe5ace 2711 if (sysreg_hidden(vcpu, r))
7f34e409
DM
2712 return -ENOENT;
2713
84e690bf
AB
2714 if (r->get_user)
2715 return (r->get_user)(vcpu, r, reg, uaddr);
2716
8d404c4c 2717 return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
7c8c5e6a
MZ
2718}
2719
2720int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2721{
2722 const struct sys_reg_desc *r;
2723 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2724
2725 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2726 return demux_c15_set(reg->id, uaddr);
2727
2728 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2729 return -ENOENT;
2730
2731 r = index_to_sys_reg_desc(vcpu, reg->id);
2732 if (!r)
2733 return set_invariant_sys_reg(reg->id, uaddr);
2734
7f34e409 2735 /* Check for regs disabled by runtime config */
01fe5ace 2736 if (sysreg_hidden(vcpu, r))
7f34e409
DM
2737 return -ENOENT;
2738
84e690bf
AB
2739 if (r->set_user)
2740 return (r->set_user)(vcpu, r, reg, uaddr);
2741
8d404c4c 2742 return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
7c8c5e6a
MZ
2743}
2744
2745static unsigned int num_demux_regs(void)
2746{
2747 unsigned int i, count = 0;
2748
2749 for (i = 0; i < CSSELR_MAX; i++)
2750 if (is_valid_cache(i))
2751 count++;
2752
2753 return count;
2754}
2755
2756static int write_demux_regids(u64 __user *uindices)
2757{
efd48cea 2758 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
7c8c5e6a
MZ
2759 unsigned int i;
2760
2761 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2762 for (i = 0; i < CSSELR_MAX; i++) {
2763 if (!is_valid_cache(i))
2764 continue;
2765 if (put_user(val | i, uindices))
2766 return -EFAULT;
2767 uindices++;
2768 }
2769 return 0;
2770}
2771
2772static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2773{
2774 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2775 KVM_REG_ARM64_SYSREG |
2776 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2777 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2778 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2779 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2780 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2781}
2782
2783static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2784{
2785 if (!*uind)
2786 return true;
2787
2788 if (put_user(sys_reg_to_index(reg), *uind))
2789 return false;
2790
2791 (*uind)++;
2792 return true;
2793}
2794
7f34e409
DM
2795static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2796 const struct sys_reg_desc *rd,
93390c0a
DM
2797 u64 __user **uind,
2798 unsigned int *total)
2799{
2800 /*
2801 * Ignore registers we trap but don't save,
2802 * and for which no custom user accessor is provided.
2803 */
2804 if (!(rd->reg || rd->get_user))
2805 return 0;
2806
01fe5ace 2807 if (sysreg_hidden(vcpu, rd))
7f34e409
DM
2808 return 0;
2809
93390c0a
DM
2810 if (!copy_reg_to_user(rd, uind))
2811 return -EFAULT;
2812
2813 (*total)++;
2814 return 0;
2815}
2816
7c8c5e6a
MZ
2817/* Assumed ordered tables, see kvm_sys_reg_table_init. */
2818static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2819{
dcaffa7b 2820 const struct sys_reg_desc *i2, *end2;
7c8c5e6a 2821 unsigned int total = 0;
93390c0a 2822 int err;
7c8c5e6a 2823
7c8c5e6a
MZ
2824 i2 = sys_reg_descs;
2825 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2826
dcaffa7b
JM
2827 while (i2 != end2) {
2828 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
93390c0a
DM
2829 if (err)
2830 return err;
7c8c5e6a
MZ
2831 }
2832 return total;
2833}
2834
2835unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2836{
2837 return ARRAY_SIZE(invariant_sys_regs)
2838 + num_demux_regs()
2839 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2840}
2841
2842int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2843{
2844 unsigned int i;
2845 int err;
2846
2847 /* Then give them all the invariant registers' indices. */
2848 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2849 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2850 return -EFAULT;
2851 uindices++;
2852 }
2853
2854 err = walk_sys_regs(vcpu, uindices);
2855 if (err < 0)
2856 return err;
2857 uindices += err;
2858
2859 return write_demux_regids(uindices);
2860}
2861
f1f0c0cf 2862int kvm_sys_reg_table_init(void)
7c8c5e6a 2863{
f1f0c0cf 2864 bool valid = true;
7c8c5e6a
MZ
2865 unsigned int i;
2866 struct sys_reg_desc clidr;
2867
2868 /* Make sure tables are unique and in order. */
f1f0c0cf
AE
2869 valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
2870 valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
2871 valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
2872 valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
2873 valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
2874 valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
2875
2876 if (!valid)
2877 return -EINVAL;
7c8c5e6a
MZ
2878
2879 /* We abuse the reset function to overwrite the table itself. */
2880 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2881 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2882
2883 /*
2884 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2885 *
2886 * If software reads the Cache Type fields from Ctype1
2887 * upwards, once it has seen a value of 0b000, no caches
2888 * exist at further-out levels of the hierarchy. So, for
2889 * example, if Ctype3 is the first Cache Type field with a
2890 * value of 0b000, the values of Ctype4 to Ctype7 must be
2891 * ignored.
2892 */
2893 get_clidr_el1(NULL, &clidr); /* Ugly... */
2894 cache_levels = clidr.val;
2895 for (i = 0; i < 7; i++)
2896 if (((cache_levels >> (i*3)) & 7) == 0)
2897 break;
2898 /* Clear all higher bits. */
2899 cache_levels &= (1 << (i*3))-1;
f1f0c0cf
AE
2900
2901 return 0;
7c8c5e6a 2902}