Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6-block.git] / arch / arm64 / kvm / sys_regs.c
CommitLineData
7c8c5e6a
MZ
1/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
7c8c5e6a 23#include <linux/kvm_host.h>
c6d01a94 24#include <linux/mm.h>
7c8c5e6a 25#include <linux/uaccess.h>
c6d01a94 26
7c8c5e6a
MZ
27#include <asm/cacheflush.h>
28#include <asm/cputype.h>
0c557ed4 29#include <asm/debug-monitors.h>
c6d01a94
MR
30#include <asm/esr.h>
31#include <asm/kvm_arm.h>
9d8415d6 32#include <asm/kvm_asm.h>
c6d01a94
MR
33#include <asm/kvm_coproc.h>
34#include <asm/kvm_emulate.h>
35#include <asm/kvm_host.h>
36#include <asm/kvm_mmu.h>
37
7c8c5e6a
MZ
38#include <trace/events/kvm.h>
39
40#include "sys_regs.h"
41
eef8c85a
AB
42#include "trace.h"
43
7c8c5e6a
MZ
44/*
45 * All of this file is extremly similar to the ARM coproc.c, but the
46 * types are different. My gut feeling is that it should be pretty
47 * easy to merge, but that would be an ABI breakage -- again. VFP
48 * would also need to be abstracted.
62a89c44
MZ
49 *
50 * For AArch32, we only take care of what is being trapped. Anything
51 * that has to do with init and userspace access has to go via the
52 * 64bit interface.
7c8c5e6a
MZ
53 */
54
55/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
56static u32 cache_levels;
57
58/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
59#define CSSELR_MAX 12
60
61/* Which cache CCSIDR represents depends on CSSELR value. */
62static u32 get_ccsidr(u32 csselr)
63{
64 u32 ccsidr;
65
66 /* Make sure noone else changes CSSELR during this! */
67 local_irq_disable();
68 /* Put value into CSSELR */
69 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
70 isb();
71 /* Read result out of CCSIDR */
72 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
73 local_irq_enable();
74
75 return ccsidr;
76}
77
3c1e7165
MZ
78/*
79 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
80 */
7c8c5e6a 81static bool access_dcsw(struct kvm_vcpu *vcpu,
3fec037d 82 struct sys_reg_params *p,
7c8c5e6a
MZ
83 const struct sys_reg_desc *r)
84{
7c8c5e6a
MZ
85 if (!p->is_write)
86 return read_from_write_only(vcpu, p);
87
3c1e7165 88 kvm_set_way_flush(vcpu);
7c8c5e6a
MZ
89 return true;
90}
91
4d44923b
MZ
92/*
93 * Generic accessor for VM registers. Only called as long as HCR_TVM
3c1e7165
MZ
94 * is set. If the guest enables the MMU, we stop trapping the VM
95 * sys_regs and leave it in complete control of the caches.
4d44923b
MZ
96 */
97static bool access_vm_reg(struct kvm_vcpu *vcpu,
3fec037d 98 struct sys_reg_params *p,
4d44923b
MZ
99 const struct sys_reg_desc *r)
100{
3c1e7165 101 bool was_enabled = vcpu_has_cache_enabled(vcpu);
4d44923b
MZ
102
103 BUG_ON(!p->is_write);
104
dedf97e8 105 if (!p->is_aarch32) {
2ec5be3d 106 vcpu_sys_reg(vcpu, r->reg) = p->regval;
dedf97e8
MZ
107 } else {
108 if (!p->is_32bit)
2ec5be3d
PF
109 vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
110 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
dedf97e8 111 }
f0a3eaff 112
3c1e7165 113 kvm_toggle_cache(vcpu, was_enabled);
4d44923b
MZ
114 return true;
115}
116
6d52f35a
AP
117/*
118 * Trap handler for the GICv3 SGI generation system register.
119 * Forward the request to the VGIC emulation.
120 * The cp15_64 code makes sure this automatically works
121 * for both AArch64 and AArch32 accesses.
122 */
123static bool access_gic_sgi(struct kvm_vcpu *vcpu,
3fec037d 124 struct sys_reg_params *p,
6d52f35a
AP
125 const struct sys_reg_desc *r)
126{
6d52f35a
AP
127 if (!p->is_write)
128 return read_from_write_only(vcpu, p);
129
2ec5be3d 130 vgic_v3_dispatch_sgi(vcpu, p->regval);
6d52f35a
AP
131
132 return true;
133}
134
7609c125 135static bool trap_raz_wi(struct kvm_vcpu *vcpu,
3fec037d 136 struct sys_reg_params *p,
7609c125 137 const struct sys_reg_desc *r)
7c8c5e6a
MZ
138{
139 if (p->is_write)
140 return ignore_write(vcpu, p);
141 else
142 return read_zero(vcpu, p);
143}
144
0c557ed4 145static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
3fec037d 146 struct sys_reg_params *p,
0c557ed4
MZ
147 const struct sys_reg_desc *r)
148{
149 if (p->is_write) {
150 return ignore_write(vcpu, p);
151 } else {
2ec5be3d 152 p->regval = (1 << 3);
0c557ed4
MZ
153 return true;
154 }
155}
156
157static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
3fec037d 158 struct sys_reg_params *p,
0c557ed4
MZ
159 const struct sys_reg_desc *r)
160{
161 if (p->is_write) {
162 return ignore_write(vcpu, p);
163 } else {
164 u32 val;
165 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
2ec5be3d 166 p->regval = val;
0c557ed4
MZ
167 return true;
168 }
169}
170
171/*
172 * We want to avoid world-switching all the DBG registers all the
173 * time:
174 *
175 * - If we've touched any debug register, it is likely that we're
176 * going to touch more of them. It then makes sense to disable the
177 * traps and start doing the save/restore dance
178 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
179 * then mandatory to save/restore the registers, as the guest
180 * depends on them.
181 *
182 * For this, we use a DIRTY bit, indicating the guest has modified the
183 * debug registers, used as follow:
184 *
185 * On guest entry:
186 * - If the dirty bit is set (because we're coming back from trapping),
187 * disable the traps, save host registers, restore guest registers.
188 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
189 * set the dirty bit, disable the traps, save host registers,
190 * restore guest registers.
191 * - Otherwise, enable the traps
192 *
193 * On guest exit:
194 * - If the dirty bit is set, save guest registers, restore host
195 * registers and clear the dirty bit. This ensure that the host can
196 * now use the debug registers.
197 */
198static bool trap_debug_regs(struct kvm_vcpu *vcpu,
3fec037d 199 struct sys_reg_params *p,
0c557ed4
MZ
200 const struct sys_reg_desc *r)
201{
202 if (p->is_write) {
2ec5be3d 203 vcpu_sys_reg(vcpu, r->reg) = p->regval;
0c557ed4
MZ
204 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
205 } else {
2ec5be3d 206 p->regval = vcpu_sys_reg(vcpu, r->reg);
0c557ed4
MZ
207 }
208
2ec5be3d 209 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
eef8c85a 210
0c557ed4
MZ
211 return true;
212}
213
84e690bf
AB
214/*
215 * reg_to_dbg/dbg_to_reg
216 *
217 * A 32 bit write to a debug register leave top bits alone
218 * A 32 bit read from a debug register only returns the bottom bits
219 *
220 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
221 * hyp.S code switches between host and guest values in future.
222 */
281243cb
MZ
223static void reg_to_dbg(struct kvm_vcpu *vcpu,
224 struct sys_reg_params *p,
225 u64 *dbg_reg)
84e690bf 226{
2ec5be3d 227 u64 val = p->regval;
84e690bf
AB
228
229 if (p->is_32bit) {
230 val &= 0xffffffffUL;
231 val |= ((*dbg_reg >> 32) << 32);
232 }
233
234 *dbg_reg = val;
235 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
236}
237
281243cb
MZ
238static void dbg_to_reg(struct kvm_vcpu *vcpu,
239 struct sys_reg_params *p,
240 u64 *dbg_reg)
84e690bf 241{
2ec5be3d 242 p->regval = *dbg_reg;
84e690bf 243 if (p->is_32bit)
2ec5be3d 244 p->regval &= 0xffffffffUL;
84e690bf
AB
245}
246
281243cb
MZ
247static bool trap_bvr(struct kvm_vcpu *vcpu,
248 struct sys_reg_params *p,
249 const struct sys_reg_desc *rd)
84e690bf
AB
250{
251 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
252
253 if (p->is_write)
254 reg_to_dbg(vcpu, p, dbg_reg);
255 else
256 dbg_to_reg(vcpu, p, dbg_reg);
257
eef8c85a
AB
258 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
259
84e690bf
AB
260 return true;
261}
262
263static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
264 const struct kvm_one_reg *reg, void __user *uaddr)
265{
266 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
267
1713e5aa 268 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
269 return -EFAULT;
270 return 0;
271}
272
273static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
274 const struct kvm_one_reg *reg, void __user *uaddr)
275{
276 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
277
278 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
279 return -EFAULT;
280 return 0;
281}
282
281243cb
MZ
283static void reset_bvr(struct kvm_vcpu *vcpu,
284 const struct sys_reg_desc *rd)
84e690bf
AB
285{
286 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
287}
288
281243cb
MZ
289static bool trap_bcr(struct kvm_vcpu *vcpu,
290 struct sys_reg_params *p,
291 const struct sys_reg_desc *rd)
84e690bf
AB
292{
293 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
294
295 if (p->is_write)
296 reg_to_dbg(vcpu, p, dbg_reg);
297 else
298 dbg_to_reg(vcpu, p, dbg_reg);
299
eef8c85a
AB
300 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
301
84e690bf
AB
302 return true;
303}
304
305static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
306 const struct kvm_one_reg *reg, void __user *uaddr)
307{
308 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
309
1713e5aa 310 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
311 return -EFAULT;
312
313 return 0;
314}
315
316static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
317 const struct kvm_one_reg *reg, void __user *uaddr)
318{
319 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
320
321 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
322 return -EFAULT;
323 return 0;
324}
325
281243cb
MZ
326static void reset_bcr(struct kvm_vcpu *vcpu,
327 const struct sys_reg_desc *rd)
84e690bf
AB
328{
329 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
330}
331
281243cb
MZ
332static bool trap_wvr(struct kvm_vcpu *vcpu,
333 struct sys_reg_params *p,
334 const struct sys_reg_desc *rd)
84e690bf
AB
335{
336 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
337
338 if (p->is_write)
339 reg_to_dbg(vcpu, p, dbg_reg);
340 else
341 dbg_to_reg(vcpu, p, dbg_reg);
342
eef8c85a
AB
343 trace_trap_reg(__func__, rd->reg, p->is_write,
344 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
345
84e690bf
AB
346 return true;
347}
348
349static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
350 const struct kvm_one_reg *reg, void __user *uaddr)
351{
352 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
353
1713e5aa 354 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
355 return -EFAULT;
356 return 0;
357}
358
359static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
360 const struct kvm_one_reg *reg, void __user *uaddr)
361{
362 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
363
364 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
365 return -EFAULT;
366 return 0;
367}
368
281243cb
MZ
369static void reset_wvr(struct kvm_vcpu *vcpu,
370 const struct sys_reg_desc *rd)
84e690bf
AB
371{
372 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
373}
374
281243cb
MZ
375static bool trap_wcr(struct kvm_vcpu *vcpu,
376 struct sys_reg_params *p,
377 const struct sys_reg_desc *rd)
84e690bf
AB
378{
379 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
380
381 if (p->is_write)
382 reg_to_dbg(vcpu, p, dbg_reg);
383 else
384 dbg_to_reg(vcpu, p, dbg_reg);
385
eef8c85a
AB
386 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
387
84e690bf
AB
388 return true;
389}
390
391static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
392 const struct kvm_one_reg *reg, void __user *uaddr)
393{
394 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
395
1713e5aa 396 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
397 return -EFAULT;
398 return 0;
399}
400
401static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
402 const struct kvm_one_reg *reg, void __user *uaddr)
403{
404 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
405
406 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
407 return -EFAULT;
408 return 0;
409}
410
281243cb
MZ
411static void reset_wcr(struct kvm_vcpu *vcpu,
412 const struct sys_reg_desc *rd)
84e690bf
AB
413{
414 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
415}
416
7c8c5e6a
MZ
417static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
418{
419 u64 amair;
420
421 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
422 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
423}
424
425static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
426{
4429fc64
AP
427 u64 mpidr;
428
7c8c5e6a 429 /*
4429fc64
AP
430 * Map the vcpu_id into the first three affinity level fields of
431 * the MPIDR. We limit the number of VCPUs in level 0 due to a
432 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
433 * of the GICv3 to be able to address each CPU directly when
434 * sending IPIs.
7c8c5e6a 435 */
4429fc64
AP
436 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
437 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
438 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
439 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
7c8c5e6a
MZ
440}
441
0c557ed4
MZ
442/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
443#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
444 /* DBGBVRn_EL1 */ \
445 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
84e690bf 446 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
0c557ed4
MZ
447 /* DBGBCRn_EL1 */ \
448 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
84e690bf 449 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
0c557ed4
MZ
450 /* DBGWVRn_EL1 */ \
451 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
84e690bf 452 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
0c557ed4
MZ
453 /* DBGWCRn_EL1 */ \
454 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
84e690bf 455 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
0c557ed4 456
7c8c5e6a
MZ
457/*
458 * Architected system registers.
459 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
7609c125
MZ
460 *
461 * We could trap ID_DFR0 and tell the guest we don't support performance
462 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
463 * NAKed, so it will read the PMCR anyway.
464 *
465 * Therefore we tell the guest we have 0 counters. Unfortunately, we
466 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
467 * all PM registers, which doesn't crash the guest kernel at least.
468 *
0c557ed4
MZ
469 * Debug handling: We do trap most, if not all debug related system
470 * registers. The implementation is good enough to ensure that a guest
471 * can use these with minimal performance degradation. The drawback is
472 * that we don't implement any of the external debug, none of the
473 * OSlock protocol. This should be revisited if we ever encounter a
474 * more demanding guest...
7c8c5e6a
MZ
475 */
476static const struct sys_reg_desc sys_reg_descs[] = {
477 /* DC ISW */
478 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
479 access_dcsw },
480 /* DC CSW */
481 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
482 access_dcsw },
483 /* DC CISW */
484 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
485 access_dcsw },
486
0c557ed4
MZ
487 DBG_BCR_BVR_WCR_WVR_EL1(0),
488 DBG_BCR_BVR_WCR_WVR_EL1(1),
489 /* MDCCINT_EL1 */
490 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
491 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
492 /* MDSCR_EL1 */
493 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
494 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
495 DBG_BCR_BVR_WCR_WVR_EL1(2),
496 DBG_BCR_BVR_WCR_WVR_EL1(3),
497 DBG_BCR_BVR_WCR_WVR_EL1(4),
498 DBG_BCR_BVR_WCR_WVR_EL1(5),
499 DBG_BCR_BVR_WCR_WVR_EL1(6),
500 DBG_BCR_BVR_WCR_WVR_EL1(7),
501 DBG_BCR_BVR_WCR_WVR_EL1(8),
502 DBG_BCR_BVR_WCR_WVR_EL1(9),
503 DBG_BCR_BVR_WCR_WVR_EL1(10),
504 DBG_BCR_BVR_WCR_WVR_EL1(11),
505 DBG_BCR_BVR_WCR_WVR_EL1(12),
506 DBG_BCR_BVR_WCR_WVR_EL1(13),
507 DBG_BCR_BVR_WCR_WVR_EL1(14),
508 DBG_BCR_BVR_WCR_WVR_EL1(15),
509
510 /* MDRAR_EL1 */
511 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
512 trap_raz_wi },
513 /* OSLAR_EL1 */
514 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
515 trap_raz_wi },
516 /* OSLSR_EL1 */
517 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
518 trap_oslsr_el1 },
519 /* OSDLR_EL1 */
520 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
521 trap_raz_wi },
522 /* DBGPRCR_EL1 */
523 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
524 trap_raz_wi },
525 /* DBGCLAIMSET_EL1 */
526 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
527 trap_raz_wi },
528 /* DBGCLAIMCLR_EL1 */
529 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
530 trap_raz_wi },
531 /* DBGAUTHSTATUS_EL1 */
532 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
533 trap_dbgauthstatus_el1 },
534
0c557ed4
MZ
535 /* MDCCSR_EL1 */
536 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
537 trap_raz_wi },
538 /* DBGDTR_EL0 */
539 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
540 trap_raz_wi },
541 /* DBGDTR[TR]X_EL0 */
542 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
543 trap_raz_wi },
544
62a89c44
MZ
545 /* DBGVCR32_EL2 */
546 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
547 NULL, reset_val, DBGVCR32_EL2, 0 },
548
7c8c5e6a
MZ
549 /* MPIDR_EL1 */
550 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
551 NULL, reset_mpidr, MPIDR_EL1 },
552 /* SCTLR_EL1 */
553 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
3c1e7165 554 access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
7c8c5e6a
MZ
555 /* CPACR_EL1 */
556 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
557 NULL, reset_val, CPACR_EL1, 0 },
558 /* TTBR0_EL1 */
559 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
4d44923b 560 access_vm_reg, reset_unknown, TTBR0_EL1 },
7c8c5e6a
MZ
561 /* TTBR1_EL1 */
562 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
4d44923b 563 access_vm_reg, reset_unknown, TTBR1_EL1 },
7c8c5e6a
MZ
564 /* TCR_EL1 */
565 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
4d44923b 566 access_vm_reg, reset_val, TCR_EL1, 0 },
7c8c5e6a
MZ
567
568 /* AFSR0_EL1 */
569 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
4d44923b 570 access_vm_reg, reset_unknown, AFSR0_EL1 },
7c8c5e6a
MZ
571 /* AFSR1_EL1 */
572 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
4d44923b 573 access_vm_reg, reset_unknown, AFSR1_EL1 },
7c8c5e6a
MZ
574 /* ESR_EL1 */
575 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
4d44923b 576 access_vm_reg, reset_unknown, ESR_EL1 },
7c8c5e6a
MZ
577 /* FAR_EL1 */
578 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
4d44923b 579 access_vm_reg, reset_unknown, FAR_EL1 },
1bbd8054
MZ
580 /* PAR_EL1 */
581 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
582 NULL, reset_unknown, PAR_EL1 },
7c8c5e6a
MZ
583
584 /* PMINTENSET_EL1 */
585 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
7609c125 586 trap_raz_wi },
7c8c5e6a
MZ
587 /* PMINTENCLR_EL1 */
588 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
7609c125 589 trap_raz_wi },
7c8c5e6a
MZ
590
591 /* MAIR_EL1 */
592 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
4d44923b 593 access_vm_reg, reset_unknown, MAIR_EL1 },
7c8c5e6a
MZ
594 /* AMAIR_EL1 */
595 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
4d44923b 596 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
7c8c5e6a
MZ
597
598 /* VBAR_EL1 */
599 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
600 NULL, reset_val, VBAR_EL1, 0 },
db7dedd0 601
6d52f35a
AP
602 /* ICC_SGI1R_EL1 */
603 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
604 access_gic_sgi },
db7dedd0
CD
605 /* ICC_SRE_EL1 */
606 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
607 trap_raz_wi },
608
7c8c5e6a
MZ
609 /* CONTEXTIDR_EL1 */
610 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
4d44923b 611 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
7c8c5e6a
MZ
612 /* TPIDR_EL1 */
613 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
614 NULL, reset_unknown, TPIDR_EL1 },
615
616 /* CNTKCTL_EL1 */
617 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
618 NULL, reset_val, CNTKCTL_EL1, 0},
619
620 /* CSSELR_EL1 */
621 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
622 NULL, reset_unknown, CSSELR_EL1 },
623
624 /* PMCR_EL0 */
625 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
7609c125 626 trap_raz_wi },
7c8c5e6a
MZ
627 /* PMCNTENSET_EL0 */
628 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
7609c125 629 trap_raz_wi },
7c8c5e6a
MZ
630 /* PMCNTENCLR_EL0 */
631 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
7609c125 632 trap_raz_wi },
7c8c5e6a
MZ
633 /* PMOVSCLR_EL0 */
634 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
7609c125 635 trap_raz_wi },
7c8c5e6a
MZ
636 /* PMSWINC_EL0 */
637 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
7609c125 638 trap_raz_wi },
7c8c5e6a
MZ
639 /* PMSELR_EL0 */
640 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
7609c125 641 trap_raz_wi },
7c8c5e6a
MZ
642 /* PMCEID0_EL0 */
643 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
7609c125 644 trap_raz_wi },
7c8c5e6a
MZ
645 /* PMCEID1_EL0 */
646 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
7609c125 647 trap_raz_wi },
7c8c5e6a
MZ
648 /* PMCCNTR_EL0 */
649 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
7609c125 650 trap_raz_wi },
7c8c5e6a
MZ
651 /* PMXEVTYPER_EL0 */
652 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
7609c125 653 trap_raz_wi },
7c8c5e6a
MZ
654 /* PMXEVCNTR_EL0 */
655 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
7609c125 656 trap_raz_wi },
7c8c5e6a
MZ
657 /* PMUSERENR_EL0 */
658 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
7609c125 659 trap_raz_wi },
7c8c5e6a
MZ
660 /* PMOVSSET_EL0 */
661 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
7609c125 662 trap_raz_wi },
7c8c5e6a
MZ
663
664 /* TPIDR_EL0 */
665 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
666 NULL, reset_unknown, TPIDR_EL0 },
667 /* TPIDRRO_EL0 */
668 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
669 NULL, reset_unknown, TPIDRRO_EL0 },
62a89c44
MZ
670
671 /* DACR32_EL2 */
672 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
673 NULL, reset_unknown, DACR32_EL2 },
674 /* IFSR32_EL2 */
675 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
676 NULL, reset_unknown, IFSR32_EL2 },
677 /* FPEXC32_EL2 */
678 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
679 NULL, reset_val, FPEXC32_EL2, 0x70 },
680};
681
bdfb4b38 682static bool trap_dbgidr(struct kvm_vcpu *vcpu,
3fec037d 683 struct sys_reg_params *p,
bdfb4b38
MZ
684 const struct sys_reg_desc *r)
685{
686 if (p->is_write) {
687 return ignore_write(vcpu, p);
688 } else {
4db8e5ea
SP
689 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
690 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
691 u32 el3 = !!cpuid_feature_extract_field(pfr, ID_AA64PFR0_EL3_SHIFT);
bdfb4b38 692
2ec5be3d
PF
693 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
694 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
695 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
696 | (6 << 16) | (el3 << 14) | (el3 << 12));
bdfb4b38
MZ
697 return true;
698 }
699}
700
701static bool trap_debug32(struct kvm_vcpu *vcpu,
3fec037d 702 struct sys_reg_params *p,
bdfb4b38
MZ
703 const struct sys_reg_desc *r)
704{
705 if (p->is_write) {
2ec5be3d 706 vcpu_cp14(vcpu, r->reg) = p->regval;
bdfb4b38
MZ
707 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
708 } else {
2ec5be3d 709 p->regval = vcpu_cp14(vcpu, r->reg);
bdfb4b38
MZ
710 }
711
712 return true;
713}
714
84e690bf
AB
715/* AArch32 debug register mappings
716 *
717 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
718 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
719 *
720 * All control registers and watchpoint value registers are mapped to
721 * the lower 32 bits of their AArch64 equivalents. We share the trap
722 * handlers with the above AArch64 code which checks what mode the
723 * system is in.
724 */
725
281243cb
MZ
726static bool trap_xvr(struct kvm_vcpu *vcpu,
727 struct sys_reg_params *p,
728 const struct sys_reg_desc *rd)
84e690bf
AB
729{
730 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
731
732 if (p->is_write) {
733 u64 val = *dbg_reg;
734
735 val &= 0xffffffffUL;
2ec5be3d 736 val |= p->regval << 32;
84e690bf
AB
737 *dbg_reg = val;
738
739 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
740 } else {
2ec5be3d 741 p->regval = *dbg_reg >> 32;
84e690bf
AB
742 }
743
eef8c85a
AB
744 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
745
84e690bf
AB
746 return true;
747}
748
749#define DBG_BCR_BVR_WCR_WVR(n) \
750 /* DBGBVRn */ \
751 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
752 /* DBGBCRn */ \
753 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
754 /* DBGWVRn */ \
755 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
756 /* DBGWCRn */ \
757 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
758
759#define DBGBXVR(n) \
760 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
bdfb4b38
MZ
761
762/*
763 * Trapped cp14 registers. We generally ignore most of the external
764 * debug, on the principle that they don't really make sense to a
84e690bf 765 * guest. Revisit this one day, would this principle change.
bdfb4b38 766 */
72564016 767static const struct sys_reg_desc cp14_regs[] = {
bdfb4b38
MZ
768 /* DBGIDR */
769 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
770 /* DBGDTRRXext */
771 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
772
773 DBG_BCR_BVR_WCR_WVR(0),
774 /* DBGDSCRint */
775 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
776 DBG_BCR_BVR_WCR_WVR(1),
777 /* DBGDCCINT */
778 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
779 /* DBGDSCRext */
780 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
781 DBG_BCR_BVR_WCR_WVR(2),
782 /* DBGDTR[RT]Xint */
783 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
784 /* DBGDTR[RT]Xext */
785 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
786 DBG_BCR_BVR_WCR_WVR(3),
787 DBG_BCR_BVR_WCR_WVR(4),
788 DBG_BCR_BVR_WCR_WVR(5),
789 /* DBGWFAR */
790 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
791 /* DBGOSECCR */
792 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
793 DBG_BCR_BVR_WCR_WVR(6),
794 /* DBGVCR */
795 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
796 DBG_BCR_BVR_WCR_WVR(7),
797 DBG_BCR_BVR_WCR_WVR(8),
798 DBG_BCR_BVR_WCR_WVR(9),
799 DBG_BCR_BVR_WCR_WVR(10),
800 DBG_BCR_BVR_WCR_WVR(11),
801 DBG_BCR_BVR_WCR_WVR(12),
802 DBG_BCR_BVR_WCR_WVR(13),
803 DBG_BCR_BVR_WCR_WVR(14),
804 DBG_BCR_BVR_WCR_WVR(15),
805
806 /* DBGDRAR (32bit) */
807 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
808
809 DBGBXVR(0),
810 /* DBGOSLAR */
811 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
812 DBGBXVR(1),
813 /* DBGOSLSR */
814 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
815 DBGBXVR(2),
816 DBGBXVR(3),
817 /* DBGOSDLR */
818 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
819 DBGBXVR(4),
820 /* DBGPRCR */
821 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
822 DBGBXVR(5),
823 DBGBXVR(6),
824 DBGBXVR(7),
825 DBGBXVR(8),
826 DBGBXVR(9),
827 DBGBXVR(10),
828 DBGBXVR(11),
829 DBGBXVR(12),
830 DBGBXVR(13),
831 DBGBXVR(14),
832 DBGBXVR(15),
833
834 /* DBGDSAR (32bit) */
835 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
836
837 /* DBGDEVID2 */
838 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
839 /* DBGDEVID1 */
840 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
841 /* DBGDEVID */
842 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
843 /* DBGCLAIMSET */
844 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
845 /* DBGCLAIMCLR */
846 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
847 /* DBGAUTHSTATUS */
848 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
72564016
MZ
849};
850
a9866ba0
MZ
851/* Trapped cp14 64bit registers */
852static const struct sys_reg_desc cp14_64_regs[] = {
bdfb4b38
MZ
853 /* DBGDRAR (64bit) */
854 { Op1( 0), CRm( 1), .access = trap_raz_wi },
855
856 /* DBGDSAR (64bit) */
857 { Op1( 0), CRm( 2), .access = trap_raz_wi },
a9866ba0
MZ
858};
859
4d44923b
MZ
860/*
861 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
862 * depending on the way they are accessed (as a 32bit or a 64bit
863 * register).
864 */
62a89c44 865static const struct sys_reg_desc cp15_regs[] = {
6d52f35a
AP
866 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
867
3c1e7165 868 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
4d44923b
MZ
869 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
870 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
871 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
872 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
873 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
874 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
875 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
876 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
877 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
878 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
879
62a89c44
MZ
880 /*
881 * DC{C,I,CI}SW operations:
882 */
883 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
884 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
885 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4d44923b 886
7609c125
MZ
887 /* PMU */
888 { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
889 { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
890 { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
891 { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
892 { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
893 { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
894 { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
895 { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
896 { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
897 { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
898 { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
899 { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
900 { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
4d44923b
MZ
901
902 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
903 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
904 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
905 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
db7dedd0
CD
906
907 /* ICC_SRE */
908 { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
909
4d44923b 910 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
a9866ba0
MZ
911};
912
913static const struct sys_reg_desc cp15_64_regs[] = {
914 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
6d52f35a 915 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
4d44923b 916 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
7c8c5e6a
MZ
917};
918
919/* Target specific emulation tables */
920static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
921
922void kvm_register_target_sys_reg_table(unsigned int target,
923 struct kvm_sys_reg_target_table *table)
924{
925 target_tables[target] = table;
926}
927
928/* Get specific register table for this target. */
62a89c44
MZ
929static const struct sys_reg_desc *get_target_table(unsigned target,
930 bool mode_is_64,
931 size_t *num)
7c8c5e6a
MZ
932{
933 struct kvm_sys_reg_target_table *table;
934
935 table = target_tables[target];
62a89c44
MZ
936 if (mode_is_64) {
937 *num = table->table64.num;
938 return table->table64.table;
939 } else {
940 *num = table->table32.num;
941 return table->table32.table;
942 }
7c8c5e6a
MZ
943}
944
945static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
946 const struct sys_reg_desc table[],
947 unsigned int num)
948{
949 unsigned int i;
950
951 for (i = 0; i < num; i++) {
952 const struct sys_reg_desc *r = &table[i];
953
954 if (params->Op0 != r->Op0)
955 continue;
956 if (params->Op1 != r->Op1)
957 continue;
958 if (params->CRn != r->CRn)
959 continue;
960 if (params->CRm != r->CRm)
961 continue;
962 if (params->Op2 != r->Op2)
963 continue;
964
965 return r;
966 }
967 return NULL;
968}
969
62a89c44
MZ
970int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
971{
972 kvm_inject_undefined(vcpu);
973 return 1;
974}
975
72564016
MZ
976/*
977 * emulate_cp -- tries to match a sys_reg access in a handling table, and
978 * call the corresponding trap handler.
979 *
980 * @params: pointer to the descriptor of the access
981 * @table: array of trap descriptors
982 * @num: size of the trap descriptor array
983 *
984 * Return 0 if the access has been handled, and -1 if not.
985 */
986static int emulate_cp(struct kvm_vcpu *vcpu,
3fec037d 987 struct sys_reg_params *params,
72564016
MZ
988 const struct sys_reg_desc *table,
989 size_t num)
62a89c44 990{
72564016 991 const struct sys_reg_desc *r;
62a89c44 992
72564016
MZ
993 if (!table)
994 return -1; /* Not handled */
62a89c44 995
62a89c44 996 r = find_reg(params, table, num);
62a89c44 997
72564016 998 if (r) {
62a89c44
MZ
999 /*
1000 * Not having an accessor means that we have
1001 * configured a trap that we don't know how to
1002 * handle. This certainly qualifies as a gross bug
1003 * that should be fixed right away.
1004 */
1005 BUG_ON(!r->access);
1006
1007 if (likely(r->access(vcpu, params, r))) {
1008 /* Skip instruction, since it was emulated */
1009 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
6327f35a
SZ
1010 /* Handled */
1011 return 0;
62a89c44 1012 }
72564016
MZ
1013 }
1014
1015 /* Not handled */
1016 return -1;
1017}
1018
1019static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1020 struct sys_reg_params *params)
1021{
1022 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1023 int cp;
1024
1025 switch(hsr_ec) {
c6d01a94
MR
1026 case ESR_ELx_EC_CP15_32:
1027 case ESR_ELx_EC_CP15_64:
72564016
MZ
1028 cp = 15;
1029 break;
c6d01a94
MR
1030 case ESR_ELx_EC_CP14_MR:
1031 case ESR_ELx_EC_CP14_64:
72564016
MZ
1032 cp = 14;
1033 break;
1034 default:
1035 WARN_ON((cp = -1));
62a89c44
MZ
1036 }
1037
72564016
MZ
1038 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1039 cp, *vcpu_pc(vcpu));
62a89c44
MZ
1040 print_sys_reg_instr(params);
1041 kvm_inject_undefined(vcpu);
1042}
1043
1044/**
7769db90 1045 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
62a89c44
MZ
1046 * @vcpu: The VCPU pointer
1047 * @run: The kvm_run struct
1048 */
72564016
MZ
1049static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1050 const struct sys_reg_desc *global,
1051 size_t nr_global,
1052 const struct sys_reg_desc *target_specific,
1053 size_t nr_specific)
62a89c44
MZ
1054{
1055 struct sys_reg_params params;
1056 u32 hsr = kvm_vcpu_get_hsr(vcpu);
2ec5be3d 1057 int Rt = (hsr >> 5) & 0xf;
62a89c44
MZ
1058 int Rt2 = (hsr >> 10) & 0xf;
1059
2072d29c
MZ
1060 params.is_aarch32 = true;
1061 params.is_32bit = false;
62a89c44 1062 params.CRm = (hsr >> 1) & 0xf;
62a89c44
MZ
1063 params.is_write = ((hsr & 1) == 0);
1064
1065 params.Op0 = 0;
1066 params.Op1 = (hsr >> 16) & 0xf;
1067 params.Op2 = 0;
1068 params.CRn = 0;
1069
1070 /*
2ec5be3d 1071 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
62a89c44
MZ
1072 * backends between AArch32 and AArch64, we get away with it.
1073 */
1074 if (params.is_write) {
2ec5be3d
PF
1075 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1076 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
62a89c44
MZ
1077 }
1078
72564016
MZ
1079 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1080 goto out;
1081 if (!emulate_cp(vcpu, &params, global, nr_global))
1082 goto out;
1083
1084 unhandled_cp_access(vcpu, &params);
62a89c44 1085
72564016 1086out:
2ec5be3d 1087 /* Split up the value between registers for the read side */
62a89c44 1088 if (!params.is_write) {
2ec5be3d
PF
1089 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1090 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
62a89c44
MZ
1091 }
1092
1093 return 1;
1094}
1095
1096/**
7769db90 1097 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
62a89c44
MZ
1098 * @vcpu: The VCPU pointer
1099 * @run: The kvm_run struct
1100 */
72564016
MZ
1101static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1102 const struct sys_reg_desc *global,
1103 size_t nr_global,
1104 const struct sys_reg_desc *target_specific,
1105 size_t nr_specific)
62a89c44
MZ
1106{
1107 struct sys_reg_params params;
1108 u32 hsr = kvm_vcpu_get_hsr(vcpu);
2ec5be3d 1109 int Rt = (hsr >> 5) & 0xf;
62a89c44 1110
2072d29c
MZ
1111 params.is_aarch32 = true;
1112 params.is_32bit = true;
62a89c44 1113 params.CRm = (hsr >> 1) & 0xf;
2ec5be3d 1114 params.regval = vcpu_get_reg(vcpu, Rt);
62a89c44
MZ
1115 params.is_write = ((hsr & 1) == 0);
1116 params.CRn = (hsr >> 10) & 0xf;
1117 params.Op0 = 0;
1118 params.Op1 = (hsr >> 14) & 0x7;
1119 params.Op2 = (hsr >> 17) & 0x7;
1120
2ec5be3d
PF
1121 if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1122 !emulate_cp(vcpu, &params, global, nr_global)) {
1123 if (!params.is_write)
1124 vcpu_set_reg(vcpu, Rt, params.regval);
72564016 1125 return 1;
2ec5be3d 1126 }
72564016
MZ
1127
1128 unhandled_cp_access(vcpu, &params);
62a89c44
MZ
1129 return 1;
1130}
1131
72564016
MZ
1132int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1133{
1134 const struct sys_reg_desc *target_specific;
1135 size_t num;
1136
1137 target_specific = get_target_table(vcpu->arch.target, false, &num);
1138 return kvm_handle_cp_64(vcpu,
a9866ba0 1139 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
72564016
MZ
1140 target_specific, num);
1141}
1142
1143int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1144{
1145 const struct sys_reg_desc *target_specific;
1146 size_t num;
1147
1148 target_specific = get_target_table(vcpu->arch.target, false, &num);
1149 return kvm_handle_cp_32(vcpu,
1150 cp15_regs, ARRAY_SIZE(cp15_regs),
1151 target_specific, num);
1152}
1153
1154int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1155{
1156 return kvm_handle_cp_64(vcpu,
a9866ba0 1157 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
72564016
MZ
1158 NULL, 0);
1159}
1160
1161int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1162{
1163 return kvm_handle_cp_32(vcpu,
1164 cp14_regs, ARRAY_SIZE(cp14_regs),
1165 NULL, 0);
1166}
1167
7c8c5e6a 1168static int emulate_sys_reg(struct kvm_vcpu *vcpu,
3fec037d 1169 struct sys_reg_params *params)
7c8c5e6a
MZ
1170{
1171 size_t num;
1172 const struct sys_reg_desc *table, *r;
1173
62a89c44 1174 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1175
1176 /* Search target-specific then generic table. */
1177 r = find_reg(params, table, num);
1178 if (!r)
1179 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1180
1181 if (likely(r)) {
1182 /*
1183 * Not having an accessor means that we have
1184 * configured a trap that we don't know how to
1185 * handle. This certainly qualifies as a gross bug
1186 * that should be fixed right away.
1187 */
1188 BUG_ON(!r->access);
1189
1190 if (likely(r->access(vcpu, params, r))) {
1191 /* Skip instruction, since it was emulated */
1192 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1193 return 1;
1194 }
1195 /* If access function fails, it should complain. */
1196 } else {
1197 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1198 *vcpu_pc(vcpu));
1199 print_sys_reg_instr(params);
1200 }
1201 kvm_inject_undefined(vcpu);
1202 return 1;
1203}
1204
1205static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1206 const struct sys_reg_desc *table, size_t num)
1207{
1208 unsigned long i;
1209
1210 for (i = 0; i < num; i++)
1211 if (table[i].reset)
1212 table[i].reset(vcpu, &table[i]);
1213}
1214
1215/**
1216 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1217 * @vcpu: The VCPU pointer
1218 * @run: The kvm_run struct
1219 */
1220int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1221{
1222 struct sys_reg_params params;
1223 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2ec5be3d
PF
1224 int Rt = (esr >> 5) & 0x1f;
1225 int ret;
7c8c5e6a 1226
eef8c85a
AB
1227 trace_kvm_handle_sys_reg(esr);
1228
2072d29c
MZ
1229 params.is_aarch32 = false;
1230 params.is_32bit = false;
7c8c5e6a
MZ
1231 params.Op0 = (esr >> 20) & 3;
1232 params.Op1 = (esr >> 14) & 0x7;
1233 params.CRn = (esr >> 10) & 0xf;
1234 params.CRm = (esr >> 1) & 0xf;
1235 params.Op2 = (esr >> 17) & 0x7;
2ec5be3d 1236 params.regval = vcpu_get_reg(vcpu, Rt);
7c8c5e6a
MZ
1237 params.is_write = !(esr & 1);
1238
2ec5be3d
PF
1239 ret = emulate_sys_reg(vcpu, &params);
1240
1241 if (!params.is_write)
1242 vcpu_set_reg(vcpu, Rt, params.regval);
1243 return ret;
7c8c5e6a
MZ
1244}
1245
1246/******************************************************************************
1247 * Userspace API
1248 *****************************************************************************/
1249
1250static bool index_to_params(u64 id, struct sys_reg_params *params)
1251{
1252 switch (id & KVM_REG_SIZE_MASK) {
1253 case KVM_REG_SIZE_U64:
1254 /* Any unused index bits means it's not valid. */
1255 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1256 | KVM_REG_ARM_COPROC_MASK
1257 | KVM_REG_ARM64_SYSREG_OP0_MASK
1258 | KVM_REG_ARM64_SYSREG_OP1_MASK
1259 | KVM_REG_ARM64_SYSREG_CRN_MASK
1260 | KVM_REG_ARM64_SYSREG_CRM_MASK
1261 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1262 return false;
1263 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1264 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1265 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1266 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1267 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1268 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1269 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1270 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1271 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1272 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1273 return true;
1274 default:
1275 return false;
1276 }
1277}
1278
1279/* Decode an index value, and find the sys_reg_desc entry. */
1280static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1281 u64 id)
1282{
1283 size_t num;
1284 const struct sys_reg_desc *table, *r;
1285 struct sys_reg_params params;
1286
1287 /* We only do sys_reg for now. */
1288 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1289 return NULL;
1290
1291 if (!index_to_params(id, &params))
1292 return NULL;
1293
62a89c44 1294 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1295 r = find_reg(&params, table, num);
1296 if (!r)
1297 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1298
1299 /* Not saved in the sys_reg array? */
1300 if (r && !r->reg)
1301 r = NULL;
1302
1303 return r;
1304}
1305
1306/*
1307 * These are the invariant sys_reg registers: we let the guest see the
1308 * host versions of these, so they're part of the guest state.
1309 *
1310 * A future CPU may provide a mechanism to present different values to
1311 * the guest, or a future kvm may trap them.
1312 */
1313
1314#define FUNCTION_INVARIANT(reg) \
1315 static void get_##reg(struct kvm_vcpu *v, \
1316 const struct sys_reg_desc *r) \
1317 { \
1318 u64 val; \
1319 \
1320 asm volatile("mrs %0, " __stringify(reg) "\n" \
1321 : "=r" (val)); \
1322 ((struct sys_reg_desc *)r)->val = val; \
1323 }
1324
1325FUNCTION_INVARIANT(midr_el1)
1326FUNCTION_INVARIANT(ctr_el0)
1327FUNCTION_INVARIANT(revidr_el1)
1328FUNCTION_INVARIANT(id_pfr0_el1)
1329FUNCTION_INVARIANT(id_pfr1_el1)
1330FUNCTION_INVARIANT(id_dfr0_el1)
1331FUNCTION_INVARIANT(id_afr0_el1)
1332FUNCTION_INVARIANT(id_mmfr0_el1)
1333FUNCTION_INVARIANT(id_mmfr1_el1)
1334FUNCTION_INVARIANT(id_mmfr2_el1)
1335FUNCTION_INVARIANT(id_mmfr3_el1)
1336FUNCTION_INVARIANT(id_isar0_el1)
1337FUNCTION_INVARIANT(id_isar1_el1)
1338FUNCTION_INVARIANT(id_isar2_el1)
1339FUNCTION_INVARIANT(id_isar3_el1)
1340FUNCTION_INVARIANT(id_isar4_el1)
1341FUNCTION_INVARIANT(id_isar5_el1)
1342FUNCTION_INVARIANT(clidr_el1)
1343FUNCTION_INVARIANT(aidr_el1)
1344
1345/* ->val is filled in by kvm_sys_reg_table_init() */
1346static struct sys_reg_desc invariant_sys_regs[] = {
1347 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1348 NULL, get_midr_el1 },
1349 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1350 NULL, get_revidr_el1 },
1351 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1352 NULL, get_id_pfr0_el1 },
1353 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1354 NULL, get_id_pfr1_el1 },
1355 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1356 NULL, get_id_dfr0_el1 },
1357 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1358 NULL, get_id_afr0_el1 },
1359 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1360 NULL, get_id_mmfr0_el1 },
1361 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1362 NULL, get_id_mmfr1_el1 },
1363 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1364 NULL, get_id_mmfr2_el1 },
1365 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1366 NULL, get_id_mmfr3_el1 },
1367 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1368 NULL, get_id_isar0_el1 },
1369 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1370 NULL, get_id_isar1_el1 },
1371 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1372 NULL, get_id_isar2_el1 },
1373 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1374 NULL, get_id_isar3_el1 },
1375 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1376 NULL, get_id_isar4_el1 },
1377 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1378 NULL, get_id_isar5_el1 },
1379 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1380 NULL, get_clidr_el1 },
1381 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1382 NULL, get_aidr_el1 },
1383 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1384 NULL, get_ctr_el0 },
1385};
1386
26c99af1 1387static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
7c8c5e6a 1388{
7c8c5e6a
MZ
1389 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1390 return -EFAULT;
1391 return 0;
1392}
1393
26c99af1 1394static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
7c8c5e6a 1395{
7c8c5e6a
MZ
1396 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1397 return -EFAULT;
1398 return 0;
1399}
1400
1401static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1402{
1403 struct sys_reg_params params;
1404 const struct sys_reg_desc *r;
1405
1406 if (!index_to_params(id, &params))
1407 return -ENOENT;
1408
1409 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1410 if (!r)
1411 return -ENOENT;
1412
1413 return reg_to_user(uaddr, &r->val, id);
1414}
1415
1416static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1417{
1418 struct sys_reg_params params;
1419 const struct sys_reg_desc *r;
1420 int err;
1421 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1422
1423 if (!index_to_params(id, &params))
1424 return -ENOENT;
1425 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1426 if (!r)
1427 return -ENOENT;
1428
1429 err = reg_from_user(&val, uaddr, id);
1430 if (err)
1431 return err;
1432
1433 /* This is what we mean by invariant: you can't change it. */
1434 if (r->val != val)
1435 return -EINVAL;
1436
1437 return 0;
1438}
1439
1440static bool is_valid_cache(u32 val)
1441{
1442 u32 level, ctype;
1443
1444 if (val >= CSSELR_MAX)
18d45766 1445 return false;
7c8c5e6a
MZ
1446
1447 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1448 level = (val >> 1);
1449 ctype = (cache_levels >> (level * 3)) & 7;
1450
1451 switch (ctype) {
1452 case 0: /* No cache */
1453 return false;
1454 case 1: /* Instruction cache only */
1455 return (val & 1);
1456 case 2: /* Data cache only */
1457 case 4: /* Unified cache */
1458 return !(val & 1);
1459 case 3: /* Separate instruction and data caches */
1460 return true;
1461 default: /* Reserved: we can't know instruction or data. */
1462 return false;
1463 }
1464}
1465
1466static int demux_c15_get(u64 id, void __user *uaddr)
1467{
1468 u32 val;
1469 u32 __user *uval = uaddr;
1470
1471 /* Fail if we have unknown bits set. */
1472 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1473 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1474 return -ENOENT;
1475
1476 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1477 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1478 if (KVM_REG_SIZE(id) != 4)
1479 return -ENOENT;
1480 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1481 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1482 if (!is_valid_cache(val))
1483 return -ENOENT;
1484
1485 return put_user(get_ccsidr(val), uval);
1486 default:
1487 return -ENOENT;
1488 }
1489}
1490
1491static int demux_c15_set(u64 id, void __user *uaddr)
1492{
1493 u32 val, newval;
1494 u32 __user *uval = uaddr;
1495
1496 /* Fail if we have unknown bits set. */
1497 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1498 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1499 return -ENOENT;
1500
1501 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1502 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1503 if (KVM_REG_SIZE(id) != 4)
1504 return -ENOENT;
1505 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1506 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1507 if (!is_valid_cache(val))
1508 return -ENOENT;
1509
1510 if (get_user(newval, uval))
1511 return -EFAULT;
1512
1513 /* This is also invariant: you can't change it. */
1514 if (newval != get_ccsidr(val))
1515 return -EINVAL;
1516 return 0;
1517 default:
1518 return -ENOENT;
1519 }
1520}
1521
1522int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1523{
1524 const struct sys_reg_desc *r;
1525 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1526
1527 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1528 return demux_c15_get(reg->id, uaddr);
1529
1530 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1531 return -ENOENT;
1532
1533 r = index_to_sys_reg_desc(vcpu, reg->id);
1534 if (!r)
1535 return get_invariant_sys_reg(reg->id, uaddr);
1536
84e690bf
AB
1537 if (r->get_user)
1538 return (r->get_user)(vcpu, r, reg, uaddr);
1539
7c8c5e6a
MZ
1540 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1541}
1542
1543int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1544{
1545 const struct sys_reg_desc *r;
1546 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1547
1548 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1549 return demux_c15_set(reg->id, uaddr);
1550
1551 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1552 return -ENOENT;
1553
1554 r = index_to_sys_reg_desc(vcpu, reg->id);
1555 if (!r)
1556 return set_invariant_sys_reg(reg->id, uaddr);
1557
84e690bf
AB
1558 if (r->set_user)
1559 return (r->set_user)(vcpu, r, reg, uaddr);
1560
7c8c5e6a
MZ
1561 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1562}
1563
1564static unsigned int num_demux_regs(void)
1565{
1566 unsigned int i, count = 0;
1567
1568 for (i = 0; i < CSSELR_MAX; i++)
1569 if (is_valid_cache(i))
1570 count++;
1571
1572 return count;
1573}
1574
1575static int write_demux_regids(u64 __user *uindices)
1576{
efd48cea 1577 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
7c8c5e6a
MZ
1578 unsigned int i;
1579
1580 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1581 for (i = 0; i < CSSELR_MAX; i++) {
1582 if (!is_valid_cache(i))
1583 continue;
1584 if (put_user(val | i, uindices))
1585 return -EFAULT;
1586 uindices++;
1587 }
1588 return 0;
1589}
1590
1591static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1592{
1593 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1594 KVM_REG_ARM64_SYSREG |
1595 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1596 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1597 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1598 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1599 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1600}
1601
1602static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1603{
1604 if (!*uind)
1605 return true;
1606
1607 if (put_user(sys_reg_to_index(reg), *uind))
1608 return false;
1609
1610 (*uind)++;
1611 return true;
1612}
1613
1614/* Assumed ordered tables, see kvm_sys_reg_table_init. */
1615static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1616{
1617 const struct sys_reg_desc *i1, *i2, *end1, *end2;
1618 unsigned int total = 0;
1619 size_t num;
1620
1621 /* We check for duplicates here, to allow arch-specific overrides. */
62a89c44 1622 i1 = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1623 end1 = i1 + num;
1624 i2 = sys_reg_descs;
1625 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1626
1627 BUG_ON(i1 == end1 || i2 == end2);
1628
1629 /* Walk carefully, as both tables may refer to the same register. */
1630 while (i1 || i2) {
1631 int cmp = cmp_sys_reg(i1, i2);
1632 /* target-specific overrides generic entry. */
1633 if (cmp <= 0) {
1634 /* Ignore registers we trap but don't save. */
1635 if (i1->reg) {
1636 if (!copy_reg_to_user(i1, &uind))
1637 return -EFAULT;
1638 total++;
1639 }
1640 } else {
1641 /* Ignore registers we trap but don't save. */
1642 if (i2->reg) {
1643 if (!copy_reg_to_user(i2, &uind))
1644 return -EFAULT;
1645 total++;
1646 }
1647 }
1648
1649 if (cmp <= 0 && ++i1 == end1)
1650 i1 = NULL;
1651 if (cmp >= 0 && ++i2 == end2)
1652 i2 = NULL;
1653 }
1654 return total;
1655}
1656
1657unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1658{
1659 return ARRAY_SIZE(invariant_sys_regs)
1660 + num_demux_regs()
1661 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1662}
1663
1664int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1665{
1666 unsigned int i;
1667 int err;
1668
1669 /* Then give them all the invariant registers' indices. */
1670 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1671 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1672 return -EFAULT;
1673 uindices++;
1674 }
1675
1676 err = walk_sys_regs(vcpu, uindices);
1677 if (err < 0)
1678 return err;
1679 uindices += err;
1680
1681 return write_demux_regids(uindices);
1682}
1683
e6a95517
MZ
1684static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1685{
1686 unsigned int i;
1687
1688 for (i = 1; i < n; i++) {
1689 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1690 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1691 return 1;
1692 }
1693 }
1694
1695 return 0;
1696}
1697
7c8c5e6a
MZ
1698void kvm_sys_reg_table_init(void)
1699{
1700 unsigned int i;
1701 struct sys_reg_desc clidr;
1702
1703 /* Make sure tables are unique and in order. */
e6a95517
MZ
1704 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1705 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1706 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1707 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1708 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1709 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
7c8c5e6a
MZ
1710
1711 /* We abuse the reset function to overwrite the table itself. */
1712 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1713 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1714
1715 /*
1716 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1717 *
1718 * If software reads the Cache Type fields from Ctype1
1719 * upwards, once it has seen a value of 0b000, no caches
1720 * exist at further-out levels of the hierarchy. So, for
1721 * example, if Ctype3 is the first Cache Type field with a
1722 * value of 0b000, the values of Ctype4 to Ctype7 must be
1723 * ignored.
1724 */
1725 get_clidr_el1(NULL, &clidr); /* Ugly... */
1726 cache_levels = clidr.val;
1727 for (i = 0; i < 7; i++)
1728 if (((cache_levels >> (i*3)) & 7) == 0)
1729 break;
1730 /* Clear all higher bits. */
1731 cache_levels &= (1 << (i*3))-1;
1732}
1733
1734/**
1735 * kvm_reset_sys_regs - sets system registers to reset value
1736 * @vcpu: The VCPU pointer
1737 *
1738 * This function finds the right table above and sets the registers on the
1739 * virtual CPU struct to their architecturally defined reset values.
1740 */
1741void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1742{
1743 size_t num;
1744 const struct sys_reg_desc *table;
1745
1746 /* Catch someone adding a register without putting in reset entry. */
1747 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1748
1749 /* Generic chip reset first (so target could override). */
1750 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1751
62a89c44 1752 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1753 reset_sys_reg_descs(vcpu, table, num);
1754
1755 for (num = 1; num < NR_SYS_REGS; num++)
1756 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1757 panic("Didn't reset vcpu_sys_reg(%zi)", num);
1758}