Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[linux-2.6-block.git] / arch / arm64 / kvm / sys_regs.c
CommitLineData
7c8c5e6a
MZ
1/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
623eefa8 23#include <linux/bsearch.h>
7c8c5e6a 24#include <linux/kvm_host.h>
c6d01a94 25#include <linux/mm.h>
7c8c5e6a 26#include <linux/uaccess.h>
c6d01a94 27
7c8c5e6a
MZ
28#include <asm/cacheflush.h>
29#include <asm/cputype.h>
0c557ed4 30#include <asm/debug-monitors.h>
c6d01a94
MR
31#include <asm/esr.h>
32#include <asm/kvm_arm.h>
9d8415d6 33#include <asm/kvm_asm.h>
c6d01a94
MR
34#include <asm/kvm_coproc.h>
35#include <asm/kvm_emulate.h>
36#include <asm/kvm_host.h>
37#include <asm/kvm_mmu.h>
ab946834 38#include <asm/perf_event.h>
c6d01a94 39
7c8c5e6a
MZ
40#include <trace/events/kvm.h>
41
42#include "sys_regs.h"
43
eef8c85a
AB
44#include "trace.h"
45
7c8c5e6a
MZ
46/*
47 * All of this file is extremly similar to the ARM coproc.c, but the
48 * types are different. My gut feeling is that it should be pretty
49 * easy to merge, but that would be an ABI breakage -- again. VFP
50 * would also need to be abstracted.
62a89c44
MZ
51 *
52 * For AArch32, we only take care of what is being trapped. Anything
53 * that has to do with init and userspace access has to go via the
54 * 64bit interface.
7c8c5e6a
MZ
55 */
56
57/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
58static u32 cache_levels;
59
60/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
61#define CSSELR_MAX 12
62
63/* Which cache CCSIDR represents depends on CSSELR value. */
64static u32 get_ccsidr(u32 csselr)
65{
66 u32 ccsidr;
67
68 /* Make sure noone else changes CSSELR during this! */
69 local_irq_disable();
70 /* Put value into CSSELR */
71 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
72 isb();
73 /* Read result out of CCSIDR */
74 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
75 local_irq_enable();
76
77 return ccsidr;
78}
79
3c1e7165
MZ
80/*
81 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
82 */
7c8c5e6a 83static bool access_dcsw(struct kvm_vcpu *vcpu,
3fec037d 84 struct sys_reg_params *p,
7c8c5e6a
MZ
85 const struct sys_reg_desc *r)
86{
7c8c5e6a
MZ
87 if (!p->is_write)
88 return read_from_write_only(vcpu, p);
89
3c1e7165 90 kvm_set_way_flush(vcpu);
7c8c5e6a
MZ
91 return true;
92}
93
4d44923b
MZ
94/*
95 * Generic accessor for VM registers. Only called as long as HCR_TVM
3c1e7165
MZ
96 * is set. If the guest enables the MMU, we stop trapping the VM
97 * sys_regs and leave it in complete control of the caches.
4d44923b
MZ
98 */
99static bool access_vm_reg(struct kvm_vcpu *vcpu,
3fec037d 100 struct sys_reg_params *p,
4d44923b
MZ
101 const struct sys_reg_desc *r)
102{
3c1e7165 103 bool was_enabled = vcpu_has_cache_enabled(vcpu);
4d44923b
MZ
104
105 BUG_ON(!p->is_write);
106
dedf97e8 107 if (!p->is_aarch32) {
2ec5be3d 108 vcpu_sys_reg(vcpu, r->reg) = p->regval;
dedf97e8
MZ
109 } else {
110 if (!p->is_32bit)
2ec5be3d
PF
111 vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
112 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
dedf97e8 113 }
f0a3eaff 114
3c1e7165 115 kvm_toggle_cache(vcpu, was_enabled);
4d44923b
MZ
116 return true;
117}
118
6d52f35a
AP
119/*
120 * Trap handler for the GICv3 SGI generation system register.
121 * Forward the request to the VGIC emulation.
122 * The cp15_64 code makes sure this automatically works
123 * for both AArch64 and AArch32 accesses.
124 */
125static bool access_gic_sgi(struct kvm_vcpu *vcpu,
3fec037d 126 struct sys_reg_params *p,
6d52f35a
AP
127 const struct sys_reg_desc *r)
128{
6d52f35a
AP
129 if (!p->is_write)
130 return read_from_write_only(vcpu, p);
131
2ec5be3d 132 vgic_v3_dispatch_sgi(vcpu, p->regval);
6d52f35a
AP
133
134 return true;
135}
136
b34f2bcb
MZ
137static bool access_gic_sre(struct kvm_vcpu *vcpu,
138 struct sys_reg_params *p,
139 const struct sys_reg_desc *r)
140{
141 if (p->is_write)
142 return ignore_write(vcpu, p);
143
144 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
145 return true;
146}
147
7609c125 148static bool trap_raz_wi(struct kvm_vcpu *vcpu,
3fec037d 149 struct sys_reg_params *p,
7609c125 150 const struct sys_reg_desc *r)
7c8c5e6a
MZ
151{
152 if (p->is_write)
153 return ignore_write(vcpu, p);
154 else
155 return read_zero(vcpu, p);
156}
157
0c557ed4 158static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
3fec037d 159 struct sys_reg_params *p,
0c557ed4
MZ
160 const struct sys_reg_desc *r)
161{
162 if (p->is_write) {
163 return ignore_write(vcpu, p);
164 } else {
2ec5be3d 165 p->regval = (1 << 3);
0c557ed4
MZ
166 return true;
167 }
168}
169
170static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
3fec037d 171 struct sys_reg_params *p,
0c557ed4
MZ
172 const struct sys_reg_desc *r)
173{
174 if (p->is_write) {
175 return ignore_write(vcpu, p);
176 } else {
177 u32 val;
178 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
2ec5be3d 179 p->regval = val;
0c557ed4
MZ
180 return true;
181 }
182}
183
184/*
185 * We want to avoid world-switching all the DBG registers all the
186 * time:
187 *
188 * - If we've touched any debug register, it is likely that we're
189 * going to touch more of them. It then makes sense to disable the
190 * traps and start doing the save/restore dance
191 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
192 * then mandatory to save/restore the registers, as the guest
193 * depends on them.
194 *
195 * For this, we use a DIRTY bit, indicating the guest has modified the
196 * debug registers, used as follow:
197 *
198 * On guest entry:
199 * - If the dirty bit is set (because we're coming back from trapping),
200 * disable the traps, save host registers, restore guest registers.
201 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
202 * set the dirty bit, disable the traps, save host registers,
203 * restore guest registers.
204 * - Otherwise, enable the traps
205 *
206 * On guest exit:
207 * - If the dirty bit is set, save guest registers, restore host
208 * registers and clear the dirty bit. This ensure that the host can
209 * now use the debug registers.
210 */
211static bool trap_debug_regs(struct kvm_vcpu *vcpu,
3fec037d 212 struct sys_reg_params *p,
0c557ed4
MZ
213 const struct sys_reg_desc *r)
214{
215 if (p->is_write) {
2ec5be3d 216 vcpu_sys_reg(vcpu, r->reg) = p->regval;
0c557ed4
MZ
217 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
218 } else {
2ec5be3d 219 p->regval = vcpu_sys_reg(vcpu, r->reg);
0c557ed4
MZ
220 }
221
2ec5be3d 222 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
eef8c85a 223
0c557ed4
MZ
224 return true;
225}
226
84e690bf
AB
227/*
228 * reg_to_dbg/dbg_to_reg
229 *
230 * A 32 bit write to a debug register leave top bits alone
231 * A 32 bit read from a debug register only returns the bottom bits
232 *
233 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
234 * hyp.S code switches between host and guest values in future.
235 */
281243cb
MZ
236static void reg_to_dbg(struct kvm_vcpu *vcpu,
237 struct sys_reg_params *p,
238 u64 *dbg_reg)
84e690bf 239{
2ec5be3d 240 u64 val = p->regval;
84e690bf
AB
241
242 if (p->is_32bit) {
243 val &= 0xffffffffUL;
244 val |= ((*dbg_reg >> 32) << 32);
245 }
246
247 *dbg_reg = val;
248 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
249}
250
281243cb
MZ
251static void dbg_to_reg(struct kvm_vcpu *vcpu,
252 struct sys_reg_params *p,
253 u64 *dbg_reg)
84e690bf 254{
2ec5be3d 255 p->regval = *dbg_reg;
84e690bf 256 if (p->is_32bit)
2ec5be3d 257 p->regval &= 0xffffffffUL;
84e690bf
AB
258}
259
281243cb
MZ
260static bool trap_bvr(struct kvm_vcpu *vcpu,
261 struct sys_reg_params *p,
262 const struct sys_reg_desc *rd)
84e690bf
AB
263{
264 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
265
266 if (p->is_write)
267 reg_to_dbg(vcpu, p, dbg_reg);
268 else
269 dbg_to_reg(vcpu, p, dbg_reg);
270
eef8c85a
AB
271 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
272
84e690bf
AB
273 return true;
274}
275
276static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
277 const struct kvm_one_reg *reg, void __user *uaddr)
278{
279 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
280
1713e5aa 281 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
282 return -EFAULT;
283 return 0;
284}
285
286static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
287 const struct kvm_one_reg *reg, void __user *uaddr)
288{
289 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
290
291 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
292 return -EFAULT;
293 return 0;
294}
295
281243cb
MZ
296static void reset_bvr(struct kvm_vcpu *vcpu,
297 const struct sys_reg_desc *rd)
84e690bf
AB
298{
299 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
300}
301
281243cb
MZ
302static bool trap_bcr(struct kvm_vcpu *vcpu,
303 struct sys_reg_params *p,
304 const struct sys_reg_desc *rd)
84e690bf
AB
305{
306 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
307
308 if (p->is_write)
309 reg_to_dbg(vcpu, p, dbg_reg);
310 else
311 dbg_to_reg(vcpu, p, dbg_reg);
312
eef8c85a
AB
313 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
314
84e690bf
AB
315 return true;
316}
317
318static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
319 const struct kvm_one_reg *reg, void __user *uaddr)
320{
321 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
322
1713e5aa 323 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
324 return -EFAULT;
325
326 return 0;
327}
328
329static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
330 const struct kvm_one_reg *reg, void __user *uaddr)
331{
332 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
333
334 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
335 return -EFAULT;
336 return 0;
337}
338
281243cb
MZ
339static void reset_bcr(struct kvm_vcpu *vcpu,
340 const struct sys_reg_desc *rd)
84e690bf
AB
341{
342 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
343}
344
281243cb
MZ
345static bool trap_wvr(struct kvm_vcpu *vcpu,
346 struct sys_reg_params *p,
347 const struct sys_reg_desc *rd)
84e690bf
AB
348{
349 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
350
351 if (p->is_write)
352 reg_to_dbg(vcpu, p, dbg_reg);
353 else
354 dbg_to_reg(vcpu, p, dbg_reg);
355
eef8c85a
AB
356 trace_trap_reg(__func__, rd->reg, p->is_write,
357 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
358
84e690bf
AB
359 return true;
360}
361
362static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
363 const struct kvm_one_reg *reg, void __user *uaddr)
364{
365 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
366
1713e5aa 367 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
368 return -EFAULT;
369 return 0;
370}
371
372static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
373 const struct kvm_one_reg *reg, void __user *uaddr)
374{
375 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
376
377 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
378 return -EFAULT;
379 return 0;
380}
381
281243cb
MZ
382static void reset_wvr(struct kvm_vcpu *vcpu,
383 const struct sys_reg_desc *rd)
84e690bf
AB
384{
385 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
386}
387
281243cb
MZ
388static bool trap_wcr(struct kvm_vcpu *vcpu,
389 struct sys_reg_params *p,
390 const struct sys_reg_desc *rd)
84e690bf
AB
391{
392 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
393
394 if (p->is_write)
395 reg_to_dbg(vcpu, p, dbg_reg);
396 else
397 dbg_to_reg(vcpu, p, dbg_reg);
398
eef8c85a
AB
399 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
400
84e690bf
AB
401 return true;
402}
403
404static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
405 const struct kvm_one_reg *reg, void __user *uaddr)
406{
407 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
408
1713e5aa 409 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
410 return -EFAULT;
411 return 0;
412}
413
414static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
415 const struct kvm_one_reg *reg, void __user *uaddr)
416{
417 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
418
419 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
420 return -EFAULT;
421 return 0;
422}
423
281243cb
MZ
424static void reset_wcr(struct kvm_vcpu *vcpu,
425 const struct sys_reg_desc *rd)
84e690bf
AB
426{
427 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
428}
429
7c8c5e6a
MZ
430static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
431{
432 u64 amair;
433
434 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
435 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
436}
437
438static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
439{
4429fc64
AP
440 u64 mpidr;
441
7c8c5e6a 442 /*
4429fc64
AP
443 * Map the vcpu_id into the first three affinity level fields of
444 * the MPIDR. We limit the number of VCPUs in level 0 due to a
445 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
446 * of the GICv3 to be able to address each CPU directly when
447 * sending IPIs.
7c8c5e6a 448 */
4429fc64
AP
449 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
450 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
451 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
452 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
7c8c5e6a
MZ
453}
454
ab946834
SZ
455static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
456{
457 u64 pmcr, val;
458
459 asm volatile("mrs %0, pmcr_el0\n" : "=r" (pmcr));
460 /* Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) is reset to UNKNOWN
461 * except PMCR.E resetting to zero.
462 */
463 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
464 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
465 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
466}
467
d692b8ad
SZ
468static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
469{
470 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
471
472 return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
473}
474
475static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
476{
477 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
478
479 return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
480 || vcpu_mode_priv(vcpu));
481}
482
483static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
484{
485 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
486
487 return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
488 || vcpu_mode_priv(vcpu));
489}
490
491static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
492{
493 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
494
495 return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
496 || vcpu_mode_priv(vcpu));
497}
498
ab946834
SZ
499static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
500 const struct sys_reg_desc *r)
501{
502 u64 val;
503
504 if (!kvm_arm_pmu_v3_ready(vcpu))
505 return trap_raz_wi(vcpu, p, r);
506
d692b8ad
SZ
507 if (pmu_access_el0_disabled(vcpu))
508 return false;
509
ab946834
SZ
510 if (p->is_write) {
511 /* Only update writeable bits of PMCR */
512 val = vcpu_sys_reg(vcpu, PMCR_EL0);
513 val &= ~ARMV8_PMU_PMCR_MASK;
514 val |= p->regval & ARMV8_PMU_PMCR_MASK;
515 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
76993739 516 kvm_pmu_handle_pmcr(vcpu, val);
ab946834
SZ
517 } else {
518 /* PMCR.P & PMCR.C are RAZ */
519 val = vcpu_sys_reg(vcpu, PMCR_EL0)
520 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
521 p->regval = val;
522 }
523
524 return true;
525}
526
3965c3ce
SZ
527static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
528 const struct sys_reg_desc *r)
529{
530 if (!kvm_arm_pmu_v3_ready(vcpu))
531 return trap_raz_wi(vcpu, p, r);
532
d692b8ad
SZ
533 if (pmu_access_event_counter_el0_disabled(vcpu))
534 return false;
535
3965c3ce
SZ
536 if (p->is_write)
537 vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
538 else
539 /* return PMSELR.SEL field */
540 p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
541 & ARMV8_PMU_COUNTER_MASK;
542
543 return true;
544}
545
a86b5505
SZ
546static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
547 const struct sys_reg_desc *r)
548{
549 u64 pmceid;
550
551 if (!kvm_arm_pmu_v3_ready(vcpu))
552 return trap_raz_wi(vcpu, p, r);
553
554 BUG_ON(p->is_write);
555
d692b8ad
SZ
556 if (pmu_access_el0_disabled(vcpu))
557 return false;
558
a86b5505
SZ
559 if (!(p->Op2 & 1))
560 asm volatile("mrs %0, pmceid0_el0\n" : "=r" (pmceid));
561 else
562 asm volatile("mrs %0, pmceid1_el0\n" : "=r" (pmceid));
563
564 p->regval = pmceid;
565
566 return true;
567}
568
051ff581
SZ
569static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
570{
571 u64 pmcr, val;
572
573 pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
574 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
575 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
576 return false;
577
578 return true;
579}
580
581static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
582 struct sys_reg_params *p,
583 const struct sys_reg_desc *r)
584{
585 u64 idx;
586
587 if (!kvm_arm_pmu_v3_ready(vcpu))
588 return trap_raz_wi(vcpu, p, r);
589
590 if (r->CRn == 9 && r->CRm == 13) {
591 if (r->Op2 == 2) {
592 /* PMXEVCNTR_EL0 */
d692b8ad
SZ
593 if (pmu_access_event_counter_el0_disabled(vcpu))
594 return false;
595
051ff581
SZ
596 idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
597 & ARMV8_PMU_COUNTER_MASK;
598 } else if (r->Op2 == 0) {
599 /* PMCCNTR_EL0 */
d692b8ad
SZ
600 if (pmu_access_cycle_counter_el0_disabled(vcpu))
601 return false;
602
051ff581
SZ
603 idx = ARMV8_PMU_CYCLE_IDX;
604 } else {
605 BUG();
606 }
607 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
608 /* PMEVCNTRn_EL0 */
d692b8ad
SZ
609 if (pmu_access_event_counter_el0_disabled(vcpu))
610 return false;
611
051ff581
SZ
612 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
613 } else {
614 BUG();
615 }
616
617 if (!pmu_counter_idx_valid(vcpu, idx))
618 return false;
619
d692b8ad
SZ
620 if (p->is_write) {
621 if (pmu_access_el0_disabled(vcpu))
622 return false;
623
051ff581 624 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
d692b8ad 625 } else {
051ff581 626 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
d692b8ad 627 }
051ff581
SZ
628
629 return true;
630}
631
9feb21ac
SZ
632static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
633 const struct sys_reg_desc *r)
634{
635 u64 idx, reg;
636
637 if (!kvm_arm_pmu_v3_ready(vcpu))
638 return trap_raz_wi(vcpu, p, r);
639
d692b8ad
SZ
640 if (pmu_access_el0_disabled(vcpu))
641 return false;
642
9feb21ac
SZ
643 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
644 /* PMXEVTYPER_EL0 */
645 idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
646 reg = PMEVTYPER0_EL0 + idx;
647 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
648 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
649 if (idx == ARMV8_PMU_CYCLE_IDX)
650 reg = PMCCFILTR_EL0;
651 else
652 /* PMEVTYPERn_EL0 */
653 reg = PMEVTYPER0_EL0 + idx;
654 } else {
655 BUG();
656 }
657
658 if (!pmu_counter_idx_valid(vcpu, idx))
659 return false;
660
661 if (p->is_write) {
662 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
663 vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
664 } else {
665 p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
666 }
667
668 return true;
669}
670
96b0eebc
SZ
671static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
672 const struct sys_reg_desc *r)
673{
674 u64 val, mask;
675
676 if (!kvm_arm_pmu_v3_ready(vcpu))
677 return trap_raz_wi(vcpu, p, r);
678
d692b8ad
SZ
679 if (pmu_access_el0_disabled(vcpu))
680 return false;
681
96b0eebc
SZ
682 mask = kvm_pmu_valid_counter_mask(vcpu);
683 if (p->is_write) {
684 val = p->regval & mask;
685 if (r->Op2 & 0x1) {
686 /* accessing PMCNTENSET_EL0 */
687 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
688 kvm_pmu_enable_counter(vcpu, val);
689 } else {
690 /* accessing PMCNTENCLR_EL0 */
691 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
692 kvm_pmu_disable_counter(vcpu, val);
693 }
694 } else {
695 p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
696 }
697
698 return true;
699}
700
9db52c78
SZ
701static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
702 const struct sys_reg_desc *r)
703{
704 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
705
706 if (!kvm_arm_pmu_v3_ready(vcpu))
707 return trap_raz_wi(vcpu, p, r);
708
d692b8ad
SZ
709 if (!vcpu_mode_priv(vcpu))
710 return false;
711
9db52c78
SZ
712 if (p->is_write) {
713 u64 val = p->regval & mask;
714
715 if (r->Op2 & 0x1)
716 /* accessing PMINTENSET_EL1 */
717 vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
718 else
719 /* accessing PMINTENCLR_EL1 */
720 vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
721 } else {
722 p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
723 }
724
725 return true;
726}
727
76d883c4
SZ
728static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
729 const struct sys_reg_desc *r)
730{
731 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
732
733 if (!kvm_arm_pmu_v3_ready(vcpu))
734 return trap_raz_wi(vcpu, p, r);
735
d692b8ad
SZ
736 if (pmu_access_el0_disabled(vcpu))
737 return false;
738
76d883c4
SZ
739 if (p->is_write) {
740 if (r->CRm & 0x2)
741 /* accessing PMOVSSET_EL0 */
742 kvm_pmu_overflow_set(vcpu, p->regval & mask);
743 else
744 /* accessing PMOVSCLR_EL0 */
745 vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
746 } else {
747 p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
748 }
749
750 return true;
751}
752
7a0adc70
SZ
753static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
754 const struct sys_reg_desc *r)
755{
756 u64 mask;
757
758 if (!kvm_arm_pmu_v3_ready(vcpu))
759 return trap_raz_wi(vcpu, p, r);
760
d692b8ad
SZ
761 if (pmu_write_swinc_el0_disabled(vcpu))
762 return false;
763
7a0adc70
SZ
764 if (p->is_write) {
765 mask = kvm_pmu_valid_counter_mask(vcpu);
766 kvm_pmu_software_increment(vcpu, p->regval & mask);
767 return true;
768 }
769
770 return false;
771}
772
d692b8ad
SZ
773static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
774 const struct sys_reg_desc *r)
775{
776 if (!kvm_arm_pmu_v3_ready(vcpu))
777 return trap_raz_wi(vcpu, p, r);
778
779 if (p->is_write) {
780 if (!vcpu_mode_priv(vcpu))
781 return false;
782
783 vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
784 & ARMV8_PMU_USERENR_MASK;
785 } else {
786 p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
787 & ARMV8_PMU_USERENR_MASK;
788 }
789
790 return true;
791}
792
0c557ed4
MZ
793/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
794#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
795 /* DBGBVRn_EL1 */ \
796 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
84e690bf 797 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
0c557ed4
MZ
798 /* DBGBCRn_EL1 */ \
799 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
84e690bf 800 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
0c557ed4
MZ
801 /* DBGWVRn_EL1 */ \
802 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
84e690bf 803 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
0c557ed4
MZ
804 /* DBGWCRn_EL1 */ \
805 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
84e690bf 806 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
0c557ed4 807
051ff581
SZ
808/* Macro to expand the PMEVCNTRn_EL0 register */
809#define PMU_PMEVCNTR_EL0(n) \
810 /* PMEVCNTRn_EL0 */ \
811 { Op0(0b11), Op1(0b011), CRn(0b1110), \
812 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
813 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
814
9feb21ac
SZ
815/* Macro to expand the PMEVTYPERn_EL0 register */
816#define PMU_PMEVTYPER_EL0(n) \
817 /* PMEVTYPERn_EL0 */ \
818 { Op0(0b11), Op1(0b011), CRn(0b1110), \
819 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
820 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
821
7c8c5e6a
MZ
822/*
823 * Architected system registers.
824 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
7609c125 825 *
0c557ed4
MZ
826 * Debug handling: We do trap most, if not all debug related system
827 * registers. The implementation is good enough to ensure that a guest
828 * can use these with minimal performance degradation. The drawback is
829 * that we don't implement any of the external debug, none of the
830 * OSlock protocol. This should be revisited if we ever encounter a
831 * more demanding guest...
7c8c5e6a
MZ
832 */
833static const struct sys_reg_desc sys_reg_descs[] = {
834 /* DC ISW */
835 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
836 access_dcsw },
837 /* DC CSW */
838 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
839 access_dcsw },
840 /* DC CISW */
841 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
842 access_dcsw },
843
0c557ed4
MZ
844 DBG_BCR_BVR_WCR_WVR_EL1(0),
845 DBG_BCR_BVR_WCR_WVR_EL1(1),
846 /* MDCCINT_EL1 */
847 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
848 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
849 /* MDSCR_EL1 */
850 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
851 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
852 DBG_BCR_BVR_WCR_WVR_EL1(2),
853 DBG_BCR_BVR_WCR_WVR_EL1(3),
854 DBG_BCR_BVR_WCR_WVR_EL1(4),
855 DBG_BCR_BVR_WCR_WVR_EL1(5),
856 DBG_BCR_BVR_WCR_WVR_EL1(6),
857 DBG_BCR_BVR_WCR_WVR_EL1(7),
858 DBG_BCR_BVR_WCR_WVR_EL1(8),
859 DBG_BCR_BVR_WCR_WVR_EL1(9),
860 DBG_BCR_BVR_WCR_WVR_EL1(10),
861 DBG_BCR_BVR_WCR_WVR_EL1(11),
862 DBG_BCR_BVR_WCR_WVR_EL1(12),
863 DBG_BCR_BVR_WCR_WVR_EL1(13),
864 DBG_BCR_BVR_WCR_WVR_EL1(14),
865 DBG_BCR_BVR_WCR_WVR_EL1(15),
866
867 /* MDRAR_EL1 */
868 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
869 trap_raz_wi },
870 /* OSLAR_EL1 */
871 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
872 trap_raz_wi },
873 /* OSLSR_EL1 */
874 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
875 trap_oslsr_el1 },
876 /* OSDLR_EL1 */
877 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
878 trap_raz_wi },
879 /* DBGPRCR_EL1 */
880 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
881 trap_raz_wi },
882 /* DBGCLAIMSET_EL1 */
883 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
884 trap_raz_wi },
885 /* DBGCLAIMCLR_EL1 */
886 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
887 trap_raz_wi },
888 /* DBGAUTHSTATUS_EL1 */
889 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
890 trap_dbgauthstatus_el1 },
891
0c557ed4
MZ
892 /* MDCCSR_EL1 */
893 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
894 trap_raz_wi },
895 /* DBGDTR_EL0 */
896 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
897 trap_raz_wi },
898 /* DBGDTR[TR]X_EL0 */
899 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
900 trap_raz_wi },
901
62a89c44
MZ
902 /* DBGVCR32_EL2 */
903 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
904 NULL, reset_val, DBGVCR32_EL2, 0 },
905
7c8c5e6a
MZ
906 /* MPIDR_EL1 */
907 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
908 NULL, reset_mpidr, MPIDR_EL1 },
909 /* SCTLR_EL1 */
910 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
3c1e7165 911 access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
7c8c5e6a
MZ
912 /* CPACR_EL1 */
913 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
914 NULL, reset_val, CPACR_EL1, 0 },
915 /* TTBR0_EL1 */
916 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
4d44923b 917 access_vm_reg, reset_unknown, TTBR0_EL1 },
7c8c5e6a
MZ
918 /* TTBR1_EL1 */
919 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
4d44923b 920 access_vm_reg, reset_unknown, TTBR1_EL1 },
7c8c5e6a
MZ
921 /* TCR_EL1 */
922 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
4d44923b 923 access_vm_reg, reset_val, TCR_EL1, 0 },
7c8c5e6a
MZ
924
925 /* AFSR0_EL1 */
926 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
4d44923b 927 access_vm_reg, reset_unknown, AFSR0_EL1 },
7c8c5e6a
MZ
928 /* AFSR1_EL1 */
929 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
4d44923b 930 access_vm_reg, reset_unknown, AFSR1_EL1 },
7c8c5e6a
MZ
931 /* ESR_EL1 */
932 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
4d44923b 933 access_vm_reg, reset_unknown, ESR_EL1 },
7c8c5e6a
MZ
934 /* FAR_EL1 */
935 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
4d44923b 936 access_vm_reg, reset_unknown, FAR_EL1 },
1bbd8054
MZ
937 /* PAR_EL1 */
938 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
939 NULL, reset_unknown, PAR_EL1 },
7c8c5e6a
MZ
940
941 /* PMINTENSET_EL1 */
942 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
9db52c78 943 access_pminten, reset_unknown, PMINTENSET_EL1 },
7c8c5e6a
MZ
944 /* PMINTENCLR_EL1 */
945 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
9db52c78 946 access_pminten, NULL, PMINTENSET_EL1 },
7c8c5e6a
MZ
947
948 /* MAIR_EL1 */
949 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
4d44923b 950 access_vm_reg, reset_unknown, MAIR_EL1 },
7c8c5e6a
MZ
951 /* AMAIR_EL1 */
952 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
4d44923b 953 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
7c8c5e6a
MZ
954
955 /* VBAR_EL1 */
956 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
957 NULL, reset_val, VBAR_EL1, 0 },
db7dedd0 958
6d52f35a
AP
959 /* ICC_SGI1R_EL1 */
960 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
961 access_gic_sgi },
db7dedd0
CD
962 /* ICC_SRE_EL1 */
963 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
b34f2bcb 964 access_gic_sre },
db7dedd0 965
7c8c5e6a
MZ
966 /* CONTEXTIDR_EL1 */
967 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
4d44923b 968 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
7c8c5e6a
MZ
969 /* TPIDR_EL1 */
970 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
971 NULL, reset_unknown, TPIDR_EL1 },
972
973 /* CNTKCTL_EL1 */
974 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
975 NULL, reset_val, CNTKCTL_EL1, 0},
976
977 /* CSSELR_EL1 */
978 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
979 NULL, reset_unknown, CSSELR_EL1 },
980
981 /* PMCR_EL0 */
982 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
ab946834 983 access_pmcr, reset_pmcr, },
7c8c5e6a
MZ
984 /* PMCNTENSET_EL0 */
985 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
96b0eebc 986 access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
7c8c5e6a
MZ
987 /* PMCNTENCLR_EL0 */
988 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
96b0eebc 989 access_pmcnten, NULL, PMCNTENSET_EL0 },
7c8c5e6a
MZ
990 /* PMOVSCLR_EL0 */
991 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
76d883c4 992 access_pmovs, NULL, PMOVSSET_EL0 },
7c8c5e6a
MZ
993 /* PMSWINC_EL0 */
994 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
7a0adc70 995 access_pmswinc, reset_unknown, PMSWINC_EL0 },
7c8c5e6a
MZ
996 /* PMSELR_EL0 */
997 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
3965c3ce 998 access_pmselr, reset_unknown, PMSELR_EL0 },
7c8c5e6a
MZ
999 /* PMCEID0_EL0 */
1000 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
a86b5505 1001 access_pmceid },
7c8c5e6a
MZ
1002 /* PMCEID1_EL0 */
1003 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
a86b5505 1004 access_pmceid },
7c8c5e6a
MZ
1005 /* PMCCNTR_EL0 */
1006 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
051ff581 1007 access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
7c8c5e6a
MZ
1008 /* PMXEVTYPER_EL0 */
1009 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
9feb21ac 1010 access_pmu_evtyper },
7c8c5e6a
MZ
1011 /* PMXEVCNTR_EL0 */
1012 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
051ff581 1013 access_pmu_evcntr },
d692b8ad
SZ
1014 /* PMUSERENR_EL0
1015 * This register resets as unknown in 64bit mode while it resets as zero
1016 * in 32bit mode. Here we choose to reset it as zero for consistency.
1017 */
7c8c5e6a 1018 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
d692b8ad 1019 access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
7c8c5e6a
MZ
1020 /* PMOVSSET_EL0 */
1021 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
76d883c4 1022 access_pmovs, reset_unknown, PMOVSSET_EL0 },
7c8c5e6a
MZ
1023
1024 /* TPIDR_EL0 */
1025 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
1026 NULL, reset_unknown, TPIDR_EL0 },
1027 /* TPIDRRO_EL0 */
1028 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
1029 NULL, reset_unknown, TPIDRRO_EL0 },
62a89c44 1030
051ff581
SZ
1031 /* PMEVCNTRn_EL0 */
1032 PMU_PMEVCNTR_EL0(0),
1033 PMU_PMEVCNTR_EL0(1),
1034 PMU_PMEVCNTR_EL0(2),
1035 PMU_PMEVCNTR_EL0(3),
1036 PMU_PMEVCNTR_EL0(4),
1037 PMU_PMEVCNTR_EL0(5),
1038 PMU_PMEVCNTR_EL0(6),
1039 PMU_PMEVCNTR_EL0(7),
1040 PMU_PMEVCNTR_EL0(8),
1041 PMU_PMEVCNTR_EL0(9),
1042 PMU_PMEVCNTR_EL0(10),
1043 PMU_PMEVCNTR_EL0(11),
1044 PMU_PMEVCNTR_EL0(12),
1045 PMU_PMEVCNTR_EL0(13),
1046 PMU_PMEVCNTR_EL0(14),
1047 PMU_PMEVCNTR_EL0(15),
1048 PMU_PMEVCNTR_EL0(16),
1049 PMU_PMEVCNTR_EL0(17),
1050 PMU_PMEVCNTR_EL0(18),
1051 PMU_PMEVCNTR_EL0(19),
1052 PMU_PMEVCNTR_EL0(20),
1053 PMU_PMEVCNTR_EL0(21),
1054 PMU_PMEVCNTR_EL0(22),
1055 PMU_PMEVCNTR_EL0(23),
1056 PMU_PMEVCNTR_EL0(24),
1057 PMU_PMEVCNTR_EL0(25),
1058 PMU_PMEVCNTR_EL0(26),
1059 PMU_PMEVCNTR_EL0(27),
1060 PMU_PMEVCNTR_EL0(28),
1061 PMU_PMEVCNTR_EL0(29),
1062 PMU_PMEVCNTR_EL0(30),
9feb21ac
SZ
1063 /* PMEVTYPERn_EL0 */
1064 PMU_PMEVTYPER_EL0(0),
1065 PMU_PMEVTYPER_EL0(1),
1066 PMU_PMEVTYPER_EL0(2),
1067 PMU_PMEVTYPER_EL0(3),
1068 PMU_PMEVTYPER_EL0(4),
1069 PMU_PMEVTYPER_EL0(5),
1070 PMU_PMEVTYPER_EL0(6),
1071 PMU_PMEVTYPER_EL0(7),
1072 PMU_PMEVTYPER_EL0(8),
1073 PMU_PMEVTYPER_EL0(9),
1074 PMU_PMEVTYPER_EL0(10),
1075 PMU_PMEVTYPER_EL0(11),
1076 PMU_PMEVTYPER_EL0(12),
1077 PMU_PMEVTYPER_EL0(13),
1078 PMU_PMEVTYPER_EL0(14),
1079 PMU_PMEVTYPER_EL0(15),
1080 PMU_PMEVTYPER_EL0(16),
1081 PMU_PMEVTYPER_EL0(17),
1082 PMU_PMEVTYPER_EL0(18),
1083 PMU_PMEVTYPER_EL0(19),
1084 PMU_PMEVTYPER_EL0(20),
1085 PMU_PMEVTYPER_EL0(21),
1086 PMU_PMEVTYPER_EL0(22),
1087 PMU_PMEVTYPER_EL0(23),
1088 PMU_PMEVTYPER_EL0(24),
1089 PMU_PMEVTYPER_EL0(25),
1090 PMU_PMEVTYPER_EL0(26),
1091 PMU_PMEVTYPER_EL0(27),
1092 PMU_PMEVTYPER_EL0(28),
1093 PMU_PMEVTYPER_EL0(29),
1094 PMU_PMEVTYPER_EL0(30),
1095 /* PMCCFILTR_EL0
1096 * This register resets as unknown in 64bit mode while it resets as zero
1097 * in 32bit mode. Here we choose to reset it as zero for consistency.
1098 */
1099 { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
1100 access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
051ff581 1101
62a89c44
MZ
1102 /* DACR32_EL2 */
1103 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
1104 NULL, reset_unknown, DACR32_EL2 },
1105 /* IFSR32_EL2 */
1106 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
1107 NULL, reset_unknown, IFSR32_EL2 },
1108 /* FPEXC32_EL2 */
1109 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
1110 NULL, reset_val, FPEXC32_EL2, 0x70 },
1111};
1112
bdfb4b38 1113static bool trap_dbgidr(struct kvm_vcpu *vcpu,
3fec037d 1114 struct sys_reg_params *p,
bdfb4b38
MZ
1115 const struct sys_reg_desc *r)
1116{
1117 if (p->is_write) {
1118 return ignore_write(vcpu, p);
1119 } else {
4db8e5ea
SP
1120 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
1121 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
28c5dcb2 1122 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
bdfb4b38 1123
2ec5be3d
PF
1124 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1125 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1126 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1127 | (6 << 16) | (el3 << 14) | (el3 << 12));
bdfb4b38
MZ
1128 return true;
1129 }
1130}
1131
1132static bool trap_debug32(struct kvm_vcpu *vcpu,
3fec037d 1133 struct sys_reg_params *p,
bdfb4b38
MZ
1134 const struct sys_reg_desc *r)
1135{
1136 if (p->is_write) {
2ec5be3d 1137 vcpu_cp14(vcpu, r->reg) = p->regval;
bdfb4b38
MZ
1138 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1139 } else {
2ec5be3d 1140 p->regval = vcpu_cp14(vcpu, r->reg);
bdfb4b38
MZ
1141 }
1142
1143 return true;
1144}
1145
84e690bf
AB
1146/* AArch32 debug register mappings
1147 *
1148 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1149 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1150 *
1151 * All control registers and watchpoint value registers are mapped to
1152 * the lower 32 bits of their AArch64 equivalents. We share the trap
1153 * handlers with the above AArch64 code which checks what mode the
1154 * system is in.
1155 */
1156
281243cb
MZ
1157static bool trap_xvr(struct kvm_vcpu *vcpu,
1158 struct sys_reg_params *p,
1159 const struct sys_reg_desc *rd)
84e690bf
AB
1160{
1161 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1162
1163 if (p->is_write) {
1164 u64 val = *dbg_reg;
1165
1166 val &= 0xffffffffUL;
2ec5be3d 1167 val |= p->regval << 32;
84e690bf
AB
1168 *dbg_reg = val;
1169
1170 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1171 } else {
2ec5be3d 1172 p->regval = *dbg_reg >> 32;
84e690bf
AB
1173 }
1174
eef8c85a
AB
1175 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1176
84e690bf
AB
1177 return true;
1178}
1179
1180#define DBG_BCR_BVR_WCR_WVR(n) \
1181 /* DBGBVRn */ \
1182 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1183 /* DBGBCRn */ \
1184 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1185 /* DBGWVRn */ \
1186 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1187 /* DBGWCRn */ \
1188 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1189
1190#define DBGBXVR(n) \
1191 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
bdfb4b38
MZ
1192
1193/*
1194 * Trapped cp14 registers. We generally ignore most of the external
1195 * debug, on the principle that they don't really make sense to a
84e690bf 1196 * guest. Revisit this one day, would this principle change.
bdfb4b38 1197 */
72564016 1198static const struct sys_reg_desc cp14_regs[] = {
bdfb4b38
MZ
1199 /* DBGIDR */
1200 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1201 /* DBGDTRRXext */
1202 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1203
1204 DBG_BCR_BVR_WCR_WVR(0),
1205 /* DBGDSCRint */
1206 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1207 DBG_BCR_BVR_WCR_WVR(1),
1208 /* DBGDCCINT */
1209 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1210 /* DBGDSCRext */
1211 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1212 DBG_BCR_BVR_WCR_WVR(2),
1213 /* DBGDTR[RT]Xint */
1214 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1215 /* DBGDTR[RT]Xext */
1216 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1217 DBG_BCR_BVR_WCR_WVR(3),
1218 DBG_BCR_BVR_WCR_WVR(4),
1219 DBG_BCR_BVR_WCR_WVR(5),
1220 /* DBGWFAR */
1221 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1222 /* DBGOSECCR */
1223 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1224 DBG_BCR_BVR_WCR_WVR(6),
1225 /* DBGVCR */
1226 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1227 DBG_BCR_BVR_WCR_WVR(7),
1228 DBG_BCR_BVR_WCR_WVR(8),
1229 DBG_BCR_BVR_WCR_WVR(9),
1230 DBG_BCR_BVR_WCR_WVR(10),
1231 DBG_BCR_BVR_WCR_WVR(11),
1232 DBG_BCR_BVR_WCR_WVR(12),
1233 DBG_BCR_BVR_WCR_WVR(13),
1234 DBG_BCR_BVR_WCR_WVR(14),
1235 DBG_BCR_BVR_WCR_WVR(15),
1236
1237 /* DBGDRAR (32bit) */
1238 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1239
1240 DBGBXVR(0),
1241 /* DBGOSLAR */
1242 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1243 DBGBXVR(1),
1244 /* DBGOSLSR */
1245 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1246 DBGBXVR(2),
1247 DBGBXVR(3),
1248 /* DBGOSDLR */
1249 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1250 DBGBXVR(4),
1251 /* DBGPRCR */
1252 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1253 DBGBXVR(5),
1254 DBGBXVR(6),
1255 DBGBXVR(7),
1256 DBGBXVR(8),
1257 DBGBXVR(9),
1258 DBGBXVR(10),
1259 DBGBXVR(11),
1260 DBGBXVR(12),
1261 DBGBXVR(13),
1262 DBGBXVR(14),
1263 DBGBXVR(15),
1264
1265 /* DBGDSAR (32bit) */
1266 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1267
1268 /* DBGDEVID2 */
1269 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1270 /* DBGDEVID1 */
1271 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1272 /* DBGDEVID */
1273 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1274 /* DBGCLAIMSET */
1275 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1276 /* DBGCLAIMCLR */
1277 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1278 /* DBGAUTHSTATUS */
1279 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
72564016
MZ
1280};
1281
a9866ba0
MZ
1282/* Trapped cp14 64bit registers */
1283static const struct sys_reg_desc cp14_64_regs[] = {
bdfb4b38
MZ
1284 /* DBGDRAR (64bit) */
1285 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1286
1287 /* DBGDSAR (64bit) */
1288 { Op1( 0), CRm( 2), .access = trap_raz_wi },
a9866ba0
MZ
1289};
1290
051ff581
SZ
1291/* Macro to expand the PMEVCNTRn register */
1292#define PMU_PMEVCNTR(n) \
1293 /* PMEVCNTRn */ \
1294 { Op1(0), CRn(0b1110), \
1295 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1296 access_pmu_evcntr }
1297
9feb21ac
SZ
1298/* Macro to expand the PMEVTYPERn register */
1299#define PMU_PMEVTYPER(n) \
1300 /* PMEVTYPERn */ \
1301 { Op1(0), CRn(0b1110), \
1302 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1303 access_pmu_evtyper }
1304
4d44923b
MZ
1305/*
1306 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1307 * depending on the way they are accessed (as a 32bit or a 64bit
1308 * register).
1309 */
62a89c44 1310static const struct sys_reg_desc cp15_regs[] = {
6d52f35a
AP
1311 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1312
3c1e7165 1313 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
4d44923b
MZ
1314 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1315 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1316 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1317 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1318 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1319 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1320 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1321 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1322 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1323 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1324
62a89c44
MZ
1325 /*
1326 * DC{C,I,CI}SW operations:
1327 */
1328 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1329 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1330 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4d44923b 1331
7609c125 1332 /* PMU */
ab946834 1333 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
96b0eebc
SZ
1334 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1335 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
76d883c4 1336 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
7a0adc70 1337 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
3965c3ce 1338 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
a86b5505
SZ
1339 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1340 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
051ff581 1341 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
9feb21ac 1342 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
051ff581 1343 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
d692b8ad 1344 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
9db52c78
SZ
1345 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1346 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
76d883c4 1347 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
4d44923b
MZ
1348
1349 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1350 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1351 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1352 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
db7dedd0
CD
1353
1354 /* ICC_SRE */
f7f6f2d9 1355 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
db7dedd0 1356
4d44923b 1357 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
051ff581
SZ
1358
1359 /* PMEVCNTRn */
1360 PMU_PMEVCNTR(0),
1361 PMU_PMEVCNTR(1),
1362 PMU_PMEVCNTR(2),
1363 PMU_PMEVCNTR(3),
1364 PMU_PMEVCNTR(4),
1365 PMU_PMEVCNTR(5),
1366 PMU_PMEVCNTR(6),
1367 PMU_PMEVCNTR(7),
1368 PMU_PMEVCNTR(8),
1369 PMU_PMEVCNTR(9),
1370 PMU_PMEVCNTR(10),
1371 PMU_PMEVCNTR(11),
1372 PMU_PMEVCNTR(12),
1373 PMU_PMEVCNTR(13),
1374 PMU_PMEVCNTR(14),
1375 PMU_PMEVCNTR(15),
1376 PMU_PMEVCNTR(16),
1377 PMU_PMEVCNTR(17),
1378 PMU_PMEVCNTR(18),
1379 PMU_PMEVCNTR(19),
1380 PMU_PMEVCNTR(20),
1381 PMU_PMEVCNTR(21),
1382 PMU_PMEVCNTR(22),
1383 PMU_PMEVCNTR(23),
1384 PMU_PMEVCNTR(24),
1385 PMU_PMEVCNTR(25),
1386 PMU_PMEVCNTR(26),
1387 PMU_PMEVCNTR(27),
1388 PMU_PMEVCNTR(28),
1389 PMU_PMEVCNTR(29),
1390 PMU_PMEVCNTR(30),
9feb21ac
SZ
1391 /* PMEVTYPERn */
1392 PMU_PMEVTYPER(0),
1393 PMU_PMEVTYPER(1),
1394 PMU_PMEVTYPER(2),
1395 PMU_PMEVTYPER(3),
1396 PMU_PMEVTYPER(4),
1397 PMU_PMEVTYPER(5),
1398 PMU_PMEVTYPER(6),
1399 PMU_PMEVTYPER(7),
1400 PMU_PMEVTYPER(8),
1401 PMU_PMEVTYPER(9),
1402 PMU_PMEVTYPER(10),
1403 PMU_PMEVTYPER(11),
1404 PMU_PMEVTYPER(12),
1405 PMU_PMEVTYPER(13),
1406 PMU_PMEVTYPER(14),
1407 PMU_PMEVTYPER(15),
1408 PMU_PMEVTYPER(16),
1409 PMU_PMEVTYPER(17),
1410 PMU_PMEVTYPER(18),
1411 PMU_PMEVTYPER(19),
1412 PMU_PMEVTYPER(20),
1413 PMU_PMEVTYPER(21),
1414 PMU_PMEVTYPER(22),
1415 PMU_PMEVTYPER(23),
1416 PMU_PMEVTYPER(24),
1417 PMU_PMEVTYPER(25),
1418 PMU_PMEVTYPER(26),
1419 PMU_PMEVTYPER(27),
1420 PMU_PMEVTYPER(28),
1421 PMU_PMEVTYPER(29),
1422 PMU_PMEVTYPER(30),
1423 /* PMCCFILTR */
1424 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
a9866ba0
MZ
1425};
1426
1427static const struct sys_reg_desc cp15_64_regs[] = {
1428 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
051ff581 1429 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
6d52f35a 1430 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
4d44923b 1431 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
7c8c5e6a
MZ
1432};
1433
1434/* Target specific emulation tables */
1435static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1436
1437void kvm_register_target_sys_reg_table(unsigned int target,
1438 struct kvm_sys_reg_target_table *table)
1439{
1440 target_tables[target] = table;
1441}
1442
1443/* Get specific register table for this target. */
62a89c44
MZ
1444static const struct sys_reg_desc *get_target_table(unsigned target,
1445 bool mode_is_64,
1446 size_t *num)
7c8c5e6a
MZ
1447{
1448 struct kvm_sys_reg_target_table *table;
1449
1450 table = target_tables[target];
62a89c44
MZ
1451 if (mode_is_64) {
1452 *num = table->table64.num;
1453 return table->table64.table;
1454 } else {
1455 *num = table->table32.num;
1456 return table->table32.table;
1457 }
7c8c5e6a
MZ
1458}
1459
623eefa8
MZ
1460#define reg_to_match_value(x) \
1461 ({ \
1462 unsigned long val; \
1463 val = (x)->Op0 << 14; \
1464 val |= (x)->Op1 << 11; \
1465 val |= (x)->CRn << 7; \
1466 val |= (x)->CRm << 3; \
1467 val |= (x)->Op2; \
1468 val; \
1469 })
1470
1471static int match_sys_reg(const void *key, const void *elt)
1472{
1473 const unsigned long pval = (unsigned long)key;
1474 const struct sys_reg_desc *r = elt;
1475
1476 return pval - reg_to_match_value(r);
1477}
1478
7c8c5e6a
MZ
1479static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1480 const struct sys_reg_desc table[],
1481 unsigned int num)
1482{
623eefa8
MZ
1483 unsigned long pval = reg_to_match_value(params);
1484
1485 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
7c8c5e6a
MZ
1486}
1487
62a89c44
MZ
1488int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1489{
1490 kvm_inject_undefined(vcpu);
1491 return 1;
1492}
1493
72564016
MZ
1494/*
1495 * emulate_cp -- tries to match a sys_reg access in a handling table, and
1496 * call the corresponding trap handler.
1497 *
1498 * @params: pointer to the descriptor of the access
1499 * @table: array of trap descriptors
1500 * @num: size of the trap descriptor array
1501 *
1502 * Return 0 if the access has been handled, and -1 if not.
1503 */
1504static int emulate_cp(struct kvm_vcpu *vcpu,
3fec037d 1505 struct sys_reg_params *params,
72564016
MZ
1506 const struct sys_reg_desc *table,
1507 size_t num)
62a89c44 1508{
72564016 1509 const struct sys_reg_desc *r;
62a89c44 1510
72564016
MZ
1511 if (!table)
1512 return -1; /* Not handled */
62a89c44 1513
62a89c44 1514 r = find_reg(params, table, num);
62a89c44 1515
72564016 1516 if (r) {
62a89c44
MZ
1517 /*
1518 * Not having an accessor means that we have
1519 * configured a trap that we don't know how to
1520 * handle. This certainly qualifies as a gross bug
1521 * that should be fixed right away.
1522 */
1523 BUG_ON(!r->access);
1524
1525 if (likely(r->access(vcpu, params, r))) {
1526 /* Skip instruction, since it was emulated */
1527 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
6327f35a
SZ
1528 /* Handled */
1529 return 0;
62a89c44 1530 }
72564016
MZ
1531 }
1532
1533 /* Not handled */
1534 return -1;
1535}
1536
1537static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1538 struct sys_reg_params *params)
1539{
1540 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
40c4f8d2 1541 int cp = -1;
72564016
MZ
1542
1543 switch(hsr_ec) {
c6d01a94
MR
1544 case ESR_ELx_EC_CP15_32:
1545 case ESR_ELx_EC_CP15_64:
72564016
MZ
1546 cp = 15;
1547 break;
c6d01a94
MR
1548 case ESR_ELx_EC_CP14_MR:
1549 case ESR_ELx_EC_CP14_64:
72564016
MZ
1550 cp = 14;
1551 break;
1552 default:
40c4f8d2 1553 WARN_ON(1);
62a89c44
MZ
1554 }
1555
72564016
MZ
1556 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1557 cp, *vcpu_pc(vcpu));
62a89c44
MZ
1558 print_sys_reg_instr(params);
1559 kvm_inject_undefined(vcpu);
1560}
1561
1562/**
7769db90 1563 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
62a89c44
MZ
1564 * @vcpu: The VCPU pointer
1565 * @run: The kvm_run struct
1566 */
72564016
MZ
1567static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1568 const struct sys_reg_desc *global,
1569 size_t nr_global,
1570 const struct sys_reg_desc *target_specific,
1571 size_t nr_specific)
62a89c44
MZ
1572{
1573 struct sys_reg_params params;
1574 u32 hsr = kvm_vcpu_get_hsr(vcpu);
2ec5be3d 1575 int Rt = (hsr >> 5) & 0xf;
62a89c44
MZ
1576 int Rt2 = (hsr >> 10) & 0xf;
1577
2072d29c
MZ
1578 params.is_aarch32 = true;
1579 params.is_32bit = false;
62a89c44 1580 params.CRm = (hsr >> 1) & 0xf;
62a89c44
MZ
1581 params.is_write = ((hsr & 1) == 0);
1582
1583 params.Op0 = 0;
1584 params.Op1 = (hsr >> 16) & 0xf;
1585 params.Op2 = 0;
1586 params.CRn = 0;
1587
1588 /*
2ec5be3d 1589 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
62a89c44
MZ
1590 * backends between AArch32 and AArch64, we get away with it.
1591 */
1592 if (params.is_write) {
2ec5be3d
PF
1593 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1594 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
62a89c44
MZ
1595 }
1596
72564016
MZ
1597 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1598 goto out;
1599 if (!emulate_cp(vcpu, &params, global, nr_global))
1600 goto out;
1601
1602 unhandled_cp_access(vcpu, &params);
62a89c44 1603
72564016 1604out:
2ec5be3d 1605 /* Split up the value between registers for the read side */
62a89c44 1606 if (!params.is_write) {
2ec5be3d
PF
1607 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1608 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
62a89c44
MZ
1609 }
1610
1611 return 1;
1612}
1613
1614/**
7769db90 1615 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
62a89c44
MZ
1616 * @vcpu: The VCPU pointer
1617 * @run: The kvm_run struct
1618 */
72564016
MZ
1619static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1620 const struct sys_reg_desc *global,
1621 size_t nr_global,
1622 const struct sys_reg_desc *target_specific,
1623 size_t nr_specific)
62a89c44
MZ
1624{
1625 struct sys_reg_params params;
1626 u32 hsr = kvm_vcpu_get_hsr(vcpu);
2ec5be3d 1627 int Rt = (hsr >> 5) & 0xf;
62a89c44 1628
2072d29c
MZ
1629 params.is_aarch32 = true;
1630 params.is_32bit = true;
62a89c44 1631 params.CRm = (hsr >> 1) & 0xf;
2ec5be3d 1632 params.regval = vcpu_get_reg(vcpu, Rt);
62a89c44
MZ
1633 params.is_write = ((hsr & 1) == 0);
1634 params.CRn = (hsr >> 10) & 0xf;
1635 params.Op0 = 0;
1636 params.Op1 = (hsr >> 14) & 0x7;
1637 params.Op2 = (hsr >> 17) & 0x7;
1638
2ec5be3d
PF
1639 if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1640 !emulate_cp(vcpu, &params, global, nr_global)) {
1641 if (!params.is_write)
1642 vcpu_set_reg(vcpu, Rt, params.regval);
72564016 1643 return 1;
2ec5be3d 1644 }
72564016
MZ
1645
1646 unhandled_cp_access(vcpu, &params);
62a89c44
MZ
1647 return 1;
1648}
1649
72564016
MZ
1650int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1651{
1652 const struct sys_reg_desc *target_specific;
1653 size_t num;
1654
1655 target_specific = get_target_table(vcpu->arch.target, false, &num);
1656 return kvm_handle_cp_64(vcpu,
a9866ba0 1657 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
72564016
MZ
1658 target_specific, num);
1659}
1660
1661int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1662{
1663 const struct sys_reg_desc *target_specific;
1664 size_t num;
1665
1666 target_specific = get_target_table(vcpu->arch.target, false, &num);
1667 return kvm_handle_cp_32(vcpu,
1668 cp15_regs, ARRAY_SIZE(cp15_regs),
1669 target_specific, num);
1670}
1671
1672int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1673{
1674 return kvm_handle_cp_64(vcpu,
a9866ba0 1675 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
72564016
MZ
1676 NULL, 0);
1677}
1678
1679int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1680{
1681 return kvm_handle_cp_32(vcpu,
1682 cp14_regs, ARRAY_SIZE(cp14_regs),
1683 NULL, 0);
1684}
1685
7c8c5e6a 1686static int emulate_sys_reg(struct kvm_vcpu *vcpu,
3fec037d 1687 struct sys_reg_params *params)
7c8c5e6a
MZ
1688{
1689 size_t num;
1690 const struct sys_reg_desc *table, *r;
1691
62a89c44 1692 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1693
1694 /* Search target-specific then generic table. */
1695 r = find_reg(params, table, num);
1696 if (!r)
1697 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1698
1699 if (likely(r)) {
1700 /*
1701 * Not having an accessor means that we have
1702 * configured a trap that we don't know how to
1703 * handle. This certainly qualifies as a gross bug
1704 * that should be fixed right away.
1705 */
1706 BUG_ON(!r->access);
1707
1708 if (likely(r->access(vcpu, params, r))) {
1709 /* Skip instruction, since it was emulated */
1710 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1711 return 1;
1712 }
1713 /* If access function fails, it should complain. */
1714 } else {
1715 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1716 *vcpu_pc(vcpu));
1717 print_sys_reg_instr(params);
1718 }
1719 kvm_inject_undefined(vcpu);
1720 return 1;
1721}
1722
1723static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1724 const struct sys_reg_desc *table, size_t num)
1725{
1726 unsigned long i;
1727
1728 for (i = 0; i < num; i++)
1729 if (table[i].reset)
1730 table[i].reset(vcpu, &table[i]);
1731}
1732
1733/**
1734 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1735 * @vcpu: The VCPU pointer
1736 * @run: The kvm_run struct
1737 */
1738int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1739{
1740 struct sys_reg_params params;
1741 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2ec5be3d
PF
1742 int Rt = (esr >> 5) & 0x1f;
1743 int ret;
7c8c5e6a 1744
eef8c85a
AB
1745 trace_kvm_handle_sys_reg(esr);
1746
2072d29c
MZ
1747 params.is_aarch32 = false;
1748 params.is_32bit = false;
7c8c5e6a
MZ
1749 params.Op0 = (esr >> 20) & 3;
1750 params.Op1 = (esr >> 14) & 0x7;
1751 params.CRn = (esr >> 10) & 0xf;
1752 params.CRm = (esr >> 1) & 0xf;
1753 params.Op2 = (esr >> 17) & 0x7;
2ec5be3d 1754 params.regval = vcpu_get_reg(vcpu, Rt);
7c8c5e6a
MZ
1755 params.is_write = !(esr & 1);
1756
2ec5be3d
PF
1757 ret = emulate_sys_reg(vcpu, &params);
1758
1759 if (!params.is_write)
1760 vcpu_set_reg(vcpu, Rt, params.regval);
1761 return ret;
7c8c5e6a
MZ
1762}
1763
1764/******************************************************************************
1765 * Userspace API
1766 *****************************************************************************/
1767
1768static bool index_to_params(u64 id, struct sys_reg_params *params)
1769{
1770 switch (id & KVM_REG_SIZE_MASK) {
1771 case KVM_REG_SIZE_U64:
1772 /* Any unused index bits means it's not valid. */
1773 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1774 | KVM_REG_ARM_COPROC_MASK
1775 | KVM_REG_ARM64_SYSREG_OP0_MASK
1776 | KVM_REG_ARM64_SYSREG_OP1_MASK
1777 | KVM_REG_ARM64_SYSREG_CRN_MASK
1778 | KVM_REG_ARM64_SYSREG_CRM_MASK
1779 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1780 return false;
1781 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1782 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1783 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1784 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1785 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1786 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1787 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1788 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1789 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1790 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1791 return true;
1792 default:
1793 return false;
1794 }
1795}
1796
1797/* Decode an index value, and find the sys_reg_desc entry. */
1798static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1799 u64 id)
1800{
1801 size_t num;
1802 const struct sys_reg_desc *table, *r;
1803 struct sys_reg_params params;
1804
1805 /* We only do sys_reg for now. */
1806 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1807 return NULL;
1808
1809 if (!index_to_params(id, &params))
1810 return NULL;
1811
62a89c44 1812 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1813 r = find_reg(&params, table, num);
1814 if (!r)
1815 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1816
1817 /* Not saved in the sys_reg array? */
1818 if (r && !r->reg)
1819 r = NULL;
1820
1821 return r;
1822}
1823
1824/*
1825 * These are the invariant sys_reg registers: we let the guest see the
1826 * host versions of these, so they're part of the guest state.
1827 *
1828 * A future CPU may provide a mechanism to present different values to
1829 * the guest, or a future kvm may trap them.
1830 */
1831
1832#define FUNCTION_INVARIANT(reg) \
1833 static void get_##reg(struct kvm_vcpu *v, \
1834 const struct sys_reg_desc *r) \
1835 { \
1836 u64 val; \
1837 \
1838 asm volatile("mrs %0, " __stringify(reg) "\n" \
1839 : "=r" (val)); \
1840 ((struct sys_reg_desc *)r)->val = val; \
1841 }
1842
1843FUNCTION_INVARIANT(midr_el1)
1844FUNCTION_INVARIANT(ctr_el0)
1845FUNCTION_INVARIANT(revidr_el1)
1846FUNCTION_INVARIANT(id_pfr0_el1)
1847FUNCTION_INVARIANT(id_pfr1_el1)
1848FUNCTION_INVARIANT(id_dfr0_el1)
1849FUNCTION_INVARIANT(id_afr0_el1)
1850FUNCTION_INVARIANT(id_mmfr0_el1)
1851FUNCTION_INVARIANT(id_mmfr1_el1)
1852FUNCTION_INVARIANT(id_mmfr2_el1)
1853FUNCTION_INVARIANT(id_mmfr3_el1)
1854FUNCTION_INVARIANT(id_isar0_el1)
1855FUNCTION_INVARIANT(id_isar1_el1)
1856FUNCTION_INVARIANT(id_isar2_el1)
1857FUNCTION_INVARIANT(id_isar3_el1)
1858FUNCTION_INVARIANT(id_isar4_el1)
1859FUNCTION_INVARIANT(id_isar5_el1)
1860FUNCTION_INVARIANT(clidr_el1)
1861FUNCTION_INVARIANT(aidr_el1)
1862
1863/* ->val is filled in by kvm_sys_reg_table_init() */
1864static struct sys_reg_desc invariant_sys_regs[] = {
1865 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1866 NULL, get_midr_el1 },
1867 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1868 NULL, get_revidr_el1 },
1869 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1870 NULL, get_id_pfr0_el1 },
1871 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1872 NULL, get_id_pfr1_el1 },
1873 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1874 NULL, get_id_dfr0_el1 },
1875 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1876 NULL, get_id_afr0_el1 },
1877 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1878 NULL, get_id_mmfr0_el1 },
1879 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1880 NULL, get_id_mmfr1_el1 },
1881 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1882 NULL, get_id_mmfr2_el1 },
1883 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1884 NULL, get_id_mmfr3_el1 },
1885 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1886 NULL, get_id_isar0_el1 },
1887 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1888 NULL, get_id_isar1_el1 },
1889 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1890 NULL, get_id_isar2_el1 },
1891 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1892 NULL, get_id_isar3_el1 },
1893 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1894 NULL, get_id_isar4_el1 },
1895 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1896 NULL, get_id_isar5_el1 },
1897 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1898 NULL, get_clidr_el1 },
1899 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1900 NULL, get_aidr_el1 },
1901 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1902 NULL, get_ctr_el0 },
1903};
1904
26c99af1 1905static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
7c8c5e6a 1906{
7c8c5e6a
MZ
1907 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1908 return -EFAULT;
1909 return 0;
1910}
1911
26c99af1 1912static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
7c8c5e6a 1913{
7c8c5e6a
MZ
1914 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1915 return -EFAULT;
1916 return 0;
1917}
1918
1919static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1920{
1921 struct sys_reg_params params;
1922 const struct sys_reg_desc *r;
1923
1924 if (!index_to_params(id, &params))
1925 return -ENOENT;
1926
1927 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1928 if (!r)
1929 return -ENOENT;
1930
1931 return reg_to_user(uaddr, &r->val, id);
1932}
1933
1934static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1935{
1936 struct sys_reg_params params;
1937 const struct sys_reg_desc *r;
1938 int err;
1939 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1940
1941 if (!index_to_params(id, &params))
1942 return -ENOENT;
1943 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1944 if (!r)
1945 return -ENOENT;
1946
1947 err = reg_from_user(&val, uaddr, id);
1948 if (err)
1949 return err;
1950
1951 /* This is what we mean by invariant: you can't change it. */
1952 if (r->val != val)
1953 return -EINVAL;
1954
1955 return 0;
1956}
1957
1958static bool is_valid_cache(u32 val)
1959{
1960 u32 level, ctype;
1961
1962 if (val >= CSSELR_MAX)
18d45766 1963 return false;
7c8c5e6a
MZ
1964
1965 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1966 level = (val >> 1);
1967 ctype = (cache_levels >> (level * 3)) & 7;
1968
1969 switch (ctype) {
1970 case 0: /* No cache */
1971 return false;
1972 case 1: /* Instruction cache only */
1973 return (val & 1);
1974 case 2: /* Data cache only */
1975 case 4: /* Unified cache */
1976 return !(val & 1);
1977 case 3: /* Separate instruction and data caches */
1978 return true;
1979 default: /* Reserved: we can't know instruction or data. */
1980 return false;
1981 }
1982}
1983
1984static int demux_c15_get(u64 id, void __user *uaddr)
1985{
1986 u32 val;
1987 u32 __user *uval = uaddr;
1988
1989 /* Fail if we have unknown bits set. */
1990 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1991 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1992 return -ENOENT;
1993
1994 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1995 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1996 if (KVM_REG_SIZE(id) != 4)
1997 return -ENOENT;
1998 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1999 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2000 if (!is_valid_cache(val))
2001 return -ENOENT;
2002
2003 return put_user(get_ccsidr(val), uval);
2004 default:
2005 return -ENOENT;
2006 }
2007}
2008
2009static int demux_c15_set(u64 id, void __user *uaddr)
2010{
2011 u32 val, newval;
2012 u32 __user *uval = uaddr;
2013
2014 /* Fail if we have unknown bits set. */
2015 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2016 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2017 return -ENOENT;
2018
2019 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2020 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2021 if (KVM_REG_SIZE(id) != 4)
2022 return -ENOENT;
2023 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2024 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2025 if (!is_valid_cache(val))
2026 return -ENOENT;
2027
2028 if (get_user(newval, uval))
2029 return -EFAULT;
2030
2031 /* This is also invariant: you can't change it. */
2032 if (newval != get_ccsidr(val))
2033 return -EINVAL;
2034 return 0;
2035 default:
2036 return -ENOENT;
2037 }
2038}
2039
2040int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2041{
2042 const struct sys_reg_desc *r;
2043 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2044
2045 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2046 return demux_c15_get(reg->id, uaddr);
2047
2048 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2049 return -ENOENT;
2050
2051 r = index_to_sys_reg_desc(vcpu, reg->id);
2052 if (!r)
2053 return get_invariant_sys_reg(reg->id, uaddr);
2054
84e690bf
AB
2055 if (r->get_user)
2056 return (r->get_user)(vcpu, r, reg, uaddr);
2057
7c8c5e6a
MZ
2058 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2059}
2060
2061int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2062{
2063 const struct sys_reg_desc *r;
2064 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2065
2066 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2067 return demux_c15_set(reg->id, uaddr);
2068
2069 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2070 return -ENOENT;
2071
2072 r = index_to_sys_reg_desc(vcpu, reg->id);
2073 if (!r)
2074 return set_invariant_sys_reg(reg->id, uaddr);
2075
84e690bf
AB
2076 if (r->set_user)
2077 return (r->set_user)(vcpu, r, reg, uaddr);
2078
7c8c5e6a
MZ
2079 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2080}
2081
2082static unsigned int num_demux_regs(void)
2083{
2084 unsigned int i, count = 0;
2085
2086 for (i = 0; i < CSSELR_MAX; i++)
2087 if (is_valid_cache(i))
2088 count++;
2089
2090 return count;
2091}
2092
2093static int write_demux_regids(u64 __user *uindices)
2094{
efd48cea 2095 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
7c8c5e6a
MZ
2096 unsigned int i;
2097
2098 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2099 for (i = 0; i < CSSELR_MAX; i++) {
2100 if (!is_valid_cache(i))
2101 continue;
2102 if (put_user(val | i, uindices))
2103 return -EFAULT;
2104 uindices++;
2105 }
2106 return 0;
2107}
2108
2109static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2110{
2111 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2112 KVM_REG_ARM64_SYSREG |
2113 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2114 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2115 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2116 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2117 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2118}
2119
2120static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2121{
2122 if (!*uind)
2123 return true;
2124
2125 if (put_user(sys_reg_to_index(reg), *uind))
2126 return false;
2127
2128 (*uind)++;
2129 return true;
2130}
2131
2132/* Assumed ordered tables, see kvm_sys_reg_table_init. */
2133static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2134{
2135 const struct sys_reg_desc *i1, *i2, *end1, *end2;
2136 unsigned int total = 0;
2137 size_t num;
2138
2139 /* We check for duplicates here, to allow arch-specific overrides. */
62a89c44 2140 i1 = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
2141 end1 = i1 + num;
2142 i2 = sys_reg_descs;
2143 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2144
2145 BUG_ON(i1 == end1 || i2 == end2);
2146
2147 /* Walk carefully, as both tables may refer to the same register. */
2148 while (i1 || i2) {
2149 int cmp = cmp_sys_reg(i1, i2);
2150 /* target-specific overrides generic entry. */
2151 if (cmp <= 0) {
2152 /* Ignore registers we trap but don't save. */
2153 if (i1->reg) {
2154 if (!copy_reg_to_user(i1, &uind))
2155 return -EFAULT;
2156 total++;
2157 }
2158 } else {
2159 /* Ignore registers we trap but don't save. */
2160 if (i2->reg) {
2161 if (!copy_reg_to_user(i2, &uind))
2162 return -EFAULT;
2163 total++;
2164 }
2165 }
2166
2167 if (cmp <= 0 && ++i1 == end1)
2168 i1 = NULL;
2169 if (cmp >= 0 && ++i2 == end2)
2170 i2 = NULL;
2171 }
2172 return total;
2173}
2174
2175unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2176{
2177 return ARRAY_SIZE(invariant_sys_regs)
2178 + num_demux_regs()
2179 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2180}
2181
2182int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2183{
2184 unsigned int i;
2185 int err;
2186
2187 /* Then give them all the invariant registers' indices. */
2188 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2189 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2190 return -EFAULT;
2191 uindices++;
2192 }
2193
2194 err = walk_sys_regs(vcpu, uindices);
2195 if (err < 0)
2196 return err;
2197 uindices += err;
2198
2199 return write_demux_regids(uindices);
2200}
2201
e6a95517
MZ
2202static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2203{
2204 unsigned int i;
2205
2206 for (i = 1; i < n; i++) {
2207 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2208 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2209 return 1;
2210 }
2211 }
2212
2213 return 0;
2214}
2215
7c8c5e6a
MZ
2216void kvm_sys_reg_table_init(void)
2217{
2218 unsigned int i;
2219 struct sys_reg_desc clidr;
2220
2221 /* Make sure tables are unique and in order. */
e6a95517
MZ
2222 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2223 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2224 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2225 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2226 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2227 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
7c8c5e6a
MZ
2228
2229 /* We abuse the reset function to overwrite the table itself. */
2230 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2231 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2232
2233 /*
2234 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2235 *
2236 * If software reads the Cache Type fields from Ctype1
2237 * upwards, once it has seen a value of 0b000, no caches
2238 * exist at further-out levels of the hierarchy. So, for
2239 * example, if Ctype3 is the first Cache Type field with a
2240 * value of 0b000, the values of Ctype4 to Ctype7 must be
2241 * ignored.
2242 */
2243 get_clidr_el1(NULL, &clidr); /* Ugly... */
2244 cache_levels = clidr.val;
2245 for (i = 0; i < 7; i++)
2246 if (((cache_levels >> (i*3)) & 7) == 0)
2247 break;
2248 /* Clear all higher bits. */
2249 cache_levels &= (1 << (i*3))-1;
2250}
2251
2252/**
2253 * kvm_reset_sys_regs - sets system registers to reset value
2254 * @vcpu: The VCPU pointer
2255 *
2256 * This function finds the right table above and sets the registers on the
2257 * virtual CPU struct to their architecturally defined reset values.
2258 */
2259void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2260{
2261 size_t num;
2262 const struct sys_reg_desc *table;
2263
2264 /* Catch someone adding a register without putting in reset entry. */
2265 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2266
2267 /* Generic chip reset first (so target could override). */
2268 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2269
62a89c44 2270 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
2271 reset_sys_reg_descs(vcpu, table, num);
2272
2273 for (num = 1; num < NR_SYS_REGS; num++)
2274 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2275 panic("Didn't reset vcpu_sys_reg(%zi)", num);
2276}