KVM: arm/arm64: vgic: Make vgic_cpu->ap_list_lock a raw_spinlock
[linux-2.6-block.git] / arch / arm64 / kvm / sys_regs.c
CommitLineData
7c8c5e6a
MZ
1/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
623eefa8 23#include <linux/bsearch.h>
7c8c5e6a 24#include <linux/kvm_host.h>
c6d01a94 25#include <linux/mm.h>
07d79fe7 26#include <linux/printk.h>
7c8c5e6a 27#include <linux/uaccess.h>
c6d01a94 28
7c8c5e6a
MZ
29#include <asm/cacheflush.h>
30#include <asm/cputype.h>
0c557ed4 31#include <asm/debug-monitors.h>
c6d01a94
MR
32#include <asm/esr.h>
33#include <asm/kvm_arm.h>
34#include <asm/kvm_coproc.h>
35#include <asm/kvm_emulate.h>
36#include <asm/kvm_host.h>
d47533da 37#include <asm/kvm_hyp.h>
c6d01a94 38#include <asm/kvm_mmu.h>
ab946834 39#include <asm/perf_event.h>
1f3d8699 40#include <asm/sysreg.h>
c6d01a94 41
7c8c5e6a
MZ
42#include <trace/events/kvm.h>
43
44#include "sys_regs.h"
45
eef8c85a
AB
46#include "trace.h"
47
7c8c5e6a
MZ
48/*
49 * All of this file is extremly similar to the ARM coproc.c, but the
50 * types are different. My gut feeling is that it should be pretty
51 * easy to merge, but that would be an ABI breakage -- again. VFP
52 * would also need to be abstracted.
62a89c44
MZ
53 *
54 * For AArch32, we only take care of what is being trapped. Anything
55 * that has to do with init and userspace access has to go via the
56 * 64bit interface.
7c8c5e6a
MZ
57 */
58
7b5b4df1 59static bool read_from_write_only(struct kvm_vcpu *vcpu,
e7f1d1ee
MZ
60 struct sys_reg_params *params,
61 const struct sys_reg_desc *r)
7b5b4df1
MZ
62{
63 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
64 print_sys_reg_instr(params);
65 kvm_inject_undefined(vcpu);
66 return false;
67}
68
7b1dba1f
MZ
69static bool write_to_read_only(struct kvm_vcpu *vcpu,
70 struct sys_reg_params *params,
71 const struct sys_reg_desc *r)
72{
73 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
74 print_sys_reg_instr(params);
75 kvm_inject_undefined(vcpu);
76 return false;
77}
78
da6f1666 79u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
d47533da
CD
80{
81 if (!vcpu->arch.sysregs_loaded_on_cpu)
82 goto immediate_read;
83
84 /*
85 * System registers listed in the switch are not saved on every
86 * exit from the guest but are only saved on vcpu_put.
fc7563b3
CD
87 *
88 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
89 * should never be listed below, because the guest cannot modify its
90 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
91 * thread when emulating cross-VCPU communication.
d47533da
CD
92 */
93 switch (reg) {
fc7563b3
CD
94 case CSSELR_EL1: return read_sysreg_s(SYS_CSSELR_EL1);
95 case SCTLR_EL1: return read_sysreg_s(sctlr_EL12);
96 case ACTLR_EL1: return read_sysreg_s(SYS_ACTLR_EL1);
97 case CPACR_EL1: return read_sysreg_s(cpacr_EL12);
98 case TTBR0_EL1: return read_sysreg_s(ttbr0_EL12);
99 case TTBR1_EL1: return read_sysreg_s(ttbr1_EL12);
100 case TCR_EL1: return read_sysreg_s(tcr_EL12);
101 case ESR_EL1: return read_sysreg_s(esr_EL12);
102 case AFSR0_EL1: return read_sysreg_s(afsr0_EL12);
103 case AFSR1_EL1: return read_sysreg_s(afsr1_EL12);
104 case FAR_EL1: return read_sysreg_s(far_EL12);
105 case MAIR_EL1: return read_sysreg_s(mair_EL12);
106 case VBAR_EL1: return read_sysreg_s(vbar_EL12);
107 case CONTEXTIDR_EL1: return read_sysreg_s(contextidr_EL12);
108 case TPIDR_EL0: return read_sysreg_s(SYS_TPIDR_EL0);
109 case TPIDRRO_EL0: return read_sysreg_s(SYS_TPIDRRO_EL0);
110 case TPIDR_EL1: return read_sysreg_s(SYS_TPIDR_EL1);
111 case AMAIR_EL1: return read_sysreg_s(amair_EL12);
112 case CNTKCTL_EL1: return read_sysreg_s(cntkctl_EL12);
113 case PAR_EL1: return read_sysreg_s(SYS_PAR_EL1);
b9f8ca4d
CD
114 case DACR32_EL2: return read_sysreg_s(SYS_DACR32_EL2);
115 case IFSR32_EL2: return read_sysreg_s(SYS_IFSR32_EL2);
116 case DBGVCR32_EL2: return read_sysreg_s(SYS_DBGVCR32_EL2);
d47533da
CD
117 }
118
119immediate_read:
120 return __vcpu_sys_reg(vcpu, reg);
121}
122
123void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
124{
125 if (!vcpu->arch.sysregs_loaded_on_cpu)
126 goto immediate_write;
127
128 /*
129 * System registers listed in the switch are not restored on every
130 * entry to the guest but are only restored on vcpu_load.
fc7563b3
CD
131 *
132 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
133 * should never be listed below, because the the MPIDR should only be
134 * set once, before running the VCPU, and never changed later.
d47533da
CD
135 */
136 switch (reg) {
fc7563b3
CD
137 case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); return;
138 case SCTLR_EL1: write_sysreg_s(val, sctlr_EL12); return;
139 case ACTLR_EL1: write_sysreg_s(val, SYS_ACTLR_EL1); return;
140 case CPACR_EL1: write_sysreg_s(val, cpacr_EL12); return;
141 case TTBR0_EL1: write_sysreg_s(val, ttbr0_EL12); return;
142 case TTBR1_EL1: write_sysreg_s(val, ttbr1_EL12); return;
143 case TCR_EL1: write_sysreg_s(val, tcr_EL12); return;
144 case ESR_EL1: write_sysreg_s(val, esr_EL12); return;
145 case AFSR0_EL1: write_sysreg_s(val, afsr0_EL12); return;
146 case AFSR1_EL1: write_sysreg_s(val, afsr1_EL12); return;
147 case FAR_EL1: write_sysreg_s(val, far_EL12); return;
148 case MAIR_EL1: write_sysreg_s(val, mair_EL12); return;
149 case VBAR_EL1: write_sysreg_s(val, vbar_EL12); return;
150 case CONTEXTIDR_EL1: write_sysreg_s(val, contextidr_EL12); return;
151 case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); return;
152 case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); return;
153 case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); return;
154 case AMAIR_EL1: write_sysreg_s(val, amair_EL12); return;
155 case CNTKCTL_EL1: write_sysreg_s(val, cntkctl_EL12); return;
156 case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); return;
b9f8ca4d
CD
157 case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); return;
158 case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); return;
159 case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); return;
d47533da
CD
160 }
161
162immediate_write:
163 __vcpu_sys_reg(vcpu, reg) = val;
164}
165
7c8c5e6a
MZ
166/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
167static u32 cache_levels;
168
169/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
170#define CSSELR_MAX 12
171
172/* Which cache CCSIDR represents depends on CSSELR value. */
173static u32 get_ccsidr(u32 csselr)
174{
175 u32 ccsidr;
176
177 /* Make sure noone else changes CSSELR during this! */
178 local_irq_disable();
1f3d8699 179 write_sysreg(csselr, csselr_el1);
7c8c5e6a 180 isb();
1f3d8699 181 ccsidr = read_sysreg(ccsidr_el1);
7c8c5e6a
MZ
182 local_irq_enable();
183
184 return ccsidr;
185}
186
3c1e7165
MZ
187/*
188 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
189 */
7c8c5e6a 190static bool access_dcsw(struct kvm_vcpu *vcpu,
3fec037d 191 struct sys_reg_params *p,
7c8c5e6a
MZ
192 const struct sys_reg_desc *r)
193{
7c8c5e6a 194 if (!p->is_write)
e7f1d1ee 195 return read_from_write_only(vcpu, p, r);
7c8c5e6a 196
09605e94
MZ
197 /*
198 * Only track S/W ops if we don't have FWB. It still indicates
199 * that the guest is a bit broken (S/W operations should only
200 * be done by firmware, knowing that there is only a single
201 * CPU left in the system, and certainly not from non-secure
202 * software).
203 */
204 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
205 kvm_set_way_flush(vcpu);
206
7c8c5e6a
MZ
207 return true;
208}
209
4d44923b
MZ
210/*
211 * Generic accessor for VM registers. Only called as long as HCR_TVM
3c1e7165
MZ
212 * is set. If the guest enables the MMU, we stop trapping the VM
213 * sys_regs and leave it in complete control of the caches.
4d44923b
MZ
214 */
215static bool access_vm_reg(struct kvm_vcpu *vcpu,
3fec037d 216 struct sys_reg_params *p,
4d44923b
MZ
217 const struct sys_reg_desc *r)
218{
3c1e7165 219 bool was_enabled = vcpu_has_cache_enabled(vcpu);
52f6c4f0
CD
220 u64 val;
221 int reg = r->reg;
4d44923b
MZ
222
223 BUG_ON(!p->is_write);
224
52f6c4f0
CD
225 /* See the 32bit mapping in kvm_host.h */
226 if (p->is_aarch32)
227 reg = r->reg / 2;
228
229 if (!p->is_aarch32 || !p->is_32bit) {
230 val = p->regval;
dedf97e8 231 } else {
8d404c4c 232 val = vcpu_read_sys_reg(vcpu, reg);
52f6c4f0
CD
233 if (r->reg % 2)
234 val = (p->regval << 32) | (u64)lower_32_bits(val);
235 else
236 val = ((u64)upper_32_bits(val) << 32) |
237 lower_32_bits(p->regval);
dedf97e8 238 }
8d404c4c 239 vcpu_write_sys_reg(vcpu, val, reg);
f0a3eaff 240
3c1e7165 241 kvm_toggle_cache(vcpu, was_enabled);
4d44923b
MZ
242 return true;
243}
244
6d52f35a
AP
245/*
246 * Trap handler for the GICv3 SGI generation system register.
247 * Forward the request to the VGIC emulation.
248 * The cp15_64 code makes sure this automatically works
249 * for both AArch64 and AArch32 accesses.
250 */
251static bool access_gic_sgi(struct kvm_vcpu *vcpu,
3fec037d 252 struct sys_reg_params *p,
6d52f35a
AP
253 const struct sys_reg_desc *r)
254{
03bd646d
MZ
255 bool g1;
256
6d52f35a 257 if (!p->is_write)
e7f1d1ee 258 return read_from_write_only(vcpu, p, r);
6d52f35a 259
03bd646d
MZ
260 /*
261 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
262 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
263 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
264 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
265 * group.
266 */
267 if (p->is_aarch32) {
268 switch (p->Op1) {
269 default: /* Keep GCC quiet */
270 case 0: /* ICC_SGI1R */
271 g1 = true;
272 break;
273 case 1: /* ICC_ASGI1R */
274 case 2: /* ICC_SGI0R */
275 g1 = false;
276 break;
277 }
278 } else {
279 switch (p->Op2) {
280 default: /* Keep GCC quiet */
281 case 5: /* ICC_SGI1R_EL1 */
282 g1 = true;
283 break;
284 case 6: /* ICC_ASGI1R_EL1 */
285 case 7: /* ICC_SGI0R_EL1 */
286 g1 = false;
287 break;
288 }
289 }
290
291 vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
6d52f35a
AP
292
293 return true;
294}
295
b34f2bcb
MZ
296static bool access_gic_sre(struct kvm_vcpu *vcpu,
297 struct sys_reg_params *p,
298 const struct sys_reg_desc *r)
299{
300 if (p->is_write)
301 return ignore_write(vcpu, p);
302
303 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
304 return true;
305}
306
7609c125 307static bool trap_raz_wi(struct kvm_vcpu *vcpu,
3fec037d 308 struct sys_reg_params *p,
7609c125 309 const struct sys_reg_desc *r)
7c8c5e6a
MZ
310{
311 if (p->is_write)
312 return ignore_write(vcpu, p);
313 else
314 return read_zero(vcpu, p);
315}
316
cc33c4e2
MR
317static bool trap_undef(struct kvm_vcpu *vcpu,
318 struct sys_reg_params *p,
319 const struct sys_reg_desc *r)
320{
321 kvm_inject_undefined(vcpu);
322 return false;
323}
324
0c557ed4 325static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
3fec037d 326 struct sys_reg_params *p,
0c557ed4
MZ
327 const struct sys_reg_desc *r)
328{
329 if (p->is_write) {
330 return ignore_write(vcpu, p);
331 } else {
2ec5be3d 332 p->regval = (1 << 3);
0c557ed4
MZ
333 return true;
334 }
335}
336
337static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
3fec037d 338 struct sys_reg_params *p,
0c557ed4
MZ
339 const struct sys_reg_desc *r)
340{
341 if (p->is_write) {
342 return ignore_write(vcpu, p);
343 } else {
1f3d8699 344 p->regval = read_sysreg(dbgauthstatus_el1);
0c557ed4
MZ
345 return true;
346 }
347}
348
349/*
350 * We want to avoid world-switching all the DBG registers all the
351 * time:
352 *
353 * - If we've touched any debug register, it is likely that we're
354 * going to touch more of them. It then makes sense to disable the
355 * traps and start doing the save/restore dance
356 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
357 * then mandatory to save/restore the registers, as the guest
358 * depends on them.
359 *
360 * For this, we use a DIRTY bit, indicating the guest has modified the
361 * debug registers, used as follow:
362 *
363 * On guest entry:
364 * - If the dirty bit is set (because we're coming back from trapping),
365 * disable the traps, save host registers, restore guest registers.
366 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
367 * set the dirty bit, disable the traps, save host registers,
368 * restore guest registers.
369 * - Otherwise, enable the traps
370 *
371 * On guest exit:
372 * - If the dirty bit is set, save guest registers, restore host
373 * registers and clear the dirty bit. This ensure that the host can
374 * now use the debug registers.
375 */
376static bool trap_debug_regs(struct kvm_vcpu *vcpu,
3fec037d 377 struct sys_reg_params *p,
0c557ed4
MZ
378 const struct sys_reg_desc *r)
379{
380 if (p->is_write) {
8d404c4c 381 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
fa89d31c 382 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
0c557ed4 383 } else {
8d404c4c 384 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
0c557ed4
MZ
385 }
386
2ec5be3d 387 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
eef8c85a 388
0c557ed4
MZ
389 return true;
390}
391
84e690bf
AB
392/*
393 * reg_to_dbg/dbg_to_reg
394 *
395 * A 32 bit write to a debug register leave top bits alone
396 * A 32 bit read from a debug register only returns the bottom bits
397 *
398 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
399 * hyp.S code switches between host and guest values in future.
400 */
281243cb
MZ
401static void reg_to_dbg(struct kvm_vcpu *vcpu,
402 struct sys_reg_params *p,
403 u64 *dbg_reg)
84e690bf 404{
2ec5be3d 405 u64 val = p->regval;
84e690bf
AB
406
407 if (p->is_32bit) {
408 val &= 0xffffffffUL;
409 val |= ((*dbg_reg >> 32) << 32);
410 }
411
412 *dbg_reg = val;
fa89d31c 413 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
84e690bf
AB
414}
415
281243cb
MZ
416static void dbg_to_reg(struct kvm_vcpu *vcpu,
417 struct sys_reg_params *p,
418 u64 *dbg_reg)
84e690bf 419{
2ec5be3d 420 p->regval = *dbg_reg;
84e690bf 421 if (p->is_32bit)
2ec5be3d 422 p->regval &= 0xffffffffUL;
84e690bf
AB
423}
424
281243cb
MZ
425static bool trap_bvr(struct kvm_vcpu *vcpu,
426 struct sys_reg_params *p,
427 const struct sys_reg_desc *rd)
84e690bf
AB
428{
429 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
430
431 if (p->is_write)
432 reg_to_dbg(vcpu, p, dbg_reg);
433 else
434 dbg_to_reg(vcpu, p, dbg_reg);
435
eef8c85a
AB
436 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
437
84e690bf
AB
438 return true;
439}
440
441static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
442 const struct kvm_one_reg *reg, void __user *uaddr)
443{
444 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
445
1713e5aa 446 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
447 return -EFAULT;
448 return 0;
449}
450
451static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
452 const struct kvm_one_reg *reg, void __user *uaddr)
453{
454 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
455
456 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
457 return -EFAULT;
458 return 0;
459}
460
281243cb
MZ
461static void reset_bvr(struct kvm_vcpu *vcpu,
462 const struct sys_reg_desc *rd)
84e690bf
AB
463{
464 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
465}
466
281243cb
MZ
467static bool trap_bcr(struct kvm_vcpu *vcpu,
468 struct sys_reg_params *p,
469 const struct sys_reg_desc *rd)
84e690bf
AB
470{
471 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
472
473 if (p->is_write)
474 reg_to_dbg(vcpu, p, dbg_reg);
475 else
476 dbg_to_reg(vcpu, p, dbg_reg);
477
eef8c85a
AB
478 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
479
84e690bf
AB
480 return true;
481}
482
483static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
484 const struct kvm_one_reg *reg, void __user *uaddr)
485{
486 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
487
1713e5aa 488 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
489 return -EFAULT;
490
491 return 0;
492}
493
494static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
495 const struct kvm_one_reg *reg, void __user *uaddr)
496{
497 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
498
499 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
500 return -EFAULT;
501 return 0;
502}
503
281243cb
MZ
504static void reset_bcr(struct kvm_vcpu *vcpu,
505 const struct sys_reg_desc *rd)
84e690bf
AB
506{
507 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
508}
509
281243cb
MZ
510static bool trap_wvr(struct kvm_vcpu *vcpu,
511 struct sys_reg_params *p,
512 const struct sys_reg_desc *rd)
84e690bf
AB
513{
514 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
515
516 if (p->is_write)
517 reg_to_dbg(vcpu, p, dbg_reg);
518 else
519 dbg_to_reg(vcpu, p, dbg_reg);
520
eef8c85a
AB
521 trace_trap_reg(__func__, rd->reg, p->is_write,
522 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
523
84e690bf
AB
524 return true;
525}
526
527static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
528 const struct kvm_one_reg *reg, void __user *uaddr)
529{
530 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
531
1713e5aa 532 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
533 return -EFAULT;
534 return 0;
535}
536
537static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
538 const struct kvm_one_reg *reg, void __user *uaddr)
539{
540 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
541
542 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
543 return -EFAULT;
544 return 0;
545}
546
281243cb
MZ
547static void reset_wvr(struct kvm_vcpu *vcpu,
548 const struct sys_reg_desc *rd)
84e690bf
AB
549{
550 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
551}
552
281243cb
MZ
553static bool trap_wcr(struct kvm_vcpu *vcpu,
554 struct sys_reg_params *p,
555 const struct sys_reg_desc *rd)
84e690bf
AB
556{
557 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
558
559 if (p->is_write)
560 reg_to_dbg(vcpu, p, dbg_reg);
561 else
562 dbg_to_reg(vcpu, p, dbg_reg);
563
eef8c85a
AB
564 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
565
84e690bf
AB
566 return true;
567}
568
569static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
570 const struct kvm_one_reg *reg, void __user *uaddr)
571{
572 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
573
1713e5aa 574 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
575 return -EFAULT;
576 return 0;
577}
578
579static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
580 const struct kvm_one_reg *reg, void __user *uaddr)
581{
582 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
583
584 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
585 return -EFAULT;
586 return 0;
587}
588
281243cb
MZ
589static void reset_wcr(struct kvm_vcpu *vcpu,
590 const struct sys_reg_desc *rd)
84e690bf
AB
591{
592 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
593}
594
7c8c5e6a
MZ
595static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
596{
8d404c4c
CD
597 u64 amair = read_sysreg(amair_el1);
598 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
7c8c5e6a
MZ
599}
600
601static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
602{
4429fc64
AP
603 u64 mpidr;
604
7c8c5e6a 605 /*
4429fc64
AP
606 * Map the vcpu_id into the first three affinity level fields of
607 * the MPIDR. We limit the number of VCPUs in level 0 due to a
608 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
609 * of the GICv3 to be able to address each CPU directly when
610 * sending IPIs.
7c8c5e6a 611 */
4429fc64
AP
612 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
613 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
614 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
8d404c4c 615 vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
7c8c5e6a
MZ
616}
617
ab946834
SZ
618static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
619{
620 u64 pmcr, val;
621
1f3d8699
MR
622 pmcr = read_sysreg(pmcr_el0);
623 /*
624 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
ab946834
SZ
625 * except PMCR.E resetting to zero.
626 */
627 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
628 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
8d404c4c 629 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
ab946834
SZ
630}
631
6c007036 632static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
d692b8ad 633{
8d404c4c 634 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
6c007036 635 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
d692b8ad 636
24d5950f
MZ
637 if (!enabled)
638 kvm_inject_undefined(vcpu);
d692b8ad 639
6c007036 640 return !enabled;
d692b8ad
SZ
641}
642
6c007036 643static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
d692b8ad 644{
6c007036
MZ
645 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
646}
d692b8ad 647
6c007036
MZ
648static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
649{
650 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
d692b8ad
SZ
651}
652
653static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
654{
6c007036 655 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
d692b8ad
SZ
656}
657
658static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
659{
6c007036 660 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
d692b8ad
SZ
661}
662
ab946834
SZ
663static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
664 const struct sys_reg_desc *r)
665{
666 u64 val;
667
668 if (!kvm_arm_pmu_v3_ready(vcpu))
669 return trap_raz_wi(vcpu, p, r);
670
d692b8ad
SZ
671 if (pmu_access_el0_disabled(vcpu))
672 return false;
673
ab946834
SZ
674 if (p->is_write) {
675 /* Only update writeable bits of PMCR */
8d404c4c 676 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
ab946834
SZ
677 val &= ~ARMV8_PMU_PMCR_MASK;
678 val |= p->regval & ARMV8_PMU_PMCR_MASK;
8d404c4c 679 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
76993739 680 kvm_pmu_handle_pmcr(vcpu, val);
ab946834
SZ
681 } else {
682 /* PMCR.P & PMCR.C are RAZ */
8d404c4c 683 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
ab946834
SZ
684 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
685 p->regval = val;
686 }
687
688 return true;
689}
690
3965c3ce
SZ
691static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
692 const struct sys_reg_desc *r)
693{
694 if (!kvm_arm_pmu_v3_ready(vcpu))
695 return trap_raz_wi(vcpu, p, r);
696
d692b8ad
SZ
697 if (pmu_access_event_counter_el0_disabled(vcpu))
698 return false;
699
3965c3ce 700 if (p->is_write)
8d404c4c 701 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
3965c3ce
SZ
702 else
703 /* return PMSELR.SEL field */
8d404c4c 704 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
3965c3ce
SZ
705 & ARMV8_PMU_COUNTER_MASK;
706
707 return true;
708}
709
a86b5505
SZ
710static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
711 const struct sys_reg_desc *r)
712{
713 u64 pmceid;
714
715 if (!kvm_arm_pmu_v3_ready(vcpu))
716 return trap_raz_wi(vcpu, p, r);
717
718 BUG_ON(p->is_write);
719
d692b8ad
SZ
720 if (pmu_access_el0_disabled(vcpu))
721 return false;
722
a86b5505 723 if (!(p->Op2 & 1))
1f3d8699 724 pmceid = read_sysreg(pmceid0_el0);
a86b5505 725 else
1f3d8699 726 pmceid = read_sysreg(pmceid1_el0);
a86b5505
SZ
727
728 p->regval = pmceid;
729
730 return true;
731}
732
051ff581
SZ
733static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
734{
735 u64 pmcr, val;
736
8d404c4c 737 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
051ff581 738 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
24d5950f
MZ
739 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
740 kvm_inject_undefined(vcpu);
051ff581 741 return false;
24d5950f 742 }
051ff581
SZ
743
744 return true;
745}
746
747static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
748 struct sys_reg_params *p,
749 const struct sys_reg_desc *r)
750{
751 u64 idx;
752
753 if (!kvm_arm_pmu_v3_ready(vcpu))
754 return trap_raz_wi(vcpu, p, r);
755
756 if (r->CRn == 9 && r->CRm == 13) {
757 if (r->Op2 == 2) {
758 /* PMXEVCNTR_EL0 */
d692b8ad
SZ
759 if (pmu_access_event_counter_el0_disabled(vcpu))
760 return false;
761
8d404c4c 762 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
051ff581
SZ
763 & ARMV8_PMU_COUNTER_MASK;
764 } else if (r->Op2 == 0) {
765 /* PMCCNTR_EL0 */
d692b8ad
SZ
766 if (pmu_access_cycle_counter_el0_disabled(vcpu))
767 return false;
768
051ff581
SZ
769 idx = ARMV8_PMU_CYCLE_IDX;
770 } else {
9e3f7a29 771 return false;
051ff581 772 }
9e3f7a29
WH
773 } else if (r->CRn == 0 && r->CRm == 9) {
774 /* PMCCNTR */
775 if (pmu_access_event_counter_el0_disabled(vcpu))
776 return false;
777
778 idx = ARMV8_PMU_CYCLE_IDX;
051ff581
SZ
779 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
780 /* PMEVCNTRn_EL0 */
d692b8ad
SZ
781 if (pmu_access_event_counter_el0_disabled(vcpu))
782 return false;
783
051ff581
SZ
784 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
785 } else {
9e3f7a29 786 return false;
051ff581
SZ
787 }
788
789 if (!pmu_counter_idx_valid(vcpu, idx))
790 return false;
791
d692b8ad
SZ
792 if (p->is_write) {
793 if (pmu_access_el0_disabled(vcpu))
794 return false;
795
051ff581 796 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
d692b8ad 797 } else {
051ff581 798 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
d692b8ad 799 }
051ff581
SZ
800
801 return true;
802}
803
9feb21ac
SZ
804static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
805 const struct sys_reg_desc *r)
806{
807 u64 idx, reg;
808
809 if (!kvm_arm_pmu_v3_ready(vcpu))
810 return trap_raz_wi(vcpu, p, r);
811
d692b8ad
SZ
812 if (pmu_access_el0_disabled(vcpu))
813 return false;
814
9feb21ac
SZ
815 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
816 /* PMXEVTYPER_EL0 */
8d404c4c 817 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
9feb21ac
SZ
818 reg = PMEVTYPER0_EL0 + idx;
819 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
820 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
821 if (idx == ARMV8_PMU_CYCLE_IDX)
822 reg = PMCCFILTR_EL0;
823 else
824 /* PMEVTYPERn_EL0 */
825 reg = PMEVTYPER0_EL0 + idx;
826 } else {
827 BUG();
828 }
829
830 if (!pmu_counter_idx_valid(vcpu, idx))
831 return false;
832
833 if (p->is_write) {
834 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
8d404c4c 835 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
9feb21ac 836 } else {
8d404c4c 837 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
9feb21ac
SZ
838 }
839
840 return true;
841}
842
96b0eebc
SZ
843static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
844 const struct sys_reg_desc *r)
845{
846 u64 val, mask;
847
848 if (!kvm_arm_pmu_v3_ready(vcpu))
849 return trap_raz_wi(vcpu, p, r);
850
d692b8ad
SZ
851 if (pmu_access_el0_disabled(vcpu))
852 return false;
853
96b0eebc
SZ
854 mask = kvm_pmu_valid_counter_mask(vcpu);
855 if (p->is_write) {
856 val = p->regval & mask;
857 if (r->Op2 & 0x1) {
858 /* accessing PMCNTENSET_EL0 */
8d404c4c 859 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
96b0eebc
SZ
860 kvm_pmu_enable_counter(vcpu, val);
861 } else {
862 /* accessing PMCNTENCLR_EL0 */
8d404c4c 863 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
96b0eebc
SZ
864 kvm_pmu_disable_counter(vcpu, val);
865 }
866 } else {
8d404c4c 867 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
96b0eebc
SZ
868 }
869
870 return true;
871}
872
9db52c78
SZ
873static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
874 const struct sys_reg_desc *r)
875{
876 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
877
878 if (!kvm_arm_pmu_v3_ready(vcpu))
879 return trap_raz_wi(vcpu, p, r);
880
9008c235
MZ
881 if (!vcpu_mode_priv(vcpu)) {
882 kvm_inject_undefined(vcpu);
d692b8ad 883 return false;
9008c235 884 }
d692b8ad 885
9db52c78
SZ
886 if (p->is_write) {
887 u64 val = p->regval & mask;
888
889 if (r->Op2 & 0x1)
890 /* accessing PMINTENSET_EL1 */
8d404c4c 891 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
9db52c78
SZ
892 else
893 /* accessing PMINTENCLR_EL1 */
8d404c4c 894 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
9db52c78 895 } else {
8d404c4c 896 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
9db52c78
SZ
897 }
898
899 return true;
900}
901
76d883c4
SZ
902static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
903 const struct sys_reg_desc *r)
904{
905 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
906
907 if (!kvm_arm_pmu_v3_ready(vcpu))
908 return trap_raz_wi(vcpu, p, r);
909
d692b8ad
SZ
910 if (pmu_access_el0_disabled(vcpu))
911 return false;
912
76d883c4
SZ
913 if (p->is_write) {
914 if (r->CRm & 0x2)
915 /* accessing PMOVSSET_EL0 */
8d404c4c 916 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
76d883c4
SZ
917 else
918 /* accessing PMOVSCLR_EL0 */
8d404c4c 919 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
76d883c4 920 } else {
8d404c4c 921 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
76d883c4
SZ
922 }
923
924 return true;
925}
926
7a0adc70
SZ
927static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
928 const struct sys_reg_desc *r)
929{
930 u64 mask;
931
932 if (!kvm_arm_pmu_v3_ready(vcpu))
933 return trap_raz_wi(vcpu, p, r);
934
e0443230 935 if (!p->is_write)
e7f1d1ee 936 return read_from_write_only(vcpu, p, r);
e0443230 937
d692b8ad
SZ
938 if (pmu_write_swinc_el0_disabled(vcpu))
939 return false;
940
e0443230
MZ
941 mask = kvm_pmu_valid_counter_mask(vcpu);
942 kvm_pmu_software_increment(vcpu, p->regval & mask);
943 return true;
7a0adc70
SZ
944}
945
d692b8ad
SZ
946static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
947 const struct sys_reg_desc *r)
948{
949 if (!kvm_arm_pmu_v3_ready(vcpu))
950 return trap_raz_wi(vcpu, p, r);
951
952 if (p->is_write) {
9008c235
MZ
953 if (!vcpu_mode_priv(vcpu)) {
954 kvm_inject_undefined(vcpu);
d692b8ad 955 return false;
9008c235 956 }
d692b8ad 957
8d404c4c
CD
958 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
959 p->regval & ARMV8_PMU_USERENR_MASK;
d692b8ad 960 } else {
8d404c4c 961 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
d692b8ad
SZ
962 & ARMV8_PMU_USERENR_MASK;
963 }
964
965 return true;
966}
967
0c557ed4
MZ
968/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
969#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
ee1b64e6 970 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
84e690bf 971 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
ee1b64e6 972 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
84e690bf 973 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
ee1b64e6 974 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
84e690bf 975 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
ee1b64e6 976 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
84e690bf 977 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
0c557ed4 978
051ff581
SZ
979/* Macro to expand the PMEVCNTRn_EL0 register */
980#define PMU_PMEVCNTR_EL0(n) \
174ed3e4 981 { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
051ff581
SZ
982 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
983
9feb21ac
SZ
984/* Macro to expand the PMEVTYPERn_EL0 register */
985#define PMU_PMEVTYPER_EL0(n) \
174ed3e4 986 { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
9feb21ac
SZ
987 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
988
c9a3c58f
JL
989static bool access_cntp_tval(struct kvm_vcpu *vcpu,
990 struct sys_reg_params *p,
991 const struct sys_reg_desc *r)
992{
7b6b4631 993 u64 now = kvm_phys_timer_read();
c1b135af 994 u64 cval;
7b6b4631 995
c1b135af
CD
996 if (p->is_write) {
997 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
998 p->regval + now);
999 } else {
1000 cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
1001 p->regval = cval - now;
1002 }
7b6b4631 1003
c9a3c58f
JL
1004 return true;
1005}
1006
1007static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
1008 struct sys_reg_params *p,
1009 const struct sys_reg_desc *r)
1010{
c1b135af
CD
1011 if (p->is_write)
1012 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
1013 else
1014 p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
7b6b4631 1015
c9a3c58f
JL
1016 return true;
1017}
1018
1019static bool access_cntp_cval(struct kvm_vcpu *vcpu,
1020 struct sys_reg_params *p,
1021 const struct sys_reg_desc *r)
1022{
7b6b4631 1023 if (p->is_write)
c1b135af 1024 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
7b6b4631 1025 else
c1b135af 1026 p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
7b6b4631 1027
c9a3c58f
JL
1028 return true;
1029}
1030
93390c0a
DM
1031/* Read a sanitised cpufeature ID register by sys_reg_desc */
1032static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
1033{
1034 u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1035 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
07d79fe7 1036 u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
93390c0a 1037
07d79fe7
DM
1038 if (id == SYS_ID_AA64PFR0_EL1) {
1039 if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
165d1029 1040 kvm_debug("SVE unsupported for guests, suppressing\n");
07d79fe7
DM
1041
1042 val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
a1ee8abb
MR
1043 } else if (id == SYS_ID_AA64ISAR1_EL1) {
1044 const u64 ptrauth_mask = (0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1045 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1046 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1047 (0xfUL << ID_AA64ISAR1_GPI_SHIFT);
1048 if (val & ptrauth_mask)
1049 kvm_debug("ptrauth unsupported for guests, suppressing\n");
1050 val &= ~ptrauth_mask;
cc33c4e2
MR
1051 } else if (id == SYS_ID_AA64MMFR1_EL1) {
1052 if (val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))
165d1029 1053 kvm_debug("LORegions unsupported for guests, suppressing\n");
cc33c4e2
MR
1054
1055 val &= ~(0xfUL << ID_AA64MMFR1_LOR_SHIFT);
07d79fe7
DM
1056 }
1057
1058 return val;
93390c0a
DM
1059}
1060
1061/* cpufeature ID register access trap handlers */
1062
1063static bool __access_id_reg(struct kvm_vcpu *vcpu,
1064 struct sys_reg_params *p,
1065 const struct sys_reg_desc *r,
1066 bool raz)
1067{
1068 if (p->is_write)
1069 return write_to_read_only(vcpu, p, r);
1070
1071 p->regval = read_id_reg(r, raz);
1072 return true;
1073}
1074
1075static bool access_id_reg(struct kvm_vcpu *vcpu,
1076 struct sys_reg_params *p,
1077 const struct sys_reg_desc *r)
1078{
1079 return __access_id_reg(vcpu, p, r, false);
1080}
1081
1082static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1083 struct sys_reg_params *p,
1084 const struct sys_reg_desc *r)
1085{
1086 return __access_id_reg(vcpu, p, r, true);
1087}
1088
1089static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1090static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1091static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1092
1093/*
1094 * cpufeature ID register user accessors
1095 *
1096 * For now, these registers are immutable for userspace, so no values
1097 * are stored, and for set_id_reg() we don't allow the effective value
1098 * to be changed.
1099 */
1100static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1101 bool raz)
1102{
1103 const u64 id = sys_reg_to_index(rd);
1104 const u64 val = read_id_reg(rd, raz);
1105
1106 return reg_to_user(uaddr, &val, id);
1107}
1108
1109static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1110 bool raz)
1111{
1112 const u64 id = sys_reg_to_index(rd);
1113 int err;
1114 u64 val;
1115
1116 err = reg_from_user(&val, uaddr, id);
1117 if (err)
1118 return err;
1119
1120 /* This is what we mean by invariant: you can't change it. */
1121 if (val != read_id_reg(rd, raz))
1122 return -EINVAL;
1123
1124 return 0;
1125}
1126
1127static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1128 const struct kvm_one_reg *reg, void __user *uaddr)
1129{
1130 return __get_id_reg(rd, uaddr, false);
1131}
1132
1133static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1134 const struct kvm_one_reg *reg, void __user *uaddr)
1135{
1136 return __set_id_reg(rd, uaddr, false);
1137}
1138
1139static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1140 const struct kvm_one_reg *reg, void __user *uaddr)
1141{
1142 return __get_id_reg(rd, uaddr, true);
1143}
1144
1145static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1146 const struct kvm_one_reg *reg, void __user *uaddr)
1147{
1148 return __set_id_reg(rd, uaddr, true);
1149}
1150
1151/* sys_reg_desc initialiser for known cpufeature ID registers */
1152#define ID_SANITISED(name) { \
1153 SYS_DESC(SYS_##name), \
1154 .access = access_id_reg, \
1155 .get_user = get_id_reg, \
1156 .set_user = set_id_reg, \
1157}
1158
1159/*
1160 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1161 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1162 * (1 <= crm < 8, 0 <= Op2 < 8).
1163 */
1164#define ID_UNALLOCATED(crm, op2) { \
1165 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
1166 .access = access_raz_id_reg, \
1167 .get_user = get_raz_id_reg, \
1168 .set_user = set_raz_id_reg, \
1169}
1170
1171/*
1172 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1173 * For now, these are exposed just like unallocated ID regs: they appear
1174 * RAZ for the guest.
1175 */
1176#define ID_HIDDEN(name) { \
1177 SYS_DESC(SYS_##name), \
1178 .access = access_raz_id_reg, \
1179 .get_user = get_raz_id_reg, \
1180 .set_user = set_raz_id_reg, \
1181}
1182
7c8c5e6a
MZ
1183/*
1184 * Architected system registers.
1185 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
7609c125 1186 *
0c557ed4
MZ
1187 * Debug handling: We do trap most, if not all debug related system
1188 * registers. The implementation is good enough to ensure that a guest
1189 * can use these with minimal performance degradation. The drawback is
1190 * that we don't implement any of the external debug, none of the
1191 * OSlock protocol. This should be revisited if we ever encounter a
1192 * more demanding guest...
7c8c5e6a
MZ
1193 */
1194static const struct sys_reg_desc sys_reg_descs[] = {
7606e078
MR
1195 { SYS_DESC(SYS_DC_ISW), access_dcsw },
1196 { SYS_DESC(SYS_DC_CSW), access_dcsw },
1197 { SYS_DESC(SYS_DC_CISW), access_dcsw },
7c8c5e6a 1198
0c557ed4
MZ
1199 DBG_BCR_BVR_WCR_WVR_EL1(0),
1200 DBG_BCR_BVR_WCR_WVR_EL1(1),
ee1b64e6
MR
1201 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1202 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
0c557ed4
MZ
1203 DBG_BCR_BVR_WCR_WVR_EL1(2),
1204 DBG_BCR_BVR_WCR_WVR_EL1(3),
1205 DBG_BCR_BVR_WCR_WVR_EL1(4),
1206 DBG_BCR_BVR_WCR_WVR_EL1(5),
1207 DBG_BCR_BVR_WCR_WVR_EL1(6),
1208 DBG_BCR_BVR_WCR_WVR_EL1(7),
1209 DBG_BCR_BVR_WCR_WVR_EL1(8),
1210 DBG_BCR_BVR_WCR_WVR_EL1(9),
1211 DBG_BCR_BVR_WCR_WVR_EL1(10),
1212 DBG_BCR_BVR_WCR_WVR_EL1(11),
1213 DBG_BCR_BVR_WCR_WVR_EL1(12),
1214 DBG_BCR_BVR_WCR_WVR_EL1(13),
1215 DBG_BCR_BVR_WCR_WVR_EL1(14),
1216 DBG_BCR_BVR_WCR_WVR_EL1(15),
1217
ee1b64e6
MR
1218 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1219 { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1220 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1221 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1222 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1223 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1224 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1225 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1226
1227 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1228 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1229 // DBGDTR[TR]X_EL0 share the same encoding
1230 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1231
1232 { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
62a89c44 1233
851050a5 1234 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
93390c0a
DM
1235
1236 /*
1237 * ID regs: all ID_SANITISED() entries here must have corresponding
1238 * entries in arm64_ftr_regs[].
1239 */
1240
1241 /* AArch64 mappings of the AArch32 ID registers */
1242 /* CRm=1 */
1243 ID_SANITISED(ID_PFR0_EL1),
1244 ID_SANITISED(ID_PFR1_EL1),
1245 ID_SANITISED(ID_DFR0_EL1),
1246 ID_HIDDEN(ID_AFR0_EL1),
1247 ID_SANITISED(ID_MMFR0_EL1),
1248 ID_SANITISED(ID_MMFR1_EL1),
1249 ID_SANITISED(ID_MMFR2_EL1),
1250 ID_SANITISED(ID_MMFR3_EL1),
1251
1252 /* CRm=2 */
1253 ID_SANITISED(ID_ISAR0_EL1),
1254 ID_SANITISED(ID_ISAR1_EL1),
1255 ID_SANITISED(ID_ISAR2_EL1),
1256 ID_SANITISED(ID_ISAR3_EL1),
1257 ID_SANITISED(ID_ISAR4_EL1),
1258 ID_SANITISED(ID_ISAR5_EL1),
1259 ID_SANITISED(ID_MMFR4_EL1),
1260 ID_UNALLOCATED(2,7),
1261
1262 /* CRm=3 */
1263 ID_SANITISED(MVFR0_EL1),
1264 ID_SANITISED(MVFR1_EL1),
1265 ID_SANITISED(MVFR2_EL1),
1266 ID_UNALLOCATED(3,3),
1267 ID_UNALLOCATED(3,4),
1268 ID_UNALLOCATED(3,5),
1269 ID_UNALLOCATED(3,6),
1270 ID_UNALLOCATED(3,7),
1271
1272 /* AArch64 ID registers */
1273 /* CRm=4 */
1274 ID_SANITISED(ID_AA64PFR0_EL1),
1275 ID_SANITISED(ID_AA64PFR1_EL1),
1276 ID_UNALLOCATED(4,2),
1277 ID_UNALLOCATED(4,3),
1278 ID_UNALLOCATED(4,4),
1279 ID_UNALLOCATED(4,5),
1280 ID_UNALLOCATED(4,6),
1281 ID_UNALLOCATED(4,7),
1282
1283 /* CRm=5 */
1284 ID_SANITISED(ID_AA64DFR0_EL1),
1285 ID_SANITISED(ID_AA64DFR1_EL1),
1286 ID_UNALLOCATED(5,2),
1287 ID_UNALLOCATED(5,3),
1288 ID_HIDDEN(ID_AA64AFR0_EL1),
1289 ID_HIDDEN(ID_AA64AFR1_EL1),
1290 ID_UNALLOCATED(5,6),
1291 ID_UNALLOCATED(5,7),
1292
1293 /* CRm=6 */
1294 ID_SANITISED(ID_AA64ISAR0_EL1),
1295 ID_SANITISED(ID_AA64ISAR1_EL1),
1296 ID_UNALLOCATED(6,2),
1297 ID_UNALLOCATED(6,3),
1298 ID_UNALLOCATED(6,4),
1299 ID_UNALLOCATED(6,5),
1300 ID_UNALLOCATED(6,6),
1301 ID_UNALLOCATED(6,7),
1302
1303 /* CRm=7 */
1304 ID_SANITISED(ID_AA64MMFR0_EL1),
1305 ID_SANITISED(ID_AA64MMFR1_EL1),
1306 ID_SANITISED(ID_AA64MMFR2_EL1),
1307 ID_UNALLOCATED(7,3),
1308 ID_UNALLOCATED(7,4),
1309 ID_UNALLOCATED(7,5),
1310 ID_UNALLOCATED(7,6),
1311 ID_UNALLOCATED(7,7),
1312
851050a5
MR
1313 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1314 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1315 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1316 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1317 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1318
1319 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1320 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1321 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
558daf69
DG
1322
1323 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1324 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1325 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1326 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1327 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1328 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1329 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1330 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1331
851050a5
MR
1332 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1333 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
7c8c5e6a 1334
174ed3e4
MR
1335 { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1336 { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
7c8c5e6a 1337
851050a5
MR
1338 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1339 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
7c8c5e6a 1340
cc33c4e2
MR
1341 { SYS_DESC(SYS_LORSA_EL1), trap_undef },
1342 { SYS_DESC(SYS_LOREA_EL1), trap_undef },
1343 { SYS_DESC(SYS_LORN_EL1), trap_undef },
1344 { SYS_DESC(SYS_LORC_EL1), trap_undef },
1345 { SYS_DESC(SYS_LORID_EL1), trap_undef },
1346
851050a5 1347 { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
c773ae2b 1348 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
db7dedd0 1349
7b1dba1f 1350 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
e7f1d1ee 1351 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
7b1dba1f 1352 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
e7f1d1ee 1353 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
7b1dba1f 1354 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
e804d208 1355 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
03bd646d
MZ
1356 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1357 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
7b1dba1f 1358 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
e7f1d1ee 1359 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
7b1dba1f 1360 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
e804d208 1361 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
db7dedd0 1362
851050a5
MR
1363 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1364 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
7c8c5e6a 1365
851050a5 1366 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
7c8c5e6a 1367
851050a5 1368 { SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
7c8c5e6a 1369
174ed3e4
MR
1370 { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
1371 { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1372 { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1373 { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1374 { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1375 { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1376 { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1377 { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1378 { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1379 { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1380 { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1381 /*
1382 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
d692b8ad
SZ
1383 * in 32bit mode. Here we choose to reset it as zero for consistency.
1384 */
174ed3e4
MR
1385 { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1386 { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
7c8c5e6a 1387
851050a5
MR
1388 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1389 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
62a89c44 1390
b2d693ce
MR
1391 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
1392 { SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
1393 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
c9a3c58f 1394
051ff581
SZ
1395 /* PMEVCNTRn_EL0 */
1396 PMU_PMEVCNTR_EL0(0),
1397 PMU_PMEVCNTR_EL0(1),
1398 PMU_PMEVCNTR_EL0(2),
1399 PMU_PMEVCNTR_EL0(3),
1400 PMU_PMEVCNTR_EL0(4),
1401 PMU_PMEVCNTR_EL0(5),
1402 PMU_PMEVCNTR_EL0(6),
1403 PMU_PMEVCNTR_EL0(7),
1404 PMU_PMEVCNTR_EL0(8),
1405 PMU_PMEVCNTR_EL0(9),
1406 PMU_PMEVCNTR_EL0(10),
1407 PMU_PMEVCNTR_EL0(11),
1408 PMU_PMEVCNTR_EL0(12),
1409 PMU_PMEVCNTR_EL0(13),
1410 PMU_PMEVCNTR_EL0(14),
1411 PMU_PMEVCNTR_EL0(15),
1412 PMU_PMEVCNTR_EL0(16),
1413 PMU_PMEVCNTR_EL0(17),
1414 PMU_PMEVCNTR_EL0(18),
1415 PMU_PMEVCNTR_EL0(19),
1416 PMU_PMEVCNTR_EL0(20),
1417 PMU_PMEVCNTR_EL0(21),
1418 PMU_PMEVCNTR_EL0(22),
1419 PMU_PMEVCNTR_EL0(23),
1420 PMU_PMEVCNTR_EL0(24),
1421 PMU_PMEVCNTR_EL0(25),
1422 PMU_PMEVCNTR_EL0(26),
1423 PMU_PMEVCNTR_EL0(27),
1424 PMU_PMEVCNTR_EL0(28),
1425 PMU_PMEVCNTR_EL0(29),
1426 PMU_PMEVCNTR_EL0(30),
9feb21ac
SZ
1427 /* PMEVTYPERn_EL0 */
1428 PMU_PMEVTYPER_EL0(0),
1429 PMU_PMEVTYPER_EL0(1),
1430 PMU_PMEVTYPER_EL0(2),
1431 PMU_PMEVTYPER_EL0(3),
1432 PMU_PMEVTYPER_EL0(4),
1433 PMU_PMEVTYPER_EL0(5),
1434 PMU_PMEVTYPER_EL0(6),
1435 PMU_PMEVTYPER_EL0(7),
1436 PMU_PMEVTYPER_EL0(8),
1437 PMU_PMEVTYPER_EL0(9),
1438 PMU_PMEVTYPER_EL0(10),
1439 PMU_PMEVTYPER_EL0(11),
1440 PMU_PMEVTYPER_EL0(12),
1441 PMU_PMEVTYPER_EL0(13),
1442 PMU_PMEVTYPER_EL0(14),
1443 PMU_PMEVTYPER_EL0(15),
1444 PMU_PMEVTYPER_EL0(16),
1445 PMU_PMEVTYPER_EL0(17),
1446 PMU_PMEVTYPER_EL0(18),
1447 PMU_PMEVTYPER_EL0(19),
1448 PMU_PMEVTYPER_EL0(20),
1449 PMU_PMEVTYPER_EL0(21),
1450 PMU_PMEVTYPER_EL0(22),
1451 PMU_PMEVTYPER_EL0(23),
1452 PMU_PMEVTYPER_EL0(24),
1453 PMU_PMEVTYPER_EL0(25),
1454 PMU_PMEVTYPER_EL0(26),
1455 PMU_PMEVTYPER_EL0(27),
1456 PMU_PMEVTYPER_EL0(28),
1457 PMU_PMEVTYPER_EL0(29),
1458 PMU_PMEVTYPER_EL0(30),
174ed3e4
MR
1459 /*
1460 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
9feb21ac
SZ
1461 * in 32bit mode. Here we choose to reset it as zero for consistency.
1462 */
174ed3e4 1463 { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
051ff581 1464
851050a5
MR
1465 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1466 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1467 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 },
62a89c44
MZ
1468};
1469
bdfb4b38 1470static bool trap_dbgidr(struct kvm_vcpu *vcpu,
3fec037d 1471 struct sys_reg_params *p,
bdfb4b38
MZ
1472 const struct sys_reg_desc *r)
1473{
1474 if (p->is_write) {
1475 return ignore_write(vcpu, p);
1476 } else {
46823dd1
DM
1477 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1478 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
28c5dcb2 1479 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
bdfb4b38 1480
2ec5be3d
PF
1481 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1482 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1483 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1484 | (6 << 16) | (el3 << 14) | (el3 << 12));
bdfb4b38
MZ
1485 return true;
1486 }
1487}
1488
1489static bool trap_debug32(struct kvm_vcpu *vcpu,
3fec037d 1490 struct sys_reg_params *p,
bdfb4b38
MZ
1491 const struct sys_reg_desc *r)
1492{
1493 if (p->is_write) {
2ec5be3d 1494 vcpu_cp14(vcpu, r->reg) = p->regval;
fa89d31c 1495 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
bdfb4b38 1496 } else {
2ec5be3d 1497 p->regval = vcpu_cp14(vcpu, r->reg);
bdfb4b38
MZ
1498 }
1499
1500 return true;
1501}
1502
84e690bf
AB
1503/* AArch32 debug register mappings
1504 *
1505 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1506 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1507 *
1508 * All control registers and watchpoint value registers are mapped to
1509 * the lower 32 bits of their AArch64 equivalents. We share the trap
1510 * handlers with the above AArch64 code which checks what mode the
1511 * system is in.
1512 */
1513
281243cb
MZ
1514static bool trap_xvr(struct kvm_vcpu *vcpu,
1515 struct sys_reg_params *p,
1516 const struct sys_reg_desc *rd)
84e690bf
AB
1517{
1518 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1519
1520 if (p->is_write) {
1521 u64 val = *dbg_reg;
1522
1523 val &= 0xffffffffUL;
2ec5be3d 1524 val |= p->regval << 32;
84e690bf
AB
1525 *dbg_reg = val;
1526
fa89d31c 1527 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
84e690bf 1528 } else {
2ec5be3d 1529 p->regval = *dbg_reg >> 32;
84e690bf
AB
1530 }
1531
eef8c85a
AB
1532 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1533
84e690bf
AB
1534 return true;
1535}
1536
1537#define DBG_BCR_BVR_WCR_WVR(n) \
1538 /* DBGBVRn */ \
1539 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1540 /* DBGBCRn */ \
1541 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1542 /* DBGWVRn */ \
1543 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1544 /* DBGWCRn */ \
1545 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1546
1547#define DBGBXVR(n) \
1548 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
bdfb4b38
MZ
1549
1550/*
1551 * Trapped cp14 registers. We generally ignore most of the external
1552 * debug, on the principle that they don't really make sense to a
84e690bf 1553 * guest. Revisit this one day, would this principle change.
bdfb4b38 1554 */
72564016 1555static const struct sys_reg_desc cp14_regs[] = {
bdfb4b38
MZ
1556 /* DBGIDR */
1557 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1558 /* DBGDTRRXext */
1559 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1560
1561 DBG_BCR_BVR_WCR_WVR(0),
1562 /* DBGDSCRint */
1563 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1564 DBG_BCR_BVR_WCR_WVR(1),
1565 /* DBGDCCINT */
1566 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1567 /* DBGDSCRext */
1568 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1569 DBG_BCR_BVR_WCR_WVR(2),
1570 /* DBGDTR[RT]Xint */
1571 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1572 /* DBGDTR[RT]Xext */
1573 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1574 DBG_BCR_BVR_WCR_WVR(3),
1575 DBG_BCR_BVR_WCR_WVR(4),
1576 DBG_BCR_BVR_WCR_WVR(5),
1577 /* DBGWFAR */
1578 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1579 /* DBGOSECCR */
1580 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1581 DBG_BCR_BVR_WCR_WVR(6),
1582 /* DBGVCR */
1583 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1584 DBG_BCR_BVR_WCR_WVR(7),
1585 DBG_BCR_BVR_WCR_WVR(8),
1586 DBG_BCR_BVR_WCR_WVR(9),
1587 DBG_BCR_BVR_WCR_WVR(10),
1588 DBG_BCR_BVR_WCR_WVR(11),
1589 DBG_BCR_BVR_WCR_WVR(12),
1590 DBG_BCR_BVR_WCR_WVR(13),
1591 DBG_BCR_BVR_WCR_WVR(14),
1592 DBG_BCR_BVR_WCR_WVR(15),
1593
1594 /* DBGDRAR (32bit) */
1595 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1596
1597 DBGBXVR(0),
1598 /* DBGOSLAR */
1599 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1600 DBGBXVR(1),
1601 /* DBGOSLSR */
1602 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1603 DBGBXVR(2),
1604 DBGBXVR(3),
1605 /* DBGOSDLR */
1606 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1607 DBGBXVR(4),
1608 /* DBGPRCR */
1609 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1610 DBGBXVR(5),
1611 DBGBXVR(6),
1612 DBGBXVR(7),
1613 DBGBXVR(8),
1614 DBGBXVR(9),
1615 DBGBXVR(10),
1616 DBGBXVR(11),
1617 DBGBXVR(12),
1618 DBGBXVR(13),
1619 DBGBXVR(14),
1620 DBGBXVR(15),
1621
1622 /* DBGDSAR (32bit) */
1623 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1624
1625 /* DBGDEVID2 */
1626 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1627 /* DBGDEVID1 */
1628 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1629 /* DBGDEVID */
1630 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1631 /* DBGCLAIMSET */
1632 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1633 /* DBGCLAIMCLR */
1634 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1635 /* DBGAUTHSTATUS */
1636 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
72564016
MZ
1637};
1638
a9866ba0
MZ
1639/* Trapped cp14 64bit registers */
1640static const struct sys_reg_desc cp14_64_regs[] = {
bdfb4b38
MZ
1641 /* DBGDRAR (64bit) */
1642 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1643
1644 /* DBGDSAR (64bit) */
1645 { Op1( 0), CRm( 2), .access = trap_raz_wi },
a9866ba0
MZ
1646};
1647
051ff581
SZ
1648/* Macro to expand the PMEVCNTRn register */
1649#define PMU_PMEVCNTR(n) \
1650 /* PMEVCNTRn */ \
1651 { Op1(0), CRn(0b1110), \
1652 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1653 access_pmu_evcntr }
1654
9feb21ac
SZ
1655/* Macro to expand the PMEVTYPERn register */
1656#define PMU_PMEVTYPER(n) \
1657 /* PMEVTYPERn */ \
1658 { Op1(0), CRn(0b1110), \
1659 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1660 access_pmu_evtyper }
1661
4d44923b
MZ
1662/*
1663 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1664 * depending on the way they are accessed (as a 32bit or a 64bit
1665 * register).
1666 */
62a89c44 1667static const struct sys_reg_desc cp15_regs[] = {
3c1e7165 1668 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
4d44923b
MZ
1669 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1670 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1671 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1672 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1673 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1674 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1675 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1676 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1677 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1678 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1679
62a89c44
MZ
1680 /*
1681 * DC{C,I,CI}SW operations:
1682 */
1683 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1684 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1685 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4d44923b 1686
7609c125 1687 /* PMU */
ab946834 1688 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
96b0eebc
SZ
1689 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1690 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
76d883c4 1691 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
7a0adc70 1692 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
3965c3ce 1693 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
a86b5505
SZ
1694 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1695 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
051ff581 1696 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
9feb21ac 1697 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
051ff581 1698 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
d692b8ad 1699 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
9db52c78
SZ
1700 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1701 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
76d883c4 1702 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
4d44923b
MZ
1703
1704 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1705 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1706 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1707 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
db7dedd0
CD
1708
1709 /* ICC_SRE */
f7f6f2d9 1710 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
db7dedd0 1711
4d44923b 1712 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
051ff581 1713
eac137b4
JF
1714 /* CNTP_TVAL */
1715 { Op1( 0), CRn(14), CRm( 2), Op2( 0), access_cntp_tval },
1716 /* CNTP_CTL */
1717 { Op1( 0), CRn(14), CRm( 2), Op2( 1), access_cntp_ctl },
1718
051ff581
SZ
1719 /* PMEVCNTRn */
1720 PMU_PMEVCNTR(0),
1721 PMU_PMEVCNTR(1),
1722 PMU_PMEVCNTR(2),
1723 PMU_PMEVCNTR(3),
1724 PMU_PMEVCNTR(4),
1725 PMU_PMEVCNTR(5),
1726 PMU_PMEVCNTR(6),
1727 PMU_PMEVCNTR(7),
1728 PMU_PMEVCNTR(8),
1729 PMU_PMEVCNTR(9),
1730 PMU_PMEVCNTR(10),
1731 PMU_PMEVCNTR(11),
1732 PMU_PMEVCNTR(12),
1733 PMU_PMEVCNTR(13),
1734 PMU_PMEVCNTR(14),
1735 PMU_PMEVCNTR(15),
1736 PMU_PMEVCNTR(16),
1737 PMU_PMEVCNTR(17),
1738 PMU_PMEVCNTR(18),
1739 PMU_PMEVCNTR(19),
1740 PMU_PMEVCNTR(20),
1741 PMU_PMEVCNTR(21),
1742 PMU_PMEVCNTR(22),
1743 PMU_PMEVCNTR(23),
1744 PMU_PMEVCNTR(24),
1745 PMU_PMEVCNTR(25),
1746 PMU_PMEVCNTR(26),
1747 PMU_PMEVCNTR(27),
1748 PMU_PMEVCNTR(28),
1749 PMU_PMEVCNTR(29),
1750 PMU_PMEVCNTR(30),
9feb21ac
SZ
1751 /* PMEVTYPERn */
1752 PMU_PMEVTYPER(0),
1753 PMU_PMEVTYPER(1),
1754 PMU_PMEVTYPER(2),
1755 PMU_PMEVTYPER(3),
1756 PMU_PMEVTYPER(4),
1757 PMU_PMEVTYPER(5),
1758 PMU_PMEVTYPER(6),
1759 PMU_PMEVTYPER(7),
1760 PMU_PMEVTYPER(8),
1761 PMU_PMEVTYPER(9),
1762 PMU_PMEVTYPER(10),
1763 PMU_PMEVTYPER(11),
1764 PMU_PMEVTYPER(12),
1765 PMU_PMEVTYPER(13),
1766 PMU_PMEVTYPER(14),
1767 PMU_PMEVTYPER(15),
1768 PMU_PMEVTYPER(16),
1769 PMU_PMEVTYPER(17),
1770 PMU_PMEVTYPER(18),
1771 PMU_PMEVTYPER(19),
1772 PMU_PMEVTYPER(20),
1773 PMU_PMEVTYPER(21),
1774 PMU_PMEVTYPER(22),
1775 PMU_PMEVTYPER(23),
1776 PMU_PMEVTYPER(24),
1777 PMU_PMEVTYPER(25),
1778 PMU_PMEVTYPER(26),
1779 PMU_PMEVTYPER(27),
1780 PMU_PMEVTYPER(28),
1781 PMU_PMEVTYPER(29),
1782 PMU_PMEVTYPER(30),
1783 /* PMCCFILTR */
1784 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
a9866ba0
MZ
1785};
1786
1787static const struct sys_reg_desc cp15_64_regs[] = {
1788 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
051ff581 1789 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
03bd646d 1790 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
4d44923b 1791 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
03bd646d
MZ
1792 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
1793 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
eac137b4 1794 { Op1( 2), CRn( 0), CRm(14), Op2( 0), access_cntp_cval },
7c8c5e6a
MZ
1795};
1796
1797/* Target specific emulation tables */
1798static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1799
1800void kvm_register_target_sys_reg_table(unsigned int target,
1801 struct kvm_sys_reg_target_table *table)
1802{
1803 target_tables[target] = table;
1804}
1805
1806/* Get specific register table for this target. */
62a89c44
MZ
1807static const struct sys_reg_desc *get_target_table(unsigned target,
1808 bool mode_is_64,
1809 size_t *num)
7c8c5e6a
MZ
1810{
1811 struct kvm_sys_reg_target_table *table;
1812
1813 table = target_tables[target];
62a89c44
MZ
1814 if (mode_is_64) {
1815 *num = table->table64.num;
1816 return table->table64.table;
1817 } else {
1818 *num = table->table32.num;
1819 return table->table32.table;
1820 }
7c8c5e6a
MZ
1821}
1822
623eefa8
MZ
1823#define reg_to_match_value(x) \
1824 ({ \
1825 unsigned long val; \
1826 val = (x)->Op0 << 14; \
1827 val |= (x)->Op1 << 11; \
1828 val |= (x)->CRn << 7; \
1829 val |= (x)->CRm << 3; \
1830 val |= (x)->Op2; \
1831 val; \
1832 })
1833
1834static int match_sys_reg(const void *key, const void *elt)
1835{
1836 const unsigned long pval = (unsigned long)key;
1837 const struct sys_reg_desc *r = elt;
1838
1839 return pval - reg_to_match_value(r);
1840}
1841
7c8c5e6a
MZ
1842static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1843 const struct sys_reg_desc table[],
1844 unsigned int num)
1845{
623eefa8
MZ
1846 unsigned long pval = reg_to_match_value(params);
1847
1848 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
7c8c5e6a
MZ
1849}
1850
62a89c44
MZ
1851int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1852{
1853 kvm_inject_undefined(vcpu);
1854 return 1;
1855}
1856
e70b9522
MZ
1857static void perform_access(struct kvm_vcpu *vcpu,
1858 struct sys_reg_params *params,
1859 const struct sys_reg_desc *r)
1860{
599d79dc
MZ
1861 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
1862
e70b9522
MZ
1863 /*
1864 * Not having an accessor means that we have configured a trap
1865 * that we don't know how to handle. This certainly qualifies
1866 * as a gross bug that should be fixed right away.
1867 */
1868 BUG_ON(!r->access);
1869
1870 /* Skip instruction if instructed so */
1871 if (likely(r->access(vcpu, params, r)))
1872 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1873}
1874
72564016
MZ
1875/*
1876 * emulate_cp -- tries to match a sys_reg access in a handling table, and
1877 * call the corresponding trap handler.
1878 *
1879 * @params: pointer to the descriptor of the access
1880 * @table: array of trap descriptors
1881 * @num: size of the trap descriptor array
1882 *
1883 * Return 0 if the access has been handled, and -1 if not.
1884 */
1885static int emulate_cp(struct kvm_vcpu *vcpu,
3fec037d 1886 struct sys_reg_params *params,
72564016
MZ
1887 const struct sys_reg_desc *table,
1888 size_t num)
62a89c44 1889{
72564016 1890 const struct sys_reg_desc *r;
62a89c44 1891
72564016
MZ
1892 if (!table)
1893 return -1; /* Not handled */
62a89c44 1894
62a89c44 1895 r = find_reg(params, table, num);
62a89c44 1896
72564016 1897 if (r) {
e70b9522
MZ
1898 perform_access(vcpu, params, r);
1899 return 0;
72564016
MZ
1900 }
1901
1902 /* Not handled */
1903 return -1;
1904}
1905
1906static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1907 struct sys_reg_params *params)
1908{
1909 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
40c4f8d2 1910 int cp = -1;
72564016
MZ
1911
1912 switch(hsr_ec) {
c6d01a94
MR
1913 case ESR_ELx_EC_CP15_32:
1914 case ESR_ELx_EC_CP15_64:
72564016
MZ
1915 cp = 15;
1916 break;
c6d01a94
MR
1917 case ESR_ELx_EC_CP14_MR:
1918 case ESR_ELx_EC_CP14_64:
72564016
MZ
1919 cp = 14;
1920 break;
1921 default:
40c4f8d2 1922 WARN_ON(1);
62a89c44
MZ
1923 }
1924
d1878af3
MR
1925 kvm_err("Unsupported guest CP%d access at: %08lx [%08lx]\n",
1926 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
62a89c44
MZ
1927 print_sys_reg_instr(params);
1928 kvm_inject_undefined(vcpu);
1929}
1930
1931/**
7769db90 1932 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
62a89c44
MZ
1933 * @vcpu: The VCPU pointer
1934 * @run: The kvm_run struct
1935 */
72564016
MZ
1936static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1937 const struct sys_reg_desc *global,
1938 size_t nr_global,
1939 const struct sys_reg_desc *target_specific,
1940 size_t nr_specific)
62a89c44
MZ
1941{
1942 struct sys_reg_params params;
1943 u32 hsr = kvm_vcpu_get_hsr(vcpu);
c667186f
MZ
1944 int Rt = kvm_vcpu_sys_get_rt(vcpu);
1945 int Rt2 = (hsr >> 10) & 0x1f;
62a89c44 1946
2072d29c
MZ
1947 params.is_aarch32 = true;
1948 params.is_32bit = false;
62a89c44 1949 params.CRm = (hsr >> 1) & 0xf;
62a89c44
MZ
1950 params.is_write = ((hsr & 1) == 0);
1951
1952 params.Op0 = 0;
1953 params.Op1 = (hsr >> 16) & 0xf;
1954 params.Op2 = 0;
1955 params.CRn = 0;
1956
1957 /*
2ec5be3d 1958 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
62a89c44
MZ
1959 * backends between AArch32 and AArch64, we get away with it.
1960 */
1961 if (params.is_write) {
2ec5be3d
PF
1962 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1963 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
62a89c44
MZ
1964 }
1965
b6b7a806
MZ
1966 /*
1967 * Try to emulate the coprocessor access using the target
1968 * specific table first, and using the global table afterwards.
1969 * If either of the tables contains a handler, handle the
1970 * potential register operation in the case of a read and return
1971 * with success.
1972 */
1973 if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1974 !emulate_cp(vcpu, &params, global, nr_global)) {
1975 /* Split up the value between registers for the read side */
1976 if (!params.is_write) {
1977 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1978 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1979 }
62a89c44 1980
b6b7a806 1981 return 1;
62a89c44
MZ
1982 }
1983
b6b7a806 1984 unhandled_cp_access(vcpu, &params);
62a89c44
MZ
1985 return 1;
1986}
1987
1988/**
7769db90 1989 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
62a89c44
MZ
1990 * @vcpu: The VCPU pointer
1991 * @run: The kvm_run struct
1992 */
72564016
MZ
1993static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1994 const struct sys_reg_desc *global,
1995 size_t nr_global,
1996 const struct sys_reg_desc *target_specific,
1997 size_t nr_specific)
62a89c44
MZ
1998{
1999 struct sys_reg_params params;
2000 u32 hsr = kvm_vcpu_get_hsr(vcpu);
c667186f 2001 int Rt = kvm_vcpu_sys_get_rt(vcpu);
62a89c44 2002
2072d29c
MZ
2003 params.is_aarch32 = true;
2004 params.is_32bit = true;
62a89c44 2005 params.CRm = (hsr >> 1) & 0xf;
2ec5be3d 2006 params.regval = vcpu_get_reg(vcpu, Rt);
62a89c44
MZ
2007 params.is_write = ((hsr & 1) == 0);
2008 params.CRn = (hsr >> 10) & 0xf;
2009 params.Op0 = 0;
2010 params.Op1 = (hsr >> 14) & 0x7;
2011 params.Op2 = (hsr >> 17) & 0x7;
2012
2ec5be3d
PF
2013 if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2014 !emulate_cp(vcpu, &params, global, nr_global)) {
2015 if (!params.is_write)
2016 vcpu_set_reg(vcpu, Rt, params.regval);
72564016 2017 return 1;
2ec5be3d 2018 }
72564016
MZ
2019
2020 unhandled_cp_access(vcpu, &params);
62a89c44
MZ
2021 return 1;
2022}
2023
72564016
MZ
2024int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2025{
2026 const struct sys_reg_desc *target_specific;
2027 size_t num;
2028
2029 target_specific = get_target_table(vcpu->arch.target, false, &num);
2030 return kvm_handle_cp_64(vcpu,
a9866ba0 2031 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
72564016
MZ
2032 target_specific, num);
2033}
2034
2035int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2036{
2037 const struct sys_reg_desc *target_specific;
2038 size_t num;
2039
2040 target_specific = get_target_table(vcpu->arch.target, false, &num);
2041 return kvm_handle_cp_32(vcpu,
2042 cp15_regs, ARRAY_SIZE(cp15_regs),
2043 target_specific, num);
2044}
2045
2046int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2047{
2048 return kvm_handle_cp_64(vcpu,
a9866ba0 2049 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
72564016
MZ
2050 NULL, 0);
2051}
2052
2053int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2054{
2055 return kvm_handle_cp_32(vcpu,
2056 cp14_regs, ARRAY_SIZE(cp14_regs),
2057 NULL, 0);
2058}
2059
7c8c5e6a 2060static int emulate_sys_reg(struct kvm_vcpu *vcpu,
3fec037d 2061 struct sys_reg_params *params)
7c8c5e6a
MZ
2062{
2063 size_t num;
2064 const struct sys_reg_desc *table, *r;
2065
62a89c44 2066 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
2067
2068 /* Search target-specific then generic table. */
2069 r = find_reg(params, table, num);
2070 if (!r)
2071 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2072
2073 if (likely(r)) {
e70b9522 2074 perform_access(vcpu, params, r);
7c8c5e6a 2075 } else {
d1878af3
MR
2076 kvm_err("Unsupported guest sys_reg access at: %lx [%08lx]\n",
2077 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
7c8c5e6a 2078 print_sys_reg_instr(params);
e70b9522 2079 kvm_inject_undefined(vcpu);
7c8c5e6a 2080 }
7c8c5e6a
MZ
2081 return 1;
2082}
2083
2084static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2085 const struct sys_reg_desc *table, size_t num)
2086{
2087 unsigned long i;
2088
2089 for (i = 0; i < num; i++)
2090 if (table[i].reset)
2091 table[i].reset(vcpu, &table[i]);
2092}
2093
2094/**
2095 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2096 * @vcpu: The VCPU pointer
2097 * @run: The kvm_run struct
2098 */
2099int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2100{
2101 struct sys_reg_params params;
2102 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
c667186f 2103 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2ec5be3d 2104 int ret;
7c8c5e6a 2105
eef8c85a
AB
2106 trace_kvm_handle_sys_reg(esr);
2107
2072d29c
MZ
2108 params.is_aarch32 = false;
2109 params.is_32bit = false;
7c8c5e6a
MZ
2110 params.Op0 = (esr >> 20) & 3;
2111 params.Op1 = (esr >> 14) & 0x7;
2112 params.CRn = (esr >> 10) & 0xf;
2113 params.CRm = (esr >> 1) & 0xf;
2114 params.Op2 = (esr >> 17) & 0x7;
2ec5be3d 2115 params.regval = vcpu_get_reg(vcpu, Rt);
7c8c5e6a
MZ
2116 params.is_write = !(esr & 1);
2117
2ec5be3d
PF
2118 ret = emulate_sys_reg(vcpu, &params);
2119
2120 if (!params.is_write)
2121 vcpu_set_reg(vcpu, Rt, params.regval);
2122 return ret;
7c8c5e6a
MZ
2123}
2124
2125/******************************************************************************
2126 * Userspace API
2127 *****************************************************************************/
2128
2129static bool index_to_params(u64 id, struct sys_reg_params *params)
2130{
2131 switch (id & KVM_REG_SIZE_MASK) {
2132 case KVM_REG_SIZE_U64:
2133 /* Any unused index bits means it's not valid. */
2134 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2135 | KVM_REG_ARM_COPROC_MASK
2136 | KVM_REG_ARM64_SYSREG_OP0_MASK
2137 | KVM_REG_ARM64_SYSREG_OP1_MASK
2138 | KVM_REG_ARM64_SYSREG_CRN_MASK
2139 | KVM_REG_ARM64_SYSREG_CRM_MASK
2140 | KVM_REG_ARM64_SYSREG_OP2_MASK))
2141 return false;
2142 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2143 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2144 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2145 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2146 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2147 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2148 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2149 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2150 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2151 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2152 return true;
2153 default:
2154 return false;
2155 }
2156}
2157
4b927b94
VK
2158const struct sys_reg_desc *find_reg_by_id(u64 id,
2159 struct sys_reg_params *params,
2160 const struct sys_reg_desc table[],
2161 unsigned int num)
2162{
2163 if (!index_to_params(id, params))
2164 return NULL;
2165
2166 return find_reg(params, table, num);
2167}
2168
7c8c5e6a
MZ
2169/* Decode an index value, and find the sys_reg_desc entry. */
2170static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2171 u64 id)
2172{
2173 size_t num;
2174 const struct sys_reg_desc *table, *r;
2175 struct sys_reg_params params;
2176
2177 /* We only do sys_reg for now. */
2178 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2179 return NULL;
2180
62a89c44 2181 table = get_target_table(vcpu->arch.target, true, &num);
4b927b94 2182 r = find_reg_by_id(id, &params, table, num);
7c8c5e6a
MZ
2183 if (!r)
2184 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2185
93390c0a
DM
2186 /* Not saved in the sys_reg array and not otherwise accessible? */
2187 if (r && !(r->reg || r->get_user))
7c8c5e6a
MZ
2188 r = NULL;
2189
2190 return r;
2191}
2192
2193/*
2194 * These are the invariant sys_reg registers: we let the guest see the
2195 * host versions of these, so they're part of the guest state.
2196 *
2197 * A future CPU may provide a mechanism to present different values to
2198 * the guest, or a future kvm may trap them.
2199 */
2200
2201#define FUNCTION_INVARIANT(reg) \
2202 static void get_##reg(struct kvm_vcpu *v, \
2203 const struct sys_reg_desc *r) \
2204 { \
1f3d8699 2205 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
7c8c5e6a
MZ
2206 }
2207
2208FUNCTION_INVARIANT(midr_el1)
2209FUNCTION_INVARIANT(ctr_el0)
2210FUNCTION_INVARIANT(revidr_el1)
7c8c5e6a
MZ
2211FUNCTION_INVARIANT(clidr_el1)
2212FUNCTION_INVARIANT(aidr_el1)
2213
2214/* ->val is filled in by kvm_sys_reg_table_init() */
2215static struct sys_reg_desc invariant_sys_regs[] = {
0d449541
MR
2216 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2217 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
0d449541
MR
2218 { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2219 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2220 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
7c8c5e6a
MZ
2221};
2222
26c99af1 2223static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
7c8c5e6a 2224{
7c8c5e6a
MZ
2225 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2226 return -EFAULT;
2227 return 0;
2228}
2229
26c99af1 2230static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
7c8c5e6a 2231{
7c8c5e6a
MZ
2232 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2233 return -EFAULT;
2234 return 0;
2235}
2236
2237static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2238{
2239 struct sys_reg_params params;
2240 const struct sys_reg_desc *r;
2241
4b927b94
VK
2242 r = find_reg_by_id(id, &params, invariant_sys_regs,
2243 ARRAY_SIZE(invariant_sys_regs));
7c8c5e6a
MZ
2244 if (!r)
2245 return -ENOENT;
2246
2247 return reg_to_user(uaddr, &r->val, id);
2248}
2249
2250static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2251{
2252 struct sys_reg_params params;
2253 const struct sys_reg_desc *r;
2254 int err;
2255 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2256
4b927b94
VK
2257 r = find_reg_by_id(id, &params, invariant_sys_regs,
2258 ARRAY_SIZE(invariant_sys_regs));
7c8c5e6a
MZ
2259 if (!r)
2260 return -ENOENT;
2261
2262 err = reg_from_user(&val, uaddr, id);
2263 if (err)
2264 return err;
2265
2266 /* This is what we mean by invariant: you can't change it. */
2267 if (r->val != val)
2268 return -EINVAL;
2269
2270 return 0;
2271}
2272
2273static bool is_valid_cache(u32 val)
2274{
2275 u32 level, ctype;
2276
2277 if (val >= CSSELR_MAX)
18d45766 2278 return false;
7c8c5e6a
MZ
2279
2280 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
2281 level = (val >> 1);
2282 ctype = (cache_levels >> (level * 3)) & 7;
2283
2284 switch (ctype) {
2285 case 0: /* No cache */
2286 return false;
2287 case 1: /* Instruction cache only */
2288 return (val & 1);
2289 case 2: /* Data cache only */
2290 case 4: /* Unified cache */
2291 return !(val & 1);
2292 case 3: /* Separate instruction and data caches */
2293 return true;
2294 default: /* Reserved: we can't know instruction or data. */
2295 return false;
2296 }
2297}
2298
2299static int demux_c15_get(u64 id, void __user *uaddr)
2300{
2301 u32 val;
2302 u32 __user *uval = uaddr;
2303
2304 /* Fail if we have unknown bits set. */
2305 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2306 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2307 return -ENOENT;
2308
2309 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2310 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2311 if (KVM_REG_SIZE(id) != 4)
2312 return -ENOENT;
2313 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2314 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2315 if (!is_valid_cache(val))
2316 return -ENOENT;
2317
2318 return put_user(get_ccsidr(val), uval);
2319 default:
2320 return -ENOENT;
2321 }
2322}
2323
2324static int demux_c15_set(u64 id, void __user *uaddr)
2325{
2326 u32 val, newval;
2327 u32 __user *uval = uaddr;
2328
2329 /* Fail if we have unknown bits set. */
2330 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2331 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2332 return -ENOENT;
2333
2334 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2335 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2336 if (KVM_REG_SIZE(id) != 4)
2337 return -ENOENT;
2338 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2339 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2340 if (!is_valid_cache(val))
2341 return -ENOENT;
2342
2343 if (get_user(newval, uval))
2344 return -EFAULT;
2345
2346 /* This is also invariant: you can't change it. */
2347 if (newval != get_ccsidr(val))
2348 return -EINVAL;
2349 return 0;
2350 default:
2351 return -ENOENT;
2352 }
2353}
2354
2355int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2356{
2357 const struct sys_reg_desc *r;
2358 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2359
2360 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2361 return demux_c15_get(reg->id, uaddr);
2362
2363 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2364 return -ENOENT;
2365
2366 r = index_to_sys_reg_desc(vcpu, reg->id);
2367 if (!r)
2368 return get_invariant_sys_reg(reg->id, uaddr);
2369
84e690bf
AB
2370 if (r->get_user)
2371 return (r->get_user)(vcpu, r, reg, uaddr);
2372
8d404c4c 2373 return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
7c8c5e6a
MZ
2374}
2375
2376int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2377{
2378 const struct sys_reg_desc *r;
2379 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2380
2381 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2382 return demux_c15_set(reg->id, uaddr);
2383
2384 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2385 return -ENOENT;
2386
2387 r = index_to_sys_reg_desc(vcpu, reg->id);
2388 if (!r)
2389 return set_invariant_sys_reg(reg->id, uaddr);
2390
84e690bf
AB
2391 if (r->set_user)
2392 return (r->set_user)(vcpu, r, reg, uaddr);
2393
8d404c4c 2394 return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
7c8c5e6a
MZ
2395}
2396
2397static unsigned int num_demux_regs(void)
2398{
2399 unsigned int i, count = 0;
2400
2401 for (i = 0; i < CSSELR_MAX; i++)
2402 if (is_valid_cache(i))
2403 count++;
2404
2405 return count;
2406}
2407
2408static int write_demux_regids(u64 __user *uindices)
2409{
efd48cea 2410 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
7c8c5e6a
MZ
2411 unsigned int i;
2412
2413 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2414 for (i = 0; i < CSSELR_MAX; i++) {
2415 if (!is_valid_cache(i))
2416 continue;
2417 if (put_user(val | i, uindices))
2418 return -EFAULT;
2419 uindices++;
2420 }
2421 return 0;
2422}
2423
2424static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2425{
2426 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2427 KVM_REG_ARM64_SYSREG |
2428 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2429 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2430 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2431 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2432 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2433}
2434
2435static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2436{
2437 if (!*uind)
2438 return true;
2439
2440 if (put_user(sys_reg_to_index(reg), *uind))
2441 return false;
2442
2443 (*uind)++;
2444 return true;
2445}
2446
93390c0a
DM
2447static int walk_one_sys_reg(const struct sys_reg_desc *rd,
2448 u64 __user **uind,
2449 unsigned int *total)
2450{
2451 /*
2452 * Ignore registers we trap but don't save,
2453 * and for which no custom user accessor is provided.
2454 */
2455 if (!(rd->reg || rd->get_user))
2456 return 0;
2457
2458 if (!copy_reg_to_user(rd, uind))
2459 return -EFAULT;
2460
2461 (*total)++;
2462 return 0;
2463}
2464
7c8c5e6a
MZ
2465/* Assumed ordered tables, see kvm_sys_reg_table_init. */
2466static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2467{
2468 const struct sys_reg_desc *i1, *i2, *end1, *end2;
2469 unsigned int total = 0;
2470 size_t num;
93390c0a 2471 int err;
7c8c5e6a
MZ
2472
2473 /* We check for duplicates here, to allow arch-specific overrides. */
62a89c44 2474 i1 = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
2475 end1 = i1 + num;
2476 i2 = sys_reg_descs;
2477 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2478
2479 BUG_ON(i1 == end1 || i2 == end2);
2480
2481 /* Walk carefully, as both tables may refer to the same register. */
2482 while (i1 || i2) {
2483 int cmp = cmp_sys_reg(i1, i2);
2484 /* target-specific overrides generic entry. */
93390c0a
DM
2485 if (cmp <= 0)
2486 err = walk_one_sys_reg(i1, &uind, &total);
2487 else
2488 err = walk_one_sys_reg(i2, &uind, &total);
2489
2490 if (err)
2491 return err;
7c8c5e6a
MZ
2492
2493 if (cmp <= 0 && ++i1 == end1)
2494 i1 = NULL;
2495 if (cmp >= 0 && ++i2 == end2)
2496 i2 = NULL;
2497 }
2498 return total;
2499}
2500
2501unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2502{
2503 return ARRAY_SIZE(invariant_sys_regs)
2504 + num_demux_regs()
2505 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2506}
2507
2508int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2509{
2510 unsigned int i;
2511 int err;
2512
2513 /* Then give them all the invariant registers' indices. */
2514 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2515 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2516 return -EFAULT;
2517 uindices++;
2518 }
2519
2520 err = walk_sys_regs(vcpu, uindices);
2521 if (err < 0)
2522 return err;
2523 uindices += err;
2524
2525 return write_demux_regids(uindices);
2526}
2527
e6a95517
MZ
2528static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2529{
2530 unsigned int i;
2531
2532 for (i = 1; i < n; i++) {
2533 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2534 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2535 return 1;
2536 }
2537 }
2538
2539 return 0;
2540}
2541
7c8c5e6a
MZ
2542void kvm_sys_reg_table_init(void)
2543{
2544 unsigned int i;
2545 struct sys_reg_desc clidr;
2546
2547 /* Make sure tables are unique and in order. */
e6a95517
MZ
2548 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2549 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2550 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2551 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2552 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2553 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
7c8c5e6a
MZ
2554
2555 /* We abuse the reset function to overwrite the table itself. */
2556 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2557 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2558
2559 /*
2560 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2561 *
2562 * If software reads the Cache Type fields from Ctype1
2563 * upwards, once it has seen a value of 0b000, no caches
2564 * exist at further-out levels of the hierarchy. So, for
2565 * example, if Ctype3 is the first Cache Type field with a
2566 * value of 0b000, the values of Ctype4 to Ctype7 must be
2567 * ignored.
2568 */
2569 get_clidr_el1(NULL, &clidr); /* Ugly... */
2570 cache_levels = clidr.val;
2571 for (i = 0; i < 7; i++)
2572 if (((cache_levels >> (i*3)) & 7) == 0)
2573 break;
2574 /* Clear all higher bits. */
2575 cache_levels &= (1 << (i*3))-1;
2576}
2577
2578/**
2579 * kvm_reset_sys_regs - sets system registers to reset value
2580 * @vcpu: The VCPU pointer
2581 *
2582 * This function finds the right table above and sets the registers on the
2583 * virtual CPU struct to their architecturally defined reset values.
2584 */
2585void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2586{
2587 size_t num;
2588 const struct sys_reg_desc *table;
2589
2590 /* Catch someone adding a register without putting in reset entry. */
2591 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2592
2593 /* Generic chip reset first (so target could override). */
2594 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2595
62a89c44 2596 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
2597 reset_sys_reg_descs(vcpu, table, num);
2598
2599 for (num = 1; num < NR_SYS_REGS; num++)
8d404c4c
CD
2600 if (__vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2601 panic("Didn't reset __vcpu_sys_reg(%zi)", num);
7c8c5e6a 2602}