KVM: arm64: Use guest ID register values for the sake of emulation
[linux-2.6-block.git] / arch / arm64 / kvm / sys_regs.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
7c8c5e6a
MZ
2/*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/coproc.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
9 * Christoffer Dall <c.dall@virtualopensystems.com>
7c8c5e6a
MZ
10 */
11
c8857935 12#include <linux/bitfield.h>
623eefa8 13#include <linux/bsearch.h>
7af0c253 14#include <linux/cacheinfo.h>
7c8c5e6a 15#include <linux/kvm_host.h>
c6d01a94 16#include <linux/mm.h>
07d79fe7 17#include <linux/printk.h>
7c8c5e6a 18#include <linux/uaccess.h>
c6d01a94 19
7c8c5e6a
MZ
20#include <asm/cacheflush.h>
21#include <asm/cputype.h>
0c557ed4 22#include <asm/debug-monitors.h>
c6d01a94
MR
23#include <asm/esr.h>
24#include <asm/kvm_arm.h>
c6d01a94 25#include <asm/kvm_emulate.h>
d47533da 26#include <asm/kvm_hyp.h>
c6d01a94 27#include <asm/kvm_mmu.h>
6ff9dc23 28#include <asm/kvm_nested.h>
ab946834 29#include <asm/perf_event.h>
1f3d8699 30#include <asm/sysreg.h>
c6d01a94 31
7c8c5e6a
MZ
32#include <trace/events/kvm.h>
33
34#include "sys_regs.h"
35
eef8c85a
AB
36#include "trace.h"
37
7c8c5e6a 38/*
62a89c44
MZ
39 * For AArch32, we only take care of what is being trapped. Anything
40 * that has to do with init and userspace access has to go via the
41 * 64bit interface.
7c8c5e6a
MZ
42 */
43
f24adc65 44static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
c118cead
JZ
45static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
46 u64 val);
f24adc65 47
7b5b4df1 48static bool read_from_write_only(struct kvm_vcpu *vcpu,
e7f1d1ee
MZ
49 struct sys_reg_params *params,
50 const struct sys_reg_desc *r)
7b5b4df1
MZ
51{
52 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
53 print_sys_reg_instr(params);
54 kvm_inject_undefined(vcpu);
55 return false;
56}
57
7b1dba1f
MZ
58static bool write_to_read_only(struct kvm_vcpu *vcpu,
59 struct sys_reg_params *params,
60 const struct sys_reg_desc *r)
61{
62 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
63 print_sys_reg_instr(params);
64 kvm_inject_undefined(vcpu);
65 return false;
66}
67
7ea90bdd
MZ
68u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
69{
70 u64 val = 0x8badf00d8badf00d;
71
30b6ab45 72 if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
7ea90bdd
MZ
73 __vcpu_read_sys_reg_from_cpu(reg, &val))
74 return val;
75
76 return __vcpu_sys_reg(vcpu, reg);
77}
78
79void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
80{
30b6ab45 81 if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
7ea90bdd
MZ
82 __vcpu_write_sys_reg_to_cpu(val, reg))
83 return;
84
242b6f34 85 __vcpu_sys_reg(vcpu, reg) = val;
d47533da
CD
86}
87
7c8c5e6a 88/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
c73a4416 89#define CSSELR_MAX 14
7c8c5e6a 90
7af0c253
AO
91/*
92 * Returns the minimum line size for the selected cache, expressed as
93 * Log2(bytes).
94 */
95static u8 get_min_cache_line_size(bool icache)
96{
97 u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
98 u8 field;
99
100 if (icache)
101 field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
102 else
103 field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
104
105 /*
106 * Cache line size is represented as Log2(words) in CTR_EL0.
107 * Log2(bytes) can be derived with the following:
108 *
109 * Log2(words) + 2 = Log2(bytes / 4) + 2
110 * = Log2(bytes) - 2 + 2
111 * = Log2(bytes)
112 */
113 return field + 2;
114}
115
7c8c5e6a 116/* Which cache CCSIDR represents depends on CSSELR value. */
7af0c253
AO
117static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
118{
119 u8 line_size;
120
121 if (vcpu->arch.ccsidr)
122 return vcpu->arch.ccsidr[csselr];
123
124 line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
125
126 /*
127 * Fabricate a CCSIDR value as the overriding value does not exist.
128 * The real CCSIDR value will not be used as it can vary by the
129 * physical CPU which the vcpu currently resides in.
130 *
131 * The line size is determined with get_min_cache_line_size(), which
132 * should be valid for all CPUs even if they have different cache
133 * configuration.
134 *
135 * The associativity bits are cleared, meaning the geometry of all data
136 * and unified caches (which are guaranteed to be PIPT and thus
137 * non-aliasing) are 1 set and 1 way.
138 * Guests should not be doing cache operations by set/way at all, and
139 * for this reason, we trap them and attempt to infer the intent, so
140 * that we can flush the entire guest's address space at the appropriate
141 * time. The exposed geometry minimizes the number of the traps.
142 * [If guests should attempt to infer aliasing properties from the
143 * geometry (which is not permitted by the architecture), they would
144 * only do so for virtually indexed caches.]
145 *
146 * We don't check if the cache level exists as it is allowed to return
147 * an UNKNOWN value if not.
148 */
149 return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
150}
151
152static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
7c8c5e6a 153{
7af0c253
AO
154 u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
155 u32 *ccsidr = vcpu->arch.ccsidr;
156 u32 i;
157
158 if ((val & CCSIDR_EL1_RES0) ||
159 line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
160 return -EINVAL;
161
162 if (!ccsidr) {
163 if (val == get_ccsidr(vcpu, csselr))
164 return 0;
7c8c5e6a 165
5f623a59 166 ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
7af0c253
AO
167 if (!ccsidr)
168 return -ENOMEM;
7c8c5e6a 169
7af0c253
AO
170 for (i = 0; i < CSSELR_MAX; i++)
171 ccsidr[i] = get_ccsidr(vcpu, i);
172
173 vcpu->arch.ccsidr = ccsidr;
174 }
7c8c5e6a 175
7af0c253 176 ccsidr[csselr] = val;
7c8c5e6a 177
7af0c253 178 return 0;
7c8c5e6a
MZ
179}
180
6ff9dc23
JL
181static bool access_rw(struct kvm_vcpu *vcpu,
182 struct sys_reg_params *p,
183 const struct sys_reg_desc *r)
184{
185 if (p->is_write)
186 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
187 else
188 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
189
190 return true;
191}
192
3c1e7165
MZ
193/*
194 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
195 */
7c8c5e6a 196static bool access_dcsw(struct kvm_vcpu *vcpu,
3fec037d 197 struct sys_reg_params *p,
7c8c5e6a
MZ
198 const struct sys_reg_desc *r)
199{
7c8c5e6a 200 if (!p->is_write)
e7f1d1ee 201 return read_from_write_only(vcpu, p, r);
7c8c5e6a 202
09605e94
MZ
203 /*
204 * Only track S/W ops if we don't have FWB. It still indicates
205 * that the guest is a bit broken (S/W operations should only
206 * be done by firmware, knowing that there is only a single
207 * CPU left in the system, and certainly not from non-secure
208 * software).
209 */
210 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
211 kvm_set_way_flush(vcpu);
212
7c8c5e6a
MZ
213 return true;
214}
215
d282fa3c
MZ
216static bool access_dcgsw(struct kvm_vcpu *vcpu,
217 struct sys_reg_params *p,
218 const struct sys_reg_desc *r)
219{
220 if (!kvm_has_mte(vcpu->kvm)) {
221 kvm_inject_undefined(vcpu);
222 return false;
223 }
224
225 /* Treat MTE S/W ops as we treat the classic ones: with contempt */
226 return access_dcsw(vcpu, p, r);
227}
228
b1ea1d76
MZ
229static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
230{
231 switch (r->aarch32_map) {
232 case AA32_LO:
233 *mask = GENMASK_ULL(31, 0);
234 *shift = 0;
235 break;
236 case AA32_HI:
237 *mask = GENMASK_ULL(63, 32);
238 *shift = 32;
239 break;
240 default:
241 *mask = GENMASK_ULL(63, 0);
242 *shift = 0;
243 break;
244 }
245}
246
4d44923b
MZ
247/*
248 * Generic accessor for VM registers. Only called as long as HCR_TVM
3c1e7165
MZ
249 * is set. If the guest enables the MMU, we stop trapping the VM
250 * sys_regs and leave it in complete control of the caches.
4d44923b
MZ
251 */
252static bool access_vm_reg(struct kvm_vcpu *vcpu,
3fec037d 253 struct sys_reg_params *p,
4d44923b
MZ
254 const struct sys_reg_desc *r)
255{
3c1e7165 256 bool was_enabled = vcpu_has_cache_enabled(vcpu);
b1ea1d76 257 u64 val, mask, shift;
4d44923b
MZ
258
259 BUG_ON(!p->is_write);
260
b1ea1d76 261 get_access_mask(r, &mask, &shift);
52f6c4f0 262
b1ea1d76
MZ
263 if (~mask) {
264 val = vcpu_read_sys_reg(vcpu, r->reg);
265 val &= ~mask;
dedf97e8 266 } else {
b1ea1d76 267 val = 0;
dedf97e8 268 }
b1ea1d76
MZ
269
270 val |= (p->regval & (mask >> shift)) << shift;
271 vcpu_write_sys_reg(vcpu, val, r->reg);
f0a3eaff 272
3c1e7165 273 kvm_toggle_cache(vcpu, was_enabled);
4d44923b
MZ
274 return true;
275}
276
af473829
JM
277static bool access_actlr(struct kvm_vcpu *vcpu,
278 struct sys_reg_params *p,
279 const struct sys_reg_desc *r)
280{
b1ea1d76
MZ
281 u64 mask, shift;
282
af473829
JM
283 if (p->is_write)
284 return ignore_write(vcpu, p);
285
b1ea1d76
MZ
286 get_access_mask(r, &mask, &shift);
287 p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
af473829
JM
288
289 return true;
290}
291
6d52f35a
AP
292/*
293 * Trap handler for the GICv3 SGI generation system register.
294 * Forward the request to the VGIC emulation.
295 * The cp15_64 code makes sure this automatically works
296 * for both AArch64 and AArch32 accesses.
297 */
298static bool access_gic_sgi(struct kvm_vcpu *vcpu,
3fec037d 299 struct sys_reg_params *p,
6d52f35a
AP
300 const struct sys_reg_desc *r)
301{
03bd646d
MZ
302 bool g1;
303
6d52f35a 304 if (!p->is_write)
e7f1d1ee 305 return read_from_write_only(vcpu, p, r);
6d52f35a 306
03bd646d
MZ
307 /*
308 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
309 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
310 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
311 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
312 * group.
313 */
50f30453 314 if (p->Op0 == 0) { /* AArch32 */
03bd646d
MZ
315 switch (p->Op1) {
316 default: /* Keep GCC quiet */
317 case 0: /* ICC_SGI1R */
318 g1 = true;
319 break;
320 case 1: /* ICC_ASGI1R */
321 case 2: /* ICC_SGI0R */
322 g1 = false;
323 break;
324 }
50f30453 325 } else { /* AArch64 */
03bd646d
MZ
326 switch (p->Op2) {
327 default: /* Keep GCC quiet */
328 case 5: /* ICC_SGI1R_EL1 */
329 g1 = true;
330 break;
331 case 6: /* ICC_ASGI1R_EL1 */
332 case 7: /* ICC_SGI0R_EL1 */
333 g1 = false;
334 break;
335 }
336 }
337
338 vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
6d52f35a
AP
339
340 return true;
341}
342
b34f2bcb
MZ
343static bool access_gic_sre(struct kvm_vcpu *vcpu,
344 struct sys_reg_params *p,
345 const struct sys_reg_desc *r)
346{
347 if (p->is_write)
348 return ignore_write(vcpu, p);
349
350 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
351 return true;
352}
353
7609c125 354static bool trap_raz_wi(struct kvm_vcpu *vcpu,
3fec037d 355 struct sys_reg_params *p,
7609c125 356 const struct sys_reg_desc *r)
7c8c5e6a
MZ
357{
358 if (p->is_write)
359 return ignore_write(vcpu, p);
360 else
361 return read_zero(vcpu, p);
362}
363
6ff9dc23
JL
364static bool trap_undef(struct kvm_vcpu *vcpu,
365 struct sys_reg_params *p,
366 const struct sys_reg_desc *r)
367{
368 kvm_inject_undefined(vcpu);
369 return false;
370}
371
22925521
MZ
372/*
373 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
374 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
375 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
376 * treat it separately.
377 */
378static bool trap_loregion(struct kvm_vcpu *vcpu,
379 struct sys_reg_params *p,
380 const struct sys_reg_desc *r)
cc33c4e2 381{
8b6958d6 382 u64 val = IDREG(vcpu->kvm, SYS_ID_AA64MMFR1_EL1);
7ba8b438 383 u32 sr = reg_to_encoding(r);
22925521 384
6fcd0193 385 if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
22925521
MZ
386 kvm_inject_undefined(vcpu);
387 return false;
388 }
389
390 if (p->is_write && sr == SYS_LORID_EL1)
391 return write_to_read_only(vcpu, p, r);
392
393 return trap_raz_wi(vcpu, p, r);
cc33c4e2
MR
394}
395
f24adc65
OU
396static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
397 struct sys_reg_params *p,
398 const struct sys_reg_desc *r)
399{
400 u64 oslsr;
401
402 if (!p->is_write)
403 return read_from_write_only(vcpu, p, r);
404
405 /* Forward the OSLK bit to OSLSR */
187de7c2
MB
406 oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
407 if (p->regval & OSLAR_EL1_OSLK)
408 oslsr |= OSLSR_EL1_OSLK;
f24adc65
OU
409
410 __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
411 return true;
412}
413
0c557ed4 414static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
3fec037d 415 struct sys_reg_params *p,
0c557ed4
MZ
416 const struct sys_reg_desc *r)
417{
d42e2671 418 if (p->is_write)
e2ffceaa 419 return write_to_read_only(vcpu, p, r);
d42e2671
OU
420
421 p->regval = __vcpu_sys_reg(vcpu, r->reg);
422 return true;
423}
424
425static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
978ceeb3 426 u64 val)
d42e2671 427{
f24adc65
OU
428 /*
429 * The only modifiable bit is the OSLK bit. Refuse the write if
430 * userspace attempts to change any other bit in the register.
431 */
187de7c2 432 if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
d42e2671
OU
433 return -EINVAL;
434
f24adc65 435 __vcpu_sys_reg(vcpu, rd->reg) = val;
d42e2671 436 return 0;
0c557ed4
MZ
437}
438
439static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
3fec037d 440 struct sys_reg_params *p,
0c557ed4
MZ
441 const struct sys_reg_desc *r)
442{
443 if (p->is_write) {
444 return ignore_write(vcpu, p);
445 } else {
1f3d8699 446 p->regval = read_sysreg(dbgauthstatus_el1);
0c557ed4
MZ
447 return true;
448 }
449}
450
451/*
452 * We want to avoid world-switching all the DBG registers all the
453 * time:
e6bc555c 454 *
0c557ed4
MZ
455 * - If we've touched any debug register, it is likely that we're
456 * going to touch more of them. It then makes sense to disable the
457 * traps and start doing the save/restore dance
458 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
459 * then mandatory to save/restore the registers, as the guest
460 * depends on them.
e6bc555c 461 *
0c557ed4
MZ
462 * For this, we use a DIRTY bit, indicating the guest has modified the
463 * debug registers, used as follow:
464 *
465 * On guest entry:
466 * - If the dirty bit is set (because we're coming back from trapping),
467 * disable the traps, save host registers, restore guest registers.
468 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
469 * set the dirty bit, disable the traps, save host registers,
470 * restore guest registers.
471 * - Otherwise, enable the traps
472 *
473 * On guest exit:
474 * - If the dirty bit is set, save guest registers, restore host
475 * registers and clear the dirty bit. This ensure that the host can
476 * now use the debug registers.
477 */
478static bool trap_debug_regs(struct kvm_vcpu *vcpu,
3fec037d 479 struct sys_reg_params *p,
0c557ed4
MZ
480 const struct sys_reg_desc *r)
481{
6ff9dc23
JL
482 access_rw(vcpu, p, r);
483 if (p->is_write)
b1da4908 484 vcpu_set_flag(vcpu, DEBUG_DIRTY);
0c557ed4 485
2ec5be3d 486 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
eef8c85a 487
0c557ed4
MZ
488 return true;
489}
490
84e690bf
AB
491/*
492 * reg_to_dbg/dbg_to_reg
493 *
494 * A 32 bit write to a debug register leave top bits alone
495 * A 32 bit read from a debug register only returns the bottom bits
496 *
b1da4908
MZ
497 * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
498 * switches between host and guest values in future.
84e690bf 499 */
281243cb
MZ
500static void reg_to_dbg(struct kvm_vcpu *vcpu,
501 struct sys_reg_params *p,
1da42c34 502 const struct sys_reg_desc *rd,
281243cb 503 u64 *dbg_reg)
84e690bf 504{
1da42c34 505 u64 mask, shift, val;
84e690bf 506
1da42c34 507 get_access_mask(rd, &mask, &shift);
84e690bf 508
1da42c34
MZ
509 val = *dbg_reg;
510 val &= ~mask;
511 val |= (p->regval & (mask >> shift)) << shift;
84e690bf 512 *dbg_reg = val;
1da42c34 513
b1da4908 514 vcpu_set_flag(vcpu, DEBUG_DIRTY);
84e690bf
AB
515}
516
281243cb
MZ
517static void dbg_to_reg(struct kvm_vcpu *vcpu,
518 struct sys_reg_params *p,
1da42c34 519 const struct sys_reg_desc *rd,
281243cb 520 u64 *dbg_reg)
84e690bf 521{
1da42c34
MZ
522 u64 mask, shift;
523
524 get_access_mask(rd, &mask, &shift);
525 p->regval = (*dbg_reg & mask) >> shift;
84e690bf
AB
526}
527
281243cb
MZ
528static bool trap_bvr(struct kvm_vcpu *vcpu,
529 struct sys_reg_params *p,
530 const struct sys_reg_desc *rd)
84e690bf 531{
cb853ded 532 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
84e690bf
AB
533
534 if (p->is_write)
1da42c34 535 reg_to_dbg(vcpu, p, rd, dbg_reg);
84e690bf 536 else
1da42c34 537 dbg_to_reg(vcpu, p, rd, dbg_reg);
84e690bf 538
cb853ded 539 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
eef8c85a 540
84e690bf
AB
541 return true;
542}
543
544static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
978ceeb3 545 u64 val)
84e690bf 546{
978ceeb3 547 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
84e690bf
AB
548 return 0;
549}
550
551static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
978ceeb3 552 u64 *val)
84e690bf 553{
978ceeb3 554 *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
84e690bf
AB
555 return 0;
556}
557
d86cde6e 558static u64 reset_bvr(struct kvm_vcpu *vcpu,
281243cb 559 const struct sys_reg_desc *rd)
84e690bf 560{
cb853ded 561 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
d86cde6e 562 return rd->val;
84e690bf
AB
563}
564
281243cb
MZ
565static bool trap_bcr(struct kvm_vcpu *vcpu,
566 struct sys_reg_params *p,
567 const struct sys_reg_desc *rd)
84e690bf 568{
cb853ded 569 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
84e690bf
AB
570
571 if (p->is_write)
1da42c34 572 reg_to_dbg(vcpu, p, rd, dbg_reg);
84e690bf 573 else
1da42c34 574 dbg_to_reg(vcpu, p, rd, dbg_reg);
84e690bf 575
cb853ded 576 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
eef8c85a 577
84e690bf
AB
578 return true;
579}
580
581static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
978ceeb3 582 u64 val)
84e690bf 583{
978ceeb3 584 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
84e690bf
AB
585 return 0;
586}
587
588static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
978ceeb3 589 u64 *val)
84e690bf 590{
978ceeb3 591 *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
84e690bf
AB
592 return 0;
593}
594
d86cde6e 595static u64 reset_bcr(struct kvm_vcpu *vcpu,
281243cb 596 const struct sys_reg_desc *rd)
84e690bf 597{
cb853ded 598 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
d86cde6e 599 return rd->val;
84e690bf
AB
600}
601
281243cb
MZ
602static bool trap_wvr(struct kvm_vcpu *vcpu,
603 struct sys_reg_params *p,
604 const struct sys_reg_desc *rd)
84e690bf 605{
cb853ded 606 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
84e690bf
AB
607
608 if (p->is_write)
1da42c34 609 reg_to_dbg(vcpu, p, rd, dbg_reg);
84e690bf 610 else
1da42c34 611 dbg_to_reg(vcpu, p, rd, dbg_reg);
84e690bf 612
cb853ded
MZ
613 trace_trap_reg(__func__, rd->CRm, p->is_write,
614 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
eef8c85a 615
84e690bf
AB
616 return true;
617}
618
619static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
978ceeb3 620 u64 val)
84e690bf 621{
978ceeb3 622 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
84e690bf
AB
623 return 0;
624}
625
626static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
978ceeb3 627 u64 *val)
84e690bf 628{
978ceeb3 629 *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
84e690bf
AB
630 return 0;
631}
632
d86cde6e 633static u64 reset_wvr(struct kvm_vcpu *vcpu,
281243cb 634 const struct sys_reg_desc *rd)
84e690bf 635{
cb853ded 636 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
d86cde6e 637 return rd->val;
84e690bf
AB
638}
639
281243cb
MZ
640static bool trap_wcr(struct kvm_vcpu *vcpu,
641 struct sys_reg_params *p,
642 const struct sys_reg_desc *rd)
84e690bf 643{
cb853ded 644 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
84e690bf
AB
645
646 if (p->is_write)
1da42c34 647 reg_to_dbg(vcpu, p, rd, dbg_reg);
84e690bf 648 else
1da42c34 649 dbg_to_reg(vcpu, p, rd, dbg_reg);
84e690bf 650
cb853ded 651 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
eef8c85a 652
84e690bf
AB
653 return true;
654}
655
656static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
978ceeb3 657 u64 val)
84e690bf 658{
978ceeb3 659 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
84e690bf
AB
660 return 0;
661}
662
663static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
978ceeb3 664 u64 *val)
84e690bf 665{
978ceeb3 666 *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
84e690bf
AB
667 return 0;
668}
669
d86cde6e 670static u64 reset_wcr(struct kvm_vcpu *vcpu,
281243cb 671 const struct sys_reg_desc *rd)
84e690bf 672{
cb853ded 673 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
d86cde6e 674 return rd->val;
84e690bf
AB
675}
676
d86cde6e 677static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
7c8c5e6a 678{
8d404c4c
CD
679 u64 amair = read_sysreg(amair_el1);
680 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
d86cde6e 681 return amair;
7c8c5e6a
MZ
682}
683
d86cde6e 684static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
af473829
JM
685{
686 u64 actlr = read_sysreg(actlr_el1);
687 vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
d86cde6e 688 return actlr;
af473829
JM
689}
690
d86cde6e 691static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
7c8c5e6a 692{
4429fc64
AP
693 u64 mpidr;
694
7c8c5e6a 695 /*
4429fc64
AP
696 * Map the vcpu_id into the first three affinity level fields of
697 * the MPIDR. We limit the number of VCPUs in level 0 due to a
698 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
699 * of the GICv3 to be able to address each CPU directly when
700 * sending IPIs.
7c8c5e6a 701 */
4429fc64
AP
702 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
703 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
704 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
d86cde6e
JZ
705 mpidr |= (1ULL << 31);
706 vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
707
708 return mpidr;
7c8c5e6a
MZ
709}
710
11663111
MZ
711static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
712 const struct sys_reg_desc *r)
713{
714 if (kvm_vcpu_has_pmu(vcpu))
715 return 0;
716
717 return REG_HIDDEN;
718}
719
d86cde6e 720static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
0ab410a9
MZ
721{
722 u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
723
724 /* No PMU available, any PMU reg may UNDEF... */
725 if (!kvm_arm_support_pmu_v3())
d86cde6e 726 return 0;
0ab410a9
MZ
727
728 n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
729 n &= ARMV8_PMU_PMCR_N_MASK;
730 if (n)
731 mask |= GENMASK(n - 1, 0);
732
733 reset_unknown(vcpu, r);
734 __vcpu_sys_reg(vcpu, r->reg) &= mask;
d86cde6e
JZ
735
736 return __vcpu_sys_reg(vcpu, r->reg);
0ab410a9
MZ
737}
738
d86cde6e 739static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
0ab410a9
MZ
740{
741 reset_unknown(vcpu, r);
742 __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
d86cde6e
JZ
743
744 return __vcpu_sys_reg(vcpu, r->reg);
0ab410a9
MZ
745}
746
d86cde6e 747static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
0ab410a9
MZ
748{
749 reset_unknown(vcpu, r);
750 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
d86cde6e
JZ
751
752 return __vcpu_sys_reg(vcpu, r->reg);
0ab410a9
MZ
753}
754
d86cde6e 755static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
0ab410a9
MZ
756{
757 reset_unknown(vcpu, r);
758 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
d86cde6e
JZ
759
760 return __vcpu_sys_reg(vcpu, r->reg);
0ab410a9
MZ
761}
762
d86cde6e 763static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
ab946834 764{
292e8f14 765 u64 pmcr;
ab946834 766
2a5f1b67
MZ
767 /* No PMU available, PMCR_EL0 may UNDEF... */
768 if (!kvm_arm_support_pmu_v3())
d86cde6e 769 return 0;
2a5f1b67 770
292e8f14 771 /* Only preserve PMCR_EL0.N, and reset the rest to 0 */
aff23483 772 pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
f3c6efc7 773 if (!kvm_supports_32bit_el0())
292e8f14
MZ
774 pmcr |= ARMV8_PMU_PMCR_LC;
775
776 __vcpu_sys_reg(vcpu, r->reg) = pmcr;
d86cde6e
JZ
777
778 return __vcpu_sys_reg(vcpu, r->reg);
ab946834
SZ
779}
780
6c007036 781static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
d692b8ad 782{
8d404c4c 783 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
7ded92e2 784 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
d692b8ad 785
24d5950f
MZ
786 if (!enabled)
787 kvm_inject_undefined(vcpu);
d692b8ad 788
6c007036 789 return !enabled;
d692b8ad
SZ
790}
791
6c007036 792static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
d692b8ad 793{
6c007036
MZ
794 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
795}
d692b8ad 796
6c007036
MZ
797static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
798{
799 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
d692b8ad
SZ
800}
801
802static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
803{
6c007036 804 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
d692b8ad
SZ
805}
806
807static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
808{
6c007036 809 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
d692b8ad
SZ
810}
811
ab946834
SZ
812static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
813 const struct sys_reg_desc *r)
814{
815 u64 val;
816
d692b8ad
SZ
817 if (pmu_access_el0_disabled(vcpu))
818 return false;
819
ab946834 820 if (p->is_write) {
64d6820d
MZ
821 /*
822 * Only update writeable bits of PMCR (continuing into
823 * kvm_pmu_handle_pmcr() as well)
824 */
8d404c4c 825 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
ab946834
SZ
826 val &= ~ARMV8_PMU_PMCR_MASK;
827 val |= p->regval & ARMV8_PMU_PMCR_MASK;
f3c6efc7 828 if (!kvm_supports_32bit_el0())
6f163714 829 val |= ARMV8_PMU_PMCR_LC;
76993739 830 kvm_pmu_handle_pmcr(vcpu, val);
ab946834
SZ
831 } else {
832 /* PMCR.P & PMCR.C are RAZ */
8d404c4c 833 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
ab946834
SZ
834 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
835 p->regval = val;
836 }
837
838 return true;
839}
840
3965c3ce
SZ
841static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
842 const struct sys_reg_desc *r)
843{
d692b8ad
SZ
844 if (pmu_access_event_counter_el0_disabled(vcpu))
845 return false;
846
3965c3ce 847 if (p->is_write)
8d404c4c 848 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
3965c3ce
SZ
849 else
850 /* return PMSELR.SEL field */
8d404c4c 851 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
3965c3ce
SZ
852 & ARMV8_PMU_COUNTER_MASK;
853
854 return true;
855}
856
a86b5505
SZ
857static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
858 const struct sys_reg_desc *r)
859{
99b6a401 860 u64 pmceid, mask, shift;
a86b5505 861
a86b5505
SZ
862 BUG_ON(p->is_write);
863
d692b8ad
SZ
864 if (pmu_access_el0_disabled(vcpu))
865 return false;
866
99b6a401
MZ
867 get_access_mask(r, &mask, &shift);
868
88865bec 869 pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
99b6a401
MZ
870 pmceid &= mask;
871 pmceid >>= shift;
a86b5505
SZ
872
873 p->regval = pmceid;
874
875 return true;
876}
877
051ff581
SZ
878static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
879{
880 u64 pmcr, val;
881
8d404c4c 882 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
051ff581 883 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
24d5950f
MZ
884 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
885 kvm_inject_undefined(vcpu);
051ff581 886 return false;
24d5950f 887 }
051ff581
SZ
888
889 return true;
890}
891
9228b261
RW
892static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
893 u64 *val)
894{
895 u64 idx;
896
897 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
898 /* PMCCNTR_EL0 */
899 idx = ARMV8_PMU_CYCLE_IDX;
900 else
901 /* PMEVCNTRn_EL0 */
902 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
903
904 *val = kvm_pmu_get_counter_value(vcpu, idx);
905 return 0;
906}
907
051ff581
SZ
908static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
909 struct sys_reg_params *p,
910 const struct sys_reg_desc *r)
911{
a3da9358 912 u64 idx = ~0UL;
051ff581
SZ
913
914 if (r->CRn == 9 && r->CRm == 13) {
915 if (r->Op2 == 2) {
916 /* PMXEVCNTR_EL0 */
d692b8ad
SZ
917 if (pmu_access_event_counter_el0_disabled(vcpu))
918 return false;
919
8d404c4c 920 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
051ff581
SZ
921 & ARMV8_PMU_COUNTER_MASK;
922 } else if (r->Op2 == 0) {
923 /* PMCCNTR_EL0 */
d692b8ad
SZ
924 if (pmu_access_cycle_counter_el0_disabled(vcpu))
925 return false;
926
051ff581 927 idx = ARMV8_PMU_CYCLE_IDX;
051ff581 928 }
9e3f7a29
WH
929 } else if (r->CRn == 0 && r->CRm == 9) {
930 /* PMCCNTR */
931 if (pmu_access_event_counter_el0_disabled(vcpu))
932 return false;
933
934 idx = ARMV8_PMU_CYCLE_IDX;
051ff581
SZ
935 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
936 /* PMEVCNTRn_EL0 */
d692b8ad
SZ
937 if (pmu_access_event_counter_el0_disabled(vcpu))
938 return false;
939
051ff581 940 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
051ff581
SZ
941 }
942
a3da9358
MZ
943 /* Catch any decoding mistake */
944 WARN_ON(idx == ~0UL);
945
051ff581
SZ
946 if (!pmu_counter_idx_valid(vcpu, idx))
947 return false;
948
d692b8ad
SZ
949 if (p->is_write) {
950 if (pmu_access_el0_disabled(vcpu))
951 return false;
952
051ff581 953 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
d692b8ad 954 } else {
051ff581 955 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
d692b8ad 956 }
051ff581
SZ
957
958 return true;
959}
960
9feb21ac
SZ
961static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
962 const struct sys_reg_desc *r)
963{
964 u64 idx, reg;
965
d692b8ad
SZ
966 if (pmu_access_el0_disabled(vcpu))
967 return false;
968
9feb21ac
SZ
969 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
970 /* PMXEVTYPER_EL0 */
8d404c4c 971 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
9feb21ac
SZ
972 reg = PMEVTYPER0_EL0 + idx;
973 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
974 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
975 if (idx == ARMV8_PMU_CYCLE_IDX)
976 reg = PMCCFILTR_EL0;
977 else
978 /* PMEVTYPERn_EL0 */
979 reg = PMEVTYPER0_EL0 + idx;
980 } else {
981 BUG();
982 }
983
984 if (!pmu_counter_idx_valid(vcpu, idx))
985 return false;
986
987 if (p->is_write) {
988 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
435e53fb 989 kvm_vcpu_pmu_restore_guest(vcpu);
9feb21ac 990 } else {
8d404c4c 991 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
9feb21ac
SZ
992 }
993
994 return true;
995}
996
96b0eebc
SZ
997static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
998 const struct sys_reg_desc *r)
999{
1000 u64 val, mask;
1001
d692b8ad
SZ
1002 if (pmu_access_el0_disabled(vcpu))
1003 return false;
1004
96b0eebc
SZ
1005 mask = kvm_pmu_valid_counter_mask(vcpu);
1006 if (p->is_write) {
1007 val = p->regval & mask;
1008 if (r->Op2 & 0x1) {
1009 /* accessing PMCNTENSET_EL0 */
8d404c4c 1010 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
418e5ca8 1011 kvm_pmu_enable_counter_mask(vcpu, val);
435e53fb 1012 kvm_vcpu_pmu_restore_guest(vcpu);
96b0eebc
SZ
1013 } else {
1014 /* accessing PMCNTENCLR_EL0 */
8d404c4c 1015 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
418e5ca8 1016 kvm_pmu_disable_counter_mask(vcpu, val);
96b0eebc
SZ
1017 }
1018 } else {
f5eff400 1019 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
96b0eebc
SZ
1020 }
1021
1022 return true;
1023}
1024
9db52c78
SZ
1025static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1026 const struct sys_reg_desc *r)
1027{
1028 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1029
b0737e99 1030 if (check_pmu_access_disabled(vcpu, 0))
d692b8ad
SZ
1031 return false;
1032
9db52c78
SZ
1033 if (p->is_write) {
1034 u64 val = p->regval & mask;
1035
1036 if (r->Op2 & 0x1)
1037 /* accessing PMINTENSET_EL1 */
8d404c4c 1038 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
9db52c78
SZ
1039 else
1040 /* accessing PMINTENCLR_EL1 */
8d404c4c 1041 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
9db52c78 1042 } else {
f5eff400 1043 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
9db52c78
SZ
1044 }
1045
1046 return true;
1047}
1048
76d883c4
SZ
1049static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1050 const struct sys_reg_desc *r)
1051{
1052 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1053
d692b8ad
SZ
1054 if (pmu_access_el0_disabled(vcpu))
1055 return false;
1056
76d883c4
SZ
1057 if (p->is_write) {
1058 if (r->CRm & 0x2)
1059 /* accessing PMOVSSET_EL0 */
8d404c4c 1060 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
76d883c4
SZ
1061 else
1062 /* accessing PMOVSCLR_EL0 */
8d404c4c 1063 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
76d883c4 1064 } else {
f5eff400 1065 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
76d883c4
SZ
1066 }
1067
1068 return true;
1069}
1070
7a0adc70
SZ
1071static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1072 const struct sys_reg_desc *r)
1073{
1074 u64 mask;
1075
e0443230 1076 if (!p->is_write)
e7f1d1ee 1077 return read_from_write_only(vcpu, p, r);
e0443230 1078
d692b8ad
SZ
1079 if (pmu_write_swinc_el0_disabled(vcpu))
1080 return false;
1081
e0443230
MZ
1082 mask = kvm_pmu_valid_counter_mask(vcpu);
1083 kvm_pmu_software_increment(vcpu, p->regval & mask);
1084 return true;
7a0adc70
SZ
1085}
1086
d692b8ad
SZ
1087static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1088 const struct sys_reg_desc *r)
1089{
d692b8ad 1090 if (p->is_write) {
9008c235
MZ
1091 if (!vcpu_mode_priv(vcpu)) {
1092 kvm_inject_undefined(vcpu);
d692b8ad 1093 return false;
9008c235 1094 }
d692b8ad 1095
8d404c4c
CD
1096 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1097 p->regval & ARMV8_PMU_USERENR_MASK;
d692b8ad 1098 } else {
8d404c4c 1099 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
d692b8ad
SZ
1100 & ARMV8_PMU_USERENR_MASK;
1101 }
1102
1103 return true;
1104}
1105
0c557ed4
MZ
1106/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1107#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
ee1b64e6 1108 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
03fdfb26 1109 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
ee1b64e6 1110 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
03fdfb26 1111 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
ee1b64e6 1112 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
03fdfb26 1113 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
ee1b64e6 1114 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
03fdfb26 1115 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
0c557ed4 1116
9d2a55b4
XC
1117#define PMU_SYS_REG(name) \
1118 SYS_DESC(SYS_##name), .reset = reset_pmu_reg, \
1119 .visibility = pmu_visibility
11663111 1120
051ff581
SZ
1121/* Macro to expand the PMEVCNTRn_EL0 register */
1122#define PMU_PMEVCNTR_EL0(n) \
9d2a55b4 1123 { PMU_SYS_REG(PMEVCNTRn_EL0(n)), \
9228b261 1124 .reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \
11663111 1125 .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
051ff581 1126
9feb21ac
SZ
1127/* Macro to expand the PMEVTYPERn_EL0 register */
1128#define PMU_PMEVTYPER_EL0(n) \
9d2a55b4 1129 { PMU_SYS_REG(PMEVTYPERn_EL0(n)), \
0ab410a9 1130 .reset = reset_pmevtyper, \
11663111 1131 .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
9feb21ac 1132
338b1793
MZ
1133static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1134 const struct sys_reg_desc *r)
4fcdf106
IV
1135{
1136 kvm_inject_undefined(vcpu);
1137
1138 return false;
1139}
1140
1141/* Macro to expand the AMU counter and type registers*/
338b1793
MZ
1142#define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1143#define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1144#define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1145#define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
384b40ca
MR
1146
1147static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1148 const struct sys_reg_desc *rd)
1149{
01fe5ace 1150 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
384b40ca
MR
1151}
1152
338b1793
MZ
1153/*
1154 * If we land here on a PtrAuth access, that is because we didn't
1155 * fixup the access on exit by allowing the PtrAuth sysregs. The only
1156 * way this happens is when the guest does not have PtrAuth support
1157 * enabled.
1158 */
384b40ca 1159#define __PTRAUTH_KEY(k) \
338b1793 1160 { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
384b40ca
MR
1161 .visibility = ptrauth_visibility}
1162
1163#define PTRAUTH_KEY(k) \
1164 __PTRAUTH_KEY(k ## KEYLO_EL1), \
1165 __PTRAUTH_KEY(k ## KEYHI_EL1)
1166
84135d3d
AP
1167static bool access_arch_timer(struct kvm_vcpu *vcpu,
1168 struct sys_reg_params *p,
1169 const struct sys_reg_desc *r)
c9a3c58f 1170{
84135d3d
AP
1171 enum kvm_arch_timers tmr;
1172 enum kvm_arch_timer_regs treg;
1173 u64 reg = reg_to_encoding(r);
7b6b4631 1174
84135d3d
AP
1175 switch (reg) {
1176 case SYS_CNTP_TVAL_EL0:
1177 case SYS_AARCH32_CNTP_TVAL:
1178 tmr = TIMER_PTIMER;
1179 treg = TIMER_REG_TVAL;
1180 break;
1181 case SYS_CNTP_CTL_EL0:
1182 case SYS_AARCH32_CNTP_CTL:
1183 tmr = TIMER_PTIMER;
1184 treg = TIMER_REG_CTL;
1185 break;
1186 case SYS_CNTP_CVAL_EL0:
1187 case SYS_AARCH32_CNTP_CVAL:
1188 tmr = TIMER_PTIMER;
1189 treg = TIMER_REG_CVAL;
1190 break;
c605ee24
MZ
1191 case SYS_CNTPCT_EL0:
1192 case SYS_CNTPCTSS_EL0:
1193 case SYS_AARCH32_CNTPCT:
1194 tmr = TIMER_PTIMER;
1195 treg = TIMER_REG_CNT;
1196 break;
84135d3d 1197 default:
ba82e06c
MZ
1198 print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1199 kvm_inject_undefined(vcpu);
1200 return false;
c1b135af 1201 }
7b6b4631 1202
7b6b4631 1203 if (p->is_write)
84135d3d 1204 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
7b6b4631 1205 else
84135d3d 1206 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
7b6b4631 1207
c9a3c58f
JL
1208 return true;
1209}
1210
2e8bf0cb
JZ
1211static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1212 s64 new, s64 cur)
3d0dba57 1213{
2e8bf0cb
JZ
1214 struct arm64_ftr_bits kvm_ftr = *ftrp;
1215
1216 /* Some features have different safe value type in KVM than host features */
1217 switch (id) {
1218 case SYS_ID_AA64DFR0_EL1:
1219 if (kvm_ftr.shift == ID_AA64DFR0_EL1_PMUVer_SHIFT)
1220 kvm_ftr.type = FTR_LOWER_SAFE;
1221 break;
1222 case SYS_ID_DFR0_EL1:
1223 if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1224 kvm_ftr.type = FTR_LOWER_SAFE;
1225 break;
1226 }
3d0dba57 1227
2e8bf0cb 1228 return arm64_ftr_safe_value(&kvm_ftr, new, cur);
3d0dba57
MZ
1229}
1230
2e8bf0cb
JZ
1231/**
1232 * arm64_check_features() - Check if a feature register value constitutes
1233 * a subset of features indicated by the idreg's KVM sanitised limit.
1234 *
1235 * This function will check if each feature field of @val is the "safe" value
1236 * against idreg's KVM sanitised limit return from reset() callback.
1237 * If a field value in @val is the same as the one in limit, it is always
1238 * considered the safe value regardless For register fields that are not in
1239 * writable, only the value in limit is considered the safe value.
1240 *
1241 * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1242 */
1243static int arm64_check_features(struct kvm_vcpu *vcpu,
1244 const struct sys_reg_desc *rd,
1245 u64 val)
d82e0dfd 1246{
2e8bf0cb
JZ
1247 const struct arm64_ftr_reg *ftr_reg;
1248 const struct arm64_ftr_bits *ftrp = NULL;
1249 u32 id = reg_to_encoding(rd);
1250 u64 writable_mask = rd->val;
1251 u64 limit = rd->reset(vcpu, rd);
1252 u64 mask = 0;
1253
1254 /*
1255 * Hidden and unallocated ID registers may not have a corresponding
1256 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1257 * only safe value is 0.
1258 */
1259 if (sysreg_visible_as_raz(vcpu, rd))
1260 return val ? -E2BIG : 0;
1261
1262 ftr_reg = get_arm64_ftr_reg(id);
1263 if (!ftr_reg)
1264 return -EINVAL;
1265
1266 ftrp = ftr_reg->ftr_bits;
1267
1268 for (; ftrp && ftrp->width; ftrp++) {
1269 s64 f_val, f_lim, safe_val;
1270 u64 ftr_mask;
1271
1272 ftr_mask = arm64_ftr_mask(ftrp);
1273 if ((ftr_mask & writable_mask) != ftr_mask)
1274 continue;
1275
1276 f_val = arm64_ftr_value(ftrp, val);
1277 f_lim = arm64_ftr_value(ftrp, limit);
1278 mask |= ftr_mask;
1279
1280 if (f_val == f_lim)
1281 safe_val = f_val;
1282 else
1283 safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1284
1285 if (safe_val != f_val)
1286 return -E2BIG;
d82e0dfd 1287 }
2e8bf0cb
JZ
1288
1289 /* For fields that are not writable, values in limit are the safe values. */
1290 if ((val & ~mask) != (limit & ~mask))
1291 return -E2BIG;
1292
1293 return 0;
d82e0dfd
MZ
1294}
1295
3d0dba57
MZ
1296static u8 pmuver_to_perfmon(u8 pmuver)
1297{
1298 switch (pmuver) {
1299 case ID_AA64DFR0_EL1_PMUVer_IMP:
753d734f 1300 return ID_DFR0_EL1_PerfMon_PMUv3;
3d0dba57 1301 case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
753d734f 1302 return ID_DFR0_EL1_PerfMon_IMPDEF;
3d0dba57
MZ
1303 default:
1304 /* Anything ARMv8.1+ and NI have the same value. For now. */
1305 return pmuver;
1306 }
1307}
1308
93390c0a 1309/* Read a sanitised cpufeature ID register by sys_reg_desc */
d86cde6e
JZ
1310static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1311 const struct sys_reg_desc *r)
93390c0a 1312{
7ba8b438 1313 u32 id = reg_to_encoding(r);
00d5101b
AE
1314 u64 val;
1315
cdd5036d 1316 if (sysreg_visible_as_raz(vcpu, r))
00d5101b
AE
1317 return 0;
1318
1319 val = read_sanitised_ftr_reg(id);
93390c0a 1320
c8857935 1321 switch (id) {
c8857935 1322 case SYS_ID_AA64PFR1_EL1:
16dd1fbb 1323 if (!kvm_has_mte(vcpu->kvm))
6ca2b9ca 1324 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
90807748 1325
6ca2b9ca 1326 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
c8857935
MZ
1327 break;
1328 case SYS_ID_AA64ISAR1_EL1:
1329 if (!vcpu_has_ptrauth(vcpu))
aa50479b
MB
1330 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1331 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1332 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1333 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
c8857935 1334 break;
def8c222
VM
1335 case SYS_ID_AA64ISAR2_EL1:
1336 if (!vcpu_has_ptrauth(vcpu))
b2d71f27
MB
1337 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1338 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
06e0b802 1339 if (!cpus_have_final_cap(ARM64_HAS_WFXT))
b2d71f27 1340 val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
3172613f 1341 val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_MOPS);
def8c222 1342 break;
bf48040c
AO
1343 case SYS_ID_AA64MMFR2_EL1:
1344 val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1345 break;
1346 case SYS_ID_MMFR4_EL1:
1347 val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1348 break;
07d79fe7
DM
1349 }
1350
1351 return val;
93390c0a
DM
1352}
1353
d86cde6e
JZ
1354static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1355 const struct sys_reg_desc *r)
1356{
1357 return __kvm_read_sanitised_id_reg(vcpu, r);
1358}
1359
1360static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1361{
6db7af0d 1362 return IDREG(vcpu->kvm, reg_to_encoding(r));
d86cde6e
JZ
1363}
1364
47334146
JZ
1365/*
1366 * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1367 * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
1368 */
1369static inline bool is_id_reg(u32 id)
1370{
1371 return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1372 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1373 sys_reg_CRm(id) < 8);
1374}
1375
3f9cd0ca
JZ
1376static inline bool is_aa32_id_reg(u32 id)
1377{
1378 return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1379 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1380 sys_reg_CRm(id) <= 3);
1381}
1382
912dee57
AJ
1383static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1384 const struct sys_reg_desc *r)
1385{
7ba8b438 1386 u32 id = reg_to_encoding(r);
c512298e
AJ
1387
1388 switch (id) {
1389 case SYS_ID_AA64ZFR0_EL1:
1390 if (!vcpu_has_sve(vcpu))
1391 return REG_RAZ;
1392 break;
1393 }
1394
912dee57
AJ
1395 return 0;
1396}
1397
d5efec7e
OU
1398static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1399 const struct sys_reg_desc *r)
1400{
1401 /*
1402 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1403 * EL. Promote to RAZ/WI in order to guarantee consistency between
1404 * systems.
1405 */
1406 if (!kvm_supports_32bit_el0())
1407 return REG_RAZ | REG_USER_WI;
1408
1409 return id_visibility(vcpu, r);
1410}
1411
34b4d203
OU
1412static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1413 const struct sys_reg_desc *r)
1414{
1415 return REG_RAZ;
1416}
1417
93390c0a
DM
1418/* cpufeature ID register access trap handlers */
1419
93390c0a
DM
1420static bool access_id_reg(struct kvm_vcpu *vcpu,
1421 struct sys_reg_params *p,
1422 const struct sys_reg_desc *r)
1423{
4782ccc8
OU
1424 if (p->is_write)
1425 return write_to_read_only(vcpu, p, r);
1426
cdd5036d 1427 p->regval = read_id_reg(vcpu, r);
9f75b6d4
MZ
1428 if (vcpu_has_nv(vcpu))
1429 access_nested_id_reg(vcpu, p, r);
1430
4782ccc8 1431 return true;
93390c0a
DM
1432}
1433
73433762
DM
1434/* Visibility overrides for SVE-specific control registers */
1435static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1436 const struct sys_reg_desc *rd)
1437{
1438 if (vcpu_has_sve(vcpu))
1439 return 0;
1440
01fe5ace 1441 return REG_HIDDEN;
73433762
DM
1442}
1443
c39f5974
JZ
1444static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1445 const struct sys_reg_desc *rd)
23711a5e 1446{
c39f5974
JZ
1447 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1448
1449 if (!vcpu_has_sve(vcpu))
1450 val &= ~ID_AA64PFR0_EL1_SVE_MASK;
23711a5e
MZ
1451
1452 /*
c39f5974
JZ
1453 * The default is to expose CSV2 == 1 if the HW isn't affected.
1454 * Although this is a per-CPU feature, we make it global because
1455 * asymmetric systems are just a nuisance.
1456 *
1457 * Userspace can override this as long as it doesn't promise
1458 * the impossible.
23711a5e 1459 */
c39f5974
JZ
1460 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1461 val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1462 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1463 }
1464 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1465 val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1466 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1467 }
23711a5e 1468
c39f5974
JZ
1469 if (kvm_vgic_global_state.type == VGIC_V3) {
1470 val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1471 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1472 }
4f1df628 1473
c39f5974 1474 val &= ~ID_AA64PFR0_EL1_AMU_MASK;
23711a5e 1475
c39f5974
JZ
1476 return val;
1477}
23711a5e 1478
c118cead
JZ
1479static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1480 const struct sys_reg_desc *rd)
1481{
1482 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1483
1484 /* Limit debug to ARMv8.0 */
1485 val &= ~ID_AA64DFR0_EL1_DebugVer_MASK;
1486 val |= SYS_FIELD_PREP_ENUM(ID_AA64DFR0_EL1, DebugVer, IMP);
1487
1488 /*
1489 * Only initialize the PMU version if the vCPU was configured with one.
1490 */
1491 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1492 if (kvm_vcpu_has_pmu(vcpu))
1493 val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1494 kvm_arm_pmu_get_pmuver_limit());
1495
1496 /* Hide SPE from guests */
1497 val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1498
1499 return val;
23711a5e
MZ
1500}
1501
60e651ff
MZ
1502static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1503 const struct sys_reg_desc *rd,
1504 u64 val)
1505{
c118cead 1506 u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
60e651ff
MZ
1507
1508 /*
f90f9360
OU
1509 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1510 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1511 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1512 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1513 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1514 *
1515 * At minimum, we're on the hook to allow values that were given to
1516 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1517 * with a more sensible NI. The value of an ID register changing under
1518 * the nose of the guest is unfortunate, but is certainly no more
1519 * surprising than an ill-guided PMU driver poking at impdef system
1520 * registers that end in an UNDEF...
60e651ff 1521 */
68667240 1522 if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
f90f9360 1523 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
60e651ff 1524
68667240 1525 return set_id_reg(vcpu, rd, val);
c118cead 1526}
60e651ff 1527
c118cead
JZ
1528static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1529 const struct sys_reg_desc *rd)
1530{
1531 u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1532 u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
60e651ff 1533
c118cead
JZ
1534 val &= ~ID_DFR0_EL1_PerfMon_MASK;
1535 if (kvm_vcpu_has_pmu(vcpu))
1536 val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
60e651ff 1537
c118cead 1538 return val;
60e651ff
MZ
1539}
1540
d82e0dfd
MZ
1541static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1542 const struct sys_reg_desc *rd,
1543 u64 val)
1544{
c118cead 1545 u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
d82e0dfd 1546
f90f9360
OU
1547 if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1548 val &= ~ID_DFR0_EL1_PerfMon_MASK;
1549 perfmon = 0;
1550 }
d82e0dfd
MZ
1551
1552 /*
1553 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1554 * it doesn't promise more than what the HW gives us on the
1555 * AArch64 side (as everything is emulated with that), and
1556 * that this is a PMUv3.
1557 */
c118cead 1558 if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
d82e0dfd
MZ
1559 return -EINVAL;
1560
68667240 1561 return set_id_reg(vcpu, rd, val);
d82e0dfd
MZ
1562}
1563
93390c0a
DM
1564/*
1565 * cpufeature ID register user accessors
1566 *
1567 * For now, these registers are immutable for userspace, so no values
1568 * are stored, and for set_id_reg() we don't allow the effective value
1569 * to be changed.
1570 */
93390c0a 1571static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
978ceeb3 1572 u64 *val)
93390c0a 1573{
6db7af0d
OU
1574 /*
1575 * Avoid locking if the VM has already started, as the ID registers are
1576 * guaranteed to be invariant at that point.
1577 */
1578 if (kvm_vm_has_ran_once(vcpu->kvm)) {
1579 *val = read_id_reg(vcpu, rd);
1580 return 0;
1581 }
1582
1583 mutex_lock(&vcpu->kvm->arch.config_lock);
cdd5036d 1584 *val = read_id_reg(vcpu, rd);
6db7af0d
OU
1585 mutex_unlock(&vcpu->kvm->arch.config_lock);
1586
4782ccc8 1587 return 0;
93390c0a
DM
1588}
1589
1590static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
978ceeb3 1591 u64 val)
93390c0a 1592{
2e8bf0cb
JZ
1593 u32 id = reg_to_encoding(rd);
1594 int ret;
4782ccc8 1595
2e8bf0cb
JZ
1596 mutex_lock(&vcpu->kvm->arch.config_lock);
1597
1598 /*
1599 * Once the VM has started the ID registers are immutable. Reject any
1600 * write that does not match the final register value.
1601 */
1602 if (kvm_vm_has_ran_once(vcpu->kvm)) {
1603 if (val != read_id_reg(vcpu, rd))
1604 ret = -EBUSY;
1605 else
1606 ret = 0;
1607
1608 mutex_unlock(&vcpu->kvm->arch.config_lock);
1609 return ret;
1610 }
1611
1612 ret = arm64_check_features(vcpu, rd, val);
1613 if (!ret)
1614 IDREG(vcpu->kvm, id) = val;
1615
1616 mutex_unlock(&vcpu->kvm->arch.config_lock);
1617
1618 /*
1619 * arm64_check_features() returns -E2BIG to indicate the register's
1620 * feature set is a superset of the maximally-allowed register value.
1621 * While it would be nice to precisely describe this to userspace, the
1622 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1623 * writes return -EINVAL.
1624 */
1625 if (ret == -E2BIG)
1626 ret = -EINVAL;
1627 return ret;
93390c0a
DM
1628}
1629
5a430976 1630static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
978ceeb3 1631 u64 *val)
5a430976 1632{
978ceeb3
MZ
1633 *val = 0;
1634 return 0;
5a430976
AE
1635}
1636
7a3ba309 1637static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
978ceeb3 1638 u64 val)
7a3ba309 1639{
7a3ba309
MZ
1640 return 0;
1641}
1642
f7f2b15c
AB
1643static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1644 const struct sys_reg_desc *r)
1645{
1646 if (p->is_write)
1647 return write_to_read_only(vcpu, p, r);
1648
1649 p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1650 return true;
1651}
1652
1653static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1654 const struct sys_reg_desc *r)
1655{
1656 if (p->is_write)
1657 return write_to_read_only(vcpu, p, r);
1658
7af0c253 1659 p->regval = __vcpu_sys_reg(vcpu, r->reg);
f7f2b15c
AB
1660 return true;
1661}
1662
7af0c253
AO
1663/*
1664 * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1665 * by the physical CPU which the vcpu currently resides in.
1666 */
d86cde6e 1667static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
7af0c253
AO
1668{
1669 u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1670 u64 clidr;
1671 u8 loc;
1672
1673 if ((ctr_el0 & CTR_EL0_IDC)) {
1674 /*
1675 * Data cache clean to the PoU is not required so LoUU and LoUIS
1676 * will not be set and a unified cache, which will be marked as
1677 * LoC, will be added.
1678 *
1679 * If not DIC, let the unified cache L2 so that an instruction
1680 * cache can be added as L1 later.
1681 */
1682 loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1683 clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1684 } else {
1685 /*
1686 * Data cache clean to the PoU is required so let L1 have a data
1687 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1688 * it can be marked as LoC too.
1689 */
1690 loc = 1;
1691 clidr = 1 << CLIDR_LOUU_SHIFT;
1692 clidr |= 1 << CLIDR_LOUIS_SHIFT;
1693 clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1694 }
1695
1696 /*
1697 * Instruction cache invalidation to the PoU is required so let L1 have
1698 * an instruction cache. If L1 already has a data cache, it will be
1699 * CACHE_TYPE_SEPARATE.
1700 */
1701 if (!(ctr_el0 & CTR_EL0_DIC))
1702 clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1703
1704 clidr |= loc << CLIDR_LOC_SHIFT;
1705
1706 /*
1707 * Add tag cache unified to data cache. Allocation tags and data are
1708 * unified in a cache line so that it looks valid even if there is only
1709 * one cache line.
1710 */
1711 if (kvm_has_mte(vcpu->kvm))
1712 clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1713
1714 __vcpu_sys_reg(vcpu, r->reg) = clidr;
d86cde6e
JZ
1715
1716 return __vcpu_sys_reg(vcpu, r->reg);
7af0c253
AO
1717}
1718
1719static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1720 u64 val)
1721{
1722 u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1723 u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1724
1725 if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1726 return -EINVAL;
1727
1728 __vcpu_sys_reg(vcpu, rd->reg) = val;
1729
1730 return 0;
1731}
1732
f7f2b15c
AB
1733static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1734 const struct sys_reg_desc *r)
1735{
7c582bf4
JM
1736 int reg = r->reg;
1737
f7f2b15c 1738 if (p->is_write)
7c582bf4 1739 vcpu_write_sys_reg(vcpu, p->regval, reg);
f7f2b15c 1740 else
7c582bf4 1741 p->regval = vcpu_read_sys_reg(vcpu, reg);
f7f2b15c
AB
1742 return true;
1743}
1744
1745static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1746 const struct sys_reg_desc *r)
1747{
1748 u32 csselr;
1749
1750 if (p->is_write)
1751 return write_to_read_only(vcpu, p, r);
1752
1753 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
7af0c253
AO
1754 csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1755 if (csselr < CSSELR_MAX)
1756 p->regval = get_ccsidr(vcpu, csselr);
793acf87 1757
f7f2b15c
AB
1758 return true;
1759}
1760
e1f358b5
SP
1761static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1762 const struct sys_reg_desc *rd)
1763{
673638f4
SP
1764 if (kvm_has_mte(vcpu->kvm))
1765 return 0;
1766
e1f358b5
SP
1767 return REG_HIDDEN;
1768}
1769
1770#define MTE_REG(name) { \
1771 SYS_DESC(SYS_##name), \
1772 .access = undef_access, \
1773 .reset = reset_unknown, \
1774 .reg = name, \
1775 .visibility = mte_visibility, \
1776}
1777
6ff9dc23
JL
1778static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
1779 const struct sys_reg_desc *rd)
1780{
1781 if (vcpu_has_nv(vcpu))
1782 return 0;
1783
1784 return REG_HIDDEN;
1785}
1786
1787#define EL2_REG(name, acc, rst, v) { \
1788 SYS_DESC(SYS_##name), \
1789 .access = acc, \
1790 .reset = rst, \
1791 .reg = name, \
1792 .visibility = el2_visibility, \
1793 .val = v, \
1794}
1795
280b748e
JL
1796/*
1797 * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
1798 * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
1799 * handling traps. Given that, they are always hidden from userspace.
1800 */
1801static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
1802 const struct sys_reg_desc *rd)
1803{
1804 return REG_HIDDEN_USER;
1805}
1806
1807#define EL12_REG(name, acc, rst, v) { \
1808 SYS_DESC(SYS_##name##_EL12), \
1809 .access = acc, \
1810 .reset = rst, \
1811 .reg = name##_EL1, \
1812 .val = v, \
1813 .visibility = elx2_visibility, \
1814}
1815
d86cde6e
JZ
1816/*
1817 * Since reset() callback and field val are not used for idregs, they will be
1818 * used for specific purposes for idregs.
1819 * The reset() would return KVM sanitised register value. The value would be the
1820 * same as the host kernel sanitised value if there is no KVM sanitisation.
1821 * The val would be used as a mask indicating writable fields for the idreg.
1822 * Only bits with 1 are writable from userspace. This mask might not be
1823 * necessary in the future whenever all ID registers are enabled as writable
1824 * from userspace.
1825 */
1826
93390c0a
DM
1827/* sys_reg_desc initialiser for known cpufeature ID registers */
1828#define ID_SANITISED(name) { \
1829 SYS_DESC(SYS_##name), \
1830 .access = access_id_reg, \
1831 .get_user = get_id_reg, \
1832 .set_user = set_id_reg, \
912dee57 1833 .visibility = id_visibility, \
d86cde6e
JZ
1834 .reset = kvm_read_sanitised_id_reg, \
1835 .val = 0, \
93390c0a
DM
1836}
1837
d5efec7e
OU
1838/* sys_reg_desc initialiser for known cpufeature ID registers */
1839#define AA32_ID_SANITISED(name) { \
1840 SYS_DESC(SYS_##name), \
1841 .access = access_id_reg, \
1842 .get_user = get_id_reg, \
1843 .set_user = set_id_reg, \
1844 .visibility = aa32_id_visibility, \
d86cde6e
JZ
1845 .reset = kvm_read_sanitised_id_reg, \
1846 .val = 0, \
d5efec7e
OU
1847}
1848
93390c0a
DM
1849/*
1850 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1851 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1852 * (1 <= crm < 8, 0 <= Op2 < 8).
1853 */
1854#define ID_UNALLOCATED(crm, op2) { \
1855 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
34b4d203
OU
1856 .access = access_id_reg, \
1857 .get_user = get_id_reg, \
1858 .set_user = set_id_reg, \
d86cde6e
JZ
1859 .visibility = raz_visibility, \
1860 .reset = kvm_read_sanitised_id_reg, \
1861 .val = 0, \
93390c0a
DM
1862}
1863
1864/*
1865 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1866 * For now, these are exposed just like unallocated ID regs: they appear
1867 * RAZ for the guest.
1868 */
1869#define ID_HIDDEN(name) { \
1870 SYS_DESC(SYS_##name), \
34b4d203
OU
1871 .access = access_id_reg, \
1872 .get_user = get_id_reg, \
1873 .set_user = set_id_reg, \
1874 .visibility = raz_visibility, \
d86cde6e
JZ
1875 .reset = kvm_read_sanitised_id_reg, \
1876 .val = 0, \
93390c0a
DM
1877}
1878
6ff9dc23
JL
1879static bool access_sp_el1(struct kvm_vcpu *vcpu,
1880 struct sys_reg_params *p,
1881 const struct sys_reg_desc *r)
1882{
1883 if (p->is_write)
1884 __vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
1885 else
1886 p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
1887
1888 return true;
1889}
1890
9da117ee
JL
1891static bool access_elr(struct kvm_vcpu *vcpu,
1892 struct sys_reg_params *p,
1893 const struct sys_reg_desc *r)
1894{
1895 if (p->is_write)
1896 vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
1897 else
1898 p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
1899
1900 return true;
1901}
1902
1903static bool access_spsr(struct kvm_vcpu *vcpu,
1904 struct sys_reg_params *p,
1905 const struct sys_reg_desc *r)
1906{
1907 if (p->is_write)
1908 __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
1909 else
1910 p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
1911
1912 return true;
1913}
1914
7c8c5e6a
MZ
1915/*
1916 * Architected system registers.
1917 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
7609c125 1918 *
0c557ed4
MZ
1919 * Debug handling: We do trap most, if not all debug related system
1920 * registers. The implementation is good enough to ensure that a guest
1921 * can use these with minimal performance degradation. The drawback is
7dabf02f
OU
1922 * that we don't implement any of the external debug architecture.
1923 * This should be revisited if we ever encounter a more demanding
1924 * guest...
7c8c5e6a
MZ
1925 */
1926static const struct sys_reg_desc sys_reg_descs[] = {
7606e078 1927 { SYS_DESC(SYS_DC_ISW), access_dcsw },
d282fa3c
MZ
1928 { SYS_DESC(SYS_DC_IGSW), access_dcgsw },
1929 { SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
7606e078 1930 { SYS_DESC(SYS_DC_CSW), access_dcsw },
d282fa3c
MZ
1931 { SYS_DESC(SYS_DC_CGSW), access_dcgsw },
1932 { SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
7606e078 1933 { SYS_DESC(SYS_DC_CISW), access_dcsw },
d282fa3c
MZ
1934 { SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
1935 { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
7c8c5e6a 1936
0c557ed4
MZ
1937 DBG_BCR_BVR_WCR_WVR_EL1(0),
1938 DBG_BCR_BVR_WCR_WVR_EL1(1),
ee1b64e6
MR
1939 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1940 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
0c557ed4
MZ
1941 DBG_BCR_BVR_WCR_WVR_EL1(2),
1942 DBG_BCR_BVR_WCR_WVR_EL1(3),
1943 DBG_BCR_BVR_WCR_WVR_EL1(4),
1944 DBG_BCR_BVR_WCR_WVR_EL1(5),
1945 DBG_BCR_BVR_WCR_WVR_EL1(6),
1946 DBG_BCR_BVR_WCR_WVR_EL1(7),
1947 DBG_BCR_BVR_WCR_WVR_EL1(8),
1948 DBG_BCR_BVR_WCR_WVR_EL1(9),
1949 DBG_BCR_BVR_WCR_WVR_EL1(10),
1950 DBG_BCR_BVR_WCR_WVR_EL1(11),
1951 DBG_BCR_BVR_WCR_WVR_EL1(12),
1952 DBG_BCR_BVR_WCR_WVR_EL1(13),
1953 DBG_BCR_BVR_WCR_WVR_EL1(14),
1954 DBG_BCR_BVR_WCR_WVR_EL1(15),
1955
ee1b64e6 1956 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
f24adc65 1957 { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
d42e2671 1958 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
187de7c2 1959 OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
ee1b64e6
MR
1960 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1961 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1962 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1963 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1964 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1965
1966 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1967 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1968 // DBGDTR[TR]X_EL0 share the same encoding
1969 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1970
1971 { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
62a89c44 1972
851050a5 1973 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
93390c0a
DM
1974
1975 /*
1976 * ID regs: all ID_SANITISED() entries here must have corresponding
1977 * entries in arm64_ftr_regs[].
1978 */
1979
1980 /* AArch64 mappings of the AArch32 ID registers */
1981 /* CRm=1 */
d5efec7e
OU
1982 AA32_ID_SANITISED(ID_PFR0_EL1),
1983 AA32_ID_SANITISED(ID_PFR1_EL1),
c118cead
JZ
1984 { SYS_DESC(SYS_ID_DFR0_EL1),
1985 .access = access_id_reg,
1986 .get_user = get_id_reg,
1987 .set_user = set_id_dfr0_el1,
1988 .visibility = aa32_id_visibility,
1989 .reset = read_sanitised_id_dfr0_el1,
1990 .val = ID_DFR0_EL1_PerfMon_MASK, },
93390c0a 1991 ID_HIDDEN(ID_AFR0_EL1),
d5efec7e
OU
1992 AA32_ID_SANITISED(ID_MMFR0_EL1),
1993 AA32_ID_SANITISED(ID_MMFR1_EL1),
1994 AA32_ID_SANITISED(ID_MMFR2_EL1),
1995 AA32_ID_SANITISED(ID_MMFR3_EL1),
93390c0a
DM
1996
1997 /* CRm=2 */
d5efec7e
OU
1998 AA32_ID_SANITISED(ID_ISAR0_EL1),
1999 AA32_ID_SANITISED(ID_ISAR1_EL1),
2000 AA32_ID_SANITISED(ID_ISAR2_EL1),
2001 AA32_ID_SANITISED(ID_ISAR3_EL1),
2002 AA32_ID_SANITISED(ID_ISAR4_EL1),
2003 AA32_ID_SANITISED(ID_ISAR5_EL1),
2004 AA32_ID_SANITISED(ID_MMFR4_EL1),
2005 AA32_ID_SANITISED(ID_ISAR6_EL1),
93390c0a
DM
2006
2007 /* CRm=3 */
d5efec7e
OU
2008 AA32_ID_SANITISED(MVFR0_EL1),
2009 AA32_ID_SANITISED(MVFR1_EL1),
2010 AA32_ID_SANITISED(MVFR2_EL1),
93390c0a 2011 ID_UNALLOCATED(3,3),
d5efec7e 2012 AA32_ID_SANITISED(ID_PFR2_EL1),
dd35ec07 2013 ID_HIDDEN(ID_DFR1_EL1),
d5efec7e 2014 AA32_ID_SANITISED(ID_MMFR5_EL1),
93390c0a
DM
2015 ID_UNALLOCATED(3,7),
2016
2017 /* AArch64 ID registers */
2018 /* CRm=4 */
c39f5974
JZ
2019 { SYS_DESC(SYS_ID_AA64PFR0_EL1),
2020 .access = access_id_reg,
2021 .get_user = get_id_reg,
68667240 2022 .set_user = set_id_reg,
c39f5974
JZ
2023 .reset = read_sanitised_id_aa64pfr0_el1,
2024 .val = ID_AA64PFR0_EL1_CSV2_MASK | ID_AA64PFR0_EL1_CSV3_MASK, },
93390c0a
DM
2025 ID_SANITISED(ID_AA64PFR1_EL1),
2026 ID_UNALLOCATED(4,2),
2027 ID_UNALLOCATED(4,3),
c512298e 2028 ID_SANITISED(ID_AA64ZFR0_EL1),
90807748 2029 ID_HIDDEN(ID_AA64SMFR0_EL1),
93390c0a
DM
2030 ID_UNALLOCATED(4,6),
2031 ID_UNALLOCATED(4,7),
2032
2033 /* CRm=5 */
c118cead
JZ
2034 { SYS_DESC(SYS_ID_AA64DFR0_EL1),
2035 .access = access_id_reg,
2036 .get_user = get_id_reg,
2037 .set_user = set_id_aa64dfr0_el1,
2038 .reset = read_sanitised_id_aa64dfr0_el1,
2039 .val = ID_AA64DFR0_EL1_PMUVer_MASK, },
93390c0a
DM
2040 ID_SANITISED(ID_AA64DFR1_EL1),
2041 ID_UNALLOCATED(5,2),
2042 ID_UNALLOCATED(5,3),
2043 ID_HIDDEN(ID_AA64AFR0_EL1),
2044 ID_HIDDEN(ID_AA64AFR1_EL1),
2045 ID_UNALLOCATED(5,6),
2046 ID_UNALLOCATED(5,7),
2047
2048 /* CRm=6 */
2049 ID_SANITISED(ID_AA64ISAR0_EL1),
2050 ID_SANITISED(ID_AA64ISAR1_EL1),
9e45365f 2051 ID_SANITISED(ID_AA64ISAR2_EL1),
93390c0a
DM
2052 ID_UNALLOCATED(6,3),
2053 ID_UNALLOCATED(6,4),
2054 ID_UNALLOCATED(6,5),
2055 ID_UNALLOCATED(6,6),
2056 ID_UNALLOCATED(6,7),
2057
2058 /* CRm=7 */
2059 ID_SANITISED(ID_AA64MMFR0_EL1),
2060 ID_SANITISED(ID_AA64MMFR1_EL1),
2061 ID_SANITISED(ID_AA64MMFR2_EL1),
8ef67c67 2062 ID_SANITISED(ID_AA64MMFR3_EL1),
93390c0a
DM
2063 ID_UNALLOCATED(7,4),
2064 ID_UNALLOCATED(7,5),
2065 ID_UNALLOCATED(7,6),
2066 ID_UNALLOCATED(7,7),
2067
851050a5 2068 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
af473829 2069 { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
851050a5 2070 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2ac638fc 2071
e1f358b5
SP
2072 MTE_REG(RGSR_EL1),
2073 MTE_REG(GCR_EL1),
2ac638fc 2074
73433762 2075 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
cc427cbb 2076 { SYS_DESC(SYS_TRFCR_EL1), undef_access },
90807748
MB
2077 { SYS_DESC(SYS_SMPRI_EL1), undef_access },
2078 { SYS_DESC(SYS_SMCR_EL1), undef_access },
851050a5
MR
2079 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2080 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2081 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
fbff5606 2082 { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
851050a5 2083
384b40ca
MR
2084 PTRAUTH_KEY(APIA),
2085 PTRAUTH_KEY(APIB),
2086 PTRAUTH_KEY(APDA),
2087 PTRAUTH_KEY(APDB),
2088 PTRAUTH_KEY(APGA),
2089
9da117ee
JL
2090 { SYS_DESC(SYS_SPSR_EL1), access_spsr},
2091 { SYS_DESC(SYS_ELR_EL1), access_elr},
2092
851050a5
MR
2093 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2094 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2095 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
558daf69
DG
2096
2097 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2098 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2099 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2100 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2101 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2102 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2103 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2104 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2105
e1f358b5
SP
2106 MTE_REG(TFSR_EL1),
2107 MTE_REG(TFSRE0_EL1),
2ac638fc 2108
851050a5
MR
2109 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2110 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
7c8c5e6a 2111
13611bc8
AE
2112 { SYS_DESC(SYS_PMSCR_EL1), undef_access },
2113 { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2114 { SYS_DESC(SYS_PMSICR_EL1), undef_access },
2115 { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2116 { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2117 { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2118 { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2119 { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2120 { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2121 { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2122 { SYS_DESC(SYS_PMBSR_EL1), undef_access },
2123 /* PMBIDR_EL1 is not trapped */
2124
9d2a55b4 2125 { PMU_SYS_REG(PMINTENSET_EL1),
11663111 2126 .access = access_pminten, .reg = PMINTENSET_EL1 },
9d2a55b4 2127 { PMU_SYS_REG(PMINTENCLR_EL1),
11663111 2128 .access = access_pminten, .reg = PMINTENSET_EL1 },
46081078 2129 { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
7c8c5e6a 2130
851050a5 2131 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
86f9de9d
JG
2132 { SYS_DESC(SYS_PIRE0_EL1), access_vm_reg, reset_unknown, PIRE0_EL1 },
2133 { SYS_DESC(SYS_PIR_EL1), access_vm_reg, reset_unknown, PIR_EL1 },
851050a5 2134 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
7c8c5e6a 2135
22925521
MZ
2136 { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2137 { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2138 { SYS_DESC(SYS_LORN_EL1), trap_loregion },
2139 { SYS_DESC(SYS_LORC_EL1), trap_loregion },
2140 { SYS_DESC(SYS_LORID_EL1), trap_loregion },
cc33c4e2 2141
9da117ee 2142 { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
c773ae2b 2143 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
db7dedd0 2144
7b1dba1f 2145 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
e7f1d1ee 2146 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
7b1dba1f 2147 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
e7f1d1ee 2148 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
7b1dba1f 2149 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
e804d208 2150 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
03bd646d
MZ
2151 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2152 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
7b1dba1f 2153 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
e7f1d1ee 2154 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
7b1dba1f 2155 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
e804d208 2156 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
db7dedd0 2157
851050a5
MR
2158 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2159 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
7c8c5e6a 2160
484f8682
MZ
2161 { SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2162
ed4ffaf4
MZ
2163 { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2164
851050a5 2165 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
7c8c5e6a 2166
f7f2b15c 2167 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
7af0c253
AO
2168 { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2169 .set_user = set_clidr },
bf48040c 2170 { SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
90807748 2171 { SYS_DESC(SYS_SMIDR_EL1), undef_access },
f7f2b15c
AB
2172 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2173 { SYS_DESC(SYS_CTR_EL0), access_ctr },
ec0067a6 2174 { SYS_DESC(SYS_SVCR), undef_access },
7c8c5e6a 2175
9d2a55b4 2176 { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr,
11663111 2177 .reset = reset_pmcr, .reg = PMCR_EL0 },
9d2a55b4 2178 { PMU_SYS_REG(PMCNTENSET_EL0),
11663111 2179 .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
9d2a55b4 2180 { PMU_SYS_REG(PMCNTENCLR_EL0),
11663111 2181 .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
9d2a55b4 2182 { PMU_SYS_REG(PMOVSCLR_EL0),
11663111 2183 .access = access_pmovs, .reg = PMOVSSET_EL0 },
7a3ba309
MZ
2184 /*
2185 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2186 * previously (and pointlessly) advertised in the past...
2187 */
9d2a55b4 2188 { PMU_SYS_REG(PMSWINC_EL0),
5a430976 2189 .get_user = get_raz_reg, .set_user = set_wi_reg,
7a3ba309 2190 .access = access_pmswinc, .reset = NULL },
9d2a55b4 2191 { PMU_SYS_REG(PMSELR_EL0),
0ab410a9 2192 .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
9d2a55b4 2193 { PMU_SYS_REG(PMCEID0_EL0),
11663111 2194 .access = access_pmceid, .reset = NULL },
9d2a55b4 2195 { PMU_SYS_REG(PMCEID1_EL0),
11663111 2196 .access = access_pmceid, .reset = NULL },
9d2a55b4 2197 { PMU_SYS_REG(PMCCNTR_EL0),
9228b261
RW
2198 .access = access_pmu_evcntr, .reset = reset_unknown,
2199 .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
9d2a55b4 2200 { PMU_SYS_REG(PMXEVTYPER_EL0),
11663111 2201 .access = access_pmu_evtyper, .reset = NULL },
9d2a55b4 2202 { PMU_SYS_REG(PMXEVCNTR_EL0),
11663111 2203 .access = access_pmu_evcntr, .reset = NULL },
174ed3e4
MR
2204 /*
2205 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
d692b8ad
SZ
2206 * in 32bit mode. Here we choose to reset it as zero for consistency.
2207 */
9d2a55b4 2208 { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
11663111 2209 .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
9d2a55b4 2210 { PMU_SYS_REG(PMOVSSET_EL0),
11663111 2211 .access = access_pmovs, .reg = PMOVSSET_EL0 },
7c8c5e6a 2212
851050a5
MR
2213 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2214 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
90807748 2215 { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
4fcdf106 2216
ed4ffaf4
MZ
2217 { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2218
338b1793
MZ
2219 { SYS_DESC(SYS_AMCR_EL0), undef_access },
2220 { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2221 { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2222 { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2223 { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2224 { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2225 { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2226 { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
4fcdf106
IV
2227 AMU_AMEVCNTR0_EL0(0),
2228 AMU_AMEVCNTR0_EL0(1),
2229 AMU_AMEVCNTR0_EL0(2),
2230 AMU_AMEVCNTR0_EL0(3),
2231 AMU_AMEVCNTR0_EL0(4),
2232 AMU_AMEVCNTR0_EL0(5),
2233 AMU_AMEVCNTR0_EL0(6),
2234 AMU_AMEVCNTR0_EL0(7),
2235 AMU_AMEVCNTR0_EL0(8),
2236 AMU_AMEVCNTR0_EL0(9),
2237 AMU_AMEVCNTR0_EL0(10),
2238 AMU_AMEVCNTR0_EL0(11),
2239 AMU_AMEVCNTR0_EL0(12),
2240 AMU_AMEVCNTR0_EL0(13),
2241 AMU_AMEVCNTR0_EL0(14),
2242 AMU_AMEVCNTR0_EL0(15),
493cf9b7
VM
2243 AMU_AMEVTYPER0_EL0(0),
2244 AMU_AMEVTYPER0_EL0(1),
2245 AMU_AMEVTYPER0_EL0(2),
2246 AMU_AMEVTYPER0_EL0(3),
2247 AMU_AMEVTYPER0_EL0(4),
2248 AMU_AMEVTYPER0_EL0(5),
2249 AMU_AMEVTYPER0_EL0(6),
2250 AMU_AMEVTYPER0_EL0(7),
2251 AMU_AMEVTYPER0_EL0(8),
2252 AMU_AMEVTYPER0_EL0(9),
2253 AMU_AMEVTYPER0_EL0(10),
2254 AMU_AMEVTYPER0_EL0(11),
2255 AMU_AMEVTYPER0_EL0(12),
2256 AMU_AMEVTYPER0_EL0(13),
2257 AMU_AMEVTYPER0_EL0(14),
2258 AMU_AMEVTYPER0_EL0(15),
4fcdf106
IV
2259 AMU_AMEVCNTR1_EL0(0),
2260 AMU_AMEVCNTR1_EL0(1),
2261 AMU_AMEVCNTR1_EL0(2),
2262 AMU_AMEVCNTR1_EL0(3),
2263 AMU_AMEVCNTR1_EL0(4),
2264 AMU_AMEVCNTR1_EL0(5),
2265 AMU_AMEVCNTR1_EL0(6),
2266 AMU_AMEVCNTR1_EL0(7),
2267 AMU_AMEVCNTR1_EL0(8),
2268 AMU_AMEVCNTR1_EL0(9),
2269 AMU_AMEVCNTR1_EL0(10),
2270 AMU_AMEVCNTR1_EL0(11),
2271 AMU_AMEVCNTR1_EL0(12),
2272 AMU_AMEVCNTR1_EL0(13),
2273 AMU_AMEVCNTR1_EL0(14),
2274 AMU_AMEVCNTR1_EL0(15),
493cf9b7
VM
2275 AMU_AMEVTYPER1_EL0(0),
2276 AMU_AMEVTYPER1_EL0(1),
2277 AMU_AMEVTYPER1_EL0(2),
2278 AMU_AMEVTYPER1_EL0(3),
2279 AMU_AMEVTYPER1_EL0(4),
2280 AMU_AMEVTYPER1_EL0(5),
2281 AMU_AMEVTYPER1_EL0(6),
2282 AMU_AMEVTYPER1_EL0(7),
2283 AMU_AMEVTYPER1_EL0(8),
2284 AMU_AMEVTYPER1_EL0(9),
2285 AMU_AMEVTYPER1_EL0(10),
2286 AMU_AMEVTYPER1_EL0(11),
2287 AMU_AMEVTYPER1_EL0(12),
2288 AMU_AMEVTYPER1_EL0(13),
2289 AMU_AMEVTYPER1_EL0(14),
2290 AMU_AMEVTYPER1_EL0(15),
62a89c44 2291
c605ee24
MZ
2292 { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2293 { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
84135d3d
AP
2294 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2295 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2296 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
c9a3c58f 2297
051ff581
SZ
2298 /* PMEVCNTRn_EL0 */
2299 PMU_PMEVCNTR_EL0(0),
2300 PMU_PMEVCNTR_EL0(1),
2301 PMU_PMEVCNTR_EL0(2),
2302 PMU_PMEVCNTR_EL0(3),
2303 PMU_PMEVCNTR_EL0(4),
2304 PMU_PMEVCNTR_EL0(5),
2305 PMU_PMEVCNTR_EL0(6),
2306 PMU_PMEVCNTR_EL0(7),
2307 PMU_PMEVCNTR_EL0(8),
2308 PMU_PMEVCNTR_EL0(9),
2309 PMU_PMEVCNTR_EL0(10),
2310 PMU_PMEVCNTR_EL0(11),
2311 PMU_PMEVCNTR_EL0(12),
2312 PMU_PMEVCNTR_EL0(13),
2313 PMU_PMEVCNTR_EL0(14),
2314 PMU_PMEVCNTR_EL0(15),
2315 PMU_PMEVCNTR_EL0(16),
2316 PMU_PMEVCNTR_EL0(17),
2317 PMU_PMEVCNTR_EL0(18),
2318 PMU_PMEVCNTR_EL0(19),
2319 PMU_PMEVCNTR_EL0(20),
2320 PMU_PMEVCNTR_EL0(21),
2321 PMU_PMEVCNTR_EL0(22),
2322 PMU_PMEVCNTR_EL0(23),
2323 PMU_PMEVCNTR_EL0(24),
2324 PMU_PMEVCNTR_EL0(25),
2325 PMU_PMEVCNTR_EL0(26),
2326 PMU_PMEVCNTR_EL0(27),
2327 PMU_PMEVCNTR_EL0(28),
2328 PMU_PMEVCNTR_EL0(29),
2329 PMU_PMEVCNTR_EL0(30),
9feb21ac
SZ
2330 /* PMEVTYPERn_EL0 */
2331 PMU_PMEVTYPER_EL0(0),
2332 PMU_PMEVTYPER_EL0(1),
2333 PMU_PMEVTYPER_EL0(2),
2334 PMU_PMEVTYPER_EL0(3),
2335 PMU_PMEVTYPER_EL0(4),
2336 PMU_PMEVTYPER_EL0(5),
2337 PMU_PMEVTYPER_EL0(6),
2338 PMU_PMEVTYPER_EL0(7),
2339 PMU_PMEVTYPER_EL0(8),
2340 PMU_PMEVTYPER_EL0(9),
2341 PMU_PMEVTYPER_EL0(10),
2342 PMU_PMEVTYPER_EL0(11),
2343 PMU_PMEVTYPER_EL0(12),
2344 PMU_PMEVTYPER_EL0(13),
2345 PMU_PMEVTYPER_EL0(14),
2346 PMU_PMEVTYPER_EL0(15),
2347 PMU_PMEVTYPER_EL0(16),
2348 PMU_PMEVTYPER_EL0(17),
2349 PMU_PMEVTYPER_EL0(18),
2350 PMU_PMEVTYPER_EL0(19),
2351 PMU_PMEVTYPER_EL0(20),
2352 PMU_PMEVTYPER_EL0(21),
2353 PMU_PMEVTYPER_EL0(22),
2354 PMU_PMEVTYPER_EL0(23),
2355 PMU_PMEVTYPER_EL0(24),
2356 PMU_PMEVTYPER_EL0(25),
2357 PMU_PMEVTYPER_EL0(26),
2358 PMU_PMEVTYPER_EL0(27),
2359 PMU_PMEVTYPER_EL0(28),
2360 PMU_PMEVTYPER_EL0(29),
2361 PMU_PMEVTYPER_EL0(30),
174ed3e4
MR
2362 /*
2363 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
9feb21ac
SZ
2364 * in 32bit mode. Here we choose to reset it as zero for consistency.
2365 */
9d2a55b4 2366 { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
11663111 2367 .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
051ff581 2368
6ff9dc23
JL
2369 EL2_REG(VPIDR_EL2, access_rw, reset_unknown, 0),
2370 EL2_REG(VMPIDR_EL2, access_rw, reset_unknown, 0),
2371 EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2372 EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2373 EL2_REG(HCR_EL2, access_rw, reset_val, 0),
2374 EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
75c76ab5 2375 EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
6ff9dc23 2376 EL2_REG(HSTR_EL2, access_rw, reset_val, 0),
50d2fe46
MZ
2377 EL2_REG(HFGRTR_EL2, access_rw, reset_val, 0),
2378 EL2_REG(HFGWTR_EL2, access_rw, reset_val, 0),
2379 EL2_REG(HFGITR_EL2, access_rw, reset_val, 0),
6ff9dc23
JL
2380 EL2_REG(HACR_EL2, access_rw, reset_val, 0),
2381
03fb54d0
MZ
2382 EL2_REG(HCRX_EL2, access_rw, reset_val, 0),
2383
6ff9dc23
JL
2384 EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2385 EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2386 EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2387 EL2_REG(VTTBR_EL2, access_rw, reset_val, 0),
2388 EL2_REG(VTCR_EL2, access_rw, reset_val, 0),
2389
851050a5 2390 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
50d2fe46
MZ
2391 EL2_REG(HDFGRTR_EL2, access_rw, reset_val, 0),
2392 EL2_REG(HDFGWTR_EL2, access_rw, reset_val, 0),
6ff9dc23
JL
2393 EL2_REG(SPSR_EL2, access_rw, reset_val, 0),
2394 EL2_REG(ELR_EL2, access_rw, reset_val, 0),
2395 { SYS_DESC(SYS_SP_EL1), access_sp_el1},
2396
851050a5 2397 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
6ff9dc23
JL
2398 EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2399 EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2400 EL2_REG(ESR_EL2, access_rw, reset_val, 0),
c88b0936 2401 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
6ff9dc23
JL
2402
2403 EL2_REG(FAR_EL2, access_rw, reset_val, 0),
2404 EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2405
2406 EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2407 EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2408
2409 EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2410 EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2411 { SYS_DESC(SYS_RMR_EL2), trap_undef },
2412
2413 EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2414 EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2415
2416 EL2_REG(CNTVOFF_EL2, access_rw, reset_val, 0),
2417 EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2418
280b748e
JL
2419 EL12_REG(SCTLR, access_vm_reg, reset_val, 0x00C50078),
2420 EL12_REG(CPACR, access_rw, reset_val, 0),
2421 EL12_REG(TTBR0, access_vm_reg, reset_unknown, 0),
2422 EL12_REG(TTBR1, access_vm_reg, reset_unknown, 0),
2423 EL12_REG(TCR, access_vm_reg, reset_val, 0),
2424 { SYS_DESC(SYS_SPSR_EL12), access_spsr},
2425 { SYS_DESC(SYS_ELR_EL12), access_elr},
2426 EL12_REG(AFSR0, access_vm_reg, reset_unknown, 0),
2427 EL12_REG(AFSR1, access_vm_reg, reset_unknown, 0),
2428 EL12_REG(ESR, access_vm_reg, reset_unknown, 0),
2429 EL12_REG(FAR, access_vm_reg, reset_unknown, 0),
2430 EL12_REG(MAIR, access_vm_reg, reset_unknown, 0),
2431 EL12_REG(AMAIR, access_vm_reg, reset_amair_el1, 0),
2432 EL12_REG(VBAR, access_rw, reset_val, 0),
2433 EL12_REG(CONTEXTIDR, access_vm_reg, reset_val, 0),
2434 EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2435
6ff9dc23 2436 EL2_REG(SP_EL2, NULL, reset_unknown, 0),
62a89c44
MZ
2437};
2438
47334146
JZ
2439static const struct sys_reg_desc *first_idreg;
2440
8c358b29 2441static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
3fec037d 2442 struct sys_reg_params *p,
bdfb4b38
MZ
2443 const struct sys_reg_desc *r)
2444{
2445 if (p->is_write) {
2446 return ignore_write(vcpu, p);
2447 } else {
8b6958d6
JZ
2448 u64 dfr = IDREG(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
2449 u64 pfr = IDREG(vcpu->kvm, SYS_ID_AA64PFR0_EL1);
55adc08d 2450 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT);
bdfb4b38 2451
fcf37b38
MB
2452 p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) |
2453 (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) |
2454 (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20)
bea7e97f 2455 | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
bdfb4b38
MZ
2456 return true;
2457 }
2458}
2459
1da42c34
MZ
2460/*
2461 * AArch32 debug register mappings
84e690bf
AB
2462 *
2463 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2464 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2465 *
1da42c34
MZ
2466 * None of the other registers share their location, so treat them as
2467 * if they were 64bit.
84e690bf 2468 */
1da42c34
MZ
2469#define DBG_BCR_BVR_WCR_WVR(n) \
2470 /* DBGBVRn */ \
2471 { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2472 /* DBGBCRn */ \
2473 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
2474 /* DBGWVRn */ \
2475 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
2476 /* DBGWCRn */ \
84e690bf
AB
2477 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2478
1da42c34
MZ
2479#define DBGBXVR(n) \
2480 { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
bdfb4b38
MZ
2481
2482/*
2483 * Trapped cp14 registers. We generally ignore most of the external
2484 * debug, on the principle that they don't really make sense to a
84e690bf 2485 * guest. Revisit this one day, would this principle change.
bdfb4b38 2486 */
72564016 2487static const struct sys_reg_desc cp14_regs[] = {
8c358b29
AE
2488 /* DBGDIDR */
2489 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
bdfb4b38
MZ
2490 /* DBGDTRRXext */
2491 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2492
2493 DBG_BCR_BVR_WCR_WVR(0),
2494 /* DBGDSCRint */
2495 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2496 DBG_BCR_BVR_WCR_WVR(1),
2497 /* DBGDCCINT */
1da42c34 2498 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
bdfb4b38 2499 /* DBGDSCRext */
1da42c34 2500 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
bdfb4b38
MZ
2501 DBG_BCR_BVR_WCR_WVR(2),
2502 /* DBGDTR[RT]Xint */
2503 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2504 /* DBGDTR[RT]Xext */
2505 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2506 DBG_BCR_BVR_WCR_WVR(3),
2507 DBG_BCR_BVR_WCR_WVR(4),
2508 DBG_BCR_BVR_WCR_WVR(5),
2509 /* DBGWFAR */
2510 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2511 /* DBGOSECCR */
2512 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2513 DBG_BCR_BVR_WCR_WVR(6),
2514 /* DBGVCR */
1da42c34 2515 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
bdfb4b38
MZ
2516 DBG_BCR_BVR_WCR_WVR(7),
2517 DBG_BCR_BVR_WCR_WVR(8),
2518 DBG_BCR_BVR_WCR_WVR(9),
2519 DBG_BCR_BVR_WCR_WVR(10),
2520 DBG_BCR_BVR_WCR_WVR(11),
2521 DBG_BCR_BVR_WCR_WVR(12),
2522 DBG_BCR_BVR_WCR_WVR(13),
2523 DBG_BCR_BVR_WCR_WVR(14),
2524 DBG_BCR_BVR_WCR_WVR(15),
2525
2526 /* DBGDRAR (32bit) */
2527 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2528
2529 DBGBXVR(0),
2530 /* DBGOSLAR */
f24adc65 2531 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
bdfb4b38
MZ
2532 DBGBXVR(1),
2533 /* DBGOSLSR */
d42e2671 2534 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
bdfb4b38
MZ
2535 DBGBXVR(2),
2536 DBGBXVR(3),
2537 /* DBGOSDLR */
2538 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2539 DBGBXVR(4),
2540 /* DBGPRCR */
2541 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2542 DBGBXVR(5),
2543 DBGBXVR(6),
2544 DBGBXVR(7),
2545 DBGBXVR(8),
2546 DBGBXVR(9),
2547 DBGBXVR(10),
2548 DBGBXVR(11),
2549 DBGBXVR(12),
2550 DBGBXVR(13),
2551 DBGBXVR(14),
2552 DBGBXVR(15),
2553
2554 /* DBGDSAR (32bit) */
2555 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2556
2557 /* DBGDEVID2 */
2558 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2559 /* DBGDEVID1 */
2560 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2561 /* DBGDEVID */
2562 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2563 /* DBGCLAIMSET */
2564 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2565 /* DBGCLAIMCLR */
2566 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2567 /* DBGAUTHSTATUS */
2568 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
72564016
MZ
2569};
2570
a9866ba0
MZ
2571/* Trapped cp14 64bit registers */
2572static const struct sys_reg_desc cp14_64_regs[] = {
bdfb4b38
MZ
2573 /* DBGDRAR (64bit) */
2574 { Op1( 0), CRm( 1), .access = trap_raz_wi },
2575
2576 /* DBGDSAR (64bit) */
2577 { Op1( 0), CRm( 2), .access = trap_raz_wi },
a9866ba0
MZ
2578};
2579
a9e192cd
AE
2580#define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \
2581 AA32(_map), \
2582 Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \
2583 .visibility = pmu_visibility
2584
051ff581
SZ
2585/* Macro to expand the PMEVCNTRn register */
2586#define PMU_PMEVCNTR(n) \
a9e192cd
AE
2587 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
2588 (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
2589 .access = access_pmu_evcntr }
051ff581 2590
9feb21ac
SZ
2591/* Macro to expand the PMEVTYPERn register */
2592#define PMU_PMEVTYPER(n) \
a9e192cd
AE
2593 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
2594 (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
2595 .access = access_pmu_evtyper }
4d44923b
MZ
2596/*
2597 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2598 * depending on the way they are accessed (as a 32bit or a 64bit
2599 * register).
2600 */
62a89c44 2601static const struct sys_reg_desc cp15_regs[] = {
f7f2b15c 2602 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
b1ea1d76
MZ
2603 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2604 /* ACTLR */
2605 { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2606 /* ACTLR2 */
2607 { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2608 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2609 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2610 /* TTBCR */
2611 { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2612 /* TTBCR2 */
2613 { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2614 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2615 /* DFSR */
2616 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2617 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2618 /* ADFSR */
2619 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2620 /* AIFSR */
2621 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2622 /* DFAR */
2623 { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2624 /* IFAR */
2625 { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
4d44923b 2626
62a89c44
MZ
2627 /*
2628 * DC{C,I,CI}SW operations:
2629 */
2630 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2631 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2632 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4d44923b 2633
7609c125 2634 /* PMU */
a9e192cd
AE
2635 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2636 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2637 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2638 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2639 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2640 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2641 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid },
2642 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid },
2643 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2644 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2645 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2646 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2647 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2648 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2649 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2650 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid },
2651 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid },
46081078 2652 /* PMMIR */
a9e192cd 2653 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
4d44923b 2654
b1ea1d76
MZ
2655 /* PRRR/MAIR0 */
2656 { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2657 /* NMRR/MAIR1 */
2658 { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2659 /* AMAIR0 */
2660 { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2661 /* AMAIR1 */
2662 { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
db7dedd0
CD
2663
2664 /* ICC_SRE */
f7f6f2d9 2665 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
db7dedd0 2666
b1ea1d76 2667 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
051ff581 2668
84135d3d
AP
2669 /* Arch Tmers */
2670 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2671 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
eac137b4 2672
051ff581
SZ
2673 /* PMEVCNTRn */
2674 PMU_PMEVCNTR(0),
2675 PMU_PMEVCNTR(1),
2676 PMU_PMEVCNTR(2),
2677 PMU_PMEVCNTR(3),
2678 PMU_PMEVCNTR(4),
2679 PMU_PMEVCNTR(5),
2680 PMU_PMEVCNTR(6),
2681 PMU_PMEVCNTR(7),
2682 PMU_PMEVCNTR(8),
2683 PMU_PMEVCNTR(9),
2684 PMU_PMEVCNTR(10),
2685 PMU_PMEVCNTR(11),
2686 PMU_PMEVCNTR(12),
2687 PMU_PMEVCNTR(13),
2688 PMU_PMEVCNTR(14),
2689 PMU_PMEVCNTR(15),
2690 PMU_PMEVCNTR(16),
2691 PMU_PMEVCNTR(17),
2692 PMU_PMEVCNTR(18),
2693 PMU_PMEVCNTR(19),
2694 PMU_PMEVCNTR(20),
2695 PMU_PMEVCNTR(21),
2696 PMU_PMEVCNTR(22),
2697 PMU_PMEVCNTR(23),
2698 PMU_PMEVCNTR(24),
2699 PMU_PMEVCNTR(25),
2700 PMU_PMEVCNTR(26),
2701 PMU_PMEVCNTR(27),
2702 PMU_PMEVCNTR(28),
2703 PMU_PMEVCNTR(29),
2704 PMU_PMEVCNTR(30),
9feb21ac
SZ
2705 /* PMEVTYPERn */
2706 PMU_PMEVTYPER(0),
2707 PMU_PMEVTYPER(1),
2708 PMU_PMEVTYPER(2),
2709 PMU_PMEVTYPER(3),
2710 PMU_PMEVTYPER(4),
2711 PMU_PMEVTYPER(5),
2712 PMU_PMEVTYPER(6),
2713 PMU_PMEVTYPER(7),
2714 PMU_PMEVTYPER(8),
2715 PMU_PMEVTYPER(9),
2716 PMU_PMEVTYPER(10),
2717 PMU_PMEVTYPER(11),
2718 PMU_PMEVTYPER(12),
2719 PMU_PMEVTYPER(13),
2720 PMU_PMEVTYPER(14),
2721 PMU_PMEVTYPER(15),
2722 PMU_PMEVTYPER(16),
2723 PMU_PMEVTYPER(17),
2724 PMU_PMEVTYPER(18),
2725 PMU_PMEVTYPER(19),
2726 PMU_PMEVTYPER(20),
2727 PMU_PMEVTYPER(21),
2728 PMU_PMEVTYPER(22),
2729 PMU_PMEVTYPER(23),
2730 PMU_PMEVTYPER(24),
2731 PMU_PMEVTYPER(25),
2732 PMU_PMEVTYPER(26),
2733 PMU_PMEVTYPER(27),
2734 PMU_PMEVTYPER(28),
2735 PMU_PMEVTYPER(29),
2736 PMU_PMEVTYPER(30),
2737 /* PMCCFILTR */
a9e192cd 2738 { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
f7f2b15c
AB
2739
2740 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2741 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
bf48040c
AO
2742
2743 /* CCSIDR2 */
2744 { Op1(1), CRn( 0), CRm( 0), Op2(2), undef_access },
2745
b1ea1d76 2746 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
a9866ba0
MZ
2747};
2748
2749static const struct sys_reg_desc cp15_64_regs[] = {
b1ea1d76 2750 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
a9e192cd 2751 { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
03bd646d 2752 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
c605ee24 2753 { SYS_DESC(SYS_AARCH32_CNTPCT), access_arch_timer },
b1ea1d76 2754 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
03bd646d
MZ
2755 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2756 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
84135d3d 2757 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
a6610435 2758 { SYS_DESC(SYS_AARCH32_CNTPCTSS), access_arch_timer },
7c8c5e6a
MZ
2759};
2760
f1f0c0cf
AE
2761static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2762 bool is_32)
bb44a8db
MZ
2763{
2764 unsigned int i;
2765
2766 for (i = 0; i < n; i++) {
2767 if (!is_32 && table[i].reg && !table[i].reset) {
325031d4 2768 kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
f1f0c0cf 2769 return false;
bb44a8db
MZ
2770 }
2771
2772 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
325031d4 2773 kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
f1f0c0cf 2774 return false;
bb44a8db
MZ
2775 }
2776 }
2777
f1f0c0cf 2778 return true;
bb44a8db
MZ
2779}
2780
74cc7e0c 2781int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
62a89c44
MZ
2782{
2783 kvm_inject_undefined(vcpu);
2784 return 1;
2785}
2786
e70b9522
MZ
2787static void perform_access(struct kvm_vcpu *vcpu,
2788 struct sys_reg_params *params,
2789 const struct sys_reg_desc *r)
2790{
599d79dc
MZ
2791 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2792
7f34e409 2793 /* Check for regs disabled by runtime config */
01fe5ace 2794 if (sysreg_hidden(vcpu, r)) {
7f34e409
DM
2795 kvm_inject_undefined(vcpu);
2796 return;
2797 }
2798
e70b9522
MZ
2799 /*
2800 * Not having an accessor means that we have configured a trap
2801 * that we don't know how to handle. This certainly qualifies
2802 * as a gross bug that should be fixed right away.
2803 */
2804 BUG_ON(!r->access);
2805
2806 /* Skip instruction if instructed so */
2807 if (likely(r->access(vcpu, params, r)))
cdb5e02e 2808 kvm_incr_pc(vcpu);
e70b9522
MZ
2809}
2810
72564016
MZ
2811/*
2812 * emulate_cp -- tries to match a sys_reg access in a handling table, and
2813 * call the corresponding trap handler.
2814 *
2815 * @params: pointer to the descriptor of the access
2816 * @table: array of trap descriptors
2817 * @num: size of the trap descriptor array
2818 *
001bb819 2819 * Return true if the access has been handled, false if not.
72564016 2820 */
001bb819
OU
2821static bool emulate_cp(struct kvm_vcpu *vcpu,
2822 struct sys_reg_params *params,
2823 const struct sys_reg_desc *table,
2824 size_t num)
62a89c44 2825{
72564016 2826 const struct sys_reg_desc *r;
62a89c44 2827
72564016 2828 if (!table)
001bb819 2829 return false; /* Not handled */
62a89c44 2830
62a89c44 2831 r = find_reg(params, table, num);
62a89c44 2832
72564016 2833 if (r) {
e70b9522 2834 perform_access(vcpu, params, r);
001bb819 2835 return true;
72564016
MZ
2836 }
2837
2838 /* Not handled */
001bb819 2839 return false;
72564016
MZ
2840}
2841
2842static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2843 struct sys_reg_params *params)
2844{
3a949f4c 2845 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
40c4f8d2 2846 int cp = -1;
72564016 2847
3a949f4c 2848 switch (esr_ec) {
c6d01a94
MR
2849 case ESR_ELx_EC_CP15_32:
2850 case ESR_ELx_EC_CP15_64:
72564016
MZ
2851 cp = 15;
2852 break;
c6d01a94
MR
2853 case ESR_ELx_EC_CP14_MR:
2854 case ESR_ELx_EC_CP14_64:
72564016
MZ
2855 cp = 14;
2856 break;
2857 default:
40c4f8d2 2858 WARN_ON(1);
62a89c44
MZ
2859 }
2860
bf4b96bb
MR
2861 print_sys_reg_msg(params,
2862 "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2863 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
62a89c44
MZ
2864 kvm_inject_undefined(vcpu);
2865}
2866
2867/**
7769db90 2868 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
62a89c44
MZ
2869 * @vcpu: The VCPU pointer
2870 * @run: The kvm_run struct
2871 */
72564016
MZ
2872static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2873 const struct sys_reg_desc *global,
dcaffa7b 2874 size_t nr_global)
62a89c44
MZ
2875{
2876 struct sys_reg_params params;
0b12620f 2877 u64 esr = kvm_vcpu_get_esr(vcpu);
c667186f 2878 int Rt = kvm_vcpu_sys_get_rt(vcpu);
3a949f4c 2879 int Rt2 = (esr >> 10) & 0x1f;
62a89c44 2880
3a949f4c
GS
2881 params.CRm = (esr >> 1) & 0xf;
2882 params.is_write = ((esr & 1) == 0);
62a89c44
MZ
2883
2884 params.Op0 = 0;
3a949f4c 2885 params.Op1 = (esr >> 16) & 0xf;
62a89c44
MZ
2886 params.Op2 = 0;
2887 params.CRn = 0;
2888
2889 /*
2ec5be3d 2890 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
62a89c44
MZ
2891 * backends between AArch32 and AArch64, we get away with it.
2892 */
2893 if (params.is_write) {
2ec5be3d
PF
2894 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2895 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
62a89c44
MZ
2896 }
2897
b6b7a806 2898 /*
dcaffa7b 2899 * If the table contains a handler, handle the
b6b7a806
MZ
2900 * potential register operation in the case of a read and return
2901 * with success.
2902 */
001bb819 2903 if (emulate_cp(vcpu, &params, global, nr_global)) {
b6b7a806
MZ
2904 /* Split up the value between registers for the read side */
2905 if (!params.is_write) {
2906 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2907 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2908 }
62a89c44 2909
b6b7a806 2910 return 1;
62a89c44
MZ
2911 }
2912
b6b7a806 2913 unhandled_cp_access(vcpu, &params);
62a89c44
MZ
2914 return 1;
2915}
2916
e6519766
OU
2917static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
2918
9369bc5c
OU
2919/*
2920 * The CP10 ID registers are architecturally mapped to AArch64 feature
2921 * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
2922 * from AArch32.
2923 */
ee87a9bd 2924static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
9369bc5c
OU
2925{
2926 u8 reg_id = (esr >> 10) & 0xf;
2927 bool valid;
2928
2929 params->is_write = ((esr & 1) == 0);
2930 params->Op0 = 3;
2931 params->Op1 = 0;
2932 params->CRn = 0;
2933 params->CRm = 3;
2934
2935 /* CP10 ID registers are read-only */
2936 valid = !params->is_write;
2937
2938 switch (reg_id) {
2939 /* MVFR0 */
2940 case 0b0111:
2941 params->Op2 = 0;
2942 break;
2943 /* MVFR1 */
2944 case 0b0110:
2945 params->Op2 = 1;
2946 break;
2947 /* MVFR2 */
2948 case 0b0101:
2949 params->Op2 = 2;
2950 break;
2951 default:
2952 valid = false;
2953 }
2954
2955 if (valid)
2956 return true;
2957
2958 kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
2959 params->is_write ? "write" : "read", reg_id);
2960 return false;
2961}
2962
2963/**
2964 * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
2965 * VFP Register' from AArch32.
2966 * @vcpu: The vCPU pointer
2967 *
2968 * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
2969 * Work out the correct AArch64 system register encoding and reroute to the
2970 * AArch64 system register emulation.
2971 */
2972int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
2973{
2974 int Rt = kvm_vcpu_sys_get_rt(vcpu);
ee87a9bd 2975 u64 esr = kvm_vcpu_get_esr(vcpu);
9369bc5c
OU
2976 struct sys_reg_params params;
2977
2978 /* UNDEF on any unhandled register access */
2979 if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
2980 kvm_inject_undefined(vcpu);
2981 return 1;
2982 }
2983
2984 if (emulate_sys_reg(vcpu, &params))
2985 vcpu_set_reg(vcpu, Rt, params.regval);
2986
2987 return 1;
2988}
2989
e6519766
OU
2990/**
2991 * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
2992 * CRn=0, which corresponds to the AArch32 feature
2993 * registers.
2994 * @vcpu: the vCPU pointer
2995 * @params: the system register access parameters.
2996 *
2997 * Our cp15 system register tables do not enumerate the AArch32 feature
2998 * registers. Conveniently, our AArch64 table does, and the AArch32 system
2999 * register encoding can be trivially remapped into the AArch64 for the feature
3000 * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
3001 *
3002 * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
3003 * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
3004 * range are either UNKNOWN or RES0. Rerouting remains architectural as we
3005 * treat undefined registers in this range as RAZ.
3006 */
3007static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3008 struct sys_reg_params *params)
3009{
3010 int Rt = kvm_vcpu_sys_get_rt(vcpu);
3011
3012 /* Treat impossible writes to RO registers as UNDEFINED */
3013 if (params->is_write) {
3014 unhandled_cp_access(vcpu, params);
3015 return 1;
3016 }
3017
3018 params->Op0 = 3;
3019
3020 /*
3021 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3022 * Avoid conflicting with future expansion of AArch64 feature registers
3023 * and simply treat them as RAZ here.
3024 */
3025 if (params->CRm > 3)
3026 params->regval = 0;
3027 else if (!emulate_sys_reg(vcpu, params))
3028 return 1;
3029
3030 vcpu_set_reg(vcpu, Rt, params->regval);
3031 return 1;
3032}
3033
62a89c44 3034/**
7769db90 3035 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
62a89c44
MZ
3036 * @vcpu: The VCPU pointer
3037 * @run: The kvm_run struct
3038 */
72564016 3039static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
e6519766 3040 struct sys_reg_params *params,
72564016 3041 const struct sys_reg_desc *global,
dcaffa7b 3042 size_t nr_global)
62a89c44 3043{
c667186f 3044 int Rt = kvm_vcpu_sys_get_rt(vcpu);
62a89c44 3045
e6519766 3046 params->regval = vcpu_get_reg(vcpu, Rt);
62a89c44 3047
e6519766
OU
3048 if (emulate_cp(vcpu, params, global, nr_global)) {
3049 if (!params->is_write)
3050 vcpu_set_reg(vcpu, Rt, params->regval);
72564016 3051 return 1;
2ec5be3d 3052 }
72564016 3053
e6519766 3054 unhandled_cp_access(vcpu, params);
62a89c44
MZ
3055 return 1;
3056}
3057
74cc7e0c 3058int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
72564016 3059{
dcaffa7b 3060 return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
72564016
MZ
3061}
3062
74cc7e0c 3063int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
72564016 3064{
e6519766
OU
3065 struct sys_reg_params params;
3066
3067 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3068
3069 /*
3070 * Certain AArch32 ID registers are handled by rerouting to the AArch64
3071 * system register table. Registers in the ID range where CRm=0 are
3072 * excluded from this scheme as they do not trivially map into AArch64
3073 * system register encodings.
3074 */
3075 if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3076 return kvm_emulate_cp15_id_reg(vcpu, &params);
3077
3078 return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
72564016
MZ
3079}
3080
74cc7e0c 3081int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
72564016 3082{
dcaffa7b 3083 return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
72564016
MZ
3084}
3085
74cc7e0c 3086int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
72564016 3087{
e6519766
OU
3088 struct sys_reg_params params;
3089
3090 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3091
3092 return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
72564016
MZ
3093}
3094
54ad68b7
MR
3095static bool is_imp_def_sys_reg(struct sys_reg_params *params)
3096{
3097 // See ARM DDI 0487E.a, section D12.3.2
3098 return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
3099}
3100
28eda7b5
OU
3101/**
3102 * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3103 * @vcpu: The VCPU pointer
3104 * @params: Decoded system register parameters
3105 *
3106 * Return: true if the system register access was successful, false otherwise.
3107 */
3108static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3fec037d 3109 struct sys_reg_params *params)
7c8c5e6a 3110{
dcaffa7b 3111 const struct sys_reg_desc *r;
7c8c5e6a 3112
dcaffa7b 3113 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
7c8c5e6a
MZ
3114
3115 if (likely(r)) {
e70b9522 3116 perform_access(vcpu, params, r);
28eda7b5
OU
3117 return true;
3118 }
3119
3120 if (is_imp_def_sys_reg(params)) {
54ad68b7 3121 kvm_inject_undefined(vcpu);
7c8c5e6a 3122 } else {
bf4b96bb
MR
3123 print_sys_reg_msg(params,
3124 "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3125 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
e70b9522 3126 kvm_inject_undefined(vcpu);
7c8c5e6a 3127 }
28eda7b5 3128 return false;
7c8c5e6a
MZ
3129}
3130
47334146
JZ
3131static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
3132{
3133 const struct sys_reg_desc *idreg = first_idreg;
3134 u32 id = reg_to_encoding(idreg);
3135 struct kvm *kvm = vcpu->kvm;
3136
3137 if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
3138 return;
3139
3140 lockdep_assert_held(&kvm->arch.config_lock);
3141
3142 /* Initialize all idregs */
3143 while (is_id_reg(id)) {
3144 IDREG(kvm, id) = idreg->reset(vcpu, idreg);
3145
3146 idreg++;
3147 id = reg_to_encoding(idreg);
3148 }
3149
3150 set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
3151}
3152
750ed566
JM
3153/**
3154 * kvm_reset_sys_regs - sets system registers to reset value
3155 * @vcpu: The VCPU pointer
3156 *
3157 * This function finds the right table above and sets the registers on the
3158 * virtual CPU struct to their architecturally defined reset values.
3159 */
3160void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
7c8c5e6a
MZ
3161{
3162 unsigned long i;
3163
47334146
JZ
3164 kvm_reset_id_regs(vcpu);
3165
3166 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3167 const struct sys_reg_desc *r = &sys_reg_descs[i];
3168
3169 if (is_id_reg(reg_to_encoding(r)))
3170 continue;
3171
3172 if (r->reset)
3173 r->reset(vcpu, r);
3174 }
7c8c5e6a
MZ
3175}
3176
3177/**
3178 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
3179 * @vcpu: The VCPU pointer
7c8c5e6a 3180 */
74cc7e0c 3181int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
7c8c5e6a
MZ
3182{
3183 struct sys_reg_params params;
3a949f4c 3184 unsigned long esr = kvm_vcpu_get_esr(vcpu);
c667186f 3185 int Rt = kvm_vcpu_sys_get_rt(vcpu);
7c8c5e6a 3186
eef8c85a
AB
3187 trace_kvm_handle_sys_reg(esr);
3188
e58ec47b
MZ
3189 if (__check_nv_sr_forward(vcpu))
3190 return 1;
3191
f76f89e2 3192 params = esr_sys64_to_params(esr);
2ec5be3d 3193 params.regval = vcpu_get_reg(vcpu, Rt);
7c8c5e6a 3194
28eda7b5
OU
3195 if (!emulate_sys_reg(vcpu, &params))
3196 return 1;
2ec5be3d
PF
3197
3198 if (!params.is_write)
3199 vcpu_set_reg(vcpu, Rt, params.regval);
28eda7b5 3200 return 1;
7c8c5e6a
MZ
3201}
3202
3203/******************************************************************************
3204 * Userspace API
3205 *****************************************************************************/
3206
3207static bool index_to_params(u64 id, struct sys_reg_params *params)
3208{
3209 switch (id & KVM_REG_SIZE_MASK) {
3210 case KVM_REG_SIZE_U64:
3211 /* Any unused index bits means it's not valid. */
3212 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
3213 | KVM_REG_ARM_COPROC_MASK
3214 | KVM_REG_ARM64_SYSREG_OP0_MASK
3215 | KVM_REG_ARM64_SYSREG_OP1_MASK
3216 | KVM_REG_ARM64_SYSREG_CRN_MASK
3217 | KVM_REG_ARM64_SYSREG_CRM_MASK
3218 | KVM_REG_ARM64_SYSREG_OP2_MASK))
3219 return false;
3220 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
3221 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
3222 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
3223 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
3224 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
3225 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
3226 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
3227 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
3228 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
3229 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
3230 return true;
3231 default:
3232 return false;
3233 }
3234}
3235
da8d120f
MZ
3236const struct sys_reg_desc *get_reg_by_id(u64 id,
3237 const struct sys_reg_desc table[],
3238 unsigned int num)
4b927b94 3239{
da8d120f
MZ
3240 struct sys_reg_params params;
3241
3242 if (!index_to_params(id, &params))
4b927b94
VK
3243 return NULL;
3244
da8d120f 3245 return find_reg(&params, table, num);
4b927b94
VK
3246}
3247
7c8c5e6a 3248/* Decode an index value, and find the sys_reg_desc entry. */
ba23aec9
MZ
3249static const struct sys_reg_desc *
3250id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3251 const struct sys_reg_desc table[], unsigned int num)
3252
7c8c5e6a 3253{
dcaffa7b 3254 const struct sys_reg_desc *r;
7c8c5e6a
MZ
3255
3256 /* We only do sys_reg for now. */
3257 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3258 return NULL;
3259
ba23aec9 3260 r = get_reg_by_id(id, table, num);
7c8c5e6a 3261
93390c0a 3262 /* Not saved in the sys_reg array and not otherwise accessible? */
ba23aec9 3263 if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
7c8c5e6a
MZ
3264 r = NULL;
3265
3266 return r;
3267}
3268
3269/*
3270 * These are the invariant sys_reg registers: we let the guest see the
3271 * host versions of these, so they're part of the guest state.
3272 *
3273 * A future CPU may provide a mechanism to present different values to
3274 * the guest, or a future kvm may trap them.
3275 */
3276
3277#define FUNCTION_INVARIANT(reg) \
d86cde6e 3278 static u64 get_##reg(struct kvm_vcpu *v, \
7c8c5e6a
MZ
3279 const struct sys_reg_desc *r) \
3280 { \
1f3d8699 3281 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
d86cde6e 3282 return ((struct sys_reg_desc *)r)->val; \
7c8c5e6a
MZ
3283 }
3284
3285FUNCTION_INVARIANT(midr_el1)
7c8c5e6a 3286FUNCTION_INVARIANT(revidr_el1)
7c8c5e6a
MZ
3287FUNCTION_INVARIANT(aidr_el1)
3288
d86cde6e 3289static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
f7f2b15c
AB
3290{
3291 ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
d86cde6e 3292 return ((struct sys_reg_desc *)r)->val;
f7f2b15c
AB
3293}
3294
7c8c5e6a 3295/* ->val is filled in by kvm_sys_reg_table_init() */
8d20bd63 3296static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
0d449541
MR
3297 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3298 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
0d449541
MR
3299 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3300 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
7c8c5e6a
MZ
3301};
3302
5a420ed9 3303static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
7c8c5e6a 3304{
7c8c5e6a
MZ
3305 const struct sys_reg_desc *r;
3306
da8d120f
MZ
3307 r = get_reg_by_id(id, invariant_sys_regs,
3308 ARRAY_SIZE(invariant_sys_regs));
7c8c5e6a
MZ
3309 if (!r)
3310 return -ENOENT;
3311
5a420ed9 3312 return put_user(r->val, uaddr);
7c8c5e6a
MZ
3313}
3314
5a420ed9 3315static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
7c8c5e6a 3316{
7c8c5e6a 3317 const struct sys_reg_desc *r;
5a420ed9 3318 u64 val;
7c8c5e6a 3319
da8d120f
MZ
3320 r = get_reg_by_id(id, invariant_sys_regs,
3321 ARRAY_SIZE(invariant_sys_regs));
7c8c5e6a
MZ
3322 if (!r)
3323 return -ENOENT;
3324
5a420ed9
MZ
3325 if (get_user(val, uaddr))
3326 return -EFAULT;
7c8c5e6a
MZ
3327
3328 /* This is what we mean by invariant: you can't change it. */
3329 if (r->val != val)
3330 return -EINVAL;
3331
3332 return 0;
3333}
3334
7af0c253 3335static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
7c8c5e6a
MZ
3336{
3337 u32 val;
3338 u32 __user *uval = uaddr;
3339
3340 /* Fail if we have unknown bits set. */
3341 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3342 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3343 return -ENOENT;
3344
3345 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3346 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3347 if (KVM_REG_SIZE(id) != 4)
3348 return -ENOENT;
3349 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3350 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
7af0c253 3351 if (val >= CSSELR_MAX)
7c8c5e6a
MZ
3352 return -ENOENT;
3353
7af0c253 3354 return put_user(get_ccsidr(vcpu, val), uval);
7c8c5e6a
MZ
3355 default:
3356 return -ENOENT;
3357 }
3358}
3359
7af0c253 3360static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
7c8c5e6a
MZ
3361{
3362 u32 val, newval;
3363 u32 __user *uval = uaddr;
3364
3365 /* Fail if we have unknown bits set. */
3366 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3367 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3368 return -ENOENT;
3369
3370 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3371 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3372 if (KVM_REG_SIZE(id) != 4)
3373 return -ENOENT;
3374 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3375 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
7af0c253 3376 if (val >= CSSELR_MAX)
7c8c5e6a
MZ
3377 return -ENOENT;
3378
3379 if (get_user(newval, uval))
3380 return -EFAULT;
3381
7af0c253 3382 return set_ccsidr(vcpu, val, newval);
7c8c5e6a
MZ
3383 default:
3384 return -ENOENT;
3385 }
3386}
3387
ba23aec9
MZ
3388int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3389 const struct sys_reg_desc table[], unsigned int num)
7c8c5e6a 3390{
978ceeb3 3391 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
7c8c5e6a 3392 const struct sys_reg_desc *r;
978ceeb3
MZ
3393 u64 val;
3394 int ret;
ba23aec9
MZ
3395
3396 r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
e6b367db 3397 if (!r || sysreg_hidden_user(vcpu, r))
ba23aec9
MZ
3398 return -ENOENT;
3399
978ceeb3
MZ
3400 if (r->get_user) {
3401 ret = (r->get_user)(vcpu, r, &val);
3402 } else {
3403 val = __vcpu_sys_reg(vcpu, r->reg);
3404 ret = 0;
3405 }
3406
3407 if (!ret)
3408 ret = put_user(val, uaddr);
ba23aec9 3409
978ceeb3 3410 return ret;
ba23aec9
MZ
3411}
3412
3413int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3414{
7c8c5e6a 3415 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1deeffb5 3416 int err;
7c8c5e6a
MZ
3417
3418 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
7af0c253 3419 return demux_c15_get(vcpu, reg->id, uaddr);
7c8c5e6a 3420
1deeffb5
MZ
3421 err = get_invariant_sys_reg(reg->id, uaddr);
3422 if (err != -ENOENT)
3423 return err;
7c8c5e6a 3424
ba23aec9
MZ
3425 return kvm_sys_reg_get_user(vcpu, reg,
3426 sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3427}
7c8c5e6a 3428
ba23aec9
MZ
3429int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3430 const struct sys_reg_desc table[], unsigned int num)
3431{
978ceeb3 3432 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
ba23aec9 3433 const struct sys_reg_desc *r;
978ceeb3
MZ
3434 u64 val;
3435 int ret;
3436
3437 if (get_user(val, uaddr))
3438 return -EFAULT;
ba23aec9
MZ
3439
3440 r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
e6b367db 3441 if (!r || sysreg_hidden_user(vcpu, r))
7f34e409
DM
3442 return -ENOENT;
3443
4de06e4c
OU
3444 if (sysreg_user_write_ignore(vcpu, r))
3445 return 0;
3446
978ceeb3
MZ
3447 if (r->set_user) {
3448 ret = (r->set_user)(vcpu, r, val);
3449 } else {
3450 __vcpu_sys_reg(vcpu, r->reg) = val;
3451 ret = 0;
3452 }
84e690bf 3453
978ceeb3 3454 return ret;
7c8c5e6a
MZ
3455}
3456
3457int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3458{
7c8c5e6a 3459 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1deeffb5 3460 int err;
7c8c5e6a
MZ
3461
3462 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
7af0c253 3463 return demux_c15_set(vcpu, reg->id, uaddr);
7c8c5e6a 3464
1deeffb5
MZ
3465 err = set_invariant_sys_reg(reg->id, uaddr);
3466 if (err != -ENOENT)
3467 return err;
84e690bf 3468
ba23aec9
MZ
3469 return kvm_sys_reg_set_user(vcpu, reg,
3470 sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
7c8c5e6a
MZ
3471}
3472
3473static unsigned int num_demux_regs(void)
3474{
7af0c253 3475 return CSSELR_MAX;
7c8c5e6a
MZ
3476}
3477
3478static int write_demux_regids(u64 __user *uindices)
3479{
efd48cea 3480 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
7c8c5e6a
MZ
3481 unsigned int i;
3482
3483 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3484 for (i = 0; i < CSSELR_MAX; i++) {
7c8c5e6a
MZ
3485 if (put_user(val | i, uindices))
3486 return -EFAULT;
3487 uindices++;
3488 }
3489 return 0;
3490}
3491
3492static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3493{
3494 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3495 KVM_REG_ARM64_SYSREG |
3496 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3497 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3498 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3499 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3500 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3501}
3502
3503static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3504{
3505 if (!*uind)
3506 return true;
3507
3508 if (put_user(sys_reg_to_index(reg), *uind))
3509 return false;
3510
3511 (*uind)++;
3512 return true;
3513}
3514
7f34e409
DM
3515static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3516 const struct sys_reg_desc *rd,
93390c0a
DM
3517 u64 __user **uind,
3518 unsigned int *total)
3519{
3520 /*
3521 * Ignore registers we trap but don't save,
3522 * and for which no custom user accessor is provided.
3523 */
3524 if (!(rd->reg || rd->get_user))
3525 return 0;
3526
e6b367db 3527 if (sysreg_hidden_user(vcpu, rd))
7f34e409
DM
3528 return 0;
3529
93390c0a
DM
3530 if (!copy_reg_to_user(rd, uind))
3531 return -EFAULT;
3532
3533 (*total)++;
3534 return 0;
3535}
3536
7c8c5e6a
MZ
3537/* Assumed ordered tables, see kvm_sys_reg_table_init. */
3538static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3539{
dcaffa7b 3540 const struct sys_reg_desc *i2, *end2;
7c8c5e6a 3541 unsigned int total = 0;
93390c0a 3542 int err;
7c8c5e6a 3543
7c8c5e6a
MZ
3544 i2 = sys_reg_descs;
3545 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3546
dcaffa7b
JM
3547 while (i2 != end2) {
3548 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
93390c0a
DM
3549 if (err)
3550 return err;
7c8c5e6a
MZ
3551 }
3552 return total;
3553}
3554
3555unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3556{
3557 return ARRAY_SIZE(invariant_sys_regs)
3558 + num_demux_regs()
3559 + walk_sys_regs(vcpu, (u64 __user *)NULL);
3560}
3561
3562int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3563{
3564 unsigned int i;
3565 int err;
3566
3567 /* Then give them all the invariant registers' indices. */
3568 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3569 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3570 return -EFAULT;
3571 uindices++;
3572 }
3573
3574 err = walk_sys_regs(vcpu, uindices);
3575 if (err < 0)
3576 return err;
3577 uindices += err;
3578
3579 return write_demux_regids(uindices);
3580}
3581
3f9cd0ca
JZ
3582#define KVM_ARM_FEATURE_ID_RANGE_INDEX(r) \
3583 KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r), \
3584 sys_reg_Op1(r), \
3585 sys_reg_CRn(r), \
3586 sys_reg_CRm(r), \
3587 sys_reg_Op2(r))
3588
3589static bool is_feature_id_reg(u32 encoding)
3590{
3591 return (sys_reg_Op0(encoding) == 3 &&
3592 (sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
3593 sys_reg_CRn(encoding) == 0 &&
3594 sys_reg_CRm(encoding) <= 7);
3595}
3596
3597int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
3598{
3599 const void *zero_page = page_to_virt(ZERO_PAGE(0));
3600 u64 __user *masks = (u64 __user *)range->addr;
3601
3602 /* Only feature id range is supported, reserved[13] must be zero. */
3603 if (range->range ||
3604 memcmp(range->reserved, zero_page, sizeof(range->reserved)))
3605 return -EINVAL;
3606
3607 /* Wipe the whole thing first */
3608 if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
3609 return -EFAULT;
3610
3611 for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3612 const struct sys_reg_desc *reg = &sys_reg_descs[i];
3613 u32 encoding = reg_to_encoding(reg);
3614 u64 val;
3615
3616 if (!is_feature_id_reg(encoding) || !reg->set_user)
3617 continue;
3618
3619 /*
3620 * For ID registers, we return the writable mask. Other feature
3621 * registers return a full 64bit mask. That's not necessary
3622 * compliant with a given revision of the architecture, but the
3623 * RES0/RES1 definitions allow us to do that.
3624 */
3625 if (is_id_reg(encoding)) {
3626 if (!reg->val ||
3627 (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0()))
3628 continue;
3629 val = reg->val;
3630 } else {
3631 val = ~0UL;
3632 }
3633
3634 if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
3635 return -EFAULT;
3636 }
3637
3638 return 0;
3639}
3640
8d20bd63 3641int __init kvm_sys_reg_table_init(void)
7c8c5e6a 3642{
47334146 3643 struct sys_reg_params params;
f1f0c0cf 3644 bool valid = true;
7c8c5e6a 3645 unsigned int i;
7c8c5e6a
MZ
3646
3647 /* Make sure tables are unique and in order. */
f1f0c0cf
AE
3648 valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3649 valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3650 valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3651 valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3652 valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3653 valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3654
3655 if (!valid)
3656 return -EINVAL;
7c8c5e6a
MZ
3657
3658 /* We abuse the reset function to overwrite the table itself. */
3659 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3660 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3661
47334146
JZ
3662 /* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
3663 params = encoding_to_params(SYS_ID_PFR0_EL1);
3664 first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3665 if (!first_idreg)
3666 return -EINVAL;
3667
e58ec47b
MZ
3668 if (kvm_get_mode() == KVM_MODE_NV)
3669 return populate_nv_trap_config();
3670
f1f0c0cf 3671 return 0;
7c8c5e6a 3672}