KVM: x86: Don't attempt to load PDPTRs when 64-bit mode is enabled
[linux-block.git] / arch / arm64 / kvm / mmu.c
CommitLineData
d94d71cb 1// SPDX-License-Identifier: GPL-2.0-only
749cf76c
CD
2/*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
749cf76c 5 */
342cd0ab
CD
6
7#include <linux/mman.h>
8#include <linux/kvm_host.h>
9#include <linux/io.h>
ad361f09 10#include <linux/hugetlb.h>
196f878a 11#include <linux/sched/signal.h>
45e96ea6 12#include <trace/events/kvm.h>
342cd0ab 13#include <asm/pgalloc.h>
94f8e641 14#include <asm/cacheflush.h>
342cd0ab
CD
15#include <asm/kvm_arm.h>
16#include <asm/kvm_mmu.h>
0db5e022 17#include <asm/kvm_ras.h>
d5d8184d 18#include <asm/kvm_asm.h>
94f8e641 19#include <asm/kvm_emulate.h>
1e947bad 20#include <asm/virt.h>
d5d8184d
CD
21
22#include "trace.h"
342cd0ab 23
5a677ce0 24static pgd_t *boot_hyp_pgd;
2fb41059 25static pgd_t *hyp_pgd;
e4c5a685 26static pgd_t *merged_hyp_pgd;
342cd0ab
CD
27static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
28
5a677ce0
MZ
29static unsigned long hyp_idmap_start;
30static unsigned long hyp_idmap_end;
31static phys_addr_t hyp_idmap_vector;
32
e3f019b3
MZ
33static unsigned long io_map_base;
34
38f791a4 35#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
5d4e08c4 36
15a49a44
MS
37#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
38#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
39
6d674e28
MZ
40static bool is_iomap(unsigned long flags)
41{
42 return flags & KVM_S2PTE_FLAG_IS_IOMAP;
43}
44
15a49a44
MS
45static bool memslot_is_logging(struct kvm_memory_slot *memslot)
46{
15a49a44 47 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
7276030a
MS
48}
49
50/**
51 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
52 * @kvm: pointer to kvm structure.
53 *
54 * Interface to HYP function to flush all VM TLB entries
55 */
56void kvm_flush_remote_tlbs(struct kvm *kvm)
57{
58 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
15a49a44 59}
ad361f09 60
48762767 61static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
d5d8184d 62{
8684e701 63 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
d5d8184d
CD
64}
65
363ef89f
MZ
66/*
67 * D-Cache management functions. They take the page table entries by
68 * value, as they are flushing the cache using the kernel mapping (or
69 * kmap on 32bit).
70 */
71static void kvm_flush_dcache_pte(pte_t pte)
72{
73 __kvm_flush_dcache_pte(pte);
74}
75
76static void kvm_flush_dcache_pmd(pmd_t pmd)
77{
78 __kvm_flush_dcache_pmd(pmd);
79}
80
81static void kvm_flush_dcache_pud(pud_t pud)
82{
83 __kvm_flush_dcache_pud(pud);
84}
85
e6fab544
AB
86static bool kvm_is_device_pfn(unsigned long pfn)
87{
88 return !pfn_valid(pfn);
89}
90
15a49a44
MS
91/**
92 * stage2_dissolve_pmd() - clear and flush huge PMD entry
93 * @kvm: pointer to kvm structure.
94 * @addr: IPA
95 * @pmd: pmd pointer for IPA
96 *
8324c3d5 97 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
15a49a44
MS
98 */
99static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
100{
bbb3b6b3 101 if (!pmd_thp_or_huge(*pmd))
15a49a44
MS
102 return;
103
104 pmd_clear(pmd);
105 kvm_tlb_flush_vmid_ipa(kvm, addr);
106 put_page(virt_to_page(pmd));
107}
108
b8e0ba7c
PA
109/**
110 * stage2_dissolve_pud() - clear and flush huge PUD entry
111 * @kvm: pointer to kvm structure.
112 * @addr: IPA
113 * @pud: pud pointer for IPA
114 *
8324c3d5 115 * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
b8e0ba7c
PA
116 */
117static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
118{
119 if (!stage2_pud_huge(kvm, *pudp))
120 return;
121
122 stage2_pud_clear(kvm, pudp);
123 kvm_tlb_flush_vmid_ipa(kvm, addr);
124 put_page(virt_to_page(pudp));
125}
126
7a1c831e 127static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
979acd5e 128{
e9f63768 129 p4d_t *p4d_table __maybe_unused = stage2_p4d_offset(kvm, pgd, 0UL);
e55cac5b 130 stage2_pgd_clear(kvm, pgd);
4f853a71 131 kvm_tlb_flush_vmid_ipa(kvm, addr);
e9f63768 132 stage2_p4d_free(kvm, p4d_table);
4f853a71 133 put_page(virt_to_page(pgd));
979acd5e
MZ
134}
135
e9f63768
MR
136static void clear_stage2_p4d_entry(struct kvm *kvm, p4d_t *p4d, phys_addr_t addr)
137{
138 pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, p4d, 0);
139 stage2_p4d_clear(kvm, p4d);
140 kvm_tlb_flush_vmid_ipa(kvm, addr);
141 stage2_pud_free(kvm, pud_table);
142 put_page(virt_to_page(p4d));
143}
144
7a1c831e 145static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
342cd0ab 146{
e55cac5b
SP
147 pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
148 VM_BUG_ON(stage2_pud_huge(kvm, *pud));
149 stage2_pud_clear(kvm, pud);
4f853a71 150 kvm_tlb_flush_vmid_ipa(kvm, addr);
e55cac5b 151 stage2_pmd_free(kvm, pmd_table);
4f728276
MZ
152 put_page(virt_to_page(pud));
153}
342cd0ab 154
7a1c831e 155static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
4f728276 156{
4f853a71 157 pte_t *pte_table = pte_offset_kernel(pmd, 0);
bbb3b6b3 158 VM_BUG_ON(pmd_thp_or_huge(*pmd));
4f853a71
CD
159 pmd_clear(pmd);
160 kvm_tlb_flush_vmid_ipa(kvm, addr);
14b94d07 161 free_page((unsigned long)pte_table);
4f728276
MZ
162 put_page(virt_to_page(pmd));
163}
164
88dc25e8
MZ
165static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
166{
167 WRITE_ONCE(*ptep, new_pte);
168 dsb(ishst);
169}
170
171static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
172{
173 WRITE_ONCE(*pmdp, new_pmd);
174 dsb(ishst);
175}
176
0db9dd8a
MZ
177static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
178{
179 kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
180}
181
182static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
183{
184 WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
185 dsb(ishst);
186}
187
e9f63768 188static inline void kvm_p4d_populate(p4d_t *p4dp, pud_t *pudp)
0db9dd8a 189{
e9f63768 190 WRITE_ONCE(*p4dp, kvm_mk_p4d(pudp));
0db9dd8a
MZ
191 dsb(ishst);
192}
193
e9f63768
MR
194static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp)
195{
196#ifndef __PAGETABLE_P4D_FOLDED
197 WRITE_ONCE(*pgdp, kvm_mk_pgd(p4dp));
198 dsb(ishst);
199#endif
200}
201
363ef89f
MZ
202/*
203 * Unmapping vs dcache management:
204 *
205 * If a guest maps certain memory pages as uncached, all writes will
206 * bypass the data cache and go directly to RAM. However, the CPUs
207 * can still speculate reads (not writes) and fill cache lines with
208 * data.
209 *
210 * Those cache lines will be *clean* cache lines though, so a
211 * clean+invalidate operation is equivalent to an invalidate
212 * operation, because no cache lines are marked dirty.
213 *
214 * Those clean cache lines could be filled prior to an uncached write
215 * by the guest, and the cache coherent IO subsystem would therefore
216 * end up writing old data to disk.
217 *
218 * This is why right after unmapping a page/section and invalidating
219 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
220 * the IO subsystem will never hit in the cache.
e48d53a9
MZ
221 *
222 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
223 * we then fully enforce cacheability of RAM, no matter what the guest
224 * does.
363ef89f 225 */
7a1c831e 226static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
4f853a71 227 phys_addr_t addr, phys_addr_t end)
4f728276 228{
4f853a71
CD
229 phys_addr_t start_addr = addr;
230 pte_t *pte, *start_pte;
231
232 start_pte = pte = pte_offset_kernel(pmd, addr);
233 do {
234 if (!pte_none(*pte)) {
363ef89f
MZ
235 pte_t old_pte = *pte;
236
4f853a71 237 kvm_set_pte(pte, __pte(0));
4f853a71 238 kvm_tlb_flush_vmid_ipa(kvm, addr);
363ef89f
MZ
239
240 /* No need to invalidate the cache for device mappings */
0de58f85 241 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
363ef89f
MZ
242 kvm_flush_dcache_pte(old_pte);
243
244 put_page(virt_to_page(pte));
4f853a71
CD
245 }
246 } while (pte++, addr += PAGE_SIZE, addr != end);
247
e55cac5b 248 if (stage2_pte_table_empty(kvm, start_pte))
7a1c831e 249 clear_stage2_pmd_entry(kvm, pmd, start_addr);
342cd0ab
CD
250}
251
7a1c831e 252static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
4f853a71 253 phys_addr_t addr, phys_addr_t end)
000d3996 254{
4f853a71
CD
255 phys_addr_t next, start_addr = addr;
256 pmd_t *pmd, *start_pmd;
000d3996 257
e55cac5b 258 start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
4f853a71 259 do {
e55cac5b 260 next = stage2_pmd_addr_end(kvm, addr, end);
4f853a71 261 if (!pmd_none(*pmd)) {
bbb3b6b3 262 if (pmd_thp_or_huge(*pmd)) {
363ef89f
MZ
263 pmd_t old_pmd = *pmd;
264
4f853a71
CD
265 pmd_clear(pmd);
266 kvm_tlb_flush_vmid_ipa(kvm, addr);
363ef89f
MZ
267
268 kvm_flush_dcache_pmd(old_pmd);
269
4f853a71
CD
270 put_page(virt_to_page(pmd));
271 } else {
7a1c831e 272 unmap_stage2_ptes(kvm, pmd, addr, next);
4f853a71 273 }
ad361f09 274 }
4f853a71 275 } while (pmd++, addr = next, addr != end);
ad361f09 276
e55cac5b 277 if (stage2_pmd_table_empty(kvm, start_pmd))
7a1c831e 278 clear_stage2_pud_entry(kvm, pud, start_addr);
4f853a71 279}
000d3996 280
e9f63768 281static void unmap_stage2_puds(struct kvm *kvm, p4d_t *p4d,
4f853a71
CD
282 phys_addr_t addr, phys_addr_t end)
283{
284 phys_addr_t next, start_addr = addr;
285 pud_t *pud, *start_pud;
4f728276 286
e9f63768 287 start_pud = pud = stage2_pud_offset(kvm, p4d, addr);
4f853a71 288 do {
e55cac5b
SP
289 next = stage2_pud_addr_end(kvm, addr, end);
290 if (!stage2_pud_none(kvm, *pud)) {
291 if (stage2_pud_huge(kvm, *pud)) {
363ef89f
MZ
292 pud_t old_pud = *pud;
293
e55cac5b 294 stage2_pud_clear(kvm, pud);
4f853a71 295 kvm_tlb_flush_vmid_ipa(kvm, addr);
363ef89f 296 kvm_flush_dcache_pud(old_pud);
4f853a71
CD
297 put_page(virt_to_page(pud));
298 } else {
7a1c831e 299 unmap_stage2_pmds(kvm, pud, addr, next);
4f728276
MZ
300 }
301 }
4f853a71 302 } while (pud++, addr = next, addr != end);
4f728276 303
e55cac5b 304 if (stage2_pud_table_empty(kvm, start_pud))
e9f63768
MR
305 clear_stage2_p4d_entry(kvm, p4d, start_addr);
306}
307
308static void unmap_stage2_p4ds(struct kvm *kvm, pgd_t *pgd,
309 phys_addr_t addr, phys_addr_t end)
310{
311 phys_addr_t next, start_addr = addr;
312 p4d_t *p4d, *start_p4d;
313
314 start_p4d = p4d = stage2_p4d_offset(kvm, pgd, addr);
315 do {
316 next = stage2_p4d_addr_end(kvm, addr, end);
317 if (!stage2_p4d_none(kvm, *p4d))
318 unmap_stage2_puds(kvm, p4d, addr, next);
319 } while (p4d++, addr = next, addr != end);
320
321 if (stage2_p4d_table_empty(kvm, start_p4d))
7a1c831e 322 clear_stage2_pgd_entry(kvm, pgd, start_addr);
4f853a71
CD
323}
324
7a1c831e
SP
325/**
326 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
327 * @kvm: The VM pointer
328 * @start: The intermediate physical base address of the range to unmap
329 * @size: The size of the area to unmap
330 *
331 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
332 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
333 * destroying the VM), otherwise another faulting VCPU may come in and mess
334 * with things behind our backs.
335 */
336static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
4f853a71
CD
337{
338 pgd_t *pgd;
339 phys_addr_t addr = start, end = start + size;
340 phys_addr_t next;
341
8b3405e3 342 assert_spin_locked(&kvm->mmu_lock);
47a91b72
JH
343 WARN_ON(size & ~PAGE_MASK);
344
e55cac5b 345 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
4f853a71 346 do {
0c428a6a
SP
347 /*
348 * Make sure the page table is still active, as another thread
349 * could have possibly freed the page table, while we released
350 * the lock.
351 */
352 if (!READ_ONCE(kvm->arch.pgd))
353 break;
e55cac5b
SP
354 next = stage2_pgd_addr_end(kvm, addr, end);
355 if (!stage2_pgd_none(kvm, *pgd))
e9f63768 356 unmap_stage2_p4ds(kvm, pgd, addr, next);
8b3405e3
SP
357 /*
358 * If the range is too large, release the kvm->mmu_lock
359 * to prevent starvation and lockup detector warnings.
360 */
361 if (next != end)
362 cond_resched_lock(&kvm->mmu_lock);
4f853a71 363 } while (pgd++, addr = next, addr != end);
000d3996
MZ
364}
365
9d218a1f
MZ
366static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
367 phys_addr_t addr, phys_addr_t end)
368{
369 pte_t *pte;
370
371 pte = pte_offset_kernel(pmd, addr);
372 do {
0de58f85 373 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
363ef89f 374 kvm_flush_dcache_pte(*pte);
9d218a1f
MZ
375 } while (pte++, addr += PAGE_SIZE, addr != end);
376}
377
378static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
379 phys_addr_t addr, phys_addr_t end)
380{
381 pmd_t *pmd;
382 phys_addr_t next;
383
e55cac5b 384 pmd = stage2_pmd_offset(kvm, pud, addr);
9d218a1f 385 do {
e55cac5b 386 next = stage2_pmd_addr_end(kvm, addr, end);
9d218a1f 387 if (!pmd_none(*pmd)) {
bbb3b6b3 388 if (pmd_thp_or_huge(*pmd))
363ef89f
MZ
389 kvm_flush_dcache_pmd(*pmd);
390 else
9d218a1f 391 stage2_flush_ptes(kvm, pmd, addr, next);
9d218a1f
MZ
392 }
393 } while (pmd++, addr = next, addr != end);
394}
395
e9f63768 396static void stage2_flush_puds(struct kvm *kvm, p4d_t *p4d,
9d218a1f
MZ
397 phys_addr_t addr, phys_addr_t end)
398{
399 pud_t *pud;
400 phys_addr_t next;
401
e9f63768 402 pud = stage2_pud_offset(kvm, p4d, addr);
9d218a1f 403 do {
e55cac5b
SP
404 next = stage2_pud_addr_end(kvm, addr, end);
405 if (!stage2_pud_none(kvm, *pud)) {
406 if (stage2_pud_huge(kvm, *pud))
363ef89f
MZ
407 kvm_flush_dcache_pud(*pud);
408 else
9d218a1f 409 stage2_flush_pmds(kvm, pud, addr, next);
9d218a1f
MZ
410 }
411 } while (pud++, addr = next, addr != end);
412}
413
e9f63768
MR
414static void stage2_flush_p4ds(struct kvm *kvm, pgd_t *pgd,
415 phys_addr_t addr, phys_addr_t end)
416{
417 p4d_t *p4d;
418 phys_addr_t next;
419
420 p4d = stage2_p4d_offset(kvm, pgd, addr);
421 do {
422 next = stage2_p4d_addr_end(kvm, addr, end);
423 if (!stage2_p4d_none(kvm, *p4d))
424 stage2_flush_puds(kvm, p4d, addr, next);
425 } while (p4d++, addr = next, addr != end);
426}
427
9d218a1f
MZ
428static void stage2_flush_memslot(struct kvm *kvm,
429 struct kvm_memory_slot *memslot)
430{
431 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
432 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
433 phys_addr_t next;
434 pgd_t *pgd;
435
e55cac5b 436 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
9d218a1f 437 do {
e55cac5b
SP
438 next = stage2_pgd_addr_end(kvm, addr, end);
439 if (!stage2_pgd_none(kvm, *pgd))
e9f63768 440 stage2_flush_p4ds(kvm, pgd, addr, next);
48c963e3
JY
441
442 if (next != end)
443 cond_resched_lock(&kvm->mmu_lock);
9d218a1f
MZ
444 } while (pgd++, addr = next, addr != end);
445}
446
447/**
448 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
449 * @kvm: The struct kvm pointer
450 *
451 * Go through the stage 2 page tables and invalidate any cache lines
452 * backing memory already mapped to the VM.
453 */
3c1e7165 454static void stage2_flush_vm(struct kvm *kvm)
9d218a1f
MZ
455{
456 struct kvm_memslots *slots;
457 struct kvm_memory_slot *memslot;
458 int idx;
459
460 idx = srcu_read_lock(&kvm->srcu);
461 spin_lock(&kvm->mmu_lock);
462
463 slots = kvm_memslots(kvm);
464 kvm_for_each_memslot(memslot, slots)
465 stage2_flush_memslot(kvm, memslot);
466
467 spin_unlock(&kvm->mmu_lock);
468 srcu_read_unlock(&kvm->srcu, idx);
469}
470
64f32497
SP
471static void clear_hyp_pgd_entry(pgd_t *pgd)
472{
e9f63768 473 p4d_t *p4d_table __maybe_unused = p4d_offset(pgd, 0UL);
64f32497 474 pgd_clear(pgd);
e9f63768 475 p4d_free(NULL, p4d_table);
64f32497
SP
476 put_page(virt_to_page(pgd));
477}
478
e9f63768
MR
479static void clear_hyp_p4d_entry(p4d_t *p4d)
480{
481 pud_t *pud_table __maybe_unused = pud_offset(p4d, 0UL);
482 VM_BUG_ON(p4d_huge(*p4d));
483 p4d_clear(p4d);
484 pud_free(NULL, pud_table);
485 put_page(virt_to_page(p4d));
486}
487
64f32497
SP
488static void clear_hyp_pud_entry(pud_t *pud)
489{
490 pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
491 VM_BUG_ON(pud_huge(*pud));
492 pud_clear(pud);
493 pmd_free(NULL, pmd_table);
494 put_page(virt_to_page(pud));
495}
496
497static void clear_hyp_pmd_entry(pmd_t *pmd)
498{
499 pte_t *pte_table = pte_offset_kernel(pmd, 0);
500 VM_BUG_ON(pmd_thp_or_huge(*pmd));
501 pmd_clear(pmd);
502 pte_free_kernel(NULL, pte_table);
503 put_page(virt_to_page(pmd));
504}
505
506static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
507{
508 pte_t *pte, *start_pte;
509
510 start_pte = pte = pte_offset_kernel(pmd, addr);
511 do {
512 if (!pte_none(*pte)) {
513 kvm_set_pte(pte, __pte(0));
514 put_page(virt_to_page(pte));
515 }
516 } while (pte++, addr += PAGE_SIZE, addr != end);
517
518 if (hyp_pte_table_empty(start_pte))
519 clear_hyp_pmd_entry(pmd);
520}
521
522static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
523{
524 phys_addr_t next;
525 pmd_t *pmd, *start_pmd;
526
527 start_pmd = pmd = pmd_offset(pud, addr);
528 do {
529 next = pmd_addr_end(addr, end);
530 /* Hyp doesn't use huge pmds */
531 if (!pmd_none(*pmd))
532 unmap_hyp_ptes(pmd, addr, next);
533 } while (pmd++, addr = next, addr != end);
534
535 if (hyp_pmd_table_empty(start_pmd))
536 clear_hyp_pud_entry(pud);
537}
538
e9f63768 539static void unmap_hyp_puds(p4d_t *p4d, phys_addr_t addr, phys_addr_t end)
64f32497
SP
540{
541 phys_addr_t next;
542 pud_t *pud, *start_pud;
543
e9f63768 544 start_pud = pud = pud_offset(p4d, addr);
64f32497
SP
545 do {
546 next = pud_addr_end(addr, end);
547 /* Hyp doesn't use huge puds */
548 if (!pud_none(*pud))
549 unmap_hyp_pmds(pud, addr, next);
550 } while (pud++, addr = next, addr != end);
551
552 if (hyp_pud_table_empty(start_pud))
e9f63768
MR
553 clear_hyp_p4d_entry(p4d);
554}
555
556static void unmap_hyp_p4ds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
557{
558 phys_addr_t next;
559 p4d_t *p4d, *start_p4d;
560
561 start_p4d = p4d = p4d_offset(pgd, addr);
562 do {
563 next = p4d_addr_end(addr, end);
564 /* Hyp doesn't use huge p4ds */
565 if (!p4d_none(*p4d))
566 unmap_hyp_puds(p4d, addr, next);
567 } while (p4d++, addr = next, addr != end);
568
569 if (hyp_p4d_table_empty(start_p4d))
64f32497
SP
570 clear_hyp_pgd_entry(pgd);
571}
572
3ddd4556
MZ
573static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
574{
575 return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
576}
577
578static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
579 phys_addr_t start, u64 size)
64f32497
SP
580{
581 pgd_t *pgd;
582 phys_addr_t addr = start, end = start + size;
583 phys_addr_t next;
584
585 /*
586 * We don't unmap anything from HYP, except at the hyp tear down.
587 * Hence, we don't have to invalidate the TLBs here.
588 */
3ddd4556 589 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
64f32497
SP
590 do {
591 next = pgd_addr_end(addr, end);
592 if (!pgd_none(*pgd))
e9f63768 593 unmap_hyp_p4ds(pgd, addr, next);
64f32497
SP
594 } while (pgd++, addr = next, addr != end);
595}
596
3ddd4556
MZ
597static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
598{
599 __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
600}
601
602static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
603{
604 __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
605}
606
342cd0ab 607/**
4f728276 608 * free_hyp_pgds - free Hyp-mode page tables
342cd0ab 609 *
5a677ce0
MZ
610 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
611 * therefore contains either mappings in the kernel memory area (above
e3f019b3 612 * PAGE_OFFSET), or device mappings in the idmap range.
5a677ce0 613 *
e3f019b3
MZ
614 * boot_hyp_pgd should only map the idmap range, and is only used in
615 * the extended idmap case.
342cd0ab 616 */
4f728276 617void free_hyp_pgds(void)
342cd0ab 618{
e3f019b3
MZ
619 pgd_t *id_pgd;
620
d157f4a5 621 mutex_lock(&kvm_hyp_pgd_mutex);
5a677ce0 622
e3f019b3
MZ
623 id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
624
625 if (id_pgd) {
626 /* In case we never called hyp_mmu_init() */
627 if (!io_map_base)
628 io_map_base = hyp_idmap_start;
629 unmap_hyp_idmap_range(id_pgd, io_map_base,
630 hyp_idmap_start + PAGE_SIZE - io_map_base);
631 }
632
26781f9c 633 if (boot_hyp_pgd) {
26781f9c
MZ
634 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
635 boot_hyp_pgd = NULL;
636 }
637
4f728276 638 if (hyp_pgd) {
7839c672
MZ
639 unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
640 (uintptr_t)high_memory - PAGE_OFFSET);
d4cb9df5 641
38f791a4 642 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
d157f4a5 643 hyp_pgd = NULL;
4f728276 644 }
e4c5a685
AB
645 if (merged_hyp_pgd) {
646 clear_page(merged_hyp_pgd);
647 free_page((unsigned long)merged_hyp_pgd);
648 merged_hyp_pgd = NULL;
649 }
4f728276 650
342cd0ab
CD
651 mutex_unlock(&kvm_hyp_pgd_mutex);
652}
653
654static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
6060df84
MZ
655 unsigned long end, unsigned long pfn,
656 pgprot_t prot)
342cd0ab
CD
657{
658 pte_t *pte;
659 unsigned long addr;
342cd0ab 660
3562c76d
MZ
661 addr = start;
662 do {
6060df84 663 pte = pte_offset_kernel(pmd, addr);
f8df7338 664 kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
4f728276 665 get_page(virt_to_page(pte));
6060df84 666 pfn++;
3562c76d 667 } while (addr += PAGE_SIZE, addr != end);
342cd0ab
CD
668}
669
670static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
6060df84
MZ
671 unsigned long end, unsigned long pfn,
672 pgprot_t prot)
342cd0ab
CD
673{
674 pmd_t *pmd;
675 pte_t *pte;
676 unsigned long addr, next;
677
3562c76d
MZ
678 addr = start;
679 do {
6060df84 680 pmd = pmd_offset(pud, addr);
342cd0ab
CD
681
682 BUG_ON(pmd_sect(*pmd));
683
684 if (pmd_none(*pmd)) {
4cf58924 685 pte = pte_alloc_one_kernel(NULL);
342cd0ab
CD
686 if (!pte) {
687 kvm_err("Cannot allocate Hyp pte\n");
688 return -ENOMEM;
689 }
0db9dd8a 690 kvm_pmd_populate(pmd, pte);
4f728276 691 get_page(virt_to_page(pmd));
342cd0ab
CD
692 }
693
694 next = pmd_addr_end(addr, end);
695
6060df84
MZ
696 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
697 pfn += (next - addr) >> PAGE_SHIFT;
3562c76d 698 } while (addr = next, addr != end);
342cd0ab
CD
699
700 return 0;
701}
702
e9f63768 703static int create_hyp_pud_mappings(p4d_t *p4d, unsigned long start,
38f791a4
CD
704 unsigned long end, unsigned long pfn,
705 pgprot_t prot)
706{
707 pud_t *pud;
708 pmd_t *pmd;
709 unsigned long addr, next;
710 int ret;
711
712 addr = start;
713 do {
e9f63768 714 pud = pud_offset(p4d, addr);
38f791a4
CD
715
716 if (pud_none_or_clear_bad(pud)) {
717 pmd = pmd_alloc_one(NULL, addr);
718 if (!pmd) {
719 kvm_err("Cannot allocate Hyp pmd\n");
720 return -ENOMEM;
721 }
0db9dd8a 722 kvm_pud_populate(pud, pmd);
38f791a4 723 get_page(virt_to_page(pud));
38f791a4
CD
724 }
725
726 next = pud_addr_end(addr, end);
727 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
728 if (ret)
729 return ret;
730 pfn += (next - addr) >> PAGE_SHIFT;
731 } while (addr = next, addr != end);
732
733 return 0;
734}
735
e9f63768
MR
736static int create_hyp_p4d_mappings(pgd_t *pgd, unsigned long start,
737 unsigned long end, unsigned long pfn,
738 pgprot_t prot)
739{
740 p4d_t *p4d;
741 pud_t *pud;
742 unsigned long addr, next;
743 int ret;
744
745 addr = start;
746 do {
747 p4d = p4d_offset(pgd, addr);
748
749 if (p4d_none(*p4d)) {
750 pud = pud_alloc_one(NULL, addr);
751 if (!pud) {
752 kvm_err("Cannot allocate Hyp pud\n");
753 return -ENOMEM;
754 }
755 kvm_p4d_populate(p4d, pud);
756 get_page(virt_to_page(p4d));
757 }
758
759 next = p4d_addr_end(addr, end);
760 ret = create_hyp_pud_mappings(p4d, addr, next, pfn, prot);
761 if (ret)
762 return ret;
763 pfn += (next - addr) >> PAGE_SHIFT;
764 } while (addr = next, addr != end);
765
766 return 0;
767}
768
98732d1b 769static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
6060df84
MZ
770 unsigned long start, unsigned long end,
771 unsigned long pfn, pgprot_t prot)
342cd0ab 772{
342cd0ab 773 pgd_t *pgd;
e9f63768 774 p4d_t *p4d;
342cd0ab
CD
775 unsigned long addr, next;
776 int err = 0;
777
342cd0ab 778 mutex_lock(&kvm_hyp_pgd_mutex);
3562c76d
MZ
779 addr = start & PAGE_MASK;
780 end = PAGE_ALIGN(end);
781 do {
3ddd4556 782 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
342cd0ab 783
38f791a4 784 if (pgd_none(*pgd)) {
e9f63768
MR
785 p4d = p4d_alloc_one(NULL, addr);
786 if (!p4d) {
787 kvm_err("Cannot allocate Hyp p4d\n");
342cd0ab
CD
788 err = -ENOMEM;
789 goto out;
790 }
e9f63768 791 kvm_pgd_populate(pgd, p4d);
38f791a4 792 get_page(virt_to_page(pgd));
342cd0ab
CD
793 }
794
795 next = pgd_addr_end(addr, end);
e9f63768 796 err = create_hyp_p4d_mappings(pgd, addr, next, pfn, prot);
342cd0ab
CD
797 if (err)
798 goto out;
6060df84 799 pfn += (next - addr) >> PAGE_SHIFT;
3562c76d 800 } while (addr = next, addr != end);
342cd0ab
CD
801out:
802 mutex_unlock(&kvm_hyp_pgd_mutex);
803 return err;
804}
805
40c2729b
CD
806static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
807{
808 if (!is_vmalloc_addr(kaddr)) {
809 BUG_ON(!virt_addr_valid(kaddr));
810 return __pa(kaddr);
811 } else {
812 return page_to_phys(vmalloc_to_page(kaddr)) +
813 offset_in_page(kaddr);
814 }
815}
816
342cd0ab 817/**
06e8c3b0 818 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
342cd0ab
CD
819 * @from: The virtual kernel start address of the range
820 * @to: The virtual kernel end address of the range (exclusive)
c8dddecd 821 * @prot: The protection to be applied to this range
342cd0ab 822 *
06e8c3b0
MZ
823 * The same virtual address as the kernel virtual address is also used
824 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
825 * physical pages.
342cd0ab 826 */
c8dddecd 827int create_hyp_mappings(void *from, void *to, pgprot_t prot)
342cd0ab 828{
40c2729b
CD
829 phys_addr_t phys_addr;
830 unsigned long virt_addr;
6c41a413
MZ
831 unsigned long start = kern_hyp_va((unsigned long)from);
832 unsigned long end = kern_hyp_va((unsigned long)to);
6060df84 833
1e947bad
MZ
834 if (is_kernel_in_hyp_mode())
835 return 0;
836
40c2729b
CD
837 start = start & PAGE_MASK;
838 end = PAGE_ALIGN(end);
6060df84 839
40c2729b
CD
840 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
841 int err;
6060df84 842
40c2729b 843 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
98732d1b
KM
844 err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
845 virt_addr, virt_addr + PAGE_SIZE,
40c2729b 846 __phys_to_pfn(phys_addr),
c8dddecd 847 prot);
40c2729b
CD
848 if (err)
849 return err;
850 }
851
852 return 0;
342cd0ab
CD
853}
854
dc2e4633
MZ
855static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
856 unsigned long *haddr, pgprot_t prot)
342cd0ab 857{
e3f019b3
MZ
858 pgd_t *pgd = hyp_pgd;
859 unsigned long base;
860 int ret = 0;
6060df84 861
e3f019b3 862 mutex_lock(&kvm_hyp_pgd_mutex);
6060df84 863
e3f019b3 864 /*
656012c7 865 * This assumes that we have enough space below the idmap
e3f019b3
MZ
866 * page to allocate our VAs. If not, the check below will
867 * kick. A potential alternative would be to detect that
868 * overflow and switch to an allocation above the idmap.
869 *
870 * The allocated size is always a multiple of PAGE_SIZE.
871 */
872 size = PAGE_ALIGN(size + offset_in_page(phys_addr));
873 base = io_map_base - size;
1bb32a44 874
e3f019b3
MZ
875 /*
876 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
877 * allocating the new area, as it would indicate we've
878 * overflowed the idmap/IO address range.
879 */
880 if ((base ^ io_map_base) & BIT(VA_BITS - 1))
881 ret = -ENOMEM;
882 else
883 io_map_base = base;
884
885 mutex_unlock(&kvm_hyp_pgd_mutex);
886
887 if (ret)
888 goto out;
889
890 if (__kvm_cpu_uses_extended_idmap())
891 pgd = boot_hyp_pgd;
892
893 ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
894 base, base + size,
dc2e4633 895 __phys_to_pfn(phys_addr), prot);
e3f019b3
MZ
896 if (ret)
897 goto out;
898
dc2e4633 899 *haddr = base + offset_in_page(phys_addr);
e3f019b3
MZ
900
901out:
dc2e4633
MZ
902 return ret;
903}
904
905/**
906 * create_hyp_io_mappings - Map IO into both kernel and HYP
907 * @phys_addr: The physical start address which gets mapped
908 * @size: Size of the region being mapped
909 * @kaddr: Kernel VA for this mapping
910 * @haddr: HYP VA for this mapping
911 */
912int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
913 void __iomem **kaddr,
914 void __iomem **haddr)
915{
916 unsigned long addr;
917 int ret;
918
919 *kaddr = ioremap(phys_addr, size);
920 if (!*kaddr)
921 return -ENOMEM;
922
923 if (is_kernel_in_hyp_mode()) {
924 *haddr = *kaddr;
925 return 0;
926 }
927
928 ret = __create_hyp_private_mapping(phys_addr, size,
929 &addr, PAGE_HYP_DEVICE);
1bb32a44
MZ
930 if (ret) {
931 iounmap(*kaddr);
932 *kaddr = NULL;
dc2e4633
MZ
933 *haddr = NULL;
934 return ret;
935 }
936
937 *haddr = (void __iomem *)addr;
938 return 0;
939}
940
941/**
942 * create_hyp_exec_mappings - Map an executable range into HYP
943 * @phys_addr: The physical start address which gets mapped
944 * @size: Size of the region being mapped
945 * @haddr: HYP VA for this mapping
946 */
947int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
948 void **haddr)
949{
950 unsigned long addr;
951 int ret;
952
953 BUG_ON(is_kernel_in_hyp_mode());
954
955 ret = __create_hyp_private_mapping(phys_addr, size,
956 &addr, PAGE_HYP_EXEC);
957 if (ret) {
958 *haddr = NULL;
1bb32a44
MZ
959 return ret;
960 }
961
dc2e4633 962 *haddr = (void *)addr;
1bb32a44 963 return 0;
342cd0ab
CD
964}
965
d5d8184d
CD
966/**
967 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
968 * @kvm: The KVM struct pointer for the VM.
969 *
8324c3d5
ZY
970 * Allocates only the stage-2 HW PGD level table(s) of size defined by
971 * stage2_pgd_size(kvm).
d5d8184d
CD
972 *
973 * Note we don't need locking here as this is only called when the VM is
974 * created, which can only be done once.
975 */
976int kvm_alloc_stage2_pgd(struct kvm *kvm)
977{
e329fb75 978 phys_addr_t pgd_phys;
d5d8184d
CD
979 pgd_t *pgd;
980
981 if (kvm->arch.pgd != NULL) {
982 kvm_err("kvm_arch already initialized?\n");
983 return -EINVAL;
984 }
985
9163ee23 986 /* Allocate the HW PGD, making sure that each page gets its own refcount */
e55cac5b 987 pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
9163ee23 988 if (!pgd)
a987370f
MZ
989 return -ENOMEM;
990
e329fb75
CD
991 pgd_phys = virt_to_phys(pgd);
992 if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
993 return -EINVAL;
994
d5d8184d 995 kvm->arch.pgd = pgd;
e329fb75 996 kvm->arch.pgd_phys = pgd_phys;
d5d8184d
CD
997 return 0;
998}
999
957db105
CD
1000static void stage2_unmap_memslot(struct kvm *kvm,
1001 struct kvm_memory_slot *memslot)
1002{
1003 hva_t hva = memslot->userspace_addr;
1004 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
1005 phys_addr_t size = PAGE_SIZE * memslot->npages;
1006 hva_t reg_end = hva + size;
1007
1008 /*
1009 * A memory region could potentially cover multiple VMAs, and any holes
1010 * between them, so iterate over all of them to find out if we should
1011 * unmap any of them.
1012 *
1013 * +--------------------------------------------+
1014 * +---------------+----------------+ +----------------+
1015 * | : VMA 1 | VMA 2 | | VMA 3 : |
1016 * +---------------+----------------+ +----------------+
1017 * | memory region |
1018 * +--------------------------------------------+
1019 */
1020 do {
1021 struct vm_area_struct *vma = find_vma(current->mm, hva);
1022 hva_t vm_start, vm_end;
1023
1024 if (!vma || vma->vm_start >= reg_end)
1025 break;
1026
1027 /*
1028 * Take the intersection of this VMA with the memory region
1029 */
1030 vm_start = max(hva, vma->vm_start);
1031 vm_end = min(reg_end, vma->vm_end);
1032
1033 if (!(vma->vm_flags & VM_PFNMAP)) {
1034 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
1035 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
1036 }
1037 hva = vm_end;
1038 } while (hva < reg_end);
1039}
1040
1041/**
1042 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
1043 * @kvm: The struct kvm pointer
1044 *
656012c7 1045 * Go through the memregions and unmap any regular RAM
957db105
CD
1046 * backing memory already mapped to the VM.
1047 */
1048void stage2_unmap_vm(struct kvm *kvm)
1049{
1050 struct kvm_memslots *slots;
1051 struct kvm_memory_slot *memslot;
1052 int idx;
1053
1054 idx = srcu_read_lock(&kvm->srcu);
89154dd5 1055 mmap_read_lock(current->mm);
957db105
CD
1056 spin_lock(&kvm->mmu_lock);
1057
1058 slots = kvm_memslots(kvm);
1059 kvm_for_each_memslot(memslot, slots)
1060 stage2_unmap_memslot(kvm, memslot);
1061
1062 spin_unlock(&kvm->mmu_lock);
89154dd5 1063 mmap_read_unlock(current->mm);
957db105
CD
1064 srcu_read_unlock(&kvm->srcu, idx);
1065}
1066
d5d8184d
CD
1067/**
1068 * kvm_free_stage2_pgd - free all stage-2 tables
1069 * @kvm: The KVM struct pointer for the VM.
1070 *
1071 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
1072 * underlying level-2 and level-3 tables before freeing the actual level-1 table
1073 * and setting the struct pointer to NULL.
d5d8184d
CD
1074 */
1075void kvm_free_stage2_pgd(struct kvm *kvm)
1076{
6c0d706b 1077 void *pgd = NULL;
d5d8184d 1078
8b3405e3 1079 spin_lock(&kvm->mmu_lock);
6c0d706b 1080 if (kvm->arch.pgd) {
e55cac5b 1081 unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
2952a607 1082 pgd = READ_ONCE(kvm->arch.pgd);
6c0d706b 1083 kvm->arch.pgd = NULL;
e329fb75 1084 kvm->arch.pgd_phys = 0;
6c0d706b 1085 }
8b3405e3
SP
1086 spin_unlock(&kvm->mmu_lock);
1087
9163ee23 1088 /* Free the HW pgd, one page at a time */
6c0d706b 1089 if (pgd)
e55cac5b 1090 free_pages_exact(pgd, stage2_pgd_size(kvm));
d5d8184d
CD
1091}
1092
e9f63768 1093static p4d_t *stage2_get_p4d(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
ad361f09 1094 phys_addr_t addr)
d5d8184d
CD
1095{
1096 pgd_t *pgd;
e9f63768 1097 p4d_t *p4d;
d5d8184d 1098
e55cac5b
SP
1099 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1100 if (stage2_pgd_none(kvm, *pgd)) {
38f791a4
CD
1101 if (!cache)
1102 return NULL;
c1a33aeb 1103 p4d = kvm_mmu_memory_cache_alloc(cache);
e9f63768 1104 stage2_pgd_populate(kvm, pgd, p4d);
38f791a4
CD
1105 get_page(virt_to_page(pgd));
1106 }
1107
e9f63768
MR
1108 return stage2_p4d_offset(kvm, pgd, addr);
1109}
1110
1111static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1112 phys_addr_t addr)
1113{
1114 p4d_t *p4d;
1115 pud_t *pud;
1116
1117 p4d = stage2_get_p4d(kvm, cache, addr);
1118 if (stage2_p4d_none(kvm, *p4d)) {
1119 if (!cache)
1120 return NULL;
c1a33aeb 1121 pud = kvm_mmu_memory_cache_alloc(cache);
e9f63768
MR
1122 stage2_p4d_populate(kvm, p4d, pud);
1123 get_page(virt_to_page(p4d));
1124 }
1125
1126 return stage2_pud_offset(kvm, p4d, addr);
38f791a4
CD
1127}
1128
1129static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1130 phys_addr_t addr)
1131{
1132 pud_t *pud;
1133 pmd_t *pmd;
1134
1135 pud = stage2_get_pud(kvm, cache, addr);
b8e0ba7c 1136 if (!pud || stage2_pud_huge(kvm, *pud))
d6dbdd3c
MZ
1137 return NULL;
1138
e55cac5b 1139 if (stage2_pud_none(kvm, *pud)) {
d5d8184d 1140 if (!cache)
ad361f09 1141 return NULL;
c1a33aeb 1142 pmd = kvm_mmu_memory_cache_alloc(cache);
e55cac5b 1143 stage2_pud_populate(kvm, pud, pmd);
d5d8184d 1144 get_page(virt_to_page(pud));
c62ee2b2
MZ
1145 }
1146
e55cac5b 1147 return stage2_pmd_offset(kvm, pud, addr);
ad361f09
CD
1148}
1149
1150static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
1151 *cache, phys_addr_t addr, const pmd_t *new_pmd)
1152{
1153 pmd_t *pmd, old_pmd;
1154
3c3736cd 1155retry:
ad361f09
CD
1156 pmd = stage2_get_pmd(kvm, cache, addr);
1157 VM_BUG_ON(!pmd);
d5d8184d 1158
ad361f09 1159 old_pmd = *pmd;
3c3736cd
SP
1160 /*
1161 * Multiple vcpus faulting on the same PMD entry, can
1162 * lead to them sequentially updating the PMD with the
1163 * same value. Following the break-before-make
1164 * (pmd_clear() followed by tlb_flush()) process can
1165 * hinder forward progress due to refaults generated
1166 * on missing translations.
1167 *
1168 * Skip updating the page table if the entry is
1169 * unchanged.
1170 */
1171 if (pmd_val(old_pmd) == pmd_val(*new_pmd))
1172 return 0;
1173
d4b9e079 1174 if (pmd_present(old_pmd)) {
86658b81 1175 /*
3c3736cd
SP
1176 * If we already have PTE level mapping for this block,
1177 * we must unmap it to avoid inconsistent TLB state and
1178 * leaking the table page. We could end up in this situation
1179 * if the memory slot was marked for dirty logging and was
1180 * reverted, leaving PTE level mappings for the pages accessed
1181 * during the period. So, unmap the PTE level mapping for this
1182 * block and retry, as we could have released the upper level
1183 * table in the process.
86658b81 1184 *
3c3736cd
SP
1185 * Normal THP split/merge follows mmu_notifier callbacks and do
1186 * get handled accordingly.
86658b81 1187 */
3c3736cd
SP
1188 if (!pmd_thp_or_huge(old_pmd)) {
1189 unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
1190 goto retry;
1191 }
86658b81
PA
1192 /*
1193 * Mapping in huge pages should only happen through a
1194 * fault. If a page is merged into a transparent huge
1195 * page, the individual subpages of that huge page
1196 * should be unmapped through MMU notifiers before we
1197 * get here.
1198 *
1199 * Merging of CompoundPages is not supported; they
1200 * should become splitting first, unmapped, merged,
1201 * and mapped back in on-demand.
1202 */
3c3736cd 1203 WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
d4b9e079 1204 pmd_clear(pmd);
ad361f09 1205 kvm_tlb_flush_vmid_ipa(kvm, addr);
d4b9e079 1206 } else {
ad361f09 1207 get_page(virt_to_page(pmd));
d4b9e079
MZ
1208 }
1209
1210 kvm_set_pmd(pmd, *new_pmd);
ad361f09
CD
1211 return 0;
1212}
1213
b8e0ba7c
PA
1214static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1215 phys_addr_t addr, const pud_t *new_pudp)
1216{
1217 pud_t *pudp, old_pud;
1218
3c3736cd 1219retry:
b8e0ba7c
PA
1220 pudp = stage2_get_pud(kvm, cache, addr);
1221 VM_BUG_ON(!pudp);
1222
1223 old_pud = *pudp;
1224
1225 /*
1226 * A large number of vcpus faulting on the same stage 2 entry,
3c3736cd
SP
1227 * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
1228 * Skip updating the page tables if there is no change.
b8e0ba7c
PA
1229 */
1230 if (pud_val(old_pud) == pud_val(*new_pudp))
1231 return 0;
1232
1233 if (stage2_pud_present(kvm, old_pud)) {
3c3736cd
SP
1234 /*
1235 * If we already have table level mapping for this block, unmap
1236 * the range for this block and retry.
1237 */
1238 if (!stage2_pud_huge(kvm, old_pud)) {
1239 unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
1240 goto retry;
1241 }
1242
1243 WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
b8e0ba7c
PA
1244 stage2_pud_clear(kvm, pudp);
1245 kvm_tlb_flush_vmid_ipa(kvm, addr);
1246 } else {
1247 get_page(virt_to_page(pudp));
1248 }
1249
1250 kvm_set_pud(pudp, *new_pudp);
1251 return 0;
1252}
1253
86d1c55e
PA
1254/*
1255 * stage2_get_leaf_entry - walk the stage2 VM page tables and return
1256 * true if a valid and present leaf-entry is found. A pointer to the
1257 * leaf-entry is returned in the appropriate level variable - pudpp,
1258 * pmdpp, ptepp.
1259 */
1260static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
1261 pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
7a3796d2 1262{
86d1c55e 1263 pud_t *pudp;
7a3796d2
MZ
1264 pmd_t *pmdp;
1265 pte_t *ptep;
1266
86d1c55e
PA
1267 *pudpp = NULL;
1268 *pmdpp = NULL;
1269 *ptepp = NULL;
1270
1271 pudp = stage2_get_pud(kvm, NULL, addr);
1272 if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
1273 return false;
1274
1275 if (stage2_pud_huge(kvm, *pudp)) {
1276 *pudpp = pudp;
1277 return true;
1278 }
1279
1280 pmdp = stage2_pmd_offset(kvm, pudp, addr);
7a3796d2
MZ
1281 if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1282 return false;
1283
86d1c55e
PA
1284 if (pmd_thp_or_huge(*pmdp)) {
1285 *pmdpp = pmdp;
1286 return true;
1287 }
7a3796d2
MZ
1288
1289 ptep = pte_offset_kernel(pmdp, addr);
1290 if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1291 return false;
1292
86d1c55e
PA
1293 *ptepp = ptep;
1294 return true;
1295}
1296
b757b47a 1297static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr, unsigned long sz)
86d1c55e
PA
1298{
1299 pud_t *pudp;
1300 pmd_t *pmdp;
1301 pte_t *ptep;
1302 bool found;
1303
1304 found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
1305 if (!found)
1306 return false;
1307
1308 if (pudp)
b757b47a 1309 return sz <= PUD_SIZE && kvm_s2pud_exec(pudp);
86d1c55e 1310 else if (pmdp)
b757b47a 1311 return sz <= PMD_SIZE && kvm_s2pmd_exec(pmdp);
86d1c55e 1312 else
b757b47a 1313 return sz == PAGE_SIZE && kvm_s2pte_exec(ptep);
7a3796d2
MZ
1314}
1315
ad361f09 1316static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
15a49a44
MS
1317 phys_addr_t addr, const pte_t *new_pte,
1318 unsigned long flags)
ad361f09 1319{
b8e0ba7c 1320 pud_t *pud;
ad361f09
CD
1321 pmd_t *pmd;
1322 pte_t *pte, old_pte;
15a49a44
MS
1323 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1324 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1325
1326 VM_BUG_ON(logging_active && !cache);
ad361f09 1327
38f791a4 1328 /* Create stage-2 page table mapping - Levels 0 and 1 */
b8e0ba7c
PA
1329 pud = stage2_get_pud(kvm, cache, addr);
1330 if (!pud) {
1331 /*
1332 * Ignore calls from kvm_set_spte_hva for unallocated
1333 * address ranges.
1334 */
1335 return 0;
1336 }
1337
1338 /*
1339 * While dirty page logging - dissolve huge PUD, then continue
1340 * on to allocate page.
1341 */
1342 if (logging_active)
1343 stage2_dissolve_pud(kvm, addr, pud);
1344
1345 if (stage2_pud_none(kvm, *pud)) {
1346 if (!cache)
1347 return 0; /* ignore calls from kvm_set_spte_hva */
c1a33aeb 1348 pmd = kvm_mmu_memory_cache_alloc(cache);
b8e0ba7c
PA
1349 stage2_pud_populate(kvm, pud, pmd);
1350 get_page(virt_to_page(pud));
1351 }
1352
1353 pmd = stage2_pmd_offset(kvm, pud, addr);
ad361f09
CD
1354 if (!pmd) {
1355 /*
1356 * Ignore calls from kvm_set_spte_hva for unallocated
1357 * address ranges.
1358 */
1359 return 0;
1360 }
1361
15a49a44
MS
1362 /*
1363 * While dirty page logging - dissolve huge PMD, then continue on to
1364 * allocate page.
1365 */
1366 if (logging_active)
1367 stage2_dissolve_pmd(kvm, addr, pmd);
1368
ad361f09 1369 /* Create stage-2 page mappings - Level 2 */
d5d8184d
CD
1370 if (pmd_none(*pmd)) {
1371 if (!cache)
1372 return 0; /* ignore calls from kvm_set_spte_hva */
c1a33aeb 1373 pte = kvm_mmu_memory_cache_alloc(cache);
0db9dd8a 1374 kvm_pmd_populate(pmd, pte);
d5d8184d 1375 get_page(virt_to_page(pmd));
c62ee2b2
MZ
1376 }
1377
1378 pte = pte_offset_kernel(pmd, addr);
d5d8184d
CD
1379
1380 if (iomap && pte_present(*pte))
1381 return -EFAULT;
1382
1383 /* Create 2nd stage page table mapping - Level 3 */
1384 old_pte = *pte;
d4b9e079 1385 if (pte_present(old_pte)) {
976d34e2
PA
1386 /* Skip page table update if there is no change */
1387 if (pte_val(old_pte) == pte_val(*new_pte))
1388 return 0;
1389
d4b9e079 1390 kvm_set_pte(pte, __pte(0));
48762767 1391 kvm_tlb_flush_vmid_ipa(kvm, addr);
d4b9e079 1392 } else {
d5d8184d 1393 get_page(virt_to_page(pte));
d4b9e079 1394 }
d5d8184d 1395
d4b9e079 1396 kvm_set_pte(pte, *new_pte);
d5d8184d
CD
1397 return 0;
1398}
d5d8184d 1399
06485053
CM
1400#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1401static int stage2_ptep_test_and_clear_young(pte_t *pte)
1402{
1403 if (pte_young(*pte)) {
1404 *pte = pte_mkold(*pte);
1405 return 1;
1406 }
d5d8184d
CD
1407 return 0;
1408}
06485053
CM
1409#else
1410static int stage2_ptep_test_and_clear_young(pte_t *pte)
1411{
1412 return __ptep_test_and_clear_young(pte);
1413}
1414#endif
1415
1416static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1417{
1418 return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1419}
d5d8184d 1420
35a63966
PA
1421static int stage2_pudp_test_and_clear_young(pud_t *pud)
1422{
1423 return stage2_ptep_test_and_clear_young((pte_t *)pud);
1424}
1425
d5d8184d
CD
1426/**
1427 * kvm_phys_addr_ioremap - map a device range to guest IPA
1428 *
1429 * @kvm: The KVM pointer
1430 * @guest_ipa: The IPA at which to insert the mapping
1431 * @pa: The physical address of the device
1432 * @size: The size of the mapping
1433 */
1434int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
c40f2f8f 1435 phys_addr_t pa, unsigned long size, bool writable)
d5d8184d
CD
1436{
1437 phys_addr_t addr, end;
1438 int ret = 0;
1439 unsigned long pfn;
c1a33aeb 1440 struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
d5d8184d
CD
1441
1442 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1443 pfn = __phys_to_pfn(pa);
1444
1445 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
f8df7338 1446 pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
d5d8184d 1447
c40f2f8f 1448 if (writable)
06485053 1449 pte = kvm_s2pte_mkwrite(pte);
c40f2f8f 1450
c1a33aeb
SC
1451 ret = kvm_mmu_topup_memory_cache(&cache,
1452 kvm_mmu_cache_min_pages(kvm));
d5d8184d
CD
1453 if (ret)
1454 goto out;
1455 spin_lock(&kvm->mmu_lock);
15a49a44
MS
1456 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1457 KVM_S2PTE_FLAG_IS_IOMAP);
d5d8184d
CD
1458 spin_unlock(&kvm->mmu_lock);
1459 if (ret)
1460 goto out;
1461
1462 pfn++;
1463 }
1464
1465out:
c1a33aeb 1466 kvm_mmu_free_memory_cache(&cache);
d5d8184d
CD
1467 return ret;
1468}
1469
c6473555
MS
1470/**
1471 * stage2_wp_ptes - write protect PMD range
1472 * @pmd: pointer to pmd entry
1473 * @addr: range start address
1474 * @end: range end address
1475 */
1476static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1477{
1478 pte_t *pte;
1479
1480 pte = pte_offset_kernel(pmd, addr);
1481 do {
1482 if (!pte_none(*pte)) {
1483 if (!kvm_s2pte_readonly(pte))
1484 kvm_set_s2pte_readonly(pte);
1485 }
1486 } while (pte++, addr += PAGE_SIZE, addr != end);
1487}
1488
1489/**
1490 * stage2_wp_pmds - write protect PUD range
e55cac5b 1491 * kvm: kvm instance for the VM
c6473555
MS
1492 * @pud: pointer to pud entry
1493 * @addr: range start address
1494 * @end: range end address
1495 */
e55cac5b
SP
1496static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
1497 phys_addr_t addr, phys_addr_t end)
c6473555
MS
1498{
1499 pmd_t *pmd;
1500 phys_addr_t next;
1501
e55cac5b 1502 pmd = stage2_pmd_offset(kvm, pud, addr);
c6473555
MS
1503
1504 do {
e55cac5b 1505 next = stage2_pmd_addr_end(kvm, addr, end);
c6473555 1506 if (!pmd_none(*pmd)) {
bbb3b6b3 1507 if (pmd_thp_or_huge(*pmd)) {
c6473555
MS
1508 if (!kvm_s2pmd_readonly(pmd))
1509 kvm_set_s2pmd_readonly(pmd);
1510 } else {
1511 stage2_wp_ptes(pmd, addr, next);
1512 }
1513 }
1514 } while (pmd++, addr = next, addr != end);
1515}
1516
1517/**
e9f63768 1518 * stage2_wp_puds - write protect P4D range
8324c3d5
ZY
1519 * @pgd: pointer to pgd entry
1520 * @addr: range start address
1521 * @end: range end address
1522 */
e9f63768 1523static void stage2_wp_puds(struct kvm *kvm, p4d_t *p4d,
e55cac5b 1524 phys_addr_t addr, phys_addr_t end)
c6473555
MS
1525{
1526 pud_t *pud;
1527 phys_addr_t next;
1528
e9f63768 1529 pud = stage2_pud_offset(kvm, p4d, addr);
c6473555 1530 do {
e55cac5b
SP
1531 next = stage2_pud_addr_end(kvm, addr, end);
1532 if (!stage2_pud_none(kvm, *pud)) {
4ea5af53
PA
1533 if (stage2_pud_huge(kvm, *pud)) {
1534 if (!kvm_s2pud_readonly(pud))
1535 kvm_set_s2pud_readonly(pud);
1536 } else {
1537 stage2_wp_pmds(kvm, pud, addr, next);
1538 }
c6473555
MS
1539 }
1540 } while (pud++, addr = next, addr != end);
1541}
1542
e9f63768
MR
1543/**
1544 * stage2_wp_p4ds - write protect PGD range
1545 * @pgd: pointer to pgd entry
1546 * @addr: range start address
1547 * @end: range end address
1548 */
1549static void stage2_wp_p4ds(struct kvm *kvm, pgd_t *pgd,
1550 phys_addr_t addr, phys_addr_t end)
1551{
1552 p4d_t *p4d;
1553 phys_addr_t next;
1554
1555 p4d = stage2_p4d_offset(kvm, pgd, addr);
1556 do {
1557 next = stage2_p4d_addr_end(kvm, addr, end);
1558 if (!stage2_p4d_none(kvm, *p4d))
1559 stage2_wp_puds(kvm, p4d, addr, next);
1560 } while (p4d++, addr = next, addr != end);
1561}
1562
c6473555
MS
1563/**
1564 * stage2_wp_range() - write protect stage2 memory region range
1565 * @kvm: The KVM pointer
1566 * @addr: Start address of range
1567 * @end: End address of range
1568 */
1569static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1570{
1571 pgd_t *pgd;
1572 phys_addr_t next;
1573
e55cac5b 1574 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
c6473555
MS
1575 do {
1576 /*
1577 * Release kvm_mmu_lock periodically if the memory region is
1578 * large. Otherwise, we may see kernel panics with
227ea818
CD
1579 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1580 * CONFIG_LOCKDEP. Additionally, holding the lock too long
0c428a6a
SP
1581 * will also starve other vCPUs. We have to also make sure
1582 * that the page tables are not freed while we released
1583 * the lock.
c6473555 1584 */
0c428a6a
SP
1585 cond_resched_lock(&kvm->mmu_lock);
1586 if (!READ_ONCE(kvm->arch.pgd))
1587 break;
e55cac5b
SP
1588 next = stage2_pgd_addr_end(kvm, addr, end);
1589 if (stage2_pgd_present(kvm, *pgd))
e9f63768 1590 stage2_wp_p4ds(kvm, pgd, addr, next);
c6473555
MS
1591 } while (pgd++, addr = next, addr != end);
1592}
1593
1594/**
1595 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1596 * @kvm: The KVM pointer
1597 * @slot: The memory slot to write protect
1598 *
1599 * Called to start logging dirty pages after memory region
1600 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
4ea5af53 1601 * all present PUD, PMD and PTEs are write protected in the memory region.
c6473555
MS
1602 * Afterwards read of dirty page log can be called.
1603 *
1604 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1605 * serializing operations for VM memory regions.
1606 */
1607void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1608{
9f6b8029
PB
1609 struct kvm_memslots *slots = kvm_memslots(kvm);
1610 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
0577d1ab
SC
1611 phys_addr_t start, end;
1612
1613 if (WARN_ON_ONCE(!memslot))
1614 return;
1615
1616 start = memslot->base_gfn << PAGE_SHIFT;
1617 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
c6473555
MS
1618
1619 spin_lock(&kvm->mmu_lock);
1620 stage2_wp_range(kvm, start, end);
1621 spin_unlock(&kvm->mmu_lock);
1622 kvm_flush_remote_tlbs(kvm);
1623}
53c810c3
MS
1624
1625/**
3b0f1d01 1626 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
53c810c3
MS
1627 * @kvm: The KVM pointer
1628 * @slot: The memory slot associated with mask
1629 * @gfn_offset: The gfn offset in memory slot
1630 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1631 * slot to be write protected
1632 *
1633 * Walks bits set in mask write protects the associated pte's. Caller must
1634 * acquire kvm_mmu_lock.
1635 */
3b0f1d01 1636static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
53c810c3
MS
1637 struct kvm_memory_slot *slot,
1638 gfn_t gfn_offset, unsigned long mask)
1639{
1640 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1641 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1642 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1643
1644 stage2_wp_range(kvm, start, end);
1645}
c6473555 1646
3b0f1d01
KH
1647/*
1648 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1649 * dirty pages.
1650 *
1651 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1652 * enable dirty logging for them.
1653 */
1654void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1655 struct kvm_memory_slot *slot,
1656 gfn_t gfn_offset, unsigned long mask)
1657{
1658 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1659}
1660
17ab9d57 1661static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
0d3e4d4f 1662{
17ab9d57 1663 __clean_dcache_guest_page(pfn, size);
a15f6939
MZ
1664}
1665
17ab9d57 1666static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
a15f6939 1667{
17ab9d57 1668 __invalidate_icache_guest_page(pfn, size);
0d3e4d4f
MZ
1669}
1670
1559b758 1671static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
196f878a 1672{
795a8371 1673 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
196f878a
JM
1674}
1675
a80868f3
SP
1676static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1677 unsigned long hva,
1678 unsigned long map_size)
6794ad54 1679{
c2be79a0 1680 gpa_t gpa_start;
6794ad54
CD
1681 hva_t uaddr_start, uaddr_end;
1682 size_t size;
1683
9f283614
SP
1684 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1685 if (map_size == PAGE_SIZE)
1686 return true;
1687
6794ad54
CD
1688 size = memslot->npages * PAGE_SIZE;
1689
1690 gpa_start = memslot->base_gfn << PAGE_SHIFT;
6794ad54
CD
1691
1692 uaddr_start = memslot->userspace_addr;
1693 uaddr_end = uaddr_start + size;
1694
1695 /*
1696 * Pages belonging to memslots that don't have the same alignment
a80868f3
SP
1697 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1698 * PMD/PUD entries, because we'll end up mapping the wrong pages.
6794ad54
CD
1699 *
1700 * Consider a layout like the following:
1701 *
1702 * memslot->userspace_addr:
1703 * +-----+--------------------+--------------------+---+
a80868f3 1704 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
6794ad54
CD
1705 * +-----+--------------------+--------------------+---+
1706 *
9f283614 1707 * memslot->base_gfn << PAGE_SHIFT:
6794ad54 1708 * +---+--------------------+--------------------+-----+
a80868f3 1709 * |abc|def Stage-2 block | Stage-2 block |tvxyz|
6794ad54
CD
1710 * +---+--------------------+--------------------+-----+
1711 *
a80868f3 1712 * If we create those stage-2 blocks, we'll end up with this incorrect
6794ad54
CD
1713 * mapping:
1714 * d -> f
1715 * e -> g
1716 * f -> h
1717 */
a80868f3 1718 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
6794ad54
CD
1719 return false;
1720
1721 /*
1722 * Next, let's make sure we're not trying to map anything not covered
a80868f3
SP
1723 * by the memslot. This means we have to prohibit block size mappings
1724 * for the beginning and end of a non-block aligned and non-block sized
6794ad54
CD
1725 * memory slot (illustrated by the head and tail parts of the
1726 * userspace view above containing pages 'abcde' and 'xyz',
1727 * respectively).
1728 *
1729 * Note that it doesn't matter if we do the check using the
1730 * userspace_addr or the base_gfn, as both are equally aligned (per
1731 * the check above) and equally sized.
1732 */
a80868f3
SP
1733 return (hva & ~(map_size - 1)) >= uaddr_start &&
1734 (hva & ~(map_size - 1)) + map_size <= uaddr_end;
6794ad54
CD
1735}
1736
0529c902
SP
1737/*
1738 * Check if the given hva is backed by a transparent huge page (THP) and
1739 * whether it can be mapped using block mapping in stage2. If so, adjust
1740 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1741 * supported. This will need to be updated to support other THP sizes.
1742 *
1743 * Returns the size of the mapping.
1744 */
1745static unsigned long
1746transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
1747 unsigned long hva, kvm_pfn_t *pfnp,
1748 phys_addr_t *ipap)
1749{
1750 kvm_pfn_t pfn = *pfnp;
1751
1752 /*
1753 * Make sure the adjustment is done only for THP pages. Also make
1754 * sure that the HVA and IPA are sufficiently aligned and that the
1755 * block map is contained within the memslot.
1756 */
1757 if (kvm_is_transparent_hugepage(pfn) &&
1758 fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1759 /*
1760 * The address we faulted on is backed by a transparent huge
1761 * page. However, because we map the compound huge page and
1762 * not the individual tail page, we need to transfer the
1763 * refcount to the head page. We have to be careful that the
1764 * THP doesn't start to split while we are adjusting the
1765 * refcounts.
1766 *
1767 * We are sure this doesn't happen, because mmu_notifier_retry
1768 * was successful and we are holding the mmu_lock, so if this
1769 * THP is trying to split, it will be blocked in the mmu
1770 * notifier before touching any of the pages, specifically
1771 * before being able to call __split_huge_page_refcount().
1772 *
1773 * We can therefore safely transfer the refcount from PG_tail
1774 * to PG_head and switch the pfn from a tail page to the head
1775 * page accordingly.
1776 */
1777 *ipap &= PMD_MASK;
1778 kvm_release_pfn_clean(pfn);
1779 pfn &= ~(PTRS_PER_PMD - 1);
1780 kvm_get_pfn(pfn);
1781 *pfnp = pfn;
1782
1783 return PMD_SIZE;
1784 }
1785
1786 /* Use page mapping if we cannot use block mapping. */
1787 return PAGE_SIZE;
1788}
1789
94f8e641 1790static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
98047888 1791 struct kvm_memory_slot *memslot, unsigned long hva,
94f8e641
CD
1792 unsigned long fault_status)
1793{
94f8e641 1794 int ret;
6396b852
PA
1795 bool write_fault, writable, force_pte = false;
1796 bool exec_fault, needs_exec;
94f8e641 1797 unsigned long mmu_seq;
ad361f09 1798 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
ad361f09 1799 struct kvm *kvm = vcpu->kvm;
94f8e641 1800 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
ad361f09 1801 struct vm_area_struct *vma;
1559b758 1802 short vma_shift;
ba049e93 1803 kvm_pfn_t pfn;
b8865767 1804 pgprot_t mem_type = PAGE_S2;
15a49a44 1805 bool logging_active = memslot_is_logging(memslot);
3f58bf63 1806 unsigned long vma_pagesize, flags = 0;
94f8e641 1807
a7d079ce 1808 write_fault = kvm_is_write_fault(vcpu);
d0e22b4a
MZ
1809 exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1810 VM_BUG_ON(write_fault && exec_fault);
1811
1812 if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
94f8e641
CD
1813 kvm_err("Unexpected L2 read permission error\n");
1814 return -EFAULT;
1815 }
1816
ad361f09 1817 /* Let's check if we will get back a huge page backed by hugetlbfs */
89154dd5 1818 mmap_read_lock(current->mm);
ad361f09 1819 vma = find_vma_intersection(current->mm, hva, hva + 1);
37b54408
AB
1820 if (unlikely(!vma)) {
1821 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
89154dd5 1822 mmap_read_unlock(current->mm);
37b54408
AB
1823 return -EFAULT;
1824 }
1825
1559b758
JM
1826 if (is_vm_hugetlb_page(vma))
1827 vma_shift = huge_page_shift(hstate_vma(vma));
1828 else
1829 vma_shift = PAGE_SHIFT;
1830
1831 vma_pagesize = 1ULL << vma_shift;
a80868f3 1832 if (logging_active ||
6d674e28 1833 (vma->vm_flags & VM_PFNMAP) ||
a80868f3
SP
1834 !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
1835 force_pte = true;
1836 vma_pagesize = PAGE_SIZE;
1837 }
1838
b8e0ba7c 1839 /*
280cebfd
SP
1840 * The stage2 has a minimum of 2 level table (For arm64 see
1841 * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
1842 * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
1843 * As for PUD huge maps, we must make sure that we have at least
1844 * 3 levels, i.e, PMD is not folded.
b8e0ba7c 1845 */
a80868f3
SP
1846 if (vma_pagesize == PMD_SIZE ||
1847 (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
b8e0ba7c 1848 gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
89154dd5 1849 mmap_read_unlock(current->mm);
ad361f09 1850
94f8e641 1851 /* We need minimum second+third level pages */
c1a33aeb 1852 ret = kvm_mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm));
94f8e641
CD
1853 if (ret)
1854 return ret;
1855
1856 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1857 /*
1858 * Ensure the read of mmu_notifier_seq happens before we call
1859 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1860 * the page we just got a reference to gets unmapped before we have a
1861 * chance to grab the mmu_lock, which ensure that if the page gets
1862 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1863 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1864 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1865 */
1866 smp_rmb();
1867
ad361f09 1868 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
196f878a 1869 if (pfn == KVM_PFN_ERR_HWPOISON) {
1559b758 1870 kvm_send_hwpoison_signal(hva, vma_shift);
196f878a
JM
1871 return 0;
1872 }
9ac71595 1873 if (is_error_noslot_pfn(pfn))
94f8e641
CD
1874 return -EFAULT;
1875
15a49a44 1876 if (kvm_is_device_pfn(pfn)) {
b8865767 1877 mem_type = PAGE_S2_DEVICE;
15a49a44
MS
1878 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1879 } else if (logging_active) {
1880 /*
1881 * Faults on pages in a memslot with logging enabled
1882 * should not be mapped with huge pages (it introduces churn
1883 * and performance degradation), so force a pte mapping.
1884 */
15a49a44
MS
1885 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1886
1887 /*
1888 * Only actually map the page as writable if this was a write
1889 * fault.
1890 */
1891 if (!write_fault)
1892 writable = false;
1893 }
b8865767 1894
6d674e28
MZ
1895 if (exec_fault && is_iomap(flags))
1896 return -ENOEXEC;
1897
ad361f09
CD
1898 spin_lock(&kvm->mmu_lock);
1899 if (mmu_notifier_retry(kvm, mmu_seq))
94f8e641 1900 goto out_unlock;
15a49a44 1901
0529c902
SP
1902 /*
1903 * If we are not forced to use page mapping, check if we are
1904 * backed by a THP and thus use block mapping if possible.
1905 */
1906 if (vma_pagesize == PAGE_SIZE && !force_pte)
1907 vma_pagesize = transparent_hugepage_adjust(memslot, hva,
1908 &pfn, &fault_ipa);
3f58bf63
PA
1909 if (writable)
1910 kvm_set_pfn_dirty(pfn);
ad361f09 1911
6d674e28 1912 if (fault_status != FSC_PERM && !is_iomap(flags))
3f58bf63
PA
1913 clean_dcache_guest_page(pfn, vma_pagesize);
1914
1915 if (exec_fault)
1916 invalidate_icache_guest_page(pfn, vma_pagesize);
1917
6396b852
PA
1918 /*
1919 * If we took an execution fault we have made the
1920 * icache/dcache coherent above and should now let the s2
1921 * mapping be executable.
1922 *
1923 * Write faults (!exec_fault && FSC_PERM) are orthogonal to
1924 * execute permissions, and we preserve whatever we have.
1925 */
1926 needs_exec = exec_fault ||
b757b47a
WD
1927 (fault_status == FSC_PERM &&
1928 stage2_is_exec(kvm, fault_ipa, vma_pagesize));
6396b852 1929
b8e0ba7c
PA
1930 if (vma_pagesize == PUD_SIZE) {
1931 pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
1932
1933 new_pud = kvm_pud_mkhuge(new_pud);
1934 if (writable)
1935 new_pud = kvm_s2pud_mkwrite(new_pud);
1936
1937 if (needs_exec)
1938 new_pud = kvm_s2pud_mkexec(new_pud);
1939
1940 ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
1941 } else if (vma_pagesize == PMD_SIZE) {
f8df7338
PA
1942 pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
1943
1944 new_pmd = kvm_pmd_mkhuge(new_pmd);
1945
3f58bf63 1946 if (writable)
06485053 1947 new_pmd = kvm_s2pmd_mkwrite(new_pmd);
d0e22b4a 1948
6396b852 1949 if (needs_exec)
d0e22b4a 1950 new_pmd = kvm_s2pmd_mkexec(new_pmd);
a15f6939 1951
ad361f09
CD
1952 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1953 } else {
f8df7338 1954 pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
15a49a44 1955
ad361f09 1956 if (writable) {
06485053 1957 new_pte = kvm_s2pte_mkwrite(new_pte);
15a49a44 1958 mark_page_dirty(kvm, gfn);
ad361f09 1959 }
a9c0e12e 1960
6396b852 1961 if (needs_exec)
d0e22b4a 1962 new_pte = kvm_s2pte_mkexec(new_pte);
a15f6939 1963
15a49a44 1964 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
94f8e641 1965 }
ad361f09 1966
94f8e641 1967out_unlock:
ad361f09 1968 spin_unlock(&kvm->mmu_lock);
35307b9a 1969 kvm_set_pfn_accessed(pfn);
94f8e641 1970 kvm_release_pfn_clean(pfn);
ad361f09 1971 return ret;
94f8e641
CD
1972}
1973
aeda9130
MZ
1974/*
1975 * Resolve the access fault by making the page young again.
1976 * Note that because the faulting entry is guaranteed not to be
1977 * cached in the TLB, we don't need to invalidate anything.
06485053
CM
1978 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1979 * so there is no need for atomic (pte|pmd)_mkyoung operations.
aeda9130
MZ
1980 */
1981static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1982{
eb3f0624 1983 pud_t *pud;
aeda9130
MZ
1984 pmd_t *pmd;
1985 pte_t *pte;
ba049e93 1986 kvm_pfn_t pfn;
aeda9130
MZ
1987 bool pfn_valid = false;
1988
1989 trace_kvm_access_fault(fault_ipa);
1990
1991 spin_lock(&vcpu->kvm->mmu_lock);
1992
eb3f0624 1993 if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
aeda9130
MZ
1994 goto out;
1995
eb3f0624
PA
1996 if (pud) { /* HugeTLB */
1997 *pud = kvm_s2pud_mkyoung(*pud);
1998 pfn = kvm_pud_pfn(*pud);
1999 pfn_valid = true;
2000 } else if (pmd) { /* THP, HugeTLB */
aeda9130
MZ
2001 *pmd = pmd_mkyoung(*pmd);
2002 pfn = pmd_pfn(*pmd);
2003 pfn_valid = true;
eb3f0624
PA
2004 } else {
2005 *pte = pte_mkyoung(*pte); /* Just a page... */
2006 pfn = pte_pfn(*pte);
2007 pfn_valid = true;
aeda9130
MZ
2008 }
2009
aeda9130
MZ
2010out:
2011 spin_unlock(&vcpu->kvm->mmu_lock);
2012 if (pfn_valid)
2013 kvm_set_pfn_accessed(pfn);
2014}
2015
94f8e641
CD
2016/**
2017 * kvm_handle_guest_abort - handles all 2nd stage aborts
2018 * @vcpu: the VCPU pointer
94f8e641
CD
2019 *
2020 * Any abort that gets to the host is almost guaranteed to be caused by a
2021 * missing second stage translation table entry, which can mean that either the
2022 * guest simply needs more memory and we must allocate an appropriate page or it
2023 * can mean that the guest tried to access I/O memory, which is emulated by user
2024 * space. The distinction is based on the IPA causing the fault and whether this
2025 * memory region has been registered as standard RAM by user space.
2026 */
74cc7e0c 2027int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
342cd0ab 2028{
94f8e641
CD
2029 unsigned long fault_status;
2030 phys_addr_t fault_ipa;
2031 struct kvm_memory_slot *memslot;
98047888
CD
2032 unsigned long hva;
2033 bool is_iabt, write_fault, writable;
94f8e641
CD
2034 gfn_t gfn;
2035 int ret, idx;
2036
621f48e4
TB
2037 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
2038
2039 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
bb428921 2040 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
621f48e4 2041
bb428921
JM
2042 /* Synchronous External Abort? */
2043 if (kvm_vcpu_dabt_isextabt(vcpu)) {
2044 /*
2045 * For RAS the host kernel may handle this abort.
2046 * There is no need to pass the error into the guest.
2047 */
0db5e022 2048 if (!kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
621f48e4 2049 return 1;
621f48e4 2050
bb428921
JM
2051 if (unlikely(!is_iabt)) {
2052 kvm_inject_vabt(vcpu);
2053 return 1;
2054 }
4055710b
MZ
2055 }
2056
7393b599
MZ
2057 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
2058 kvm_vcpu_get_hfar(vcpu), fault_ipa);
94f8e641
CD
2059
2060 /* Check the stage-2 fault is trans. fault or write fault */
35307b9a
MZ
2061 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
2062 fault_status != FSC_ACCESS) {
0496daa5
CD
2063 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
2064 kvm_vcpu_trap_get_class(vcpu),
2065 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
2066 (unsigned long)kvm_vcpu_get_hsr(vcpu));
94f8e641
CD
2067 return -EFAULT;
2068 }
2069
2070 idx = srcu_read_lock(&vcpu->kvm->srcu);
2071
2072 gfn = fault_ipa >> PAGE_SHIFT;
98047888
CD
2073 memslot = gfn_to_memslot(vcpu->kvm, gfn);
2074 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
a7d079ce 2075 write_fault = kvm_is_write_fault(vcpu);
98047888 2076 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
94f8e641
CD
2077 if (is_iabt) {
2078 /* Prefetch Abort on I/O address */
6d674e28
MZ
2079 ret = -ENOEXEC;
2080 goto out;
94f8e641
CD
2081 }
2082
57c841f1
MZ
2083 /*
2084 * Check for a cache maintenance operation. Since we
2085 * ended-up here, we know it is outside of any memory
2086 * slot. But we can't find out if that is for a device,
2087 * or if the guest is just being stupid. The only thing
2088 * we know for sure is that this range cannot be cached.
2089 *
2090 * So let's assume that the guest is just being
2091 * cautious, and skip the instruction.
2092 */
2093 if (kvm_vcpu_dabt_is_cm(vcpu)) {
2094 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2095 ret = 1;
2096 goto out_unlock;
2097 }
2098
cfe3950c
MZ
2099 /*
2100 * The IPA is reported as [MAX:12], so we need to
2101 * complement it with the bottom 12 bits from the
2102 * faulting VA. This is always 12 bits, irrespective
2103 * of the page size.
2104 */
2105 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
74cc7e0c 2106 ret = io_mem_abort(vcpu, fault_ipa);
94f8e641
CD
2107 goto out_unlock;
2108 }
2109
c3058d5d 2110 /* Userspace should not be able to register out-of-bounds IPAs */
e55cac5b 2111 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
c3058d5d 2112
aeda9130
MZ
2113 if (fault_status == FSC_ACCESS) {
2114 handle_access_fault(vcpu, fault_ipa);
2115 ret = 1;
2116 goto out_unlock;
2117 }
2118
98047888 2119 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
94f8e641
CD
2120 if (ret == 0)
2121 ret = 1;
6d674e28
MZ
2122out:
2123 if (ret == -ENOEXEC) {
2124 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2125 ret = 1;
2126 }
94f8e641
CD
2127out_unlock:
2128 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2129 return ret;
342cd0ab
CD
2130}
2131
1d2ebacc
MZ
2132static int handle_hva_to_gpa(struct kvm *kvm,
2133 unsigned long start,
2134 unsigned long end,
2135 int (*handler)(struct kvm *kvm,
056aad67
SP
2136 gpa_t gpa, u64 size,
2137 void *data),
1d2ebacc 2138 void *data)
d5d8184d
CD
2139{
2140 struct kvm_memslots *slots;
2141 struct kvm_memory_slot *memslot;
1d2ebacc 2142 int ret = 0;
d5d8184d
CD
2143
2144 slots = kvm_memslots(kvm);
2145
2146 /* we only care about the pages that the guest sees */
2147 kvm_for_each_memslot(memslot, slots) {
2148 unsigned long hva_start, hva_end;
056aad67 2149 gfn_t gpa;
d5d8184d
CD
2150
2151 hva_start = max(start, memslot->userspace_addr);
2152 hva_end = min(end, memslot->userspace_addr +
2153 (memslot->npages << PAGE_SHIFT));
2154 if (hva_start >= hva_end)
2155 continue;
2156
056aad67
SP
2157 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
2158 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
d5d8184d 2159 }
1d2ebacc
MZ
2160
2161 return ret;
d5d8184d
CD
2162}
2163
056aad67 2164static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
d5d8184d 2165{
056aad67 2166 unmap_stage2_range(kvm, gpa, size);
1d2ebacc 2167 return 0;
d5d8184d
CD
2168}
2169
d5d8184d
CD
2170int kvm_unmap_hva_range(struct kvm *kvm,
2171 unsigned long start, unsigned long end)
2172{
2173 if (!kvm->arch.pgd)
2174 return 0;
2175
2176 trace_kvm_unmap_hva_range(start, end);
2177 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
2178 return 0;
2179}
2180
056aad67 2181static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
d5d8184d
CD
2182{
2183 pte_t *pte = (pte_t *)data;
2184
056aad67 2185 WARN_ON(size != PAGE_SIZE);
15a49a44
MS
2186 /*
2187 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
2188 * flag clear because MMU notifiers will have unmapped a huge PMD before
2189 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
2190 * therefore stage2_set_pte() never needs to clear out a huge PMD
2191 * through this calling path.
2192 */
2193 stage2_set_pte(kvm, NULL, gpa, pte, 0);
1d2ebacc 2194 return 0;
d5d8184d
CD
2195}
2196
2197
748c0e31 2198int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
d5d8184d
CD
2199{
2200 unsigned long end = hva + PAGE_SIZE;
694556d5 2201 kvm_pfn_t pfn = pte_pfn(pte);
d5d8184d
CD
2202 pte_t stage2_pte;
2203
2204 if (!kvm->arch.pgd)
748c0e31 2205 return 0;
d5d8184d
CD
2206
2207 trace_kvm_set_spte_hva(hva);
694556d5
MZ
2208
2209 /*
2210 * We've moved a page around, probably through CoW, so let's treat it
2211 * just like a translation fault and clean the cache to the PoC.
2212 */
2213 clean_dcache_guest_page(pfn, PAGE_SIZE);
f8df7338 2214 stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
d5d8184d 2215 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
748c0e31
LT
2216
2217 return 0;
d5d8184d
CD
2218}
2219
056aad67 2220static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
35307b9a 2221{
35a63966 2222 pud_t *pud;
35307b9a
MZ
2223 pmd_t *pmd;
2224 pte_t *pte;
2225
35a63966
PA
2226 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2227 if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
35307b9a
MZ
2228 return 0;
2229
35a63966
PA
2230 if (pud)
2231 return stage2_pudp_test_and_clear_young(pud);
2232 else if (pmd)
06485053 2233 return stage2_pmdp_test_and_clear_young(pmd);
35a63966
PA
2234 else
2235 return stage2_ptep_test_and_clear_young(pte);
35307b9a
MZ
2236}
2237
056aad67 2238static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
35307b9a 2239{
35a63966 2240 pud_t *pud;
35307b9a
MZ
2241 pmd_t *pmd;
2242 pte_t *pte;
2243
35a63966
PA
2244 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2245 if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
35307b9a
MZ
2246 return 0;
2247
35a63966
PA
2248 if (pud)
2249 return kvm_s2pud_young(*pud);
2250 else if (pmd)
35307b9a 2251 return pmd_young(*pmd);
35a63966 2252 else
35307b9a 2253 return pte_young(*pte);
35307b9a
MZ
2254}
2255
2256int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2257{
7e5a6722
SP
2258 if (!kvm->arch.pgd)
2259 return 0;
35307b9a
MZ
2260 trace_kvm_age_hva(start, end);
2261 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
2262}
2263
2264int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2265{
7e5a6722
SP
2266 if (!kvm->arch.pgd)
2267 return 0;
35307b9a 2268 trace_kvm_test_age_hva(hva);
cf2d23e0
GS
2269 return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
2270 kvm_test_age_hva_handler, NULL);
35307b9a
MZ
2271}
2272
d5d8184d
CD
2273void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
2274{
c1a33aeb 2275 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
d5d8184d
CD
2276}
2277
342cd0ab
CD
2278phys_addr_t kvm_mmu_get_httbr(void)
2279{
e4c5a685
AB
2280 if (__kvm_cpu_uses_extended_idmap())
2281 return virt_to_phys(merged_hyp_pgd);
2282 else
2283 return virt_to_phys(hyp_pgd);
342cd0ab
CD
2284}
2285
5a677ce0
MZ
2286phys_addr_t kvm_get_idmap_vector(void)
2287{
2288 return hyp_idmap_vector;
2289}
2290
0535a3e2
MZ
2291static int kvm_map_idmap_text(pgd_t *pgd)
2292{
2293 int err;
2294
2295 /* Create the idmap in the boot page tables */
98732d1b 2296 err = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
0535a3e2
MZ
2297 hyp_idmap_start, hyp_idmap_end,
2298 __phys_to_pfn(hyp_idmap_start),
2299 PAGE_HYP_EXEC);
2300 if (err)
2301 kvm_err("Failed to idmap %lx-%lx\n",
2302 hyp_idmap_start, hyp_idmap_end);
2303
2304 return err;
2305}
2306
342cd0ab
CD
2307int kvm_mmu_init(void)
2308{
2fb41059
MZ
2309 int err;
2310
0a78791c 2311 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
46fef158 2312 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
0a78791c 2313 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
46fef158 2314 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
0a78791c 2315 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
5a677ce0 2316
06f75a1f
AB
2317 /*
2318 * We rely on the linker script to ensure at build time that the HYP
2319 * init code does not cross a page boundary.
2320 */
2321 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
5a677ce0 2322
b4ef0499
MZ
2323 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2324 kvm_debug("HYP VA range: %lx:%lx\n",
2325 kern_hyp_va(PAGE_OFFSET),
2326 kern_hyp_va((unsigned long)high_memory - 1));
eac378a9 2327
6c41a413 2328 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
ed57cac8 2329 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
d2896d4b 2330 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
eac378a9
MZ
2331 /*
2332 * The idmap page is intersecting with the VA space,
2333 * it is not safe to continue further.
2334 */
2335 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2336 err = -EINVAL;
2337 goto out;
2338 }
2339
38f791a4 2340 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
0535a3e2 2341 if (!hyp_pgd) {
d5d8184d 2342 kvm_err("Hyp mode PGD not allocated\n");
2fb41059
MZ
2343 err = -ENOMEM;
2344 goto out;
2345 }
2346
0535a3e2
MZ
2347 if (__kvm_cpu_uses_extended_idmap()) {
2348 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2349 hyp_pgd_order);
2350 if (!boot_hyp_pgd) {
2351 kvm_err("Hyp boot PGD not allocated\n");
2352 err = -ENOMEM;
2353 goto out;
2354 }
2fb41059 2355
0535a3e2
MZ
2356 err = kvm_map_idmap_text(boot_hyp_pgd);
2357 if (err)
2358 goto out;
d5d8184d 2359
e4c5a685
AB
2360 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
2361 if (!merged_hyp_pgd) {
2362 kvm_err("Failed to allocate extra HYP pgd\n");
2363 goto out;
2364 }
2365 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
2366 hyp_idmap_start);
0535a3e2
MZ
2367 } else {
2368 err = kvm_map_idmap_text(hyp_pgd);
2369 if (err)
2370 goto out;
5a677ce0
MZ
2371 }
2372
e3f019b3 2373 io_map_base = hyp_idmap_start;
d5d8184d 2374 return 0;
2fb41059 2375out:
4f728276 2376 free_hyp_pgds();
2fb41059 2377 return err;
342cd0ab 2378}
df6ce24f
EA
2379
2380void kvm_arch_commit_memory_region(struct kvm *kvm,
09170a49 2381 const struct kvm_userspace_memory_region *mem,
9d4c197c 2382 struct kvm_memory_slot *old,
f36f3f28 2383 const struct kvm_memory_slot *new,
df6ce24f
EA
2384 enum kvm_mr_change change)
2385{
c6473555
MS
2386 /*
2387 * At this point memslot has been committed and there is an
656012c7 2388 * allocated dirty_bitmap[], dirty pages will be tracked while the
c6473555
MS
2389 * memory slot is write protected.
2390 */
c862626e
KZ
2391 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2392 /*
2393 * If we're with initial-all-set, we don't need to write
2394 * protect any pages because they're all reported as dirty.
2395 * Huge pages and normal pages will be write protect gradually.
2396 */
2397 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
2398 kvm_mmu_wp_memory_region(kvm, mem->slot);
2399 }
2400 }
df6ce24f
EA
2401}
2402
2403int kvm_arch_prepare_memory_region(struct kvm *kvm,
2404 struct kvm_memory_slot *memslot,
09170a49 2405 const struct kvm_userspace_memory_region *mem,
df6ce24f
EA
2406 enum kvm_mr_change change)
2407{
8eef9123
AB
2408 hva_t hva = mem->userspace_addr;
2409 hva_t reg_end = hva + mem->memory_size;
2410 bool writable = !(mem->flags & KVM_MEM_READONLY);
2411 int ret = 0;
2412
15a49a44
MS
2413 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2414 change != KVM_MR_FLAGS_ONLY)
8eef9123
AB
2415 return 0;
2416
c3058d5d
CD
2417 /*
2418 * Prevent userspace from creating a memory region outside of the IPA
2419 * space addressable by the KVM guest IPA space.
2420 */
2421 if (memslot->base_gfn + memslot->npages >=
e55cac5b 2422 (kvm_phys_size(kvm) >> PAGE_SHIFT))
c3058d5d
CD
2423 return -EFAULT;
2424
89154dd5 2425 mmap_read_lock(current->mm);
8eef9123
AB
2426 /*
2427 * A memory region could potentially cover multiple VMAs, and any holes
2428 * between them, so iterate over all of them to find out if we can map
2429 * any of them right now.
2430 *
2431 * +--------------------------------------------+
2432 * +---------------+----------------+ +----------------+
2433 * | : VMA 1 | VMA 2 | | VMA 3 : |
2434 * +---------------+----------------+ +----------------+
2435 * | memory region |
2436 * +--------------------------------------------+
2437 */
2438 do {
2439 struct vm_area_struct *vma = find_vma(current->mm, hva);
2440 hva_t vm_start, vm_end;
2441
2442 if (!vma || vma->vm_start >= reg_end)
2443 break;
2444
8eef9123
AB
2445 /*
2446 * Take the intersection of this VMA with the memory region
2447 */
2448 vm_start = max(hva, vma->vm_start);
2449 vm_end = min(reg_end, vma->vm_end);
2450
2451 if (vma->vm_flags & VM_PFNMAP) {
2452 gpa_t gpa = mem->guest_phys_addr +
2453 (vm_start - mem->userspace_addr);
ca09f02f
MM
2454 phys_addr_t pa;
2455
2456 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2457 pa += vm_start - vma->vm_start;
8eef9123 2458
15a49a44 2459 /* IO region dirty page logging not allowed */
72f31048
MZ
2460 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2461 ret = -EINVAL;
2462 goto out;
2463 }
15a49a44 2464
8eef9123
AB
2465 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2466 vm_end - vm_start,
2467 writable);
2468 if (ret)
2469 break;
2470 }
2471 hva = vm_end;
2472 } while (hva < reg_end);
2473
15a49a44 2474 if (change == KVM_MR_FLAGS_ONLY)
72f31048 2475 goto out;
15a49a44 2476
849260c7
AB
2477 spin_lock(&kvm->mmu_lock);
2478 if (ret)
8eef9123 2479 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
849260c7
AB
2480 else
2481 stage2_flush_memslot(kvm, memslot);
2482 spin_unlock(&kvm->mmu_lock);
72f31048 2483out:
89154dd5 2484 mmap_read_unlock(current->mm);
8eef9123 2485 return ret;
df6ce24f
EA
2486}
2487
e96c81ee 2488void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
df6ce24f
EA
2489{
2490}
2491
15248258 2492void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
df6ce24f
EA
2493{
2494}
2495
2496void kvm_arch_flush_shadow_all(struct kvm *kvm)
2497{
293f2936 2498 kvm_free_stage2_pgd(kvm);
df6ce24f
EA
2499}
2500
2501void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2502 struct kvm_memory_slot *slot)
2503{
8eef9123
AB
2504 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2505 phys_addr_t size = slot->npages << PAGE_SHIFT;
2506
2507 spin_lock(&kvm->mmu_lock);
2508 unmap_stage2_range(kvm, gpa, size);
2509 spin_unlock(&kvm->mmu_lock);
df6ce24f 2510}
3c1e7165
MZ
2511
2512/*
2513 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2514 *
2515 * Main problems:
2516 * - S/W ops are local to a CPU (not broadcast)
2517 * - We have line migration behind our back (speculation)
2518 * - System caches don't support S/W at all (damn!)
2519 *
2520 * In the face of the above, the best we can do is to try and convert
2521 * S/W ops to VA ops. Because the guest is not allowed to infer the
2522 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2523 * which is a rather good thing for us.
2524 *
2525 * Also, it is only used when turning caches on/off ("The expected
2526 * usage of the cache maintenance instructions that operate by set/way
2527 * is associated with the cache maintenance instructions associated
2528 * with the powerdown and powerup of caches, if this is required by
2529 * the implementation.").
2530 *
2531 * We use the following policy:
2532 *
2533 * - If we trap a S/W operation, we enable VM trapping to detect
2534 * caches being turned on/off, and do a full clean.
2535 *
2536 * - We flush the caches on both caches being turned on and off.
2537 *
2538 * - Once the caches are enabled, we stop trapping VM ops.
2539 */
2540void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2541{
3df59d8d 2542 unsigned long hcr = *vcpu_hcr(vcpu);
3c1e7165
MZ
2543
2544 /*
2545 * If this is the first time we do a S/W operation
2546 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2547 * VM trapping.
2548 *
2549 * Otherwise, rely on the VM trapping to wait for the MMU +
2550 * Caches to be turned off. At that point, we'll be able to
2551 * clean the caches again.
2552 */
2553 if (!(hcr & HCR_TVM)) {
2554 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2555 vcpu_has_cache_enabled(vcpu));
2556 stage2_flush_vm(vcpu->kvm);
3df59d8d 2557 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
3c1e7165
MZ
2558 }
2559}
2560
2561void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2562{
2563 bool now_enabled = vcpu_has_cache_enabled(vcpu);
2564
2565 /*
2566 * If switching the MMU+caches on, need to invalidate the caches.
2567 * If switching it off, need to clean the caches.
2568 * Clean + invalidate does the trick always.
2569 */
2570 if (now_enabled != was_enabled)
2571 stage2_flush_vm(vcpu->kvm);
2572
2573 /* Caches are now on, stop trapping VM ops (until a S/W op) */
2574 if (now_enabled)
3df59d8d 2575 *vcpu_hcr(vcpu) &= ~HCR_TVM;
3c1e7165
MZ
2576
2577 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2578}